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Outline

We present optimization models and/or computational algorithms
dealing with online/streamline, structured, and/or massively
distributed data:

I Online Linear Programming

I Least Squares with Nonconvex Regularization

I The ADMM Method with Multiple Blocks
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Background

Consider a store that sells a number of goods/products

I There is a fixed selling period

I There is a fixed inventory of goods

I Customers come and require a bundle of goods and bid for
certain prices

I Objective: Maximize the revenue

I Decision: Accept or not?
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An Example

order 1(t = 1) order 2(t = 2) ..... Inventory(b)

Price(πt) $100 $30 ...

Decision x1 x2 ...

Pants 1 0 ... 100
Shoes 1 0 ... 50

T-shirts 0 1 ... 500
Jackets 0 0 ... 200

Hats 1 1 ... 1000
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Online Linear Programming Model

The classical offline version of the above program can be
formulated as a linear (integer) program as all data would have
arrived:

maximizex
∑n

t=1 πtxt
subject to

∑n
t=1 aitxt ≤ bi , ∀i = 1, ...,m

0 ≤ xt ≤ 1, ∀t = 1, ..., n

Now we consider the online or streamline and data-driven version
of this problem:

I We only know b and n at the start

I the constraint matrix is revealed column by column
sequentially along with the corresponding objective coefficient.

I an irrevocable decision must be made as soon as an order
arrives without observing or knowing the future data.
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Application Overview

I Revenue management problems: Airline tickets booking, hotel
booking;

I Online network routing on an edge-capacitated network;

I Combinatorial auction;

I Online adwords allocation
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Model Assumptions

Main Assumptions

I The columns at arrive in a random order.

I 0 ≤ ait ≤ 1, for all (i , t);

I πt ≥ 0 for all t

Denote the offline maximal value by OPT (A, π). We call an online
algorithm A to be c-competitive if and only if

Eσ

[
n∑

t=1

πtxt(σ,A)

]
≥ c · OPT (A, π),

where σ is the permutation of arriving order.
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A Learning Algorithm is Needed

I There is no distribution known so that any type of stochastic
optimization models is not applicable.

I Unlike dynamic programming, the decision maker does not
have full information/data so that a backward recursion can
not be carried out to find an optimal sequential decision
policy.

I Thus, the online algorithm needs to be learning-based, in
particular, learning-while-doing.
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Sufficient and Necessary Results

Theorem
For any fixed ε > 0, there is a 1− ε competitive online algorithm
for the problem on all inputs when

B = mini bi ≥ Ω
(
m log (n/ε)

ε2

)

Theorem
For any online algorithm for the online linear program in random
order model, there exists an instance such that the competitive
ratio is less than 1− ε if

B = min
i

bi ≤
log(m)

ε2
.

Agrawal, Wang and Y [Operations Research, to appear 2014]
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Key Observation and Idea of the Online Algorithm I

The problem would be easy if there is a ”fair and optimal price”
vector:

order 1(t = 1) order 2(t = 2) ..... Inventory(b) p∗

Bid(πt) $100 $30 ...

Decision x1 x2 ...

Pants 1 0 ... 100 $45
Shoes 1 0 ... 50 $45

T-shirts 0 1 ... 500 $10
Jackets 0 0 ... 200 $55

Hats 1 1 ... 1000 $15
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Key Observation and Idea of the Online Algorithm II

I Pricing the bid: The optimal dual price vector p∗ of the offline
problem can play such a role, that is x∗t = 1 if πt > aTt p

∗ and
x∗t = 0 otherwise, yields a near-optimal solution as long as
(m/n) is sufficiently small.

I Based on this observation, our online algorithm works by
learning a threshold price vector p̂ and use p̂ to price the bids.

I One-time learning algorithm: learns the price vector once
using the initial εn input (1/ε3):

maxx

εn∑
t=1

πtxt s.t.
εn∑
t=1

aitxt ≤ (1− ε)εbi , 0 ≤ xt ≤ 1, ∀i , t.

I Dynamic learning algorithm: dynamically updates the price
vector at a carefully chosen pace (1/ε2).
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Geometric Pace of Price Updating
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Related Work on Random-Permutation

Sufficient Condition Learning
Kleinberg [2005] B ≥ 1

ε2 , for m = 1 Dynamic

Devanur et al [2009] OPT ≥ m2 log(n)
ε3 One-time

Feldman et al [2010] B ≥ m log n
ε3 and OPT ≥ m log n

ε One-time

Agrawal et al [2010] B ≥ m log n
ε2 or OPT ≥ m2 log n

ε2 Dynamic

Molinaro and Ravi [2013] B ≥ m2 logm
ε2 Dynamic

Kesselheim et al [2014] B ≥ logm
ε2 Dynamic*

Gupta and Molinaro [2014] B ≥ logm
ε2 Dynamic*

Table: Comparison of several existing results
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Summary and Future Questions on OLP

I We have designed a dynamic near-optimal online algorithm for
a very general class of online linear programming problems.

I The algorithm is distribution-free, thus is robust to
distribution/data uncertainty.

I The dynamic learning algorithm has the feature of
“learning-while-doing”, and the pace the price is updated is
neither too fast nor too slow...

I Buy-and-sell model?

I Multi-product price-posting market?
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Unconstrained L2+Lp Minimization

Consider the convex quadratic optimization problem with Lp

quasi-norm regularization:

Minimizex fp(x) := ‖Ax− b‖22 + λ‖x‖pp, x ∈ X (1)

where X is a convex set, data A ∈ Rm×n,b ∈ Rm, parameter
0 ≤ p < 1, and

‖x‖pp =
∑
j

‖xj‖p.

When p = 0: ‖x‖00 := ‖x‖0 := |{j : xj 6= 0}| that is, the number
of nonzero entries in x.

Yinyu Ye September 2-4 2014



Online Linear Programming (OLP)
Least Squares with Nonconvex Regularization (LSNR)
Alternating Direction Method of Multipliers (ADMM)

Unconstrained L2+Lp Minimization

Consider the convex quadratic optimization problem with Lp

quasi-norm regularization:

Minimizex fp(x) := ‖Ax− b‖22 + λ‖x‖pp, x ∈ X (1)

where X is a convex set, data A ∈ Rm×n,b ∈ Rm, parameter
0 ≤ p < 1, and

‖x‖pp =
∑
j

‖xj‖p.

When p = 0: ‖x‖00 := ‖x‖0 := |{j : xj 6= 0}| that is, the number
of nonzero entries in x.

Yinyu Ye September 2-4 2014



Online Linear Programming (OLP)
Least Squares with Nonconvex Regularization (LSNR)
Alternating Direction Method of Multipliers (ADMM)

Application and Motivation

The original goal is to control ‖x‖00 = |{j : xj 6= 0}|, the size of
the support set of x, for

I Cardinality constrained portfolio management

I Sparse image reconstruction

I Sparse signal recovering

I Compressed sensing – reweighed L1 seems more effective

But L2 + L0 is known to be an NP-Hard problem, and hope
L2 + Lp could be easier...
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Modern Portfolio Theory

A case p = 1 does not help:

Minimizex ‖Ax− b‖22, eTx = 1, x ≥ 0;

or ”short” is allowed:

Minimizex ‖Ax− b‖22, eTx = 1.

Let x = x+ − x−, (x+, x−) ≥ 0. Then,

eTx+ − eTx− = 1,

so that
‖x‖1 = eTx+ + eTx− = 1 + 2eTx−.

Minimizing ‖x‖1 is about to control the debt exposure, not about
the cardinality.

Yinyu Ye September 2-4 2014
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The Hardness Result

Question: Is L2 + Lp minimization easier than L2 + L0

minimization?

Theorem
Deciding the global minimal objective value of L2 + Lp

minimization is strongly NP-hard for any given 0 ≤ p < 1 and
λ > 0.

Chen, Ge, Jian, Wang and Y [Math Programming 2011 and 2014]
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The Easiness Result

However,

Theorem
There are FPTAS algorithms that provably compute a
(second-order) ε-KKT point of L2 + Lp minimization.

Bian, Chen, Ge, Jian, and Y [Math Programming 2011 and 2014]

Question: Does any (second-order) KKT point or solution possess
predictable sparse properties?
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Theory of Constrained L2+Lp: First-Order Bound

Theorem
Let x∗ be any first-order KKT point and let

Li =

(
λp

2‖ai‖
√

f (x∗)

) 1
1−p

.

Then, for any i , either x∗i = 0 or |x∗i | ≥ Li .
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Theory of Constrained L2+Lp: Second-Order Bound

Theorem
Let x∗ be any KKT point that satisfies the second-order necessary
conditions and let

Li =

(
λp(1− p)

2‖ai‖2

) 1
2−p

.

Then, for any i , either x∗i = 0 or |x∗i | ≥ Li . Moreover, the support
columns of x∗ are linearly independent.

Chen, Xu and Y [SIAM Journal on Scientific Computing 2010]
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Extension to other Regularizations

Consider the Least Squares problem with any non-convex
regularization:

Minimizex fp(x) := ‖Ax− b‖22 + λ
∑

i φ(|xi |)

where φ(·) is a concave increasing function.

First-order bound: either x∗i = 0 or 2‖ai‖
√

f (x∗) ≥ λ|φ′(x∗i )|.

Second-order bound: either x∗i = 0 or 2‖ai‖2 ≥ λ|φ′′(x∗i )|.
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Summary and Future Questions on LSNR

I Unfortunately, finding the global minimizer of LSNR problems
is (strongly) NP-hard;

I but fortunately finding an KKT point is easy!

I There are desired structure properties of any KKT point of
LSNR problems.

I Could one apply statistical analyses to a local minimizers or
KKT points of LSNR?

I When is a local minimizer of LSNR also global?

I Faster algorithms for solving LSNR, such as ADMM
convergence for two blocks:

min f (x) + r(y), s.t. x− y = 0, x ∈ X ?
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Outline

I Distributionally Robust Optimization

I Online Linear Programming

I Least Squares with Nonconvex Regularization

I The ADMM Method with Multiple Blocks
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Alternating Direction Method of Multipliers I

min {θ1(x1) + θ2(x2) | A1x1 + A2x2 = b, x1 ∈ X1, x2 ∈ X2}

• θ1(x1) and θ2(x2) are convex closed proper functions;

• X1 and X2 are convex sets.

Original ADMM (Glowinski & Marrocco ’75, Gabay & Mercier
’76): 

xk+1
1 = arg min{LA(x1, xk2 , λ

k) | x1 ∈ X1},
xk+1
2 = arg min{LA(xk+1

1 , x2, λk) | x2 ∈ X2},
λk+1 = λk − β(A1x

k+1
1 + A2x

k+1
2 − b),

where the augmented Lagrangian function LA is defined as

LA(x1, x2, λ) =
2∑

i=1

θi (xi )− λT
( 2∑
i=1

Aixi − b
)

+
β

2

∥∥ 2∑
i=1

Aixi − b
∥∥2.
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ADMM for Multi-block Convex Minimization Problems

Convex minimization problems with three blocks:

min θ1(x1) + θ2(x2) + θ3(x3)
s.t. A1x1 + A2x2 + A3x3 = b

x1 ∈ X1, x2 ∈ X2, x3 ∈ X3

The direct and natural extension of ADMM:
xk+1
1 = arg min{LA(x1, xk2 , x

k
3 , λ

k) | x1 ∈ X1}
xk+1
2 = arg min{LA(xk+1

1 , x2, xk3 , λ
k) | x2 ∈ X2}

xk+1
3 = arg min{LA(xk+1

1 , xk+1
2 , x3, λk) | x3 ∈ X3}

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 + A3x

k+1
3 − b)

LA(x1, x2, x3, λ) =
3∑

i=1

θi (xi )− λT
( 3∑
i=1

Aixi − b
)

+
β

2

∥∥ 3∑
i=1

Aixi − b
∥∥2
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Existing Theoretical Results of the Extended ADMM

Not easy to analyze the convergence: the operator theory for the
ADMM cannot be directly extended to the ADMM with three
blocks. Big difference between the ADMM with two blocks and
with three blocks.

Existing results for global convergence:

• Strong convexity; plus β in a specific range (Han & Yuan ’12).

• Certain conditions on the problem; then take a sufficiently
small stepsize γ (Hong & Luo ’12)

λk+1 = λk − γβ(A1x
k+1
1 + A2x

k+1
2 + A3x

k+1
3 − b).

• A correction term (He et al. ’12, He et al. -IMA, Deng at al.
’14, Ma et al. ’14...)

But, these did not answer the open question whether or not the
direct extension of ADMM converges under the simple convexity
assumption.

Yinyu Ye September 2-4 2014



Online Linear Programming (OLP)
Least Squares with Nonconvex Regularization (LSNR)
Alternating Direction Method of Multipliers (ADMM)

Existing Theoretical Results of the Extended ADMM

Not easy to analyze the convergence: the operator theory for the
ADMM cannot be directly extended to the ADMM with three
blocks. Big difference between the ADMM with two blocks and
with three blocks. Existing results for global convergence:

• Strong convexity; plus β in a specific range (Han & Yuan ’12).

• Certain conditions on the problem; then take a sufficiently
small stepsize γ (Hong & Luo ’12)

λk+1 = λk − γβ(A1x
k+1
1 + A2x

k+1
2 + A3x

k+1
3 − b).

• A correction term (He et al. ’12, He et al. -IMA, Deng at al.
’14, Ma et al. ’14...)

But, these did not answer the open question whether or not the
direct extension of ADMM converges under the simple convexity
assumption.

Yinyu Ye September 2-4 2014



Online Linear Programming (OLP)
Least Squares with Nonconvex Regularization (LSNR)
Alternating Direction Method of Multipliers (ADMM)

Existing Theoretical Results of the Extended ADMM

Not easy to analyze the convergence: the operator theory for the
ADMM cannot be directly extended to the ADMM with three
blocks. Big difference between the ADMM with two blocks and
with three blocks. Existing results for global convergence:

• Strong convexity; plus β in a specific range (Han & Yuan ’12).

• Certain conditions on the problem; then take a sufficiently
small stepsize γ (Hong & Luo ’12)

λk+1 = λk − γβ(A1x
k+1
1 + A2x

k+1
2 + A3x

k+1
3 − b).

• A correction term (He et al. ’12, He et al. -IMA, Deng at al.
’14, Ma et al. ’14...)

But, these did not answer the open question whether or not the
direct extension of ADMM converges under the simple convexity
assumption.

Yinyu Ye September 2-4 2014



Online Linear Programming (OLP)
Least Squares with Nonconvex Regularization (LSNR)
Alternating Direction Method of Multipliers (ADMM)

Divergent Example of the Extended ADMM I

We simply consider the system of homogeneous linear equations
with three variables:

A1x1 +A2x2 +A3x3 = 0, where

A = (A1,A2,A3) =

 1 1 1
1 1 2
1 2 2

 .

Then the extended ADMM with β = 1 can be specified as a linear
map

3 0 0 0 0 0

4 6 0 0 0 0

5 7 9 0 0 0

1 1 1 1 0 0

1 1 2 0 1 0

1 2 2 0 0 1




xk+1
1

xk+1
2

xk+1
3

λk+1

 =



0 −4 −5 1 1 1

0 0 −7 1 1 2

0 0 0 1 2 2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




xk
1

xk
2

xk
3

λk

 .

Yinyu Ye September 2-4 2014



Online Linear Programming (OLP)
Least Squares with Nonconvex Regularization (LSNR)
Alternating Direction Method of Multipliers (ADMM)

Divergent Example of the Extended ADMM I

We simply consider the system of homogeneous linear equations
with three variables:

A1x1 +A2x2 +A3x3 = 0, where A = (A1,A2,A3) =

 1 1 1
1 1 2
1 2 2

 .

Then the extended ADMM with β = 1 can be specified as a linear
map

3 0 0 0 0 0

4 6 0 0 0 0

5 7 9 0 0 0

1 1 1 1 0 0

1 1 2 0 1 0

1 2 2 0 0 1




xk+1
1

xk+1
2

xk+1
3

λk+1

 =



0 −4 −5 1 1 1

0 0 −7 1 1 2

0 0 0 1 2 2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




xk
1

xk
2

xk
3

λk

 .

Yinyu Ye September 2-4 2014



Online Linear Programming (OLP)
Least Squares with Nonconvex Regularization (LSNR)
Alternating Direction Method of Multipliers (ADMM)

Divergent Example of the Extended ADMM I

We simply consider the system of homogeneous linear equations
with three variables:

A1x1 +A2x2 +A3x3 = 0, where A = (A1,A2,A3) =

 1 1 1
1 1 2
1 2 2

 .

Then the extended ADMM with β = 1 can be specified as a linear
map

3 0 0 0 0 0

4 6 0 0 0 0

5 7 9 0 0 0

1 1 1 1 0 0

1 1 2 0 1 0

1 2 2 0 0 1




xk+1
1

xk+1
2

xk+1
3

λk+1

 =



0 −4 −5 1 1 1

0 0 −7 1 1 2

0 0 0 1 2 2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




xk
1

xk
2

xk
3

λk

 .

Yinyu Ye September 2-4 2014



Online Linear Programming (OLP)
Least Squares with Nonconvex Regularization (LSNR)
Alternating Direction Method of Multipliers (ADMM)

Divergent Example of the Extended ADMM II

Or equivalently,  xk+1
2

xk+1
3

λk+1

 = M

 xk
2

xk
3

λk

 ,

where

M =
1

162


144 −9 −9 −9 18

8 157 −5 13 −8

64 122 122 −58 −64

56 −35 −35 91 −56

−88 −26 −26 −62 88

 .
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Divergent Example of the Extended ADMM III

The matrix M = VDiag(d)V−1, where

d =


0.9836 + 0.2984i
0.9836− 0.2984i
0.8744 + 0.2310i
0.8744− 0.2310i

0

 . Note that ρ(M) = |d1| = |d2| > 1.

Theorem
There exist an example where the direct extension of ADMM of three
blocks with any real number initial point in a subspace is not convergent
for any choice of β.

Chen, He, Y, and Yuan [Manuscript 2013]

Corollary
When starting from a random point, there exist an example the direct
extension of ADMM of three blocks is not convergent with probability
one for any choice of β.
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Strong Convexity Helps?

Consider the following example

min 0.05x2
1 + 0.05x2

2 + 0.05x2
3

s.t.

 1 1 1
1 1 2
1 2 2

 x1
x2
x3

 = 0.

I Then, the linear mapping matrix M in the extended ADMM
(β = 1) has ρ(M) = 1.0087 > 1

I Able to find a proper initial point such that the extended
ADMM diverges

I even for strongly convex programming, the extended ADMM
is not necessarily convergent for a certain β > 0.
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Strong Convexity Helps?

Consider the following example

min 0.05x2
1 + 0.05x2

2 + 0.05x2
3

s.t.

 1 1 1
1 1 2
1 2 2

 x1
x2
x3

 = 0.
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The Small-Stepsized ADMM

Recall that, In the small stepsized ADMM, the Lagrangian
multiplier is updated by

λk+1 := λk − γβ(A1x
k+1
1 + A2x

k+1
2 + . . .+ A3x

k+1
3 ).

Convergence is proved:

I One block (Augmented Lagrangian Method): γ ∈ (0, 2),
(Hestenes ’69, Powell ’69).

I Two blocks (Alternating Direction Method of Multipliers:

γ ∈ (0, 1+
√
5

2 ), (Glowinski, ’84).

I Three blocks: for γ sufficiently small provided additional conditions
on the problem, (Hong & Luo ’12).

Question: Is there a problem-data-independent γ such that the method

converges?
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A Numerical Study

For any given γ > 0, consider the linear system 1 1 1
1 1 1 + γ
1 1 + γ 1 + γ

 x1
x2
x3

 = 0.

Table: The radius of M

γ 1 0.1 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7
ρ(M) 1.0278 1.0026 1.0001 > 1 > 1 > 1 > 1 > 1

Thus, there seems no practical problem-data-independent γ such that the

small-stepsized ADMM variant works.
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Summary and Future Questions on ADMM

I We construct examples to show that the direct extension of ADMM
for multi-block convex minimization problems is not necessarily
convergent for any given algorithm parameter β.

I Even in the case where the objective function is strongly convex, the
direct extension of ADMM loses its convergence for certain βs.

I There doesn’t exist a problem-data-independent stepsize γ such
that the small-stepsized variant of ADMM would work.

I Is there a cyclic non-converging example?

I Our results support the need of a correction step in the ADMM-type
method (He&Tao&Yuan 12’, He&Tao&Yuan-IMA,...).

I Question: Is there a ”simple correction” of the ADMM for the
multi-block convex minimization problems? Or how to treat the
multi blocks ”equally”?
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How to Treat All Blocks Equally?

Answer: Independent random permutation in each iteration!

I Select the block-update order in the uniformly random fashion
– this equivalently reduces the ADMM algorithm to one block.

I Or fix the first block, and then select the rest block order in
the uniformly random fashion – this equivalently reduces the
ADMM algorithm to two blocks.

I It works for the example – the expected ρ(M) equals 0.9723!

I It works in general?
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