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Ip-Norm Constrained Quadratic Programming

Data fitting

@ l-norm: least-square data fitting

min |[[Ax — b||,
s.t. xeR™

@ When A is full rank in column, then x* = (ATA)~1ATb.
@ A 2nd-order conic programming formulation

min ¢
st. |JAx—Db|2 <t
x € R™.

e Experts in numerical analysis prefer the direct calculation
much more than the optimal solution method.
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Ip-Norm Constrained Quadratic Programming

;- norm problem

@ [;-norm.
min ||x]|;
st. Ax=2»b
x € R,

@ Alinear programming formulation

min >,k
st. —<x;<t;,i=1,2,...,n
Ax=D>b

t,x € R
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Ip-Norm Constrained Quadratic Programming

Heuristic method for finding a sparse solution

@ Regressor selection problem: A potential regressors, b to be fit
by a linear combination of A

min |[Ax — b||2
s.t. card(x) <k
xeZh.
o ItisNP-hard. Let m=1,A= (a1, ay,...,an), b= 3>, a;
k < 7. Itis a partition problem.
@ Heuristic method.
min  [|Ax — bl|2 + ]|x]}x
s.t. xeR™

@ Ref. S. Boyd and L. Vandenberghe, Convex Optimization,
Cambridge University Press, 2004.
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Ip-Norm Constrained Quadratic Programming

Regularized approximation

min [|Ax — bll2 + || x[x
s.t. xe R

@ /;-norm and L-norm constrained programming

min # +~5h
S.t. HAJC — ng <h
[xlh < &

)CERn,tl,l'z € R.

@ The objective function is linear, the first constraint is a
2nd-order cone and the 2nd is a 1st-order cone.

@ Itis a convex optimization problem of polynomially solvable.
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Ip-Norm Constrained Quadratic Programming

p-norm domain

Black: 1-norm. Red: 2-norm. Green: 3-norm. Yellow:-8-norm.
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Ip-Norm Constrained Quadratic Programming

Convex [,-norm problems

@ p-norm domain is convex (p > 1).

@ Forset {x| x|, < 1}, the smallest one is the domain with
p = 1, which is the smallest convex set containing integer
points {—1,1}".

@ For p > 1, the [,-norm problems with linear objective or linear
constraints are polynomially solvable.

@ Variants of /,-norm problems should be considered.
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Ip-Norm Constrained Quadratic Programming

Variants of /,-norm problems

@ -norm constrained quadratic problem

min x'Qx+ g'x
st. ||Ax — bl < cTx
cTx=d>0

x e R™
@ [;-norm constrained quadratic problem
min xTQx+ g"x

s.t. x| <k
x e R,

where Q is a general symmetric matrix.
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Ip-Norm Constrained Quadratic Programming

l,-Norm Constrained Quadratic Programming

min 1x"Qx+q"x

st 3xTQx+¢glx+¢<0,i=1,2,....m
Av— bl < '
x € R

where p > 1.
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Linear Conic Programming Reformulation

QCQP reformulation

min  1x"Qox + gl x + ¢
st 3xTQx+¢glx+¢<0,i=1,2,....m
x€D,

where D C R”,
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Linear Conic Programming Reformulation

p-norm form

@ /;-norm problem

min xTQx+ g'x
s.t. x| <k
x e R"

Denote D = {x € R" | || x|l < k}.
@ QCQP form

min xTQx+ gTx
s.t. xeD.
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Linear Conic Programming Reformulation

2-norm form

@ 2-norm problem

min x'Qx+ g'x
st. ||Ax — bl < cTx
cTx=d>0

x € R"™.

Denote D = {x € R" | [|Ax — b, < ¢"x}
@ QCQP form

min xTQx+ g'x
st. ¢'x=d
x eD.
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Linear Conic Programming Reformulation

Lifting reformulation

min f(x) = 3x"Qux+ gl x + &
st gi(x)=3xTQx+¢glx+¢<0,i=1,2,....m (QCQP)
xeD.
Denote: F = {x € D | gi(x) <0,i=1,2,...,m}.

o Lifting
T
min ;(200 9o )oX
g

-
s.t. ;<2Q qi ). <0,i=1,2,....,m
qi Qi
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Linear Conic Programming Reformulation

Convex reformulation

T
min ;(200 o )oX
4o
g7
s.t. ;<2Q a )oX<0,i:1,27...,m
qi Qi

<1 0>.X:1
0 0
T
Xecl(conv({( 1 ) ( 1 ) |xe]—"})).
X X
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Linear Conic Programming Reformulation

Linear conic programming reformulation

T
min ;(260 9o )oX

g
-
s.t. ;<ch qi )oXSO,il,Z,...,m
q; Qi
I
0 0

Xecl(cone({( 1 ) < 1 ) |x€]—'})).
X X

@ Itis alinear conic programming and has the same optimal
value with QCQP.
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Linear Conic Programming Reformulation

Quadratic-Function Conic Programming

e PRIMAL

. < 2 Co
min 5
9o

st 2<ch ).V —1,2,...,m (QFCP)
qi
V=
T
(cone{ <1> ,xe]—"})
X

[ ]
VeDr=cl
@ F CR" AeB = trace(ABT),
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Linear Conic Programming Reformulation

Quadratic-Function Conic Programming

o DUAL

max o
s.t. ( —204+2c+23 2 Xici (qo+ D1t Nigi)T ) €Dr
Go+ ity Nidi Qo+ X1 NiQi
oceR,XeRY,
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Linear Conic Programming Reformulation

Properties of the Quadratic-Function Cone

@ Cone of nonnegative quadratic functions (Sturm and Zhang,
MOR 28, 2003).

T

D;:{UGS”H|< 1) U( 1 ) zo,\mef}.
X X

e If 7 # (), then D% is the dual cone of Dr and vice versa.
o If Fis a bounded nonempty set, then

D{(1>(1)f}

o Ifint(F) # (), then D% and D are proper.
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Linear Conic Programming Reformulation

Properties

@ The complexity of checking whether V € D% or U € Dr
depends on F.

e When F = R”, D% = S/

@ When F = R}, D7 is the copositive cone!
Ref: recent survey papers (I. M. Bomze, EJOR, 2012 216(3);
Mirjam Diir, Recent Advances in Optimization and its
Applications in Engineering, 2010; J.-B. Hiriart-Urruty and A.
Seeger, SIAM Review 52(4), 2010.)

@ Relaxation or restriction
D} C 8" C Dy

@ Approximation: Computable cover of F.
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Linear Conic Programming Reformulation

Checking U € Dz is an optimization problem!

T

pr=duecs (1) ul!)sovrer!.
X X

U € Dr ifand only if the optimal value of the following problem is
not negative

T

wn (1) 0 ()

s.t. xe F.

o If 7 is a p-norm constraint, then it is a p-norm constrained
quadratic programming.
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Linear Conic Programming Reformulation

Easy cases

s.t. xe F.

e If 7 is a p-norm constraint, then it is a p-norm constrained
quadratic programming.

© When 7 = {x € R" | 3x"Px+ p'x+d < 0}, P~ 0, int(F) # 0,
it is computable.

@ When F = Soc(n) = {x € R"VxTPx < ch}, P =0, int(F) # 0,
it is computable.

W. Xing Sept. 2-4, 2014, Peking University



Complexity

A special case of p-norm constrained quadratic
programming

min 3x7Qx+ q”x
sit. |[x]lp, <k
x € R,
where p > 1.
e Equivalent formulation

min x7Qx+ tq"x
st. lx||p, <t

t=k

xeR"
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Complexity

Homogenous quadratic constrained model

min 3x"Qx+ 11g7x
sit. x|, <t
t=k
xeR™

@ Homogenous quadratic form
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Complexity

Complexity of the problem

@ Homogenous: It is polynomially computable when p = 2.
min  x"Qx
s.t. xe€ Soc(n) = {x € R"vVxTPx < ch} ,

where Qis a general symmetric matrix, P is positive definite and
Soc(n + 1) has an interior ( Ref: Ye Tian et. al., JIMO 9(3), 2013).

@ Variant
min x7Qx+ g'x
sit. ||Ax — bl < cTx
Tx=d>0
xeR"

o Complexity?
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Complexity

Complexity of the problem

@ Homogeneous QP over the 1st-order cone is NP-hard

o () o)
x x

s.t. ( 0 > € Foc(n+1),
x

where Foc(n+ 1) = {(x,x) € R x R" | ||x]1 < %},and Qisa
general symmetric matrix.

@ Itis NP-hard.

W. Xing
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Complexity

Complexity of the problem

@ A cross section problem

wn (1) e(1)

st x| <1
xeR”?

@ Guo et. al. conjectured NP-hard (Ref: Xiaoling Guo et. al., JIMO
10(3), 2014.

o Itis NP-hard (Ref: Yong Hsia, Optimization Letters 8, 2014).
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Complexity

Complexity of the problem

@ Ageneral case p > 1.

wn () o[ 1)

s.t. ( g ) e {(t,x) ERxR" | |x||, < £}

X

@ Zhou et. al. conjectured NP-hard (Ref: Jing Zhou et. al., PJO to
appear, 2014.

@ Provided with many solvable subcases.
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Approximation Scheme

Quadratic-Function Conic Programming

o PRIMAL
T
min ;(200 %)oV
qg
L[ 2¢ g :
st. 3 eV <0,i=1,2,...,m (QFCP)
qi Qi
1.0 eV =1
00
Ve Dk

@ F CR", AeB= trace(ABT),

D:1<{(1)<1>f})
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Approximation Scheme

Quadratically Constrained Quadratic Programming

(QCQP)

If F # 0, then the QFCP primal, its dual and the QCQP have the same
optimal objective value.

Theorem

Suppose F, G, and G, be nonempty sets. Denote v(F), v(G1) and v(G2)
be the optimal objective value of the QFCP with F selecting different
sets respectively.

(i) If G, C G,, then Dg, D Dg, andD’;;1 C Dg,.

(i) If F C G1 C G, then v(F) > v(G1) > v(G2).

W. Xing Sept. 2-4, 2014, Peking University



Approximation Scheme

Relaxation

o Relaxation
C* 2 D% and computable.

T
min ;(260 %)oV
g Q

S.t. V11:1
1HieV<0,i=1.2,...
VZ(Uij> eC*,

o The worst one: C* = S,
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Approximation Scheme

Ellipsoid Cover of Bounded Feasible Set

@ Easy case: Quadratic-function cone over one ellipsoid
constraint.

Theorem

Let F = {x € R" | g(x) < 0}, whereg(x) = 1x"Qx+ q"x + ¢,
int(F) #0and Q € S} . Foran (n+ 1) x (n+ 1) real symmetric
matrix V, V € D% if and only if

T
;(26 q ).Vgo
qg Q

Vesttt
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Approximation Scheme

Ellipsoid Cover of Bounded Feasible Set

e Ellipsoid cover (Lu et al, 2011)

Theorem

LetG =G UG, U---UGs, where
Gi={xeR"| 3x"Bix + bl x+ d; <0},1 < i < s, are ellipsoids with
an interior, then

D5:D51+D52+'“+D55'

And V € D if and only if the following system is feasible

V=Vit+ Vot +V

. T
;(Zdl by ).v,-go,izl,z,...,s
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Approximation Scheme

Ellipsoid Cover of Bounded Feasible Set

min Hye V

st.Vii=1
HeoeV<<L0,i=12....m
V=WV+-+V

d; b
b,‘ Bl'

V<0, V-0, i=1,2,..5. (EC)

It is a SDP, computable!
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Approximation Scheme

Ellipsoid Cover: Decomposition

Under some assumptions, if V* = V* + ...+ V is an optimal solution
of (EC), then for each j, j = 1, .., s, there exists a decomposition of

nj
1 1
=D _Hi
i=1 Xji| [ Xji

forsomen; >0, xj; € Gj, pji > 0 and 3" pji = [Y"]11. Moreover, V*
can be decomposed in the form of
xji]

s
>3
Xji
with Xji € Qj, Wji > 0 andz;:l E?jzl Hji = Vl*l =1.

T

T

j=1 i=1
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Approximation Scheme

Ellipsoid Cover: Approximation Scheme

Step 1 Cover the feasible set 7 with some ellipsoid(s).
Step 2 Solve (EC).

Step 3 Decompose the optimal solution of (EC) and find a x;; with the
smallest objective value (sensitive point).

Step 4 Check if the sensitive point x;; € F. If it is, then it is a global
optimum of QCQP. Otherwise, cover G; with two smaller
ellipsoids. Repeat above procedure.

Step 5 The approximation objective values converge to the optimal
value of QCQP.

@ Applications: QP (Lu et al, to appear in OPT, 2014), 0-1
knapsack (Zhou et al, JIMO 9(3), 2013), to detect copositve cone
(Deng et al, EJOR 229, 2013) etc.
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Approximation Scheme

Adaptive ellipsoid covering

W. Xing Sept. 2-4, 2014, Peking University



Approximation Scheme

Applications to p-norm problems: bounded feasible
sets

@ p-norm problem
min xTQx+ g"x
st x|, <k
x e R™
F=D={xeR"||x|,<k}.
@ 2-norm problem
min x7Qx+ gTx
sit. ||Ax — bl < cTx
c’x=d, xcR"

D={xeR"||Ax— bl < c'x}, F={xeD|c'x=d}.
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Approximation Scheme

Second-order Cone Cover
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Questions

Questions

@ For the least square problem, why the 2nd-order conic model is
not used generally?

@ Can we have more efficient algorithms than the interior point
method for SDP?
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Questions

Thank You!

4, 2014, Peking University
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