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Outline

[1  Background: multi-agent networks, decentralized optimization
[J  Decentralized gradient descent (DGD)

[J  Exact first-order algorithm (EXTRA)



Multi-agent networks

A multi-agent network
e A network of agents that are able to compute and communicate

e Networks of computers, robots, wireless sensors, cognitive radios, etc

In-network information processing, formulated as an optimization problem
e Data transmission to fusion center is prohibitive (bandwidth, privacy)

e Decentralized optimization through collaboration of neighboring agents



Decentralized consensus optimization

[1 A network of n agents solve
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e [i:RY — R is local objective function at agent i
e 1 & RP is common optimization variable to agents

e A" is optimal solution set

[1 In a decentralized optimization algorithm, each agent ...
e DMaintains a local iterate that can be shared with its neighbors
e [s not allowed to exchange its local objective function

e Is expected to eventually obtain a solution in A that is consensual



Example: target localization

[J A network of n wireless sensors estimate position z of target
e Position of sensor 7 is y;

e Distance measurement of sensor 7 is d;

[1  Sensors collaboratively solves min %Z?:l (d; — ||y — IH)2




Decentralized versus distributed optimization

(1 Decentralized optimization [1 Distributed optimization

g T T Ty > g

A Rl v-._
\‘ ,,/ ,‘ k\ \\\\

\ - /I \\ \\‘~

\ \ . v < »

\ L7

& v X
‘.N‘~~
@

[1  Designing decentralized and distributed optimization algorithms
e Distributed is a special case of decentralized: a star topology

e Utilize centralized controller for more efficient distributed algorithms
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Related work

Decentralized (sub)gradient descent [Nedic and Ozdaglar 2009]
e Simple computation: mix neighboring solutions, descend locally

e Slow or inaccurate convergence (as we will show)

ADMM [Bertsekas and Tsitsiklis 1997, Schizas et al 2008]
e Fast and accurate convergence in practice and theory [Shi et al 2014]

e Complicated computation: solving an optimization problem
Other algorithms: dual decomposition, dual averaging, etc

This talk focuses on decentralized algorithms whose computations are simple



Assumptions

Basic assumption on optimization problem

fi 1s differentiable and convex; optimal solution set A" is nonempty

Basic assumption on underlying network

Network (V. A) is bidirectionally connected; communication is synchronized
Assumption 1 (Lipschitz continuous gradient)

V f; 1s Lipschitz with constant Ly, L., = max; Ly and L, = % S Ly
Assumption 2 (strong convexity)

1 T S R N ot YTl :
~ > iy fi Is strongly convex with constant fia.



Decentralized gradient descent (DGD)

[1  DGD: mix neighboring solutions, run local gradient descent
n
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o Weight w;; =01if (2,5) ¢ A and i # j = decentralized computation

k.

e Stepsize a: constant or diminishing

[1  Compare to centralized gradient descent
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e Maintain multiple local solutions, mix to keep closeness

e Use local gradients to replace true average gradient



Mixing matrix

[0 Mixing matrix W = |w;;| € R"*": belief on neighboring solutions
e Nonnegative, symmetric, doubly stochastic (W = W1 > 0. W1 = 1)
e FLigenvaluesof W:1=MAM2X =22\, > —1
e If connected, can design W such that second largest eigenvalue modulus

p =max(| A, |A\n]) < 1

[1  Metropolis-Hastings, maximum-degree, etc [Boyd et al 2004]
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Existing convergence analysis

[0 O(1/Fk) rate to neighborhood of X* [Nedic & Ozdaglar 2009]
e Bounded gradient/subgradient

e Constant stepsize

O O(1/E*?) rate to X* [Jakovetic et al 2014]
e DBounded and Lipschitz continuous gradient
e Diminishing stepsize ~ O(1/k!/?)

[ We focus on DGD with constant stepsize

e DGD is a centralized gradient descent to minimize a Lyapunov function

e This equivalence enables deeper understanding and better results
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Can we reach consensus?

(1 Suppose all local solutions eventually reach a consensual solution 2"

T
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e W is doubly stochastic and a > 0 = V f;(z") = 0, Vi

e 1cA= %le Vfilz") =10

Com

e Ifsuch an 2" exists, then " € A™; but it does not exist in general

(1 Dilemma of DGD
e Comnstant stepsize — nexact but fast (as we will show) convergence

e Diminishing stepsize — exact but slow convergence
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Essence of DGD

DGD with constant stepsize a
n
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is centralized gradient descent ( stepsize 1) to minimize Lyapunov function
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From the equivalence, we can show ...
e When gradients are bounded, how fast convergence is

e Where to converge
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When gradients are bounded?

[J  Theorem: under Assumption 1 (Lipschitz continuous gradient), if
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then gradients are bounded

(] Smaller L,,,, or larger A\, (away from —1) = larger critical stepsize

e Ciritical stepsize is tight as we can show counterexamples

2
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e Have L,u: € [Lave. N Lave|; design W such that A, > 0

e Same order as stepsize of centralized gradient descent
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Where to converge and how fast?

[J  Theorem: under Assumption 1 (Lipschitz continuous gradient), if p < 1 and

o < min{ e 1

L’ﬂlﬂ-.’]‘.‘ ' L'IS',E,'E

then objective error decreases at a rate of O(ﬁ) until reaching O{Lf—p)
[J  Theorem: under Assumption 1 (Lipschitz continuous gradient) and
Assumption 2 (strong convexity), if p < 1 and

1+ A, 1 }
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a < min{

then point error decreases at a rate of O(c*) until reaching O(ﬁ);
here ¢ € (0,1) 1s determined by a and p

[1 Large a = fast convergence and inaccurate solution

[J Large p (achievable when network is dense) = accurate solution
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Concluding DGD

[]  Our contribution: establishing inexact convergence and rates of convergence

1

;) rate

e Lipschitz continuous gradient — O(
e Lipschitz continuous gradient and strong convexity — O(c*) rate
e DBounds of stepsizes are similar to those in centralized gradient descent

e Tradeoff between speed and accuracy through tuning stepsize

[1 Can we improve DGD: exact convergence with large constant stepsize?
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EXact firsT-ordeR Algorithm (EXTRA)

[1  EXTRA: mix neighboring solutions, run local gradient descent-ascent
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o Weights w;; and w,; =01if (7,j) ¢ Aand i # j
e Stepsize a: constant

[ Overheads comparing to DGD
e Communication: same per iteration

e Storage: storing previous neighboring solutions and local gradient
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Mixing matrices

) Mixing matrices W = [w;;] and W = [ ]
o (Symmetry) W =W and W=WT7
e (Null space) nul{ W — W} = span{1} and null{I, — W} C span{1}
e (Spectral) W > 0 and it W W - W

O Choose W as in DGD and set W = @
e Nonnegative, symmetric, doubly stochastic (W = W1 >0, W1 =1)
e Second largest eigenvalue modulus of W: p = max(|As|. |\,|) < 1
e F[igenvaluesof W: 1=A1>XN2>2---2 A, > —1

e [igenvalues of W: 1= /\L > /\2 > = 5\?1 > 0
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Limit properties

OO

(1 Suppose all local solutions eventually reach a consensual solution z
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e No contradiction, different to DGD that cannot stay at a consensual 2"

[1 If local solutions converge to -:::‘.'[3”333T cee :1?'(};“ we have j:'é‘] = .= If;) c A"
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Explanations of EXTRA

[1  EXTRA takes difference of two DGD updates and cancels steady-state error
A _.
Z Wi Ty — O.Vﬁ( ) and Z Wi Ty — ani(xﬁ_})

[1  Rewrite EXTRA as
E—1 n
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o EXTRA = DGD with constant stepsize 4+ correction term

e Corrected by weighted summation of all previous neighboring solutions
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Sublinear convergence

[ Theorem: under Assumption 1 (Lipschitz continuous gradient), if

then ;CE?] converges to the same " € A for all 7 and point progresses

2
k1 ke
HJ_’?[” — me v ()

decrease at a rate of O(%)

[1  Remarks on the result

o O(1) point progress convergence = slower convergence of z%. to z*
k = = - (1)

e )\, tunable in (0,1) and L0 € [Lave, N Lave] = fi; ~ Li
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Linear convergence

[J  Theorem: under Assumption 1 (Lipschitz continuous gradient) and
Assumption 2 (strong convexity), if
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decrease at a rate of O(c"*); here ¢ € (0. 1) and z* is unique optimal solution

[1  Remarks on the result

2ptave M ~ 2
Lf,rzna.-,r Lave+[tave

when Lgye ~ ave

e Allow larger stepsize in practice
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Simulation settings

Network of n = 10 agents, 21 random edges out of 45 are connected

Decentralized consensus optimization problem

min %; ff.('i"-) where  fi(r) = % HAH}I — y(ile

I

where A ;) € R Yoy € Roz e R?

Performance metric

n & 2
; ¥
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residual = 5 5
B ) B
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Simulation of DGD and EXTRA
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Concluding EXTRA

[1  EXTRA corrects steady-state error of DGD with one-step memory
[]  Communication cost remains the same as DGD

[1  Provable exact sublinear and linear rates of convergence
e Lipschitz continuous gradient — sublinear rate

e Lipschitz continuous gradient and strong convexity — O(c*) rate
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Future research directions

[ 1  Differentiable local objectives — differentiable plus nondifferentiable
[ Synchronized network communication — asynchronous

(]  Optimization with batch data — streaming data
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!'_ Thank you
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