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Primal-dual decomposition

minimize f(x) + g(Ax)

e f. g are ‘simple’ convex functions (indicators of simple sets, norms, . . . )
e A is a structured matrix

e widely used format in literature on multiplier and splitting algorithms

This talk: decomposition by splitting primal-dual optimality conditions
0 AT x Of(x)
OE[—A 0 ][z]+lag*(z)
and applications in image deblurring

1/30



Models of image blur

b=Kzx+w

e T is exact image, Kx is image blurred by blurring operator K

e b is observed image, equal to blurred image plus noise w

Space-invariant blur: structure of K depends on boundary conditions

e periodic: WKW is diagonal where W is 2D DFT matrix
e zero/replicate: K = K.+ K with K. diagonalizable by DFT, K sparse

Space-varying blur (Nagy-O'Leary model): K = ) U;K;
i=1

e [(,: space-invariant blurring operators

e U;: positive diagonal matrices that sum to identity
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Deblurring via convex optimization

minimize ¢¢(Kx — b) + ¢s(Dx) + ¢r(x)

Data fidelity term ¢«

e convex penalty, e.g., squared 2-norm, 1-norm, Huber penalty, . ..

e indicator for convex set, e.g., 2-norm ball

Smoothing term ¢,

e D is discretized first derivative, or a wavelet/shearlet transform matrix

® (¢ is a norm, e.g., for total variation reconstruction, a sum of 2-norms

Ps(u, v) = 7[[(u, ) [liso = 'YZ \/ ui + vy
i=1

3/30



Deblurring via convex optimization

minimize ¢¢(Kx — b) + ¢s(Dx) + ¢r(x)

Regularization term ¢,

e penalty on x

e indicator for convex set, for example, {z |0 < x <1}

In composite form: minimize f(z) + g(Ax) with

fa)=at) A=| P | g =olu—) + e
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Monotone operator

A set-valued mapping F is monotone if

(uw—v) ' (y —x) >0, Ve,y € dom F, u € F(x), v € F(y)

e subdifferential O f of closed convex function f

e skew-symmetric linear operator, for example,
0 AT T
Fea=| % ||

e sums of monotone operators, for example,

a5 2[4
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Resolvent

The resolvent of a monotone operator F is the operator

(I+tF)~t  (with ¢t >0)

Properties (for maximal monotone F)

e y=(I+tF) (x) exists and is unique for all x

e y is the (unique) solution of the inclusion problem x € y + tF(y)

Examples

e resolvent of subdifferential O f is called proximal operator of f

e for linear monotone F, resolvent (I + tF)~! is matrix inverse
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Proximal operator

The proximal operator of a closed convex function f is the mapping

, 1
pros, (o) = argain () + 5l — ol
Yy

Examples

e f(x)=Jdc(z) (indicator of closed convex set C'): Euclidean projection

prox, ;(z) = Pc(z) = argmin ||ly — 2|3
Yy

o f(x)=|z|: shrinkage operation

prox, ¢(r) = x — Pyc(x), C' is unit ball for dual norm
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Calculus rules for proximal operators

Separable function: if f(ZCl, CCQ) = fl(xl) -+ fQ(SCQ), then

proxf(xl, To) = (pI‘OXfl(CIh), PTOXfQ(l’Z))

Moreau decomposition: relates prox-operators of conjugates

Prox, r+(x) + tprox,—14(z/t) =

Composition with affine mappig: f(z) = g(Az + b) with AAT = al

1 1
prox¢(x) = (I — aATA)w + EAT (prox,,(Az +b) — b)
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Douglas-Rachford splitting

Problem: given maximal monotone operators A, B, solve

0 € A(z) + B(x)

Algorithm (Lions & Mercier, 1979)

= (IT+tA) 1(2)
yt = (I +tB) 2zt —2)
7= z+4p(yt —a27)

e 1 converges under weak conditions (for any ¢ > 0 and p € (0,2))
e useful when resolvents of A, B are inexpensive, but not resolvent of sum

e includes other well-known algorithms as special cases (e.g., ADMM)
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Primal-dual splitting

Composite problem and dual

minimize f(z) + g(Ax) maximize —f*(—Al2) — g*(2)

Primal-dual optimality conditions

o< or(a [ 2 o ]|

\ = 4 \ =

A(x,2) B(z,2)

Resolvent computations
e A: prox-operators of f and g

e 13: solution of a linear equation with coefficient I + t2AT A
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Example: constrained L1-TV deblurring

minimize  ||Kx — b||1 + 7||Dx||iso
subjectto 0<z <1

e Gaussian blur with salt-and-pepper noise; periodic boundary conditions
o [ + K"K + D' D diagonalizable by DFT
e 1024 x 1024 image

original blurred restored
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Primal Douglas-Rachford splitting

Equivalent problem (¢ is indicator function of {0})

minimize f(z) +g(Az) — minimize f(z)+ g(y)+0(Az —y)
F(z.y) G(z,y)

Algorithm: Douglas-Rachford splitting applied to optimality conditions

0 € 0F(x,y) + 0G(x,y)

Resolvent computations

e OF requires prox-operators of f, g

e OG requires linear equation with coefficient 7 + AT A

hence, similar complexity per iteration as primal-dual splitting
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Alternating direction method of multipliers (ADMM)

Douglas-Rachford applied to dual, after introducing splitting variable u

minimize f(x) +g(Ax) —  minimize  f(u) + g(y)
subject to [ i]aj— [ Z ] =0
ADMM: alternating minimization of augmented Lagrangian
fw) +g(y) +w' (z —u) + 2" (Az — y) + % (llz —ullz + [ Az — ylI3)

e minimization over z: linear equation with coefficient I + AT A

e minimization over (u,y): prox-operators of f, g

hence, similar complexity per iteration as primal-dual splitting
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Chambolle-Pock method

09*(2) —A 0 2
Algorithm
2T = prox,.(z +tAZT)
v = prox,(z— sAT2T)
zt = 227 —x

e convergence requires v/st < 1/||Al|2

e no linear equations with A; only multiplications with A and A”
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Convergence

(f(@*) = )/ f*
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~ 1.4 seconds per iteration for each method
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Additive structure in A

minimize f(z) + g(Ax)

e f, g have inexpensive prox-operators

e A= B+ C with structured B and C': equations with coefficients

I+ B'B,

are easy to solve, but not I + AT A

I+C*'C

Extended primal-dual optimality conditions

0 €

0
dg(y)

| Of*(w) |

O N O O

S O O M~

maximize —f*(—Al2) — g*(2)

S nve 8
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Primal-dual splitting

0 0 0 0 T
dg(y) 0 0 0 0 y
0 € T -B 0o 0 o0 2
| Of*(w) | | 0 0 0 0| | w
A(mz/r,z,w)
0 0 Ct I x|
0 0 —I 0 Y
T —C I 0 0 z
-7 0 0 0] | w|
B(a:,;r,z,w)

Resolvent computations
o A: prox-operators of f, g, linear equation I + t*B' B

e [3: linear equation with coefficient I + ﬁCTC’
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TV-L1 deblurring with replicate boundary conditions

minimize  |[(K. + Ks)x — b||1 + v|[(D¢ + Ds)x||iso
subjectto 0<z <1

e K., D.: operators for periodic boundary conditions

o K, Dg: sparse correction for replicate boundary conditions
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periodic b.c. replicate b.c.
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Handling replicate boundary conditions

K=K, +K., D=D,+D,

e K., D.: operators assuming periodic boundary conditions
o [+ K'K.+ DI'D, is diagonalized by DFT
e BE=1+K!IKs+ DI'Dj is sparse

x 10

1 2 3 4 5 6 0 1 2 3 4 5 6
nz = 463680 4 nz = 592892 4
x 10 x 10

pattern of E Cholesky factor of E
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Primal Douglas-Rachford splitting

Equivalent problem: introduce splitting variables x, ¥y

0(Bx —y) +0(Cz — 9)

\ 4
-~

minimize  f(x) + g(y + ) +0(r — ) +
F(x,%,9,9) G (x,,y,7)

and apply Douglas-Rachford method to find zero of

0 € OF (x,%,y,9) + 0G(z,%,y,7)

Resolvent computations

e OF': require prox-operators of f, g

e OG: linear equations with coefficients I + B'B, I + C*TC

more variables but similar complexity per iteration as primal-dual splitting
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ADMM

Equivalent problem: introduce another splitting variable u

minimize  f(u) + g(y + 9)
"7 0 1 0 o'-u-
biect t 0 I x| |1 00 —0
subject to B 0 7 0 I 0 Y1~
0 O 00 1 |LY

ADMM: alternating minimization of augmented Lagrangian requires

e linear equations with coefficients I + BY'B, I + C1C

e prox-operators of f, g

even more variables, but same complexity per iteration
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Convergence

---CP
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~ 0.1 seconds per iteration
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Domain decomposition

e divide image in rectangular regions
e blurring and derivative operators are block-diagonal plus sparse

e diagonal blocks are operations on regions, with periodic boundary conds.

Example: constrained TV-L1 deblurring on 256 x 256 image

blurry, noisy image after 5 iterations restored image
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Tight-frame regularization

1
minimize §\|Kw — b||§ + || Dx||1

o K = K.+ K for blurring with replicate boundary conditions
e D is shearlet tight frame: satisfies D' D = ol
e 256 X 256 image

noisy, blurred restored
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Space-varying blurring

Blurring model (Nagy and O’Leary, 1998)
K=UKi+UKy+ -+ UKy

e K; are blurring matrices for space invariant kernels
e U, are positive diagonal matrices with U; +---+U,,, =1
e K is not diagonalizable by DFT or DCT

Convex deblurring problem
minimize ¢¢(Kx — b) + ¢s(Dx) + ¢r(x)

e we assume ¢ is separable (e.g., squared Euclidean norm, L1-norm)

e D is tight frame or derivative operator
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Splitting method

minimize ¢¢(Kx — b) + ¢s(Dx) + ¢r(x)

As composite problem: minimize f(z) + g(Az) with f(x) = ¢.(x),

9, - Ymy1) = Ge(Uiyn + - + UnYym) + @s(Ym+1)
A = [Kf - KL DT]'

o [ + AT A is diagonalizable by a DFT, hence easy to invert:

I+ATA=1+)> K/K;+D"'D
1=1

e prox-operators of f and g reduce to prox-operators of ¢, ¢r, g
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Example

e 512 x 512 output image, 528 x 528 input (free boundary conditions)

e m = 4 kernels (one for each quadrant of the image)

noisy, blurred L2-TV deblurred

~ 0.2 seconds per iteration (cost of a small number of FFTs)
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Convergence
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~ 0.2 seconds per iteration (cost of a small number of FFTs)
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Motion deblurring

Example and software from Chakrabarti, Zickler, Freeman (2010)

e 367 x 600 image

e algorithm estimates motion blur kernel and segments out blurred region

image with motion blur restored image

e segmentation used to build Nagy-O'Leary model with two kernels

e L2-TV deblurring using primal-dual Douglas-Rachford method
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Summary

Douglas-Rachford splitting applied to primal-dual optimality conditions of
minimize f(x) + g(Ax)

e f and g have inexpensive prox-operators

o A is structured: I + AT A is easy to invert

e extension: A = B+ C with [ + BT B, I + C*C easy to invert

e applications in image deblurring

e extends primal-dual decomposition (f, g separable, A angular + sparse)
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