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Primal-dual decomposition

minimize f(x) + g(Ax)

• f, g are ‘simple’ convex functions (indicators of simple sets, norms, . . . )

• A is a structured matrix

• widely used format in literature on multiplier and splitting algorithms

This talk: decomposition by splitting primal-dual optimality conditions

0 ∈
[

0 AT

−A 0

] [
x
z

]
+

[
∂f(x)
∂g∗(z)

]
and applications in image deblurring
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Models of image blur

b = Kx+ w

• x is exact image, Kx is image blurred by blurring operator K

• b is observed image, equal to blurred image plus noise w

Space-invariant blur: structure of K depends on boundary conditions

• periodic: WKWH is diagonal where W is 2D DFT matrix

• zero/replicate: K = Kc +Ks with Kc diagonalizable by DFT, Ks sparse

Space-varying blur (Nagy-O’Leary model): K =
m∑
i=1

UiKi

• Ki: space-invariant blurring operators

• Ui: positive diagonal matrices that sum to identity
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Deblurring via convex optimization

minimize φf(Kx− b) + φs(Dx) + φr(x)

Data fidelity term φf

• convex penalty, e.g., squared 2-norm, 1-norm, Huber penalty, . . .

• indicator for convex set, e.g., 2-norm ball

Smoothing term φs

• D is discretized first derivative, or a wavelet/shearlet transform matrix

• φs is a norm, e.g., for total variation reconstruction, a sum of 2-norms

φs(u, v) = γ‖(u, v)‖iso = γ

n∑
i=1

√
u2i + v2i
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Deblurring via convex optimization

minimize φf(Kx− b) + φs(Dx) + φr(x)

Regularization term φr

• penalty on x

• indicator for convex set, for example, {x | 0 ≤ x ≤ 1}

In composite form: minimize f(x) + g(Ax) with

f(x) = φr(x), A =

[
K
D

]
, g(u, v) = φf(u− b) + φs(v)

4/30



Outline

• Introduction

• Douglas-Rachford splitting method

• Primal-dual splitting

• Space-varying blur



Monotone operator

A set-valued mapping F is monotone if

(u− v)T (y − x) ≥ 0, ∀x, y ∈ domF , u ∈ F(x), v ∈ F(y)

• subdifferential ∂f of closed convex function f

• skew-symmetric linear operator, for example,

F(x, z) =

[
0 AT

−A 0

] [
x
z

]

• sums of monotone operators, for example,

F(x, z) =

[
0 AT

−A 0

] [
x
z

]
+

[
∂f(x)
∂g∗(z)

]
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Resolvent

The resolvent of a monotone operator F is the operator

(I + tF)−1 (with t > 0)

Properties (for maximal monotone F)

• y = (I + tF)−1(x) exists and is unique for all x

• y is the (unique) solution of the inclusion problem x ∈ y + tF(y)

Examples

• resolvent of subdifferential ∂f is called proximal operator of f

• for linear monotone F , resolvent (I + tF)−1 is matrix inverse
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Proximal operator

The proximal operator of a closed convex function f is the mapping

proxtf(x) = argmin
y

(
f(y) +

1

2t
‖y − x‖22

)

Examples

• f(x) = δC(x) (indicator of closed convex set C): Euclidean projection

proxtf(x) = PC(x) = argmin
y
‖y − x‖22

• f(x) = ‖x‖: shrinkage operation

proxtf(x) = x− PtC(x), C is unit ball for dual norm
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Calculus rules for proximal operators

Separable function: if f(x1, x2) = f1(x1) + f2(x2), then

proxf(x1, x2) =
(
proxf1

(x1),proxf2
(x2)

)

Moreau decomposition: relates prox-operators of conjugates

proxtf∗(x) + tproxt−1f(x/t) = x

Composition with affine mappig: f(x) = g(Ax+ b) with AAT = aI

proxf(x) = (I − 1

a
ATA)x+

1

a
AT
(
proxag(Ax+ b)− b

)
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Douglas-Rachford splitting

Problem: given maximal monotone operators A, B, solve

0 ∈ A(x) + B(x)

Algorithm (Lions & Mercier, 1979)

x+ = (I + tA)−1(z)

y+ = (I + tB)−1(2x+ − z)
z+ = z + ρ(y+ − x+)

• x converges under weak conditions (for any t > 0 and ρ ∈ (0, 2))

• useful when resolvents of A, B are inexpensive, but not resolvent of sum

• includes other well-known algorithms as special cases (e.g., ADMM)
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Primal-dual splitting

Composite problem and dual

minimize f(x) + g(Ax) maximize −f∗(−ATz)− g∗(z)

Primal-dual optimality conditions

0 ∈
[
∂f(x)
∂g∗(z)

]
︸ ︷︷ ︸
A(x,z)

+

[
0 AT

−A 0

] [
x
z

]
︸ ︷︷ ︸

B(x,z)

Resolvent computations

• A: prox-operators of f and g

• B: solution of a linear equation with coefficient I + t2ATA
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Example: constrained L1-TV deblurring

minimize ‖Kx− b‖1 + γ‖Dx‖iso
subject to 0 ≤ x ≤ 1

• Gaussian blur with salt-and-pepper noise; periodic boundary conditions

• I +KTK +DTD diagonalizable by DFT

• 1024× 1024 image

original blurred restored
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Primal Douglas-Rachford splitting

Equivalent problem (δ is indicator function of {0})

minimize f(x) + g(Ax) −→ minimize f(x) + g(y)︸ ︷︷ ︸
F (x,y)

+ δ(Ax− y)︸ ︷︷ ︸
G(x,y)

Algorithm: Douglas-Rachford splitting applied to optimality conditions

0 ∈ ∂F (x, y) + ∂G(x, y)

Resolvent computations

• ∂F requires prox-operators of f , g

• ∂G requires linear equation with coefficient I +ATA

hence, similar complexity per iteration as primal-dual splitting
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Alternating direction method of multipliers (ADMM)

Douglas-Rachford applied to dual, after introducing splitting variable u

minimize f(x) + g(Ax) −→ minimize f(u) + g(y)

subject to

[
I
A

]
x−

[
u
y

]
= 0

ADMM: alternating minimization of augmented Lagrangian

f(u) + g(y) + wT (x− u) + zT (Ax− y) +
t

2

(
‖x− u‖22 + ‖Ax− y‖22

)
• minimization over x: linear equation with coefficient I +ATA

• minimization over (u, y): prox-operators of f , g

hence, similar complexity per iteration as primal-dual splitting
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Chambolle-Pock method

0 ∈
[
∂f(x)
∂g∗(z)

]
+

[
0 AT

−A 0

] [
x
z

]

Algorithm

z+ = proxtg∗(z + tAx̄+)

x+ = proxsf(x− sATz+)

x̄+ = 2x+ − x

• convergence requires
√
st < 1/‖A‖2

• no linear equations with A; only multiplications with A and AT
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Convergence
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Additive structure in A

minimize f(x) + g(Ax) maximize −f∗(−ATz)− g∗(z)

• f , g have inexpensive prox-operators

• A = B + C with structured B and C: equations with coefficients

I +BTB, I + CTC

are easy to solve, but not I +ATA

Extended primal-dual optimality conditions

0 ∈


0

∂g(y)
0

∂f∗(w)

+


0 0 AT I
0 0 −I 0
−A I 0 0
−I 0 0 0



x
y
z
w


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Primal-dual splitting

0 ∈


0

∂g(y)
0

∂f∗(w)

+


0 0 BT 0
0 0 0 0
−B 0 0 0
0 0 0 0



x
y
z
w


︸ ︷︷ ︸

A(x,y,z,w)

+


0 0 CT I
0 0 −I 0
−C I 0 0
−I 0 0 0



x
y
z
w


︸ ︷︷ ︸

B(x,y,z,w)

Resolvent computations

• A: prox-operators of f , g, linear equation I + t2BTB

• B: linear equation with coefficient I + t2

(1+t2)2
CTC
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TV-L1 deblurring with replicate boundary conditions

minimize ‖(Kc +Ks)x− b‖1 + γ‖(Dc +Ds)x‖iso
subject to 0 ≤ x ≤ 1

• Kc, Dc: operators for periodic boundary conditions

• Ks, Ds: sparse correction for replicate boundary conditions

blurry, noisy image deblurred using
periodic b.c.

deblurred using
replicate b.c.
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Handling replicate boundary conditions

K = Kc +Ks, D = Dc +Ds

• Kc, Dc: operators assuming periodic boundary conditions

• I +KT
c Kc +DT

c Dc is diagonalized by DFT

• E = I +KT
s Ks +DT

s Ds is sparse
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Primal Douglas-Rachford splitting

Equivalent problem: introduce splitting variables x̃, ỹ

minimize f(x) + g(y + ỹ) + δ(x− x̃)︸ ︷︷ ︸
F (x,x̃,y,ỹ)

+ δ(Bx− y) + δ(Cx̃− ỹ)︸ ︷︷ ︸
G(x,x̃,y,ỹ)

and apply Douglas-Rachford method to find zero of

0 ∈ ∂F (x, x̃, y, ỹ) + ∂G(x, x̃, y, ỹ)

Resolvent computations

• ∂F : require prox-operators of f , g

• ∂G: linear equations with coefficients I +BTB, I + CTC

more variables but similar complexity per iteration as primal-dual splitting
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ADMM

Equivalent problem: introduce another splitting variable u

minimize f(u) + g(y + ỹ)

subject to


I 0
0 I
B 0
0 C

[ xx̃
]
−


I 0 0
I 0 0
0 I 0
0 0 I


 u
y
ỹ

 = 0

ADMM: alternating minimization of augmented Lagrangian requires

• linear equations with coefficients I +BTB, I + CTC

• prox-operators of f , g

even more variables, but same complexity per iteration
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Convergence
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Domain decomposition

• divide image in rectangular regions

• blurring and derivative operators are block-diagonal plus sparse

• diagonal blocks are operations on regions, with periodic boundary conds.

Example: constrained TV-L1 deblurring on 256× 256 image

blurry, noisy image after 5 iterations restored image
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Tight-frame regularization

minimize
1

2
‖Kx− b‖22 + γ‖Dx‖1

• K = Kc +Ks for blurring with replicate boundary conditions

• D is shearlet tight frame: satisfies DTD = αI

• 256× 256 image

noisy, blurred restored
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Space-varying blurring

Blurring model (Nagy and O’Leary, 1998)

K = U1K1 + U2K2 + · · ·+ UmKm

• Ki are blurring matrices for space invariant kernels

• Ui are positive diagonal matrices with U1 + · · ·+ Um = I

• K is not diagonalizable by DFT or DCT

Convex deblurring problem

minimize φf(Kx− b) + φs(Dx) + φr(x)

• we assume φf is separable (e.g., squared Euclidean norm, L1-norm)

• D is tight frame or derivative operator
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Splitting method

minimize φf(Kx− b) + φs(Dx) + φr(x)

As composite problem: minimize f(x) + g(Ax) with f(x) = φr(x),

g(y1, . . . , ym+1) = φf(U1y1 + · · ·+ Umym) + φs(ym+1)

A =
[
KT

1 · · · KT
m DT

]T
• I +ATA is diagonalizable by a DFT, hence easy to invert:

I +ATA = I +

m∑
i=1

KT
i Ki +DTD

• prox-operators of f and g reduce to prox-operators of φr, φf, φs
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Example

• 512× 512 output image, 528× 528 input (free boundary conditions)

• m = 4 kernels (one for each quadrant of the image)

noisy, blurred L2-TV deblurred

∼ 0.2 seconds per iteration (cost of a small number of FFTs)
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Convergence
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Motion deblurring

Example and software from Chakrabarti, Zickler, Freeman (2010)

• 367× 600 image

• algorithm estimates motion blur kernel and segments out blurred region

image with motion blur restored image

• segmentation used to build Nagy-O’Leary model with two kernels

• L2-TV deblurring using primal-dual Douglas-Rachford method
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Summary

Douglas-Rachford splitting applied to primal-dual optimality conditions of

minimize f(x) + g(Ax)

• f and g have inexpensive prox-operators

• A is structured: I +ATA is easy to invert

• extension: A = B + C with I +BTB, I + CTC easy to invert

• applications in image deblurring

• extends primal-dual decomposition (f , g separable, A angular + sparse)
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