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1 Introduction
1.1 Background

The concept of compressed sensing was first introduced by Donoho [D],
Candès, Romberg and Tao [CRT] and Candès and Tao [CT]. Since then
myriads of researchers have been lured to this area owing to its wide
applications in signal processing, communications, astronomy, biology,
medicine and so forth, see, e.g., [EK].

[D] D.L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, vol. 52, pp. 1289-1306, 2006.
[CRT] E.J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information, IEEE Trans.Inf. Theory, vol. 52, pp. 489-509, 2006.
[CT] E.J. Candès and T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory, vol. 51, pp.
4203-4215, 2005.
[EK] Y.C. Eldar and G.Kutyniok, Compressed Sensing: Theory and Applications, Cambridge University
Press, 2012.
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1 Introduction
1.2 Problem

The fundamental problem in compressed sensing is to recover a sparse
solution x ∈ Rn of the underdetermined system of the form

Φx = y ,

where y ∈ Rm is the available measurement and Φ ∈ Rm×n is a known
measurement matrix.
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1 Introduction
1.3 Model Representation

To recover a sparse solution x ∈ Rn of the form Φx = y , the underlying
model is the following `0 minimization:

min ‖x‖0, s.t. Φx = y , (1)

where ‖x‖0 is `0-norm of the vector x ∈ Rn. However (1) is NP-Hard.
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1 Introduction
1.3 Model Representation

One common approach is to solve (1) via convex `1 minimization:

min ‖x‖1, s.t. Φx = y . (2)

The use of `1 minimization has become so extensively that it could
arguably be considered the modern least squares, see, e.g., [BDE],[CWX]

and [CZ].

[BDE] A.M. Bruckstein, D.L. Donoho, and A. Elad, From sparse solutions of systems of equations to
sparse modeling of signals and images. SIAM Rev., vol. 51, pp. 34-81, 2009.
[CWX] T. Cai, L. Wang and G. Xu, New bounds for restricted isometry constants, IEEE Trans. Inform.
Theory, vol. 56, pp. 4388-4394, 2010.
[CZ] T. Cai, and A. Zhang, Sparse Representation of a Polytope and Recovery of Sparse Signals and
Low-rank Matrices, to appear in IEEE Trans.Inf. Theory, 2013.
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1 Introduction
1.3 Model Representation

Inspired by the efficiency of `1 minimization, it is natural to ask, for
example, whether a different (but perhaps again convex) alternative to
`0 minimization might also find the correct solution, but with a lower
measurement requirement than `1 minimization.

Numerical experiments indicate that the reweighted `1 minimization
does outperform unweighted `1 minimization in many situations
[CWB],[DDFG] and [ZL].

[CWB] E.J. Candès, M.B. Wakin and S. P. Boyd, Enhancing sparsity by reweighted `1 minimization, J.
Fourier Anal. Appl., vol. 14, pp. 877-905, 2008.
[DDFG] I. Daubechies, R. DeVore, M. Fornasier and C.S. Güntürk, Iteratively reweighted least squares
minimization for sparse recovery, Commun. Pure. Appl. Math., vol. 63, pp.1-38, 2010.
[ZL] Y.B. Zhao and D. Li, Reweighted `1-Minimization for Sparse Solutions to Underdetermined Linear
Systems. SIAM Journal on Optimization, vol. 22, pp. 1065-1088, 2012.
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1 Introduction
1.3 Model Representation

In this talk, as a sequence, we consider the theoretical properties of the
weighted `1 minimization:

min ‖ω ◦ x‖1, s.t. Φx = b, (3)

where ◦ denotes the Hadamard product, that is ‖w ◦ x‖1 =
∑
ωi |xi |,

and 0 < ωi ≤ 1, i = 1, 2, · · · , n.
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1 Introduction
1.3 Model Representation

Some cases that `1 minimization will fail to recover the sparse signal while exact recovery can be succeeded via weighted

`1 minimization. (a) Sparse signal x(0) = (0, 0, 2)T , feasible set Φx = b, and in `1 ball there exists an x(1) = ( 3
4
, 3

4
, 0)T

but ‖x(1)‖0 > ‖x(0)‖0. (b) In weighted `1 ball, there does not exist an x 6= x(0) such that ‖x‖0 ≤ ‖x(0)‖0.
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1 Introduction
1.4 Null Space Property

The null space property (NSP) is the necessary and sufficient condition
for (2) to reconstruct the system b = Φx exactly, see, e.g., [Z].

Definition I.1 (NSP)

A matrix Φ ∈ Rm×n satisfies the null space property of order k if for all
subsets S ∈ Ckn it holds

‖hS‖1 < ‖hSC ‖1 (4)

for any h ∈ N (Φ) \ {0}, where N (Φ) = {h ∈ Rn| Φh = 0} and
Ckn = {S ⊂ {1, 2, · · · , n} | |S | = k}.

[Z] Y. Zhang, Theory of compressive sensing via `-mimimization: A Non-RIP analysis and extensions,
Technical Report, Rice Univ., 2008.
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1 Introduction
1.5 Restricted Isometry Property

Another most popular sufficient condition for exact sparse recovery is
Restricted Isometry Property (RIP) introduced by Candès and Tao [CT].

Definition I.2 (RIP)

For k ∈ {1, 2, · · · , n}, the restricted isometry constant is the smallest
positive number δk such that

(1− δk)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δk)‖x‖2
2 (5)

hold for all k-sparse vector x ∈ Rn, i.e., ‖x‖0 ≤ k .

[CT] E.J. Candès and T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory, vol. 51, pp.
4203-4215, 2005.
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1 Introduction
1.7 Current Results for `1 Minimization

δk δ2k

Candès - - 0.4142

Foucart and Lai - - 0.4531

Foucart - - 0.4652

Cai, Wang and Xu - - 0.4721

Mo and Li - - 0.4931

Cai and Zhang 1/3 0.5000

Zhou, Kong and Xiu - -
0.5746

with δ8k < 1

Andersson and Strömberg - - 0.6246

Table: Different bounds on δk and δ2k .

Recently, Cai and Zhang [CZ] got a

sharp bound

δtk <

√
t − 1

t
. (6)

F Particularly, δ2k <
√

2
2
. It is worth

mentioning that (6) is the sharp
bound for `1 minimization which has
been proved in [CZ].

[CZ] T. Cai, and A. Zhang, Sparse Representation of a Polytope and Recovery of Sparse Signals and
Low-rank Matrices, to appear in IEEE Trans.Inf. Theory, 2013.
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1 Introduction
1.7 Current Results for Weighted `1 Minimization

As for the weighted `1 minimization, literature [FMSY] presented us the
upper bound on δk might be δk < 0.4343 under some cases.

[FMSY] M.P. Friedlander, H. Mansour, R. Saab, and Ö. Yilmaz, Recovering Compressively Sampled
Signals Using Partial Support Information, IEEE Trans. Inf. Theory, vol. 58, pp. 1122-1134, 2012.
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2 Weighted Null Space Property
2.1 Equivalent Definition

Definition II.1

F A matrix Φ ∈ Rm×n satisfies the null space property of order k if for
all subsets S ∈ Ckn it holds

‖hS‖1 < ‖hSC ‖1 (7)

for any h ∈ N1 := {h ∈ Rn| h ∈ N (Φ), ‖h‖1 = 1}.

Lemma II.2

Definition I.1 is equivalent to Definition II.1.
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2 Weighted Null Space Property
2.2 Property of the WNSP

Definition II.2 (WNSP)

For a given weight ω ∈ Rn, a matrix Φ ∈ Rm×n satisfies the weighted
null space property of order k if for all subsets S ∈ Ckn it holds

‖ω ◦ hS‖1 < ‖ω ◦ hSC ‖1 (8)

for any h ∈ N1.

Theorem II.2

Every k-sparse vector x̂ ∈ Rn is the unique solution of the weighted
minimization (3) with b = Φx̂ iff Φ satisfies the WNSP of order k .
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2 Weighted Null Space Property
2.3 Two Examples

Φ =

(
4/5 0 3/10

0 4/5 3/10

)
, b =

(
3/5
3/5

)
.

Clearly, the unique solution of `0 and `1 models are x(0) = (0, 0, 2)T and x(1) = ( 3
4
, 3

4
, 0)T .

If setting ω2 = ω1, ω3 <
3
4
ω1, x(0) is also the unique solution of the weighted `1 model.

For any h ∈ N1, we have h = ( 3
8
h3,

3
8
h3,−h3)T with h3 = 4/7. Then for all subset S ∈ C1

3

and the given ω it holds ‖ω ◦ hS‖1 < ‖ω ◦ hSC ‖1 , which means Φ satisfies WNSP. It is

worth mentioning that this Φ does not satisfy the NSP due to |h3| ≮ | 34h3| = |h1|+ |h2|.
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2 Weighted Null Space Property
2.3 Two Examples

Some cases that `1 minimization will fail to recover the sparse signal while exact recovery can be succeeded via weighted

`1 minimization. (a) Sparse signal x(0) = (0, 0, 2)T , feasible set Φx = b, and in `1 ball there exists an x(1) = ( 3
4
, 3

4
, 0)T

but ‖x(1)‖0 > ‖x(0)‖0. (b) In weighted `1 ball, there does not exist an x 6= x(0) such that ‖x‖0 ≤ ‖x(0)‖0.
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2 Weighted Null Space Property
2.3 Two Examples

Φ =

 3/4 −1/2 3/8 1/2 −1/4
3/4 −1/2 −1/8 1/2 0

0 1/4 3/8 −1/8 −3/8

 , b =

 1/2
1/2
−1/8

 .

x(0) = (0, 0, 0, 1, 0)T , x(1) = (
1

3
,−

1

2
, 0, 0, 0)T ,

ω2 =
2

3
ω1, ω4 =

1

2
ω1, ω3 = ω5 = ω1,

h =

(
−8h2 + 13h5

12
, h2,

h5

2
,

4h2 − 3h5

2
, h5

)T

.

Likely, Φ satisfies the WNSP we defined while does not content the NSP.
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3 Restricted Isometry Property
3.1 Design the Weight

We first design a way of weighing and introduce some notations. Let
T0 and ĥ be the optimal solution of the following model

(T0, ĥ) := argmax
T∈Ckn ,h∈N1

‖hT‖1. (9)

For a constant 0 < γ ≤ 1, we define ω based on T0 as

ωi =

{
γ, i ∈ T0, (10)

1, i ∈ TC
0 ,

where TC
0 is the complementary set of T0 in {1, 2, · · · , n}.
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3 Restricted Isometry Property
3.2 Crucial Lemma

Lemma III.1

Let T0 and ĥ be defined as (9). If T0 uniquely exists, then there exists
ω defined as (10) with 0 < γ < 1 such that

‖ω ◦ ĥT0‖1 = max
T∈Ckn ,h∈N1

‖ω ◦ hT‖1. (11)

If T0 exists but not uniquely, then ω defined as (10) with γ = 1 that
satisfies (11).
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3 Restricted Isometry Property
3.3 Main Theorems

Theorem III.2

For the given γ and ω as (9) and (10), if

δak <

√
a− 1

a− 1 + γ2
(12)

holds for some a > 1, then each k sparse minimizer x̂ of the weighted
`1 minimization (3) is the solution of (1).
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3 Restricted Isometry Property
3.3 Main Theorems

γ δ2k δ3k δ4k

1
√

2/2
√

6/3
√

3/2

3/4 0.800 0.883 0.917

1/2 0.894 0.942 0.960

1/4 0.970 0.984 0.989

Table: Bounds on δ2k , δ3k and δ4k with different cases.
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3 Restricted Isometry Property
3.3 Main Theorems

Theorem III.3

For the given γ and ω as (9) and (10), if

δk <


1

1 + 2dγke/k
, for even number k ≥ 2, (13)

1

1 + 2dγke/
√
k2 − 1

, for odd number k ≥ 3, (14)

holds, where dae denotes the smallest integer that is no less than a,
then each k sparse minimizer x̂ of the weighted `1 minimization (3) is
the solution of (1).
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3 Restricted Isometry Property
3.3 Main Theorems

γ k ≥ 2 is even k ≥ 3 is odd

1 1/3 0.3203

3/4 3/8 (k ≥ 4) 0.3797 (k ≥ 5)

1/2 1/2 (k ≥ 2)
√

6− 2 (k ≥ 5)

1/4 2/3 (k ≥ 4) 3−
√

6 (k ≥ 5)

1/6 3/4 (k ≥ 6) 0.7101 (k ≥ 5)

Table: Bounds on δk with different cases. From the table one cannot difficultly
find that under some mild situation, the upper bounds are greater than 0.4343.
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3 Restricted Isometry Property
3.4 Two Examples

Φ =

(
4/5 0 3/10

0 4/5 3/10

)
, b =

(
3/5
3/5

)
.

From h = ( 3
8
h3,

3
8
h3,−h3)T ∈ N1 with h3 = 4

7
, |h3| is the largest entry of h, i.e.

T0 = {3} uniquely exists. Therefore by setting 3
8
< ω3 = γ < 0.418, ω1 = ω2 = 1, we have

γ‖h{3}‖1 < ‖h{1,2}‖1, which means that x(0) is the unique solution of weighted `1 model.

We directly calculate that δ2 = 0.9224 with n = 3, k = 2 by the following formula

δk = max
S∈Ckn

‖ΦT
S ΦS − Ik‖, (15)

where ‖ · ‖ denotes the spectral norm of a matrix. Since T0 uniquely exists and γ < 0.418,

it yields δ2 < 0.9226 from (12) by taking a = 2, k = 1. Hence the `0 minimization can be

exactly reconstructed by the weighted `1 minimization from our Theorem III.2
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3 Restricted Isometry Property
3.4 Two Examples

Φ =

 3/4 −1/2 3/8 1/2 −1/4
3/4 −1/2 −1/8 1/2 0

0 1/4 3/8 −1/8 −3/8

 , b =

 1/2
1/2
−1/8

 .

From h =
(
−8h2+13h5

12
, h2,

h5
2
, 4h2−3h5

2
, h5

)T
, it follows that

T0 = {4}, ĥ = (−2h2/3, h2, 0, 2h2, 0)T , h2 = 6/11,

which manifests that T0 uniquely exists. By setting ω4 = γ = 0.3, ω1 = ω2 = ω3 = ω5 = 1,

we have γ‖h{4}‖1 < ‖h{1,2,3,5}‖1, which means that x(0) is the unique solution of weighted

`1 minimization. We compute δ2 = 0.9572 by (15) with n = 5, k = 2. Since T0 uniquely

exists and γ = 0.3, it yields δ2 < 0.9578 from (12) by taking a = 2, k = 1. And thus the `0

minimization can be exactly recovered via the weighted `1 minimization from Theorem III.2.
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4 Discussion

Although T0 defined by (9) always exists but not uniquely sometimes.
However, from Examples above, we can see the assumption that T0

uniquely exists is actually not a strong assumption to a certain extent.
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4 Discussion

The relationship between WNSP, NSP and RIP, the dashed area denotes the scale of matrices that satisfy the RIP via
weighted `1 minimization.
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