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1 Introduction

1.1 Background

The concept of compressed sensing was first introduced by Donoho [D],
Candeés, Romberg and Tao [cRT] and Candés and Tao [CT]. Since then
myriads of researchers have been lured to this area owing to its wide
applications in signal processing, communications, astronomy, biology,
medicine and so forth, see, e.g., [EK].

[D] D.L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, vol. 52, pp. 1289-1306, 2006.

[CRT] E.J. Candes, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information, /IEEE Trans.Inf. Theory, vol. 52, pp. 489-509, 2006.
[CT] E.J. Candeés and T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory, vol. 51, pp.
4203-4215, 2005.

[EK] Y.C. Eldar and G.Kutyniok, Compressed Sensing: Theory and Applications, Cambridge University
Press, 2012.




1 Introduction

1.2 Problem

The fundamental problem in compressed sensing is to recover a sparse
solution x € R” of the underdetermined system of the form

dx =y,

where y € R™ is the available measurement and ® € R™*" is a known
measurement matrix.




1 Introduction

1.3 Model Representation

To recover a sparse solution x € R" of the form ®x = y, the underlying
model is the following £y minimization:

min || x|lo, s.t. Px =y, (1)

where ||x||o is £o-norm of the vector x € R". However (1) is NP-Hard.




1 Introduction

1.3 Model Representation

One common approach is to solve (1) via convex ¢1 minimization:
min [[x][1, s.t. dx=y. (2)

The use of ¢1 minimization has become so extensively that it could
arguably be considered the modern least squares, see, e.g., [BDE],[CWX]
and [cZz].

[BDE] A.M. Bruckstein, D.L. Donoho, and A. Elad, From sparse solutions of systems of equations to
sparse modeling of signals and images. SIAM Rev., vol. 51, pp. 34-81, 2009.

[CWX] T. Cai, L. Wang and G. Xu, New bounds for restricted isometry constants, |[EEE Trans. Inform.
Theory, vol. 56, pp. 4388-4394, 2010.

[CZ] T. Cai, and A. Zhang, Sparse Representation of a Polytope and Recovery of Sparse Signals and
Low-rank Matrices, to appear in IEEE Trans.Inf. Theory, 2013.




1 Introduction

1.3 Model Representation

Inspired by the efficiency of ¢1 minimization, it is natural to ask, for
example, whether a different (but perhaps again convex) alternative to
£o minimization might also find the correct solution, but with a lower
measurement requirement than ¢; minimization.

Numerical experiments indicate that the reweighted ¢; minimization
does outperform unweighted /1 minimization in many situations
[CWB],[DDFG] and [ZL].

[CWB] E.J. Candes, M.B. Wakin and S. P. Boyd, Enhancing sparsity by reweighted ¢; minimization, J.
Fourier Anal. Appl., vol. 14, pp. 877-905, 2008.

[DDFG] I. Daubechies, R. DeVore, M. Fornasier and C.S. Giintiirk, Iteratively reweighted least squares
minimization for sparse recovery, Commun. Pure. Appl. Math., vol. 63, pp.1-38, 2010.

[ZL] Y.B. Zhao and D. Li, Reweighted £;-Minimization for Sparse Solutions to Underdetermined Linear
Systems. SIAM Journal on Optimization, vol. 22, pp. 1065-1088, 2012.




1 Introduction

1.3 Model Representation

In this talk, as a sequence, we consider the theoretical properties of the
weighted ¢1 minimization:

min ||wox|j1, st. ®x=b, (3)

where o denotes the Hadamard product, that is ||w o x||; = > wj|x;],
and 0 <w; <1, i=1,2,--- n.




1 Introduction

1.3 Model Representation

®x=b

®)

Some cases that £1 minimization will fail to recover the sparse signal while exact recovery can be succeeded via weighted
£1 minimization. (a) Sparse signal x(0 = (0,0, 2)T, feasible set ®x = b, and in £ ball there exists an X = (Fs 75 O)T
but Hx(l)Hg > ”X(O)HU. (b) In weighted ¢; ball, there does not exist an x # x(©) such that [|x]lo < HX(O)HU.




The null space property (NSP) is the necessary and sufficient condition
for (2) to reconstruct the system b = ®x exactly, see, e.g., [Z].

Definition 1.1 (NSP)

A matrix & € R™*" satisfies the null space property of order k if for all
subsets S € CK it holds

lhsly < llhsclly (4)

for any h € N(®) \ {0}, where N (®) = {h € R"| &h = 0} and
Ch={Sc{L,2,---,n}||S| =k}

[Z] Y. Zhang, Theory of compressive sensing via ¢-mimimization: A Non-RIP analysis and extensions,
Technical Report, Rice Univ., 2008.
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Another most popular sufficient condition for exact sparse recovery is
Restricted Isometry Property (RIP) introduced by Candés and Tao [CT].

Definition 1.2 (RIP)

For k € {1,2,--- , n}, the restricted isometry constant is the smallest
positive number d, such that

(1= ai)llxlz < exl3 < (1 + de)Ix[13 (5)

hold for all k-sparse vector x € R”, i.e., ||x|lo < k.

[CT] E.J. Candés and T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory, vol. 51, pp.
4203-4215, 2005.
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1 Introduction

1.7 Current Results for ¢; Minimization

Ok Ok
Candes - - 0.4142
Foucart and Lai - - 0.4531
Foucart - - 0.4652
Cai, Wang and Xu - - 0.4721
Mo and Li - - 0.4931
Cai and Zhang 1/3 0.5000
. 0.5746
Zhou, Kong and Xiu with Sa¢ < 1
Andersson and Stromberg - - 0.6246

Table: Different bounds on &, and do.

Recently, Cai and Zhang [CZ] got a
sharp bound

b < (©)

* Particularly, o < g It is worth
mentioning that (6) is the sharp
bound for /1 minimization which has

been proved in [CZ].

[CZ] T. Cai, and A. Zhang, Sparse Representation of a Polytope and Recovery of Sparse Signals and
Low-rank Matrices, to appear in IEEE Trans.Inf. Theory, 2013.




1 Introduction

1.7 Current Results for Weighted ¢; Minimization

As for the weighted /1 minimization, literature [FMSY] presented us the
upper bound on d; might be d, < 0.4343 under some cases.

[FMSY] M.P. Friedlander, H. Mansour, R. Saab, and 0. Yilmaz, Recovering Compressively Sampled
Signals Using Partial Support Information, IEEE Trans. Inf. Theory, vol. 58, pp. 1122-1134, 2012.




Definition 11.1

F A matrix ® € R™*" satisfies the null space property of order k if for
all subsets S € CX it holds

lhsly < llhsclly (7)

forany he N1 :={heR"| he N(®),]| h]|1 =1}.

Lemma I1.2

Definition 1.1 is equivalent to Definition II.1.
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i
Definition 11.2 (WNSP)

For a given weight w € R", a matrix ® € R™*" satisfies the weighted
null space property of order k if for all subsets S € CX it holds

lwo hslly < lwe hsclly (8)

for any h € V.

Theorem 11.2

Every k-sparse vector X € R" is the unique solution of the weighted
minimization (3) with b = ®X iff ® satisfies the WNSP of order k.
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2 Weighted Null Space Property

2.3 Two Examples

¢:<4é5 4(/)5 gﬁS) bz(i??)‘

Clearly, the unique solution of £y and ¢; models are x(®) = (0,0,2)7 and x(1) = (%, %,O)T.

If setting wy = w1, w3 < %wl, x() is also the unique solution of the weighted ¢; model.

For any h € N7, we have h = (%h3, %h3, —h3)T with h3 = 4/7. Then for all subset S € C;
and the given w it holds ||w o hsl|; < [|w o hscl|; , which means @ satisfies WNSP. It is

worth mentioning that this ® does not satisfy the NSP due to |h3| £ |%h3| = |h1| + |h2|.




2 Weighted Null Space Property

2.3 Two Examples

x(n)

®x=b

®)

Some cases that £1 minimization will fail to recover the sparse signal while exact recovery can be succeeded via weighted
£1 minimization. (a) Sparse signal x(0 = (0,0, 2)T, feasible set ®x = b, and in £ ball there exists an X = (%, %, O)T

but Hx(l)Hg > ”X(O)HU. (b) In weighted ¢; ball, there does not exist an x # x(©) such that [|x]lo < HX(O)HU.




2 Weighted Null Space Property

2.3 Two Examples

3/4 —1/2 3/8 1/2 -—1/4 1/2
o= 3/4 -1/2 -1/8 1/2 0 |,b=]| 1/2
0 1/4 3/8 -1/8 —3/8 ~1/8

= (0,001,007, V= -L0007,

3 2
w2 = 3“11,(*14 = 2‘*117(*13 = W5 = W1,
—8hy + 13hs hs 4hy — 3hs v
h=—"—7"—"—Mh, —, yhs ).
12 2 2

Likely, ® satisfies the WNSP we defined while does not content the NSP.

/ Belling Jiaotong University



3 Restricted Isometry Property

3.1 Design the Weight

We first design a way of weighing and introduce some notations. Let
To and h be the optimal solution of the following model

(TO,/I;) = argmax |lh7|1. (9)
TeCk,heNy

For a constant 0 < v < 1, we define w based on Ty as

{ v, i€ To, (10)
Wi = . Cc
]., I € To s

where TOC is the complementary set of Tg in {1,2,--- ,n}.




Lemma Ill.1

Let To and h be defined as (9). If Ty uniquely exists, then there exists
w defined as (10) with 0 < v < 1 such that

lwohrlli= max |lwo hrls. (11)
TeCk,he Ny

If Ty exists but not uniquely, then w defined as (10) with v =1 that
satisfies (11).
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Theorem 111.2
For the given v and w as (9) and (10), if

a—1
0 _— 12
k<\/a—1+72 (12)

holds for some a > 1, then each k sparse minimizer X of the weighted
/1 minimization (3) is the solution of (1).
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3 Restricted Isometry Property

3.3 Main Theorems

v | b2k 93k O
1 V2/2 V6/3 V3/2
3/4 0.800 0.883 0.917
1/2 0.894 0.942 0.960
1/4 0.970 0.984 0.989

Table: Bounds on dok, 03¢ and d4x with different cases.




Theorem 111.3

For the given v and w as (9) and (10), if

1
1T 20Kk for even number k > 2,  (13)
Ok < 1
, for odd number k > 3, 14
1+ 2[vk]/Vk? -1 - (14)

holds, where [a] denotes the smallest integer that is no less than a,
then each k sparse minimizer X of the weighted ¢; minimization (3) is
the solution of (1).




3 Restricted Isometry Property

3.3 Main Theorems

107 | k > 2 is even k > 3 is odd
1 1/3 0.3203
3/4 3/8 (k > 4) 0.3797 (k > 5)
1/2 1/2 (k > 2) V6 —2 (k >5)
1/4 2/3 (k > 4) 3-6 (k>5)
1/6 3/4 (k > 6) 0.7101 (k > 5)

Table: Bounds on §; with different cases. From the table one cannot difficultly
find that under some mild situation, the upper bounds are greater than 0.4343.




3 Restricted Isometry Property

3.4 Two Examples

¢:<4(/)5 4(/)5 gﬁS) bz(iﬁ)'

From h = (%h3, %h3, —h3)T € N7 with h3 = %, |hs3| is the largest entry of h, i.e.

To = {3} uniquely exists. Therefore by setting % < w3 =7v<0.418,w; = wy = 1, we have
Yllhgzylls < llhg12y [l which means that x(9) is the unique solution of weighted ¢; model.
We directly calculate that d> = 0.9224 with n = 3, k = 2 by the following formula

8k = max [|[®Los — I, (15)
Seck

where || - || denotes the spectral norm of a matrix. Since Tp uniquely exists and v < 0.418,

it yields 6> < 0.9226 from (12) by taking a = 2, k = 1. Hence the ¢y minimization can be

exactly reconstructed by the weighted #; minimization from our Theorem I11.2




3 Restricted Isometry Property

3.4 Two Examples

3/4 —1/2 3/8 1/2 —1/4 1/2
o= 3/4 -1/2 -1/8 1/2 0 |,b=]| 1/2
0 1/4 3/8 —1/8 —3/8 ~1/8

.
From h = (=2027130s py, f 82305 po) " it follows that
To = {4}, h=(~2h/3,h2,0,2h2,0)T , hp = 6/11,

which manifests that Ty uniquely exists. By setting ws = v =0.3,w; =wy) = w3 =ws =1,
we have v||hgay[l1 < [lh{1,2,3,51[l1, which means that x(9) is the unique solution of weighted
¢1 minimization. We compute d, = 0.9572 by (15) with n =5, k = 2. Since Ty uniquely

exists and v = 0.3, it yields d> < 0.9578 from (12) by taking a =2, k = 1. And thus the ¢

minimization can be exactly recovered via the weighted ¢; minimization from Theorem II1.2.




4 Discussion

Although Ty defined by (9) always exists but not uniquely sometimes.
However, from Examples above, we can see the assumption that Ty
uniquely exists is actually not a strong assumption to a certain extent.




4 Discussion

The relationship between WNSP, NSP and RIP, the dashed area denotes the scale of matrices that satisfy the RIP via
weighted ¢1 minimization.
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