

Exact Recovery for Sparse Signal via Weighted ℓ_1 Minimization

SL Zhou YN Wang LC Kong NH Xiu

Department of Applied Mathematics, Beijing Jiaotong University

PKU Workshop On Optimization and Data Sciences, Dec 22, 2013, Peking University, Beijing

Outline

- 1 Introduction
- 2 Weighted Null Space Property
- 3 Restricted Isometry Property
- 4 Discussion

1 Introduction 1.1 Background

The concept of compressed sensing was first introduced by Donoho [D], Candès, Romberg and Tao [CRT] and Candès and Tao [CT]. Since then myriads of researchers have been lured to this area owing to its wide applications in signal processing, communications, astronomy, biology, medicine and so forth, see, e.g., [EK].

[D] D.L. Donoho, Compressed sensing, *IEEE Trans. Inf. Theory*, vol. 52, pp. 1289-1306, 2006.
 [CRT] E.J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, *IEEE Trans.Inf. Theory*, vol. 52, pp. 489-509, 2006.
 [CT] E.J. Candès and T. Tao, Decoding by linear programming, *IEEE Trans. Inf. Theory*, vol. 51, pp. 4203-4215, 2005.
 [EK] Y.C. Eldar and G.Kutyniok, Compressed Sensing: Theory and Applications, Cambridge University Press, 2012.

1 Introduction 1.2 Problem

The fundamental problem in compressed sensing is to recover a sparse solution $x \in \mathbb{R}^n$ of the underdetermined system of the form

$$\Phi x = y,$$

where $y \in \mathbb{R}^m$ is the available measurement and $\Phi \in \mathbb{R}^{m \times n}$ is a known measurement matrix.

To recover a sparse solution $x \in \mathbb{R}^n$ of the form $\Phi x = y$, the underlying model is the following ℓ_0 minimization:

$$\min \|x\|_0, \ \text{ s.t. } \Phi x = y, \tag{1}$$

where $||x||_0$ is ℓ_0 -norm of the vector $x \in \mathbb{R}^n$. However (1) is NP-Hard.

One common approach is to solve (1) via convex ℓ_1 minimization:

$$\min \|x\|_1, \ \text{ s.t. } \Phi x = y. \tag{2}$$

The use of ℓ_1 minimization has become so extensively that it could arguably be considered *the modern least squares*, see, e.g., [BDE],[CWX] and [CZ].

[BDE] A.M. Bruckstein, D.L. Donoho, and A. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images. *SIAM Rev.*, vol. 51, pp. 34-81, 2009.
 [CWX] T. Cai, L. Wang and G. Xu, New bounds for restricted isometry constants, *IEEE Trans. Inform. Theory*, vol. 56, pp. 4388-4394, 2010.
 [CZ] T. Cai, and A. Zhang, Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-rank Matrices, to appear in *IEEE Trans.Inf. Theory*, 2013.

Inspired by the efficiency of ℓ_1 minimization, it is natural to ask, for example, whether a different (but perhaps again convex) alternative to ℓ_0 minimization might also find the correct solution, but with a lower measurement requirement than ℓ_1 minimization.

Numerical experiments indicate that the reweighted ℓ_1 minimization does outperform unweighted ℓ_1 minimization in many situations [CWB],[DDFG] and [ZL].

[CWB] E.J. Candès, M.B. Wakin and S. P. Boyd, Enhancing sparsity by reweighted ℓ_1 minimization, *J. Fourier Anal. Appl.*, vol. 14, pp. 877-905, 2008. [DDFG] I. Daubechies, R. DeVore, M. Fornasier and C.S. Güntürk, Iteratively reweighted least squares minimization for sparse recovery, *Commun. Pure. Appl. Math.*, vol. 63, pp.1-38, 2010. [ZL] Y.B. Zhao and D. Li, Reweighted ℓ_1 -Minimization for Sparse Solutions to Underdetermined Linear Systems. *SIAM Journal on Optimization*, vol. 22, pp. 1065-1088, 2012.

In this talk, as a sequence, we consider the theoretical properties of the weighted ℓ_1 minimization:

$$\min \|\omega \circ x\|_1, \quad \text{s.t. } \Phi x = b, \tag{3}$$

where \circ denotes the Hadamard product, that is $||w \circ x||_1 = \sum \omega_i |x_i|$, and $0 < \omega_i \le 1, i = 1, 2, \cdots, n$.

Some cases that ℓ_1 minimization will fail to recover the sparse signal while exact recovery can be succeeded via weighted ℓ_1 minimization. (a) Sparse signal $x^{(0)} = (0, 0, 2)^T$, feasible set $\Phi_X = b$, and in ℓ_1 ball there exists an $x^{(1)} = (\frac{3}{4}, \frac{3}{4}, 0)^T$ but $\|x^{(1)}\|_0 > \|x^{(0)}\|_0$. (b) In weighted ℓ_1 ball, there does not exist an $x \neq x^{(0)}$ such that $\|x\|_0 \le \|x^{(0)}\|_0$.

1 Introduction 1.4 Null Space Property

The *null space property* (NSP) is the necessary and sufficient condition for (2) to reconstruct the system $b = \Phi x$ exactly, see, e.g., [Z].

Definition I.1 (NSP)

A matrix $\Phi \in \mathbb{R}^{m \times n}$ satisfies the null space property of order k if for all subsets $S \in C_n^k$ it holds

$$\|h_{\mathcal{S}}\|_{1} < \|h_{\mathcal{S}}c\|_{1} \tag{4}$$

for any $h \in \mathcal{N}(\Phi) \setminus \{0\}$, where $\mathcal{N}(\Phi) = \{h \in \mathbb{R}^n | \Phi h = 0\}$ and $\mathcal{C}_n^k = \{S \subset \{1, 2, \cdots, n\} \mid |S| = k\}.$

[Z] Y. Zhang, Theory of compressive sensing via $\ell\text{-mimimization}$: A Non-RIP analysis and extensions, Technical Report, Rice Univ., 2008.

Introduction Restricted Isometry Property

Another most popular sufficient condition for exact sparse recovery is *Restricted Isometry Property* (RIP) introduced by Candès and Tao [CT].

Definition I.2 (RIP)

For $k \in \{1, 2, \dots, n\}$, the restricted isometry constant is the smallest positive number δ_k such that

$$(1 - \delta_k) \|x\|_2^2 \le \|\Phi x\|_2^2 \le (1 + \delta_k) \|x\|_2^2$$
(5)

hold for all k-sparse vector $x \in \mathbb{R}^n$, i.e., $||x||_0 \le k$.

[CT] E.J. Candès and T. Tao, Decoding by linear programming, *IEEE Trans. Inf. Theory*, vol. 51, pp. 4203-4215, 2005.

	δ_k	δ_{2k}
Candès		0.4142
Foucart and Lai		0.4531
Foucart		0.4652
Cai, Wang and Xu		0.4721
Mo and Li		0.4931
Cai and Zhang	1/3	0.5000
Zhou, Kong and Xiu		0.5746
		with $\delta_{8k} < 1$
Andersson and Strömberg		0.6246

Table: Different bounds on δ_k and δ_{2k} .

Recently, Cai and Zhang [CZ] got a sharp bound

$$\delta_{tk} < \sqrt{\frac{t-1}{t}}.$$
 (6)

Articularly, $\delta_{2k} < \frac{\sqrt{2}}{2}$. It is worth mentioning that (6) is the sharp bound for ℓ_1 minimization which has been proved in [CZ].

[CZ] T. Cai, and A. Zhang, Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-rank Matrices, to appear in *IEEE Trans.Inf. Theory*, 2013.

1 Introduction 1.7 Current Results for Weighted ℓ_1 Minimization

As for the weighted ℓ_1 minimization, literature [FMSY] presented us the upper bound on δ_k might be $\delta_k < 0.4343$ under some cases.

[FMSY] M.P. Friedlander, H. Mansour, R. Saab, and Ö. Yilmaz, Recovering Compressively Sampled Signals Using Partial Support Information, *IEEE Trans. Inf. Theory*, vol. 58, pp. 1122-1134, 2012.

2 Weighted Null Space Property 2.1 Equivalent Definition

Definition II.1

F A matrix $\Phi \in \mathbb{R}^{m \times n}$ satisfies the null space property of order k if for all subsets $S \in C_n^k$ it holds

$$\|h_{S}\|_{1} < \|h_{S^{C}}\|_{1} \tag{7}$$

for any
$$h \in \mathcal{N}_1 := \{h \in \mathbb{R}^n | \ h \in \mathcal{N}(\Phi), \|h\|_1 = 1\}.$$

Lemma II.2

Definition **I.1** is equivalent to Definition **II.1**.

2 Weighted Null Space Property 2.2 Property of the WNSP

Definition II.2 (WNSP)

For a given weight $\omega \in \mathbb{R}^n$, a matrix $\Phi \in \mathbb{R}^{m \times n}$ satisfies the weighted null space property of order k if for all subsets $S \in \mathcal{C}_n^k$ it holds

$$\|\omega \circ h_{\mathcal{S}}\|_{1} < \|\omega \circ h_{\mathcal{S}}c\|_{1}$$

$$\tag{8}$$

for any $h \in \mathcal{N}_1$.

Theorem II.2

Every k-sparse vector $\hat{x} \in \mathbb{R}^n$ is the unique solution of the weighted minimization (3) with $b = \Phi \hat{x}$ iff Φ satisfies the WNSP of order k.

2 Weighted Null Space Property2.3 Two Examples

$$\Phi = \left(\begin{array}{cc} 4/5 & 0 & 3/10 \\ 0 & 4/5 & 3/10 \end{array}\right), \quad b = \left(\begin{array}{c} 3/5 \\ 3/5 \end{array}\right).$$

Clearly, the unique solution of ℓ_0 and ℓ_1 models are $x^{(0)} = (0, 0, 2)^T$ and $x^{(1)} = (\frac{3}{4}, \frac{3}{4}, 0)^T$. If setting $\omega_2 = \omega_1, \omega_3 < \frac{3}{4}\omega_1$, $x^{(0)}$ is also the unique solution of the weighted ℓ_1 model.

For any $h \in \mathcal{N}_1$, we have $h = (\frac{3}{8}h_3, \frac{3}{8}h_3, -h_3)^T$ with $h_3 = 4/7$. Then for all subset $S \in C_3^1$ and the given ω it holds $\|\omega \circ h_S\|_1 < \|\omega \circ h_{SC}\|_1$, which means Φ satisfies WNSP. It is worth mentioning that this Φ does not satisfy the NSP due to $|h_3| \leq |\frac{3}{4}h_3| = |h_1| + |h_2|$.

2 Weighted Null Space Property2.3 Two Examples

Some cases that ℓ_1 minimization will fail to recover the sparse signal while exact recovery can be succeeded via weighted ℓ_1 minimization. (a) Sparse signal $x^{(0)} = (0, 0, 2)^T$, feasible set $\Phi_X = b$, and in ℓ_1 ball there exists an $x^{(1)} = (\frac{3}{4}, \frac{3}{4}, 0)^T$ but $\|x^{(1)}\|_0 > \|x^{(0)}\|_0$. (b) In weighted ℓ_1 ball, there does not exist an $x \neq x^{(0)}$ such that $\|x\|_0 \le \|x^{(0)}\|_0$.

2 Weighted Null Space Property2.3 Two Examples

$$\Phi = \begin{pmatrix} 3/4 & -1/2 & 3/8 & 1/2 & -1/4 \\ 3/4 & -1/2 & -1/8 & 1/2 & 0 \\ 0 & 1/4 & 3/8 & -1/8 & -3/8 \end{pmatrix}, b = \begin{pmatrix} 1/2 \\ 1/2 \\ -1/8 \end{pmatrix}.$$

$$\begin{aligned} x^{(0)} &= (0, 0, 0, 1, 0)^T, \quad x^{(1)} = (\frac{1}{3}, -\frac{1}{2}, 0, 0, 0)^T \\ \omega_2 &= \frac{2}{3}\omega_1, \omega_4 = \frac{1}{2}\omega_1, \omega_3 = \omega_5 = \omega_1, \\ h &= \left(\frac{-8h_2 + 13h_5}{12}, h_2, \frac{h_5}{2}, \frac{4h_2 - 3h_5}{2}, h_5\right)^T. \end{aligned}$$

Likely, Φ satisfies the WNSP we defined while does not content the NSP.

3 Restricted Isometry Property 3.1 Design the Weight

We first design a way of weighing and introduce some notations. Let T_0 and \hat{h} be the optimal solution of the following model

$$(T_0, \widehat{h}) := \underset{T \in \mathcal{C}_n^k, h \in \mathcal{N}_1}{\operatorname{argmax}} \|h_T\|_1.$$
(9)

For a constant 0 $<\gamma\leq$ 1, we define ω based on ${\cal T}_{0}$ as

$$\omega_i = \begin{cases} \gamma, & i \in T_0, \\ 1, & i \in T_0^C, \end{cases}$$
(10)

where T_0^C is the complementary set of T_0 in $\{1, 2, \dots, n\}$.

3 Restricted Isometry Property 3.2 Crucial Lemma

Lemma III.1

Let T_0 and h be defined as (9). If T_0 uniquely exists, then there exists ω defined as (10) with $0 < \gamma < 1$ such that

$$\|\omega \circ \widehat{h}_{\mathcal{T}_0}\|_1 = \max_{\mathcal{T} \in \mathcal{C}_n^k, h \in \mathcal{N}_1} \|\omega \circ h_{\mathcal{T}}\|_1.$$
(11)

If T_0 exists but not uniquely, then ω defined as (10) with $\gamma = 1$ that satisfies (11).

Theorem III.2

For the given γ and ω as (9) and (10), if

$$\delta_{ak} < \sqrt{\frac{a-1}{a-1+\gamma^2}} \tag{12}$$

holds for some a > 1, then each k sparse minimizer \hat{x} of the weighted ℓ_1 minimization (3) is the solution of (1).

γ	δ_{2k}	δ_{3k}	δ_{4k}
1	$\sqrt{2}/2$	$\sqrt{6}/3$	$\sqrt{3}/2$
3/4	0.800	0.883	0.917
1/2	0.894	0.942	0.960
1/4	0.970	0.984	0.989

Table: Bounds on δ_{2k}, δ_{3k} and δ_{4k} with different cases.

Theorem III.3

For the given γ and ω as (9) and (10), if

$$\delta_{k} < \begin{cases} \frac{1}{1+2\lceil \gamma k \rceil/k}, & \text{for even number } k \ge 2, \\ \frac{1}{1+2\lceil \gamma k \rceil/\sqrt{k^{2}-1}}, & \text{for odd number } k \ge 3, \end{cases}$$
(13)

holds, where $\lceil a \rceil$ denotes the smallest integer that is no less than a, then each k sparse minimizer \hat{x} of the weighted ℓ_1 minimization (3) is the solution of (1).

γ	$k \ge 2$ is even	$k \ge 3$ is odd
1	1/3	0.3203
3/4	$3/8~(k \ge 4)$	$0.3797~(k \ge 5)$
1/2	$1/2~(k\geq 2)$	$\sqrt{6}-2~(k\geq5)$
1/4	$2/3~(k \ge 4)$	$3-\sqrt{6}~(k\geq5)$
1/6	$3/4~(k \ge 6)$	$0.7101~(k \ge 5)$

Table: Bounds on δ_k with different cases. From the table one cannot difficultly find that under some mild situation, the upper bounds are greater than 0.4343.

3 Restricted Isometry Property 3.4 Two Examples

$$\Phi = \left(\begin{array}{cc} 4/5 & 0 & 3/10 \\ 0 & 4/5 & 3/10 \end{array}\right), \quad b = \left(\begin{array}{c} 3/5 \\ 3/5 \end{array}\right).$$

From $h = (\frac{3}{8}h_3, \frac{3}{8}h_3, -h_3)^T \in \mathcal{N}_1$ with $h_3 = \frac{4}{7}$, $|h_3|$ is the largest entry of h, i.e. $T_0 = \{3\}$ uniquely exists. Therefore by setting $\frac{3}{8} < \omega_3 = \gamma < 0.418, \omega_1 = \omega_2 = 1$, we have $\gamma ||h_{\{3\}}||_1 < ||h_{\{1,2\}}||_1$, which means that $x^{(0)}$ is the unique solution of weighted ℓ_1 model. We directly calculate that $\delta_2 = 0.9224$ with n = 3, k = 2 by the following formula

$$\delta_k = \max_{S \in \mathcal{C}_n^k} \| \Phi_S^T \Phi_S - I_k \|, \tag{15}$$

where $\|\cdot\|$ denotes the spectral norm of a matrix. Since T_0 uniquely exists and $\gamma < 0.418$, it yields $\delta_2 < 0.9226$ from (12) by taking a = 2, k = 1. Hence the ℓ_0 minimization can be exactly reconstructed by the weighted ℓ_1 minimization from our Theorem III.2

3 Restricted Isometry Property 3.4 Two Examples

$$\Phi = \begin{pmatrix} 3/4 & -1/2 & 3/8 & 1/2 & -1/4 \\ 3/4 & -1/2 & -1/8 & 1/2 & 0 \\ 0 & 1/4 & 3/8 & -1/8 & -3/8 \end{pmatrix}, b = \begin{pmatrix} 1/2 \\ 1/2 \\ -1/8 \end{pmatrix}.$$

From $h = \left(\frac{-8h_2 + 13h_5}{12}, h_2, \frac{h_5}{2}, \frac{4h_2 - 3h_5}{2}, h_5\right)^T$, it follows that
 $T_0 = \{4\}, \ \hat{h} = (-2h_2/3, h_2, 0, 2h_2, 0)^T, \ h_2 = 6/11,$

which manifests that T_0 uniquely exists. By setting $\omega_4 = \gamma = 0.3$, $\omega_1 = \omega_2 = \omega_3 = \omega_5 = 1$, we have $\gamma ||h_{\{4\}}||_1 < ||h_{\{1,2,3,5\}}||_1$, which means that $x^{(0)}$ is the unique solution of weighted ℓ_1 minimization. We compute $\delta_2 = 0.9572$ by (15) with n = 5, k = 2. Since T_0 uniquely exists and $\gamma = 0.3$, it yields $\delta_2 < 0.9578$ from (12) by taking a = 2, k = 1. And thus the ℓ_0 minimization can be exactly recovered via the weighted ℓ_1 minimization from Theorem III.2.

4 Discussion

Although T_0 defined by (9) always exists but not uniquely sometimes. However, from Examples above, we can see the assumption that T_0 uniquely exists is actually not a strong assumption to a certain extent.

4 Discussion

The relationship between WNSP, NSP and RIP, the dashed area denotes the scale of matrices that satisfy the RIP via weighted ℓ_1 minimization.

