Lower Bound Theory for Schatten-*p* Regularized Least Squares Problem

> Qingna Li¹ Joint Work with Shiqian Ma, CUHK

> > December 22, 2013

¹Beijing Institute of Technology, qnl@bit.edu.cn $\langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Introduction

Lower Bound and Necessary Conditions

Smoothing Problem

Numerical Results

Conclusions

Schatten-p regularized least squares problem (0 < p < 1)

$$\min_{X \in \Re^{m \times n}} \|\mathcal{A}(X) - b\|_2^2 + \lambda \|X\|_p^p := f(X),$$
(1)

$$\|X\|_{p}^{p} := \sum_{i=1}^{\min\{m,n\}} \sigma_{i}(X)^{p}.$$

The set of local minimizers of (21) is denoted as $\mathcal{X}_{p}^{*}.$

Affine matrix rank minimization problem:

$$\min_{X \in \Re^{m \times n}} rank(X)$$

s.t. $\mathcal{A}(X) = b,$ (2)

Nuclear norm convex relaxation:

$$\min_{X \in \Re^{m \times n}} \|X\|_{*}$$

s.t. $\mathcal{A}(X) = b.$ (3)

A D M 4 目 M 4 日 M 4 1 H 4

- Singular Value Thresholding method (SVT): Cai, Candès and Shen, SIAMOPT, 2010
- Fixed Point Continuation method (FPC): Ma, Goldfarb and Chen, Math. Program., 2011
- Atomic Decomposition for Minimum Rank Approximation (ADMiRA): Lee and Bresler, IEEE Transactions on Information Theory, 2010
- Iterative Reweighted Least Squares method(IRLS): 2010

Schatten-p nonconvex relaxation:

- Interior Point Method: Ji, Sze, Zhou, So, Ye, INFOCOM 2013
- Hard thresholding method and fixed point method: Peng, Xiu and Yu, 2013
- Iterative Reweighted Singular Value Minimization method: Lu 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $I_2 - I_p$ vector minimization problem

$$\min_{x \in \Re^m} \|Ax - b\|_2^2 + \lambda \|x\|_p^p,$$
(4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- Chen, Xu and Ye 2010
- Chen, Zhou 2013
- Chen, Niu and Yuan 2013
 - • •
- ▶ $p = \frac{1}{2}$: Xu, Chang, Xu and Zhang, 2012 Xu 2010
- Lu, 2013

▶ ...

Progress in Matrix Optimization

- Chao Ding, Defeng Sun, and Kim Chuan Toh, An introduction to a class of matrix cone programming, PDF version. To appear in Mathematical Programming
- Bin Wu, Chao Ding, Defeng Sun, and Kim Chuan Toh, On the Moreau-Yosida regularization of the vector k-norm related functions, March 2011

Sun D.F., Matrix Cone Programming, Lecture Notes presented in Dalian University of Technology, June 2011. Smoothing Methods:

- Smoothing Gradient Method: Chen, Xu and Ye 2010
- Smoothing Projected Gradient Method: Zhang and Chen, 2009
- Smoothing Trust Region Method: Chen, Niu and Yuan, 2013

A D M 4 目 M 4 日 M 4 1 H 4

 Smoothing Newton Method: Gao and Sun 2009, 2012, Qi and L, 2013 Lower Bound and Necessary Conditions

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Let $X \in \Re^{m \times n}$ have singular value decomposition (SVD) as

$$X = U[Diag(\sigma) \ 0] V^{T}, \quad U \in \mathcal{O}_{m}, \quad V \in \mathcal{O}_{n},$$
(5)

Suppose rank(X) = k.

$$A_{U,V} := [\mathcal{A}(u_1 v_1^T), \cdots, \mathcal{A}(u_k v_k^T)] \in \Re^{q \times k}$$
(6)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

where u_i , v_i are the *i*-th column vectors of U and V respectively.

Lower Bound Theory

Theorem 2.1

(The second order bound) Let L := (^{λp(1-p)}/_{2∑^q_{i=1} ||A_i||²})¹/_{2−p}. Then for any X ∈ X^{*}_p with rank k, let A_{U,V} be defined as in (6).

For any
$$i \in \mathcal{N}, \bar{\sigma}_i \in [0, L) \Rightarrow \bar{\sigma}_i = 0.$$
 (7)

(The first order bound) Let X ∈ X^{*}_p satisfying f(X) ≤ f(X⁰) for an arbitrarily given initial point X⁰. Let
 L₀ := (^{λp}/_{2||A||√f(X⁰)})^{1/1-p}. Then

for any $i \in \mathcal{N}, \ \bar{\sigma}_i \in [0, L_0) \Rightarrow \bar{\sigma}_i = 0.$

Some Lemmas

Lemma 2.1(Characterization of Subgradients) Suppose that the function $f : \Re^m \to (-\infty, +\infty]$ is absolutely symmetric, and that the $m \times n$ matrix T has the singular value vector $\sigma(T)$ in dom(f). Then the $m \times n$ matrix H lies in $\partial(f \circ \sigma)(T)$ if and only if $\sigma(H)$ lies in $\partial f(\sigma(T))$ and there exists a simultaneous singular value decomposition form

$$T = U[\text{Diag}(\sigma(T)) \ 0] V^T, \ H = U[\text{Diag}(\sigma(H)) \ 0] V^T,$$

where $U \in \mathcal{U}_m$, $V \in \mathcal{U}_n$ are unitary matrices. In fact,

$$\partial(f \circ \sigma)(T) = \{ U[\text{Diag}(\mu) \ 0] V^T \mid \mu \in \partial f(\sigma(T)), U \in \mathcal{U}_m, \\ V \in \mathcal{U}_n, \ T = U[\text{Diag}(\sigma(T)) \ 0] V^T \}.$$

Let $\theta : \Re^+ \to \Re$ be a scalar function.

The corresponding non-symmetric Löwner operator is defined by

$$\Theta(X) := U[\operatorname{diag}(\theta(\sigma)) \ 0] V^{T}.$$
(8)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Lemma 2.2 The non-symmetric Löwner operator Θ is well-defined if and only if $\theta(0) = 0$.

Suppose θ is differentiable at σ_i , $i = 1, \dots, m$. Define $\Gamma_1 \in \Re^{m \times m}$, $\Gamma_2 \in \Re^{m \times m}$, $\Gamma_3 \in \Re^{m \times (n-m)}$ as

$$(\Gamma_{1})_{ij} = \begin{cases} \frac{\theta(\sigma_{i}) - \theta(\sigma_{j})}{\sigma_{i} - \sigma_{j}}, & \text{if } \sigma_{i} \neq \sigma_{j}, \\ \theta'(\sigma_{i}), & \text{otherwise}, \end{cases} \quad i, j \in \{1, \cdots, m\}. \tag{9}$$

$$(\Gamma_{2})_{ij} = \begin{cases} \frac{\theta(\sigma_{i}) + \theta(\sigma_{j})}{\sigma_{i} + \sigma_{j}}, & \text{if } \sigma_{i} + \sigma_{j} \neq 0, \\ \theta'(0), & \text{otherwise}, \end{cases} \quad i, j \in \{1, \cdots, m\}. \tag{10}$$

$$(\Gamma_{3})_{ij} = \begin{cases} \frac{\theta(\sigma_{i})}{\sigma_{j}}, & \text{if } \sigma_{i} \neq 0, \\ \sigma_{j}(\sigma_{j}), & \sigma_{j} \neq 0, \end{cases} \quad i \in \{1, \cdots, m\}, j \in \{1, \cdots, n-m\}.$$

$$(\Gamma_3)_{ij} = \begin{cases} \frac{\sigma_i}{\sigma_i}, & \text{if } \sigma_i \neq 0, \\ \theta'(0), & \text{if } \sigma_i = 0, \end{cases} \quad i \in \{1, \cdots, m\}, \ j \in \{1, \cdots, n-m\}.$$

$$(11)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Some Lemmas

Lemma 2.3 The non-symmetric Löwner operator Θ is continuously differentiable at X if and only if θ is continuously differentiable at $\sigma_i(X)$, $i = 1, \dots, m$. Moreover, the derivative $\Theta'(X)$, for any $H \in \Re^{m \times n}$ is given by

 $\Theta'(X)H = U[\Gamma_1 \circ S(A) + \Gamma_2 \circ T(A) \ \Gamma_3 \circ B]V^T,$ (12) where $A = U^T H V_1$, $B = U^T H V_2$, $S(A) = \frac{1}{2}(A + A^T)$, $T(A) = \frac{1}{2}(A - A^T)$, $V = [V_1 \ V_2]$, $V_1 \in \Re^{m \times m}$, $V_2 \in \Re^{m \times (n-m)}$.

First Order Necessary Condition for (1)

Proposition 2.1 We say that X satisfies the first order necessary condition for (1) if

 $0 = 2Diag(\sigma)U^{T}\mathcal{A}^{*}(\mathcal{A}(X) - b)V + \lambda p[\text{Diag}(\sigma^{p}) \quad 0].$ (13)

Recall: x is said to satisfy the first order necessary condition of (4) if

$$2\text{Diag}(x)A^T(Ax-b) + \lambda p|x|^p = 0.$$

Define $\Omega_1 \in \Re^{m \times m}$, $\Omega_2 \in \Re^{m \times m}$, $\Omega_3 \in \Re^{m \times (n-m)}$ as

$$(\Omega_1)_{ij} = \begin{cases} \frac{p}{2}\sigma_i^p, & \sigma_i = \sigma_j; \\ \sigma_i^2 \frac{\sigma_i^p - \sigma_j^p}{\sigma_i^2 - \sigma_j^2}, & \sigma_i \neq \sigma_j, \end{cases}$$
(14)

$$(\Omega_2)_{ij} = \begin{cases} \frac{p-1}{2}\sigma_i^p, & \sigma_i = \sigma_j;\\ \frac{\sigma_i^p \sigma_j^2 - \sigma_j^p \sigma_i^2}{\sigma_i^2 - \sigma_j^2}, & \sigma_i \neq \sigma_j, \end{cases}$$
(15)

$$(\Omega_3)_{ij} = \begin{cases} \sigma_i^p, & \sigma_i > 0; \\ 0, & \sigma_i = 0. \end{cases}$$
(16)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Second Order Necessary Condition for (1)

Proposition 2.2 We say $X \in \Re^{m \times n}$ with SVD as in (5) satisfies the second order necessary condition for (1) if the following holds:

 $2\langle Diag(\sigma)Z, \overline{\mathcal{A}}^*\overline{\mathcal{A}}(Diag(\sigma)Z)\rangle + \lambda p \langle Z, [\Omega_1 \circ Z_1 + \Omega_2 \circ Z_1^T \ \Omega_3 \circ Z_2] \rangle \ge 0$ (17)

for any
$$Z = [Z_1 \ Z_2] \in \Re^{m \times n}$$
, where
 $\overline{\mathcal{A}} := \mathcal{A}_{\mu}(\mathcal{H}) := [\langle U_{\mu}^T \mathcal{A}_1 V_{\mu}, \mathcal{H} \rangle, \cdots, \langle U_{\mu}^T \mathcal{A}_s V_{\mu}, \mathcal{H} \rangle]^T \in \Re^s$
 $\Omega_1, \ \Omega_2, \ \Omega_3$ are defined as in (14), (15) and (16).

Recall: x is said to satisfy the second order necessary condition of (4) if

$$2\text{Diag}(x)A^TA\text{Diag}(x) + \lambda p(p-1)\text{Diag}(|x|^p) \succeq 0.$$

Lower Bound Theory and Necessary Conditions for Smoothing Problem

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Smoothing Function

The smoothing function for $|t|(t \in \Re)$:

$$s_{\mu}(t) = \begin{cases} |t|, & |t| \ge \mu \\ rac{t^2}{2\mu} + rac{\mu}{2}, & |t| < \mu. \end{cases}$$
 (18)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

where $\mu > 0$. $s_{\mu}(t)$ is continuously differentiable.

$$0\leq s_\mu(t)^
ho-|t|^
ho\leqrac{\mu}{2}$$

When $\mu \to 0$, $s_{\mu}(t)^{\rho} \to |t|^{\rho}$.

Smoothing Function

$$p \cdot \theta(t) := (s_{\mu}(t)^{p})' = \begin{cases} p|t|^{p-1} sign(t) := p \cdot \theta_{1}(t), & |t| \ge \mu \\ p(\frac{t^{2}}{2\mu} + \frac{\mu}{2})^{p-1} \frac{t}{\mu} := p \cdot \theta_{2}(t), & |t| < \mu. \end{cases}$$
(19)

s'(t) is not differentiable at $t = \pm \mu$, so is θ .

$$\theta'(t) = \begin{cases} (p-1)|t|^{p-2} := \theta'_1(t), & |t| > \mu \\ (p-1)(\frac{t^2}{2\mu} + \frac{\mu}{2})^{p-2}\frac{t^2}{\mu^2} + (\frac{t^2}{2\mu} + \frac{\mu}{2})^{p-1}\frac{1}{\mu} := \theta'_2(t), & |t| < \mu. \end{cases}$$
(20)

At μ , the generalized gradient of $\theta(t)$ is

$$\partial(\theta(\mu)) = \{ v \in \Re : (p-1)\mu^{p-2} \le v \le p\mu^{p-2} \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The smoothing problem

$$\min_{X \in \Re^{m \times n}} f_{\mu}(X) := \|\mathcal{A}(X) - b\|_{2}^{2} + \lambda \|S_{\mu}(X)\|_{p}^{p}.$$
 (21)

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

where

$$S_{\mu}(X) = U[Diag(s_{\mu}(\sigma)) \ 0]V.$$

The set of local minimizers of (21) is denoted as $\mathcal{X}_{p,\mu}^*$.

Lower Bound Theory for Smoothing Problem

Theorem 3.1 Let $L := \left(\frac{\lambda p(1-p)}{2\sum_{i=1}^{q} ||A_i||^2}\right)^{\frac{1}{2-p}}$ and

 $L_0 = \left(\frac{\lambda p}{2\|\mathcal{A}\|\sqrt{f(X^0)}}\right)^{\frac{1}{1-p}} \text{ for an arbitrarily given initial point } X^0.$

(i) (The second order bound) For any $\mu > 0$, and any $\overline{X}_{\mu} \in \mathcal{X}^*_{p,\mu}$, we have

 $\forall i \in \mathcal{N}, \ (\bar{\sigma}_{\mu})_i \in [0, L) \Rightarrow (\bar{\sigma}_{\mu})_i \in [0, \mu].$

(ii) (The first order bound) For any $\mu > 0$ and any $\overline{X}_{\mu} \in \mathcal{X}^*_{p,\mu}$ satisfying $f(\overline{X}_{\mu}) \leq f(X^0)$, we have

 $\forall i \in \mathcal{N}, \ (\bar{\sigma}_{\mu})_i \in [0, L_0) \Rightarrow (\bar{\sigma}_{\mu})_i \in [0, \mu].$

First and Second Order Necessary Condition for (21)

Proposition 3.1

(The first order necessary condition for (21)) We say X_{μ} satisfies the first order necessary condition if

$$2\mathcal{A}^*(\mathcal{A}(X_{\mu}) - b) + \lambda U_{\mu}[Diag(\Psi(\sigma_{\mu})) \ 0] V_{\mu}^T = 0 \qquad (22)$$

where

$$\Psi_{\mu}(x) = ((s_{\mu}(x_1)^p)', \cdots, (s_{\mu}(x_m)^p)')^T \in \Re^m.$$

Proposition 3.2 (The second order necessary condition for (21)) For X_{μ} , suppose $(\sigma_{\mu})_i \neq \mu$, $i = 1, \dots, m$. We say X_{μ} satisfies the second order necessary condition if

$$\langle H, 2\mathcal{A}^*\mathcal{A}(H) + \lambda p \Theta'(X_\mu)H
angle \geq 0, \quad ext{for any } H \in \Re^{m imes n}, \quad (23)$$

where

$$\Theta'(X_{\mu})H = U[\Gamma_1 \circ S(A) + \Gamma_2 \circ T(A) \ \Gamma_3 \circ B]V^{T}.$$

First and Second Order Necessary Condition for (21)

Proposition 3.3 Let $\theta(\cdot)$ be defined as in (19). We say that X_{μ} satisfies the second order necessary condition if

 $\langle H, 2\mathcal{A}^*\mathcal{A}(H) + \lambda pMH \rangle \ge 0, \ M \in \partial \Theta(X)$ for any $H \in \Re^{m \times n}$, (24) where the generalized Jacobian of $\Theta(\cdot)$ at X is given by

$$\partial \Theta(X)H = \{ MH = U[\overline{\Gamma}_1 \circ S(A) + \Gamma_2 \circ T(A) \ \Gamma_3 \circ B]V^T, \\ (\overline{\Gamma}_1)_{ij} = \begin{cases} \frac{\theta(\sigma_i) - \theta(\sigma_j)}{\sigma_i - \sigma_j}, & \text{if } \sigma_i \neq \sigma_j, \\ \theta'(\sigma_i), & \sigma_i = \sigma_j \neq \mu, \\ \gamma_{ij} \in \partial \theta(\mu), & \sigma_i = \sigma_j = \mu. \end{cases}$$

where $A = U^T H V_1$, $B = U^T H V_2$, $V = \begin{bmatrix} V_1 & V_2 \end{bmatrix}$, Γ_2 , Γ_3 are defined as in (10), (11), and

Convergence of Smoothing Algorithm

Theorem 3.2

- ► (1) Let {X_{µk}} be a sequence of matrices satisfying the first order necessary condition of (21). Then any accumulation point of {X_{µk}} satisfies the first order necessary condition of (1).
- ► (2) Let {X_{µk}} be a sequence of matrices satisfying the second order necessary condition of (21). Then any accumulation point of {X_{µk}} satisfies the second order necessary condition of (1).
- ▶ (3) Let {X_{µk}} be a sequence of matrices being global minimizer of (21). Then any accumulation point of {X_{µk}} is a global minimizer of (1).

Convergence of Smoothing Algorithm

Theorem 3.3 Let $\{X_{\mu_k}\}$ be a sequence of matrices satisfying the first order necessary conditions of (21) and $f(X_{\mu_k}) \leq f(X^0)$ for an arbitrary given initial point X^0 . Suppose X_{μ_k} has SDV as in (5). Then there is a K > 0 such that, for any $k \geq K$, there is $\overline{X} \in \mathcal{X}_p$ with SVD as in (5) such that

$$I_{\mu_k} := \{ i \in \mathcal{N} \mid (\sigma_{\mu_k})_i \le \mu_k \} = \{ i \in \mathcal{N} \mid \bar{\sigma}_i = 0 \} := I$$
 (25)

Algorithm 1

Smoothing Gradient Method(SG) for (1)

- Step 1 Choose a starting point $X^0 \in \Re^{m \times n}$. Calculate L_0 by Theorem 2.1.
- Step 2 Start from the initial point X^0 , solve (21) using smoothing gradient algorithm to get X_{μ} .

Step 2.1 Choose constants η , $\rho \in (0, 1)$, tol > 0, and an initial point X^0 . k := 0.

Step 2.2 Compute the step size ν_k by the Armijo line search where $\nu_k = \max\{\rho^0, \rho^1, \cdots\}$ and ρ^i satisfies

$$f_{\mu_k}(X^k-
ho g_k)\leq f_{\mu_k}(X^k)-\eta
ho^i\|g_k\|^2.$$

Set $X^{k+1} = X^k - \nu_k g_k$. Here $g_k = \nabla f_{\mu_k}(X^k)$.

Step 2.3 If $||g_k|| \le tol$, stop, go to Step 3; otherwise, update μ_k such that $\mu_{k+1} \le \mu_k$, go to Step 2.2.

Step 3 Output $X^*_{\mu} = U_{\mu}[\text{Diag}(\sigma^*_{\mu}) \ 0]V^T_{\mu}$, where σ^*_{μ} is defined by

$$(\sigma^*_{\mu})_i = \left\{ egin{array}{cc} (\sigma_{\mu})_i, & (\sigma_{\mu})_i \geq L_0, \\ 0, & ext{otherwise.} \end{array}
ight.$$

 U_{μ} and V_{μ} comes from the SVD of $X_{\mu} = U_{\mu}[\text{Diag}(\sigma_{\mu}) \ 0]V_{\mu}^{T}$.

Numerical Results

Matrix Completion Problem:

$$\min_{X \in \Re^{m \times n}} \|P_{\Omega}(X) - b\|_2^2 + \lambda \|X\|_p^p,$$
(26)

 $\lambda = 0.01, \ \mu_0 = 0.1, \ \eta = 10^{-4}, \ \rho = 0.5, \ tol = \min(0.01, \ \max(10^{-4}, 10^{-3} \|g_0\|)).$ μ_k is updated by

$$\mu_{k+1} = \begin{cases} 0.96\mu_k, & \text{if } mod(k,2) = 0\\ \mu_k, & otherwise. \end{cases}$$

Stopping Criteria: $||g_k|| \leq tol$ or $\frac{||X^{k+1}-X^k||}{||X^k||} \leq 10^{-5}$.

- SG: Smoothing Gradient method
- SVT: Singular Value Thresholding method ,Cai, Candès and Shen, SIAMOPT, 2010
- FPC: Fixed Point Continuation method, Ma, Goldfarb and Chen, Math. Program., 2011
- ► HFPA: half norm fixed point algorithm, Peng, Xiu and Yu, 2013

$$\begin{split} MSE &:= \frac{\|X_{\mu}^{*} - X^{*}\|}{\|X^{*}\|}.\\ \text{An instance is said to be successful if } rank(X_{\mu}^{*}) = rank(X^{*}) \text{ and}\\ \text{its corresponding } MSE \leq 10^{-3}. \end{split}$$

(日) (周) (三) (三) (三) (○) (○)

The Role of Lower Bound Theory

Figure: m = n = 100, r = 10, OS = 5, $L_0 = 8.493e - 002$, MSE = 3.97e - 005

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへ()・

Comparison of Four Algorithms

Figure: m = n = 100, r = 2, $\overline{OS} \approx 3.5$

・ロト ・聞ト ・ヨト ・ヨト

æ

Small Easy Problems

		SG			FPC				SVT		HFPA		
r	OS	NS	MSE	t	NS	MSE	t	NS	MSE	t	NS	MSE	t
2	4	7	1.18E-3	2.3	5	1.58E-3	0.2	0	2.29E-1	38.3*	0	2.71E-3	0.2
2	4.5	8	7.56E-3	1.9	2	1.27E-3	0.2	0	1.11E-1	30.6*	2	1.01E-2	0.2
2	5	10	3.15E-4	1.6	6	9.37E-4	0.1	0	8.65E-2	22.9	6	1.19E-3	0.1
2	6	10	1.06E-4	1.2	10	3.33E-4	0.1	5	1.85E-2	10.2	10	5.05E-4	0.1
2	7	10	6.95E-5	1.3	10	2.17E-4	0.1	7	9.60E-3	4.3	10	2.94E-4	0.1
2	8	10	7.71E-5	0.8	10	1.02E-4	0.1	9	3.45E-3	2.7	10	1.32E-4	0.1
5	3	10	1.16E-4	1.4	10	3.25E-4	0.2	0	6.67E-2	48.8	10	5.17E-4	0.2
5	4	10	8.51E-5	0.7	10	9.35E-5	0.2	4	1.03E-3	9.1	9	4.64E-3	0.1
5	5	10	5.53E-5	0.6	10	3.63E-5	0.3	10	1.72E-4	2.9	10	3.99E-5	0.1
5	6	10	3.15E-5	0.6	10	1.93E-5	0.3	10	1.55E-4	1.9	10	7.43E-6	0.1
5	8	10	1.88E-5	0.8	10	4.84E-5	0.9	10	1.27E-4	1.6	10	4.09E-7	0.1
10	3	10	7.82E-5	0.6	10	4.38E-5	0.4	1	3.74E-4	11.8	10	4.19E-5	0.1
10	3.5	10	4.24E-5	0.8	10	4.87E-5	0.9	10	1.71E-4	4.1	10	9.59E-6	0.1
10	4	10	4.16E-5	1.5	0	5.62E-3	2.5	10	1.53E-4	2.3	10	2.51E-6	0.1
10	4.5	10	6.69E-5	1.5	0	8.61E-2	2.5	10	1.35E-4	1.9	10	8.56E-7	0.1
10	5	10	4.19E-5	1.4	0	7.50E-1	2.5	10	1.15E-4	1.5	10	6.27E-7	0.1

Table: Comparison with FPC, SVT and HFPA on easy problems: m = n = 100. * means that the algorithm reaches the maximum number of iteration.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Small Hard Problems

			SG			FPC			SVT			HFPA	
r	OS	NS	MSE	t	NS	MSE	t	NS	MSE	t	NS	MSE	t
2	2	2	4.70E-2	4.2	2	4.50E-2	2.7	0	1.32E+5	5.7	0	7.37E-2	1
2	2.25	3	1.40E-2	3.8	4	1.59E-2	2.5	0	6.05E+4	25.5	0	3.03E-2	1
2	2.5	7	1.47E-2	3.7	7	1.47E-2	2.4	0	3.33E+4	31.3	1	2.70E-2	0
2	2.75	7	6.76E-3	3.2	6	6.80E-3	2.0	0	5.35E-1	*	3	1.05E-2	0
2	3	9	4.00E-4	3.3	9	2.63E-4	2.1	0	4.97E-1	*	2	3.54E-3	0
2	3.25	9	4.25E-4	3.3	9	3.47E-4	2.0	0	4.04E-1	*	8	3.58E-3	0
2	3.5	10	1.89E-4	3.4	10	1.49E-5	2.1	0	3.32E-1	*	7	8.42E-4	0
5	1	0	9.89E-1	8.0	0	1.04E+0	3.7	0	1.40E+5	1.8	0	9.47E-1	1
5	1.25	0	8.49E-2	9.14	0	5.27E-2	3.8	0	1.00E+4	55.6	0	8.25E-1	2
5	1.5	4	1.66E-2	6.2	4	1.59E-2	3.7	0	8.73E-1	*	1	2.07E-2	1
5	1.75	9	3.53E-3	4.7	8	3.48E-3	3.5	0	6.72E-1	*	5	5.42E-3	1
5	2	10	1.95E-4	4.2	10	1.22E-5	3.0	0	5.49E-1	*	9	5.65E-4	1
5	2.25	10	1.46E-4	11.4	10	1.02E-5	8.6	0	4.31E-1	*	10	4.24E-4	2
5	2.5	10	1.09E-4	12.1	10	6.61E-6	9.5	0	2.79E-1	*	10	3.00E-4	2
10	1	0	7.05E-1	9.3	0	7.26E-1	5.8	0	9.58E-1	*	0	8.00E-1	2
10	1.25	10	3.30E-4	6.1	9	6.23E-5	5.6	0	8.47E-1	*	8	8.96E-4	2
10	1.5	10	2.31E-4	5.9	10	1.49E-5	5.2	0	6.27E-1	*	9	6.90E-4	1
10	1.75	10	1.82E-4	6.5	10	5.16E-6	6.0	0	4.16E-1	*	10	2.37E-4	1
10	2	10	1.63E-4	7.3	10	4.03E-6	6.9	0	2.29E-1	*	10	1.57E-4	1
10	2.25	10	1.29E-4	8.7	10	2.79E-6	8.3	0	8.43E-2	*	10	1.04E-4	1
10	2.5	10	1.10E-4	9.5	10	2.12E-6	9.3	0	1.72E-2	*	10	7.60E-5	2

Table: Comparison with FPC, SVT and HFPA on hard problems: m = n = 100. * means that the algorithm reaches the maximum number of iteration.

Higher Dimension Problems

			SG			FPC		HFPA			
r	OS	NS	MSE	t	NS	MSE	t	NS	MSE	t	
20	2.5	10	6.51E-04	17.6	9	6.48E-04	14.72	9	6.67E-04	13.36	
20	2.75	10	6.01E-04	15.4	9	6.00E-04	12.52	9	6.16E-04	11.12	
20	3	10	5.65E-04	15.03	10	5.64E-04	11.8	10	5.72E-04	10.4	
20	3.5*	10	4.76E-04	13.14	10	4.98E-04	10.19	9	1.21E-03	8.76	
20	4	10	3.83E-04	12.81	10	3.85E-04	9.69	10	3.49E-04	7.12	
20	5	10	1.94E-04	13.27	10	1.87E-04	9.97	10	1.46E-04	6.81	
20	7	10	8.54E-05	20.62	10	5.15E-05	16.67	10	2.17E-05	9.68	
30	1.75	10	6.88E-04	32.69	10	6.86E-04	29.66	8	7.05E-04	28.4	
30	2	10	5.84E-04	23.71	10	5.83E-04	20.74	10	5.89E-04	19.33	
30	2.25	10	5.26E-04	19.76	10	5.18E-04	16.67	9	5.33E-04	15.03	
30	2.5	10	4.75E-04	17.78	10	4.78E-04	14.69	10	4.75E-04	12.92	
30	2.75	10	4.32E-04	16.5	10	4.29E-04	13.49	10	4.36E-04	11.62	
30	3*	10	3.90E-04	16.06	10	3.89E-04	12.96	10	3.78E-04	10.28	
30	4	10	1.65E-04	17.1	10	1.58E-04	13.45	10	1.25E-04	9.1	
30	5	10	9.20E-05	22.49	10	6.88E-05	17.78	10	3.01E-05	11.04	
30	6	10	6.33E-05	32.94	10	2.15E-05	28.01	10	6.09E-06	16.14	

Table: Comparison with FPC and HFPA on high dimension problems: m = n = 1000. * is the number approximately equal to $\overline{OS}(m, n, r)$

Higher Dimension Problems

			SG			FPC		HFPA			
r	OS	NS	MSE	t	NS	MSE	t	NS	MSE	t	
10	5	5	9.91E-04	61.15	4	1.03E-03	44.65	2	1.03E-03	34.4	
10	5.5	8	9.50E-04	57.54	8	9.45E-04	41.27	7	9.71E-04	30.7	
10	6	9	8.90E-04	54.44	8	8.91E-04	37.87	10	8.97E-04	27.2	
10	6.5	9	8.11E-04	53.42	10	8.38E-04	36.93	8	8.45E-04	26.0	
10	7*	10	7.71E-04	51.53	9	7.98E-04	35.26	10	8.33E-04	24.4	
10	8	10	6.95E-04	50.09	10	7.13E-04	33.45	9	1.57E-03	23.5	
10	10	10	4.15E-04	48.73	10	4.38E-04	31.96	10	4.37E-04	19.0	
10	11	10	3.48E-04	48.12	10	3.63E-04	31.05	10	3.30E-04	18.0	
30	2.5	10	7.45E-04	92.53	10	7.53E-04	75.75	8	7.62E-04	65.0	
30	3	10	6.42E-04	76.65	9	6.54E-04	60.65	10	6.67E-04	48.7	
30	3.25	10	6.02E-04	72.64	8	6.15E-04	55.79	10	6.29E-04	44.1	
30	4*	10	5.07E-04	66.9	10	5.20E-04	49.55	10	5.26E-04	37.	
30	5	10	2.82E-04	67.96	10	3.00E-04	50.27	10	2.90E-04	33.0	
30	6	10	1.45E-04	73.23	10	1.52E-04	53.01	10	1.42E-04	32.8	
30	8	10	4.98E-05	108.5	10	4.81E-05	83.82	10	3.20E-05	45.2	
30	9	10	3.50E-05	159.91	10	2.80E-05	133.3	10	1.16E-05	69.7	

Table: Comparison with FPC and HFPA on high dimension problems: m = n = 2000. * is the number approximately equal to $\overline{OS}(m, n, r)$

Conclusions

- ▶ Lower bound theory for (1) and smoothing problem (21)
- First and second order necessary condition for (1) and smoothing problem (21)
- Smoothing gradient method for (1), using the developed lower bound result.

Future work

- Algorithm using second order information
- Optimality condition for other Shatten-p-like regularization problems

Thank You!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?