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Abstract. Can we detect low dimensional structure in high dimensional data sets of images? In this paper, we
propose an algorithm for unsupervised learning of image manifolds by semidefinite programming. Given a data set
of images, our algorithm computes a low dimensional representation of each image with the property that distances
between nearby images are preserved. More generally, it can be used to analyze high dimensional data that lies
on or near a low dimensional manifold. We illustrate the algorithm on easily visualized examples of curves and
surfaces, as well as on actual images of faces, handwritten digits, and solid objects.
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1. Introduction

Many data sets of images and video are characterized
by far fewer degrees of freedom than the actual num-
ber of pixels per image. The problem of dimensional-
ity reduction (Burges, 2005) is to understand and an-
alyze these images in terms of their basic modes of
variability—for example, the pose and expression of a
human face, or the rotation and scaling of a solid object.
The problem arises often in computer vision and pattern
recognition (Lee et al., 2003; Pless, 2004; Elgammal
and Lee, 2004; Souvenir and Pless, 2005). It is also
of great interest to researchers in biological vision and
computational neuroscience (Seung and Lee, 2000).
Mathematically, we can view an image as a point in
a high dimensional vector space whose dimensionality
is equal to the number of pixels in the image (Turk
and Pentland, 1991; Beymer and Poggio, 1996). If the
images in a data set are effectively parameterized by a
small number of continuous variables, then they will
lie on or near a low dimensional manifold in this high

dimensional space (Lu et al., 1998). Though one can
imagine other types of hidden structure in ensembles
of images, such as clusters (Gordon et al., 2003) or
parts (Lee and Seung, 1999), in this paper, we shall
focus solely on the continuous structure that arises from
image manifolds.

Beyond its applications in computer vision, man-
ifold learning is best described as a problem at the
intersection of statistics, geometry, and computation.
The problem is simply stated: given high dimensional
data sampled from a low dimensional manifold, what
can we infer about the structure of the manifold? In the
last few years, researchers have uncovered a large fam-
ily of graph-based algorithms for computing faithful
low dimensional representations of high dimensional
data. These so-called spectral methods compute low
dimensional embeddings from the top or bottom eigen-
vectors of an appropriately constructed matrix. Algo-
rithms in this family—including Isomap (Tenenbaum
et al., 2000), locally linear (Roweis and Saul, 2000),
Laplacian eigenmaps (Belkin and Niyogi, 2003), and
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others (Brand, 2003; Donoho and Grimes, 2003; Zhang
and Zha, 2004)—can reveal low dimensional manifolds
that are not detected by classical linear methods, such
as principal component analysis (Jolliffe, 1986).

Our main contribution in this paper is a new al-
gorithm for manifold learning based on semidefinite
programming. Like other spectral methods for dimen-
sionality reduction, it relies on efficient and tractable
optimizations that are not plagued by spurious local
minima. Interestingly, though, our algorithm is based
on a completely different geometric intuition (and op-
timization), and it overcomes certain well-known limi-
tations of previous work. Our algorithm also reveals an
interesting and unexpected connection to recent work
on kernel methods in pattern recognition (Scholkopf
and Smola, 2002).

The organization of this paper is as follows. In Sec-
tion 2, we review classical methods for linear dimen-
sionality reduction, then introduce the nonlinear trans-
formations that we consider for unsupervised learning
of image manifolds. In Section 3, we show how to for-
mulate manifold learning as a highly tractable problem
in semidef-inite programming; this leads to a simple
algorithm for computing low dimensional mappings
that preserve the distances between nearby data points.
In Section 4, we present experimental results on sev-
eral data sets, including easily visualized examples of
curves and surfaces, as well as images of faces, hand-
written digits, and solid objects. In Section 5, we show
how to relax the distance-preserving constraints in the
original formulation of the algorithm; these relaxations
can lead to improved solutions for sparsely sampled
or noisy data. Finally, in Section 6, we compare our
algorithm to previous approaches in manifold learning
and conclude by describing several directions for future
work.

2. Dimensionality Reduction

We study dimensionality reduction as a problem in un-
supervised learning. Given n high dimensional inputs
x; € R? wherei € {1, 2, ..., n}, how can we compute
outputs y; € R in one-to-one correspondence with the
inputs that provide a faithful representation in d < p
dimensions? By “faithful”, we mean that nearby points
remain nearby and that distant points remain distant; we
shall make this intuition more precise in what follows.
Ideally, an unsupervised learning algorithm should also
estimate the intrinsic dimensionality d of the manifold
sampled by the inputs X;.

Our algorithm for manifold learning builds on clas-
sical methods for dimensionality reduction (Jolliffe,
1986; Cox and Cox, 1994). We therefore begin by
briefly reviewing the linear methods of principal com-
ponent analysis (PCA) and metric multidimensional
scaling (MDS). The generalization from subspaces to
manifolds is then made by introducing the idea of local
isometry.

2.1. Linear Methods

PCA and MDS are based on simple geometric intu-
itions. In PCA, the inputs are projected into the lower
dimensional subspace that maximizes their projected
variance; the basis vectors of this subspace are given
by the top eigenvectors of the p x p covariance matrix,
C = % > x;x!. (Here and in what follows, we assume
without loss of generality that the inputs are centered on
the origin: ), x; = 0.) In MDS with classical scaling,
the inputs are projected into the subspace that best pre-
serves their pairwise squared distances ||x; — X; |? or,
more precisely, their dot products x; - x;. The outputs
of MDS are computed from the top eigenvectors of the
n X n inner product matrix, with elements G;; = X; -X;.
Note that a set of vectors is determined up to rotation
by its inner product matrix.

Though based on somewhat different geometric in-
tuitions, PCA and MDS yield the same results—
essentially a rotation of the inputs followed by a projec-
tion into the subspace with the highest variance. The
correlation matrix of PCA and the inner product ma-
trix of MDS have the same rank and eigenvalues up to
a constant factor. Both matrices are positive semidefi-
nite, and gaps in their eigenvalue spectra indicate that
the high dimensional inputs x; € R? lie to a good ap-
proximation in a lower dimensional subspace of di-
mensionality d, where d is the number of appreciably
positive eigenvalues. These linear methods for dimen-
sionality reduction generate faithful projections when
the inputs are mainly confined to a low dimensional
subspace; in this case, their eigenvalues also reveal the
correct underlying dimensionality. They do not gener-
ally succeed, however, in the case that the inputs lie on
a low dimensional manifold.

2.2.  From Subspaces to Manifolds

If PCA and MDS are spectral methods for lin-
ear dimensionality reduction, what are their nonlin-
ear counterparts? In fact, there are several, most of
them differing in the geometric intuition they take
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as starting points and in the generalizations of linear
transformations that they attempt to discover.

The nonlinear method we propose in this paper is
based fundamentally on the notion of isometry. For the
sake of exposition, we defer a discussion of competing
nonlinear methods based on isometries (Tenenbaum
et al., 2000; Donoho and Grimes, 2003) to Section 6.
Formally, two Riemannian manifolds are said to be iso-
metric if there is a diffeomorphism such that the metric
on one pulls back to the metric on the other. Informally,
an isometry is a smooth invertible mapping that looks
locally like a rotation plus translation, thus preserv-
ing distances along the manifold. Intuitively, for two
dimensional surfaces, the class of isometries includes
whatever physical transformations one can perform on
a sheet of paper without introducing holes, tears, or
self-intersections. Many interesting image manifolds
are isometric to connected subsets of Euclidean space
(Donoho and Grimes, 2002).

Isometry is a relation between manifolds, but we
can extend the notion in a natural way to data sets.
Consider two data sets {x;}7_; and {y,}?_, that are in
one-to-one correspondence. We will say that the data
sets are k-locally isometric if for every point x;, there
exists a rotation and translation that maps x; and its k
nearest neighbors {X;i, Xjo, . . ., X} precisely onto the
points y; and {y;1, ¥, ...... , ¥jk}. With this defini-
tion, we can distinguish between linear methods for di-
mensionality reduction, such as PCA and MDS, and the
nonlinear method proposed in this paper. Whereas the
linear methods compute mappings that aim to preserve
Euclidean distances between all pairs of data points,
our method considers the much larger class of nonlin-
ear transformations that only preserve the geometric
properties of local neighborhoods. We formalize this
approach as an algorithm in the next section.

We will often refer to the outputs y; as providing a
low dimensional “embedding” of the high dimensional
inputs x;. By this, we mean that the outputs provide
an explicit low dimensional vector representation of
the inputs that faithfully preserves local distances. As
in previous work on “manifold learning” (Tenenbaum
et al., 2000; Roweis and Saul, 2000; Belkin and Niyogi,
2003), it should be emphasized that our algorithm takes
as input not the underlying manifold—which may not
be known a priori—but a discrete set of high dimen-
sional vectors. From this input, the algorithm constructs
a weighted neighborhood graph and produces vector
outputs that locally respect the properties of this graph.
In the literature on manifold learning, it is common to

refer to the outputs as an “embedding” rather than an
“immersion”, even though the latter better reflects the
mathematical usage of these terms for manifolds. In
particular, the algorithm does not necessarily output an
embedding of the underlying manifold in the sense of
the Nash embedding theorems (Nash, 1956).

3. Maximum Variance Unfolding

Taking as a starting point the notion of local isometry,
we can now formulate the problem of manifold learning
more precisely. In particular, given n inputs x; € R?,
can we find n outputs y; € R4, whered < p, such that
the inputs and outputs are k-locally isometric, or at least
approximately so? In this section, exploiting the obser-
vation that the outputs are determined up to rotation by
their inner product matrix K;; =y; -y;, we shall show
how to express this problem as a constrained optimiza-
tion over the cone of positive semidefinite matrices.

Like PCA and MDS, the algorithm we propose for
manifold learning is based on a simple geometric in-
tuition. Imagine each input x; as a steel ball that is
connected to its k nearest neighbors by rigid rods. The
effect of the rigid rods is to fix the distances and an-
gles between nearest neighbors, no matter what other
forces are applied to the inputs. Now imagine that the
inputs are pulled apart, maximizing their total variance
subject to the constraints imposed by the rigid rods.
Figure 1 shows the unraveling effect of this transfor-
mation on inputs sampled from a “Swiss roll”. The
goal of this section is to formalize the steps of this
transformation—in particular, the constraints that must
be satisfied by the final solution, and the nature of the
optimization that must be performed.

3.1. Constraints

The notion of isometry between discrete point sets in
Section 2.2 can be translated into various sets of equal-
ity constraints on the inputs {x;}7_, and the outputs
{yi}/_,. To begin, note that neighborhoods of inputs
and outputs will be related by translation and rotation if
and only if all the distances and angles between points
and their neighbors are preserved. Thus, whenever
both x; and x; are neighbors of x;, for local isometry
we must have that:

i —y)- i —yo) =& —x;)- (X —x). (1)

Equation (1) is sufficient for local isometry because
the triangle formed by any point and its neighbors is
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Figure 1. Maximum variance unfolding of n = 800 data points
sampled with noise from a “Swiss roll”. Top: A discretized man-
ifold is revealed by forming the graph that pairwise connects each
data point and its k = 6 nearest neighbors. Middle: The data set is
unraveled by maximizing its variance subject to the constraint that
distances along edges in the graph are preserved. Bottom: Eigenval-
ues of the data set’s Gram matrix, before and after unfolding, shown
as a fraction of the trace. The number of appreciable eigenvalues re-
veals the dimensionality of the subspace in which most of the data’s
variance is concentrated.

determined up to rotation and translation by specifying
the lengths of two sides and the angle between them.
In fact, such a triangle is similarly determined by spec-
ifying the lengths of all its sides. Thus, we can also say
that {x;}7_, and {y;}}_, are locally isometric if when-
ever X; and x; are themselves neighbors or common
neighbors of another point in the data set, we have:

ly: = yi 1% = lIxi — x> . @)

This is an equivalent characterization of local isome-
try as Eq. (1), but expressed only in terms of pairwise
distances.

The constraints that we need to impose for local
isometry are naturally represented by a graph with n
nodes, one for each input. Consider the graph formed
by connecting each input to its k£ nearest neighbors,
where k is a free parameter of the algorithm. For sim-
plicity, we assume that the graph formed in this way
is connected; if not, then each connected component
should be analyzed separately. The constraints for lo-
cal isometry under this neighborhood relation are sim-

Figure 2. In the left graph, each node is connected to its k = 3
nearest neighbors; in the right graph, additional edges (in light gray)
also directly connect the neighbors. Preserving the distances along
edges in the right graph is equivalent to preserving the distances
along edges and the angles between edges in the left graph.

ply to preserve the lengths of the edges in this graph,
as well as the angles between edges at the same node.
In practice, it is simpler to deal only with constraints
on distances, as opposed to angles. To this end, we
can further connect the graph by adding edges between
the neighbors of each node (if they do not already ex-
ist). In other words, we create a fully connected clique
of size k + 1 out of every input x; and its k nearest
neighbors. By preserving the distances along edges
in this new graph (see Fig. 2), we preserve both the
distances along edges and the angles between edges in
the original graph—because if all sides of a triangle are
preserved, so are its angles.

In addition to imposing the constraints represented
by the “neighborhood graph”, we also constrain the
outputs y; to be centered on the origin:

Zw=m 3)

Eq. (3) simply removes a translational degree of free-
dom from the final solution.

3.2.  Optimization

What objective function can we optimize to “unfold”
a manifold, as in Fig. 1? As motivation, consider the
ends of a piece of string, or the corners of a flag. Any
slack in the string serves to decrease the (Euclidean)
distance between its two ends; likewise, any furling
of the flag serves to bring its corners closer together.
More generally, we observe that any “fold” between
two points on a manifold serves to decrease the Eu-
clidean distance between the points. This suggests an
optimization that we can perform to compute the out-
puts y; that unfold a manifold sampled by inputs x;. In
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particular, we propose to maximize the sum of pairwise
squared distances between outputs:

1 2
®=%;nyi—y_/n : “)

By maximizing Eq. (4), we pull the outputs as far apart
as possible, subject to the constraints in the previous
section.

We can verify that this objective function is indeed
bounded, meaning that we cannot pull the outputs in-
finitely far apart. Intuitively, the constraints to preserve
local distances (and the assumption that the graph is
connected) prevent such a divergence. More formally,
for any input x;, let \V; be the set of indices of its k near-
est neighbors. Let T be the maximal distance between
any two neighbors:

T = max |x; —Xx;|. 5
Jmax x = x| (5)

Assuming the graph is connected, then the longest path
through the graph has a distance of at most nt. We
observe furthermore that given two nodes, the distance
of the path through the graph provides an upper bound
on their Euclidean distance. Thus, for all outputs y;
and y;, we must have ||y; — y;|| < nt. Using this to
provide an upper bound on the objective function in
Eq. (4), we obtain:

1 ) n3t?
¢ < ;(m =— (©)
Thus, the objective function cannot increase without
bound if we enforce the constraints to preserve local
distances on a connected graph.

Let us now collect the costs and constraints of the
optimization to maximize the variance of the outputs
{yi}/_, subject to the constraints that they are centered
on the origin and locally isometric to the inputs {x;}?_,.
Let n;; € {0, 1} indicate whether there is an edge be-
tween x; and x; in the graph formed by pairwise con-
necting all k-nearest neighbors. Then, in terms of the
squared distance matrix D;; = ||x; — X j||2, the opti-
mization can be written as:

Maximize ), |ly; — y;||* subject to:

MY yi=0.
) |y — y_,-||2 = D;; for all (i, j) with n;; = 1.

The optimization as stated above is not convex, as
it involves maximizing a quadratic form subject to
quadratic equality constraints.

We can obtain a simpler optimization by reformu-
lating the problem in terms of the elements of the
inner product matrix, K;; = y; - y;. As mentioned
previously, the matrix K;; determines the outputs up
to rotation. The distance and centering constraints
in Eqs. (2) and (3) are easily expressed in terms of
these matrix elements. For example, expanding the
square in Eq. (2) and substituting K;; = y; - y;, we
obtain:

Kii —2Ki; + K;j = D;; )

Likewise, the centering constraint in Eq. (3) can be
expressed in terms of these inner products as:

2
0=HZyi =D Ny =) Kj.  ®
i ij ij

Note that both Egs. (7) and (8) are linear equal-
ity constraints on the elements of K;;. Writing the
constraints in this way, and noting that the outputs
are determined up to rotation by their inner products,
we may view our original problem as an optimization
over inner product matrices K;; rather than vectors y;.
Not all matrices, however, can be interpreted as in-
ner product matrices: only symmetric matrices with
nonnegative eigenvalues can be interpreted in this way.
Thus, we must further constrain the optimization to
the cone of symmetric positive semidefinite matrices
(Vandenberghe and Boyd, 1996). We can write this
constraint as

K > 0. )

In sum, there are three types of constraints on the in-
ner product matrix K;;, arising from local isometry,
centering, and positive semide finiteness. The first two
involve linear equality constraints; the last one is not
linear, but importantly it is convex. We will exploit this
property in what follows. Note that there are O (nk?)
constraints on O (n?) matrix elements, and that the con-
straints are not incompatible, since at the very least
they are satisfied by the original inner product matrix
G;; = Xx; - X; (assuming that the inputs x; are centered
on the origin).

Finally, we need to express the objective func-
tion in Eq. (4) directly in terms of the inner product
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Figure 3.

Inputs sampled from a Swiss roll are “unfolded” by maximizing their variance subject to constraints that preserve local distances

and angles. The middle snapshots show various feasible (but non-optimal) solutions obtained during intermediate iterations of the optimization

described in Section 3.2.

matrix K;; of the outputs y;. Expanding the terms
on the right hand side, and enforcing the constraint
that the outputs are centered on the origin, we
obtain:

1
® =3 (yill*+ Iyl + 2y yp), (10)

1
2
=> Iyl
i

(1)
=> Ki, (12)
= Tr (K). (13)

Thus, we can interpret the objective function for the
outputs in several ways: as a sum over pairwise dis-
tances in Eq. (4), as a measure of variance in Eq. (11),
or as the trace of their inner product matrix in Eq.
(13). The second interpretation is reminiscent of PCA,
but whereas in PCA we compute the linear projec-
tion that maximizes variance, here we compute the
k-locally isometric embedding. Put another way, the
objective function for maximizing variance remains
the same; we have merely changed the allowed form
of the dimensionality reduction. We also emphasize
that in Eq. (13), we are maximizing the trace, not
minimizing it. While a standard relaxation to min-
imizing the rank (Fazel et al., 2001) of a semidefi-
nite matrix is to minimize its trace, the intuition here
is just the opposite: we will obtain a low dimen-
sional embedding by maximizing the trace of the in-
ner product matrix. Figure 3 illustrates the connection
between increasing variance and reducing dimension-
ality. The images in this figure were obtained from
the intermediate solutions of a variance-maximizing
optimization subject to centering and local distance
constraints.

Collecting the costs and constraints of the above
optimization in terms of the inner product matrix K;;,
we can write the problem as follows:

Maximize trace (K) subject to:

(1) K = 0.

2) Zij Kij =0.

(3) Kii — 2K;; + K; = D;; for all (i, j) with
nij = 1.

This problem is an instance of semidefinite program-
ming (SDP) (Vandenberghe and Boyd, 1996): the
domain is the cone of positive semidefinite matrices
intersected with hyperplanes (represented by equality
constraints), and the objective function is linear in the
matrix elements. The optimization is bounded above
by Eq. (6); it is also convex, thus eliminating the
possibility of spurious local maxima. The problem is
guaranteed to be feasible because the constraints are
trivially satisfied by the Gram matrix G;; = X; - X;
of the inputs (assuming that the inputs are centered).
There exists a large literature on efficiently solving
SDPs, as well as a number of general-purpose tool-
boxes. The results in this paper were obtained using
the CSDP v4.9 toolbox (Borchers, 1999) in MATLAB.

3.3.  Spectral Decomposition

From the inner product matrix learned by semidefinite
programming, we can recover the outputs y; by matrix
diagonalization. Let V,; denote the ith element of the
ath eigenvector, with eigenvalue A,. Then the inner



Unsupervised Learning of Image Manifolds by Semidefinite Programming 83

product matrix can be written as:
n
K;j = Z Ao Vii Ve (14)
a=1

An n-dimensional embedding that is k-locally isomet-
ric to the inputs X; is obtained by identifying the ath
element of the output y; as:

Yoi = A\ Mg Vai- (15)

The eigenvalues of K are guaranteed to be nonnega-
tive. Thus, from Eq. (15), alarge gap in the eigenvalue
spectrum between the dth and (d + 1)th eigenvalues
indicates that the outputs lie in or near a subspace of
dimensionality d. In this case, a low dimensional em-
bedding that is approximately locally isometric is given
by truncating the elements of y;. This amounts to pro-
jecting the outputs into the subspace of maximal vari-
ance, assuming the eigenvalues are sorted from largest
to smallest. The quality of the approximation is deter-
mined by the size of the truncated eigenvalues; there
is no approximation error for zero eigenvalues. The
situation is analogous to PCA and MDS, but here the
eigenvalue spectrum reflects the dimensionality of an
underlying manifold, as opposed to merely a subspace.

The three steps of the algorithm are summarized in
Table 1. In its simplest formulation, the only free pa-
rameter of the algorithm is the number of nearest neigh-
bors in the first step (though one can imagine more elab-
orate schemes for determining neighborhoods). The
second step of the algorithm, involving semidefinite
programming, is the most computationally intensive.

Table 1. The three steps of maximum variance unfolding (MVU),
involving nearest neighbor search, semidefinite programming, and
matrix diagonalization.

Compute k nearest neighbors. Form
(1) the graph that connects each input to
Nearest its neighbors, as well as each neighbor
Neighbors to other neighbors of the same input.

Compute the Gram matrix of the
1) maximum variance unfolding that

Semidefinite is centered on the origin and preserves
Programming the distances of all edges in
the neighborhood graph.
1) Compute a low dimensional embedding
Spectral Decomposition from the top eigenvectors of
Decomposition the inner product matrix learned by

semidefinite programming.

The first and third steps resemble those of other algo-
rithms for manifold learning, discussed in Section 6;
our algorithm has rather different properties, however,
due to the particular nature of its second step. In earlier
work (Weinberger and Saul, 2004; Weinberger et al.,
2004), we referred to this algorithm as “semidefinite
embedding”, but here we will adopt the name “max-
imum variance unfolding” (MVU), coined by others
(Sun et al., 2004), as it is both more descriptive and
less likely to be confused with other work in graph em-
bedding that makes use of semidefinite programming
(Biswas and Ye, 2003; Sha and Saul, 2005).

4. Experimental Results

We evaluated the algorithm in Table 1 on several high
dimensional data sets whose inputs were either explic-
itly sampled or believed to have been sampled from a
low dimensional manifold.

Figure 1 shows the maximum variance unfolding of
n = 800 inputs sampled from a “Swiss roll”. The in-
puts had p = 8 dimensions, consisting of the three
dimensions shown in the top panel of the figure, plus
five extra dimensions filled with low variance Gaussian
noise. The middle panel of the figure shows the un-
folded Swiss roll computed by semidefinite program-
ming: the solution preserves distances between k = 6
nearest neighbors. The eigenvalues of the inner prod-
uct matrix (before and after unfolding) are shown in
the bottom panel, normalized by their sum. There are
two dominant eigenvalues—a major eigenvalue, rep-
resenting the unwrapped length of the Swiss roll, and
a minor eigenvalue, representing its width. (The un-
wrapped Swiss roll is much longer than it is wide.)
The other eigenvalues are nearly zero, indicating that
the algorithm has discovered the correct dimensionality
(d = 2) of the underlying manifold.

Figure 4 shows another easily visualized example.
The top left panel shows n = 1617 inputs sampled from
a trefoil knot in p = 3 dimensions; the top right panel
shows the maximum variance unfolding that preserves
distances between k = 4 nearest neighbors. The color
coding reveals that local neighborhoods have been pre-
served. The eigenvalue spectrum in the bottom panel
reveals two dominant eigenvalues; the rest are essen-
tially zero, again indicating the correct dimensionality
(d = 2) of the underlying manifold—in this case, an
annulus.

The bottom section of Fig. 5 shows the maxi-
mum variance unfolding of color images of a three
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Figure 4. Top left: n = 1617 inputs sampled from a trefoil knot
in p = 3 dimensions. Top right: two dimensional embedding com-
puted by MVU with k£ = 5 nearest neighbors. The color coding
shows that the embedding preserves local neighborhoods. Bottom:
eigenvalues from the matrices of PCA and MV U, shown as a fraction
of the trace.

dimensional solid object. The images were created by
viewing a teapot from different angles in the plane.
The images have 76 x 101 pixels, with three byte
color depth, giving rise to inputs of p = 23028 di-
mensions. Though very high dimensional, the images
in this data set are effectively parameterized by one
degree of freedom—the angle of rotation. MVU was
applied to n = 400 images spanning 360 degrees of ro-
tation, with k = 4 nearest neighbors used to generate
a connected graph. The two dimensional embedding
discovered by MVU represents the rotating object as a

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5. Top: two dimensional embedding of n = 400 images of
a rotating teapot, computed by MVU with k = 4 nearest neighbors.
For this experiment, the teapot was rotated 360 degrees; the low di-
mensional embedding is a full circle. A representative sample of
images are superimposed on top of the embedding. Bottom: eigen-
values from the matrices in PCA and MVU, shown as a fraction of
the trace.

Figure 6. Top: one dimensional embedding of n = 200 images
of a rotating teapot, computed by MVU with k = 4 nearest neigh-
bors. For this experiment, the teapot was only rotated 180 degrees.
Representative images are shown ordered by their location in the em-
bedding. Bottom: eigenvalues from the matrices of PCA and MVU,
shown as a fraction of the trace.

circle—an intuitive result analogous to the embedding
discovered for the trefoil knot. The eigenvalue spec-
trum of the inner product matrix learned by semidefi-
nite programming is shown in the bottom panel; all but
the first two eigenvalues are practically zero, indicat-
ing the global dimensionality (d = 2) of the underlying
circle.

Figure 6 was generated from the same data set of im-
ages, but using only n = 200 images that were sampled
over 180 degrees of rotation. In this case, the eigen-
value spectrum from MVU detects that the images lie
on a one dimensional curve, and the one dimensional
embedding orders the images by their angle of rotation.

Figure 7 shows the maximum variance unfolding of
another data set of images. In this experiment, the im-
ages were asubsetof n = 953 handwritten TWOS from
the USPS data set of handwritten digits (Hull, 1994).
The images have 16 x 16 grayscale pixels, giving rise
to inputs with p = 256 dimensions. Intuitively, one
would expect these images to lie on a low dimensional
manifold parameterized by such features as size, slant,
and line thickness. The top panel of Fig. 7 shows the
first two dimensions of the embedding computed by
MVU with £k = 4 nearest neighbors. The eigenvalue
spectrum in the bottom panel indicates a latent dimen-
sionality significantly larger than two, but still much
smaller than the number of significant principal com-
ponents.

Finally, Fig. 8 shows the two dimensional embed-
ding of a data set of images of rotating globes. The
embedding was computed by MVU with k = 4 near-
est neighbors. The inputs consisted of # = 900 color
images at 47 x 47 pixel resolution, corrupted by white
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Figure 7. Top: Maximum variance unfolding of n = 953 images
of handwritten TWOS with k = 4 nearest neighbors. Representative
images are shown next to circled points. Bottom: eigenvalues from
the matrices of PCA and MVU, shown as a fraction of the trace.

Gaussian noise. The standard deviation of the noise
was equal to 30% of the pixel intensity range; for
comparison, clean and noisy images are shown to the
left and right of the embedding. The viewpoints were
evenly sampled over 30 degrees longitude and latitude.
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Figure 8. Top: Two dimensional embedding of n = 900 noisy
images of a rotating globe, computed by MVU with k = 4 nearest
neighbors. The viewpoints were evenly spaced over 30 degrees of
longitude and latitude. The color images were corrupted by white
Gaussian noise before unfolding the data set to test the algorithm’s
robustness. Clean and noisy images are shown (enlarged) to the left
and right of the embedding. Bottom: eigenvalues from the matrices
of PCA and MVU, shown as a fraction of the trace.

The diamond-shaped embedding, with representative
(clean) images superimposed, reveals the two degrees
of freedom corresponding to longitude and latitude.
The eigenvalue spectrum in the bottom panel also in-
dicates the correct dimensionality (d = 2) of the un-
derlying manifold.

5. Relaxing the Constraints

It is often desirable to relax the constraints in Eq. (2)
such that local distances are not strictly preserved. In
some applications, for example, these distances only
provide arough estimate of proximity relations. Relax-
ing the constraints always leads to solutions that have
equal or greater variance; the resulting inner product
matrices also tend to have fewer numbers of apprecia-
ble eigenvalues. Thus, the relaxed optimizations can
be viewed as an option for more aggressive forms of
dimensionality reduction.

One simple way to relax the constraints is to
replace the strict equalities in Eq. (2) by inequalities.
This allows the distances between nearest neighbors
to shrink, but not to grow. As the optimization in
Eq. (4) is based on maximizing variance, it acts to
minimize the slack in the inequalities even when these
constraints are not enforced as strict equalities. The
optimization in this case is given by:

Maximize trace (K) subject to:
() K = 0.
2) Zij Kij =0.

B K;; — 1K,'j + ij < D,’j for all (i, j) with
nij = L.

Interestingly, the dual of this semidefinite program
(with inequalities rather than equalities) arises in the
calculation of fastest mixing Markov processes on
weighted graphs (Sun et al., 2004).

Figure 9 shows the maximum variance unfolding of
a data set of n = 1960 images of faces, with inequality
constraints from k = 4 nearest neighbors. The images
contain different views and expressions of the same
face. The images have 28 x 20 grayscale pixels, giving
rise to inputs with p = 560 dimensions. The top panel
in the figure shows a three dimensional embedding of
these images. The bottom panel shows the eigenvalue
spectra of the matrices from PCA and MVU with both
strict equality and relaxed inequality constraints. Note
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Figure 9. Top: Three dimensional embedding of n = 1960 images
of faces, obtained by MVU using k = 4 nearest neighbors (and in-
equality constraints). Representative faces are shown next to circled
points. Bottom: eigenvalues from the matrices of PCA and MVU
with strict equality and relaxed inequality constraints, shown as a
fraction of the trace. The relaxed solution concentrates more of its
variance in the leading three dimensions.

how the relaxed optimization concentrates more vari-
ance in the leading three dimensions.

Another way to relax the constraints in maximum
variance unfolding is to allow the distances to change
slightly, but to add a term to the objective function that
penalizes this slack. This can be done by introducing

Input Without
slack o

Figure 10. Maximum variance unfolding of n = 800 inputs sam-
pled without noise from a Swiss roll. Strictly preserving distances
between k = 6 nearest neighbors causes the outputs to “lock up”
before the data set is completely unfolded. Allowing slack in these
constraints leads to the desired solution.

slack variables &;;, one for each of the constraints in
Eq. (2). The relaxed optimization is given by:

Maximize Tr (K) — w Zij nij &1l subject to:
(1)K > 0.

@Y, Kij =0.
T’],‘j = 1

The constant @ > 0 balances the objectives of max-
imizing variance and penalizing slack. In practice,
choosing w > 1 seems to work well for balancing
these two objectives.

Figure 10 shows an example where this use of slack
allows the algorithm to return an improved result. In
this figure, the algorithm was applied with and with-
out slack variables to n = 800 inputs sampled without
noise from a Swiss roll. When distances are strictly
preserved between k = 6 nearest neighbors, the out-
puts “lock up” before the data set is completely un-
folded; when slack is allowed, however, we obtain the
expected result. (Note that the earlier result in Fig.
1 was obtained from inputs with five extra dimensions
filled with Gaussian noise; the noise makes the problem
less rigid.) The main disadvantage of slack variables
is the extra computation required to optimize an ob-
jective function with O(nk?) additional variables. The
resulting optimization can be noticeably slower.

The above relaxations may prove particularly useful
in applications when the distances D;; are not com-
puted from Euclidean distances but are specified in
some other way. In this case, the optimization with
strict distance-preserving constraints may not be fea-
sible. No matter what the distances D;;, the relaxed
versions of maximum variance unfolding always have
non-empty feasible regions containing the trivial solu-
tion K;; = 0. In such problems, the optimization can
be used to return the variance-maximizing embedding
in Euclidean space that best preserves local distances.

Finally, we mention one other type of relaxation that
has proved useful in an application of maximum vari-
ance unfolding to language data (Blitzer et al., 2005).
One obtains a simpler problem in semidefinite pro-
gramming, with many fewer constraints, by only pre-
serving distances to k-nearest neighbors as opposed
to preserving distances and angles. The resulting opti-
mization can be used to unfold larger data sets; it also
tends to lead to more aggressive forms of dimension-
ality reduction.
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6. Discussion

In this paper we have proposed an algorithm for
unsuper-vised learning of image manifolds by semidef-
inite programming. Our work can be viewed as bridg-
ing two ongoing lines of research in machine learning,
one on spectral methods for dimensionality reduction,
the other on kernel methods for pattern recognition. Af-
ter placing our work in the context of these two lines of
research, we conclude by describing some open ques-
tions and plans for future work.

6.1. Spectral Methods

The last few years have witnessed a number of develop-
ments in spectral methods for dimensionality reduction
and manifold learning. Recently proposed algorithms
include Isomap (Tenenbaum et al., 2000), locally lin-
ear embedding (LLE) (Roweis and Saul, 2000), hessian
LLE (hLLE) (Donoho and Grimes, 2003), and Lapla-
cian eigen-maps (Belkin and Niyogi, 2003); there are
also related algorithms for clustering (Shi and Malik,
2000; Ngetal.,2002). Maximum variance unfolding is
based on a different geometric intuition than these other
algorithms, however, and as a result, it has somewhat
different properties. The rest of this section highlights
the similarities and differences with previous work.

Most spectral methods for dimensionality reduction
all share the same basic structure: (i) computing neigh-
borhoods in the input space, (ii) constructing a square
matrix with as many rows as inputs, and (iii) deriving
a low dimensional embedding from the top or bottom
eigenvectors of this matrix. Algorithms differ in the
geometric signatures of manifolds that they attempt to
estimate and preserve. For example, Isomap is based
on geodesic distances, LLE on the coefficients of lo-
cal linear reconstructions, and Laplacian eigenmaps on
the discrete graph Laplacian. Maximum variance un-
folding is based on estimating and preserving local dis-
tances and angles. Itis most easily compared to Isomap
and hLLE, since both these algorithms also attempt to
learn isometric mappings and thus seek the same solu-
tion, up to a global rotation.

On many problems, Isomap and maximum variance
unfolding return generally similar results, with eigen-
value spectra that provide a reliable estimate of the data
set’s intrinsic dimensionality. Figure 11 illustrates an
example where the algorithms return quite different
results. The top panel shows the results of Isomap ap-
plied to the same data set of teapot images as in Fig. 5;
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Figure 11. Top: The three dimensional embedding of n = 400 im-
ages of a rotating teapot, computed by Isomap with k = 10 nearest
neighbors. Bottom: The normalized eigenvalues of Isomap in com-
parison to maximum variance unfolding. Both return two dominant
eigenvalues. However, as the data set is not isometric to a convex
subset of Euclidean space, Isomap returns more than two nonzero
eigenvalues. This is reflected through the artificial wave in the third
dimension.

the bottom panel compares its eigenvalue spectrum to
that of maximum variance unfolding. Note that [somap
has more than two appreciable eigenvalues (which is
manifested by the waves in its three dimensional em-
bedding). This somewhat artificial result is due to the
fact that the sampled manifold in this example is not
isometric to a convex subset of Euclidean space. Thisis
a key assumption of Isomap, one that is not satisfied by
many image manifolds (Donoho and Grimes, 2002).
Overall, the different algorithms for manifold learn-
ing should be viewed as complementary; each has its
own advantages and disadvantages. LLE, hLLE, and
Laplacian eigenmaps construct sparse matrices, and as
a result, they are easier to scale to large data sets. On
the other hand, their eigenvalue spectra do not reli-
ably reveal the underlying dimensionality of sampled
manifolds (Saul and Roweis, 2003), as do Isomap and
maximum variance unfolding. There exist convergence
proofs for Isomap (Tenenbaum et al., 2000; Donoho
and Grimes, 2002; Zha and Zhang, 2003) and hLLE
(Donoho and Grimes, 2003), but not for the other algo-
rithms. On the other hand, maximum variance unfold-
ing by its very nature provides finite-size guarantees
that its constraints will lead to locally isometric em-
beddings. We are not aware of any finite-size guaran-
tees provided by the other algorithms. Finally, while
the different algorithms have different computational
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bottlenecks, it is fair to say that the approach in this
paper, based on semidefinite programming, is the most
computationally demanding.

6.2. Kernel Methods

Along with the growing interest in manifold learning,
the last few years have also witnessed an explosion
of interest in kernel methods for pattern recognition
(Scholkopf and Smola, 2002). Kernel methods rely on
an implicit mapping of inputs to a higher (and poten-
tially infinite) dimensional feature space. The kernel
function specifies the dot product between the feature
vectors formed in this way from the original inputs.
The “kernel trick” is to replace the dot products x; - X;
that appear in linear algorithms for pattern recogni-
tion by the kernel function K (x;, X;). Support vector
machines (Vapnik, 1998) for classification and kernel
PCA (Scholkopf et al., 1998) for nonlinear dimension-
ality reduction are examples of algorithms that were
conceived in this way, with a kernel matrix that stores
the pairwise dot products between inputs in feature
space. In most kernel machines, the kernel function is
simply specified a priori; the most popular choices in-
volve polynomial and Gaussian kernels. Recent work
in supervised learning, however, has investigated the
possibility of learning kernel matrices by semidefinite
programming (Lanckriet et al., 2002).

The inner product matrix K;; computed by maxi-
mum variance unfolding can be viewed as a kernel ma-
trix between inputs. While there have been attempts
to interpret the matrices constructed by Isomap and
LLE as kernels (Scholkopf and Smola, 2002; Bengio
et al.,, 2004; Ham et al., 2003), their interpretation is
less straightforward (Weinberger et al., 2004). The
kernel matrix in maximum variance unfolding is in-
teresting in several respects. First, it is based on vari-
ance maximization, as opposed to margin maximiza-
tion (Scholkopf and Smola, 2002; Lanckriet et al.,
2002); the former applies to unsupervised learning,
whereas the latter requires (at least some) labeled ex-
amples. Second, whereas most kernel functions are
chosen to map the inputs into a higher dimensional
feature space, the kernel matrix in maximum variance
unfolding does just the opposite, typically mapping
the inputs into a lower dimensional space. Finally,
maximum variance unfolding may be viewed as a spe-
cial version of kernel PCA (Scholkopf et al., 1998)—
ideally suited for manifold discovery—in which the
kernel matrix itself is learned (in a completely unsu-

pervised manner) from unlabeled examples. Attempts
to use the kernel matrix from maximum variance un-
folding in support vector machines have not met with
much success (Weinberger et al., 2004); standard poly-
nomial and radial basis function kernels almost always
yield better performance. Maximizing variance subject
to neighborhood-preserving constraints does not seem
to be the best intuition for problems in classification.

6.3. Conclusion

Our initial results for unsupervised learning of image
manifolds seem promising. The algorithm in this pa-
per has different properties than previous algorithms
for manifold learning, and many of these properties
can be construed as advantages. Like Isomap (and
unlike LLE), its eigenvalue spectrum provides an es-
timate of the underlying dimensionality of sampled
manifolds; unlike Isomap, however, it does not assume
that the inputs are isometric to a convex subset of Eu-
clidean space. The distance-preserving constraints in
maximum variance unfolding can also be relaxed to
encourage more aggressive solutions for dimensional-
ity reduction.

The use of semidefinite programming has both ad-
vantages and disadvantages. Its main advantage is the
simple manner in which we can express and enforce
distance-preserving constraints. Such constraints can
be tailored to particular applications of nonlinear di-
mensionality reduction. For example, a recent exten-
sion of maximum variance unfolding (Bowling et al.,
2005) focused on images collected by a robot moving
through a virtual environment. In this application, the
robot moved only according to a finite set of actions,
and it was assumed that transitions caused by the same
actions should be mapped to jumps of equal distance
in the embedding space. These additional constraints,
naturally accommodated by the use of semidefinite
programming, lead to Action Respecting Embeddings
(ARE) that more accurately reflect the robot’s motion
and provide better support for path planning and local-
ization.

The main disadvantage of semidefinite program-
ming is the required amount of computation, which
scales as O(n> 4 ¢?), where n is the matrix size and c is
the number of constraints (Borchers, 1999). While our
current implementation can handle data sets with up to
n ~ 2500 inputs, many applications in computer vision
and pattern recognition involve much larger data sets.
Thus our main task for future research is to develop
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shortcuts and approximations for large-scale imple-
mentations.

We are currently investigating a framework that has
allowed us to reproduce many of the results in this pa-
per in a small fraction of the original time (Weinberger
et al., 2005). The framework is based on the observa-
tion that for well-sampled manifolds, the entire output
inner product matrix K;; =y; -y, can be very accu-
rately reconstructed from a much smaller submatrix of
inner products between randomly chosen landmarks.
In particular, we can write:

K~ QLQ" (16)

where L is the m x m submatrix of inner products be-
tween landmarks (with m <« n) and Q is an n X m
linear transformation derived from solving a sparse
set of linear equations. The factorization in (16) en-
ables us to reformulate the semidefinite program in
terms of the much smaller matrix L, yielding order-
of-magnitude reductions in computation time. We are
also exploring other ideas based on low-rank matrix
factorizations (Burer and Monteiro, 2003), distributed
methods (Biswas and Ye, 2003), the extrapolation of
kernel matrices to out-of-sample inputs (Bengio et al.,
2004), and the post-processing of results from faster
but less robust methods for manifold learning (Sha and
Saul, 2005).

In addition to the challenge of large-scale imple-
mentations, there are many other directions for fu-
ture work. It would be interesting to investigate im-
age manifolds which have spherical or toroidal ge-
ometries (Pless and Simon, 2002). It might also be
fruitful to study problems where more sophisticated
similarity metrics (Simard et al., 1993; Belongie et
al., 2002) have been developed using prior knowledge,
rather than relying on naive nearest-neighbor compu-
tations using Euclidean distance. Finally, to the ex-
tent the our approach provides a new connection be-
tween work in manifold learning and kernel methods,
we hope that it will lead to further advances in both
areas.
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