AMCS 602 Fall 2017
 Homework Set I, Due Sept. 13, 2017

Zhenfu Wang

Reading: Read the Lecture I - III of Trefethen and Bau: Numerical Linear Algebra, which is published by SIAM. Page numbers below refer to this book. The solutions of the following problems should be carefully written up and handed in. A PDF version using LaTeX will be recommended.

1. Show that an $m \times n$ matrix is rank 1 if and only if $A=u v^{\star}$, where u is an m-vector and v is an n-vector. Then solve the problem 2.6 on page 16 .
2. Let $A=\left(a_{i j}\right)$ be $m \times m$ matrix. The trace of A is defined as

$$
\operatorname{tr}(A)=\sum_{i=1}^{m} a_{i i}
$$

If both A and B are matrices, then show that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. But in general $\operatorname{tr}(A B) \neq \operatorname{tr}(A) \operatorname{tr}(B)$, give a counter-example.

Suppose that a differential matrix field $A(t)$ solves the following differential equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} A(t)=[X(t), A(t)]
$$

for a matrix valued function $X(t)$. Recall that the commutator $[X, A]:=X A-$ $A X$. Then what can we say about $\operatorname{tr}(A(t))$?

In general, if a matrix field $A(t)$ is differentiable with respect to t, then what is the formula for $\frac{\mathrm{d}}{\mathrm{d} t} \operatorname{det} A(t)$?
3. Fix a sequence of complex numbers $\left\{x_{1}, \cdots, x_{m}\right\}$. We define the Vandermonde matrix as

$$
V\left(x_{1}, \cdots, x_{m}\right)=\left[\begin{array}{cccc}
1 & x_{1} & \cdots & x_{1}^{m-1} \\
1 & x_{2} & \cdots & x_{2}^{m-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{m} & \cdots & x_{m}^{m-1}
\end{array}\right]
$$

Compute that $\operatorname{det} V\left(x_{1}, \cdots, x_{m}\right)$. From this formula it will be clear that $V\left(x_{1}, \cdots, x_{m}\right)$ is invertible if those points are distinct.
4. Fix an integer m and define the $p-\operatorname{norm}(1 \leq p<\infty)$ of $x \in \mathbb{C}^{m}$ as

$$
\|x\|_{p}=\left(\sum_{i=1}^{m}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

where $x^{\top}=\left(x_{1}, \cdots, x_{m}\right)$. And

$$
\|x\|_{\infty}:=\sup _{1 \leq i \leq m}\left|x_{i}\right| .
$$

Show that for any $1 \leq p, q \leq \infty$, there exist constants c, C such that

$$
c\|x\|_{q} \leq\|x\|_{p} \leq C\|x\|_{q} .
$$

5. Find the induced matrix norm $\|\cdot\|_{(2,2)}$ for the matrix

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right]
$$

6. Page 24, problem 3.6.
