Lecture: Fast Proximal Gradient Methods

http://bicmr.pku.edu.cn/~wenzw/opt-2018-fall.html

Acknowledgement: this slides is based on Prof. Lieven Vandenberghe’s lecture notes
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Outline

@ fast proximal gradient method (FISTA)
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Fast (proximal) gradient methods

@ Nesterov (1983, 1988, 2005): three projection methods with 1/k>
convergence rate

@ Beck & Teboulle (2008): FISTA, a proximal gradient version of
Nesterov’s 1983 method

@ Nesterov (2004 book), Tseng (2008): overview and unified
analysis of fast gradient methods

@ several recent variations and extensions

this lecture
FISTA and Nesterov’s 2nd method (1988) as presented by Tseng
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FISTA (basic version)
minimize f(x) = g(x) + h(x)

@ g convex, differentiable, with dom g = R”

@ h closed, convex, with inexpensive prox,, oprator

algorithm: choose any x(% = x(=1); for k > 1, repeat the steps
k—2
ke k=2 ey ko)
Y= A *)

%) = prox, ,(y — 5Vg(y))

x(

@ step size 1 fixed or determined by line search

@ acronym stands for ‘Fast Iterative Shrinkage-Thresholding
Algorithm’

4/38



Interpretation

e first iteration (k = 1) is a proximal gradient step at y = x(¥)
@ next iterations are proximal gradient steps at extrapolated points

y

R = prox,,;, (y — txVg(y))

2(k=2) 2(k=1) Y

note: x(¥) is feasible (in dom %); y may be outside dom
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Example

m
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another instance

— gradient

-- FISTA

107, 50 100 150 200

FISTA is not a descent method
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Convergence of FISTA

assumptions
@ g convex with dom g = R"; Vg Lipschitz continuous with constant
L:
IVe(x) = Vel < Llx—yll2  VYxy

@ his closed and convex ( so that prox,, («) is well defined)

@ optimal value f* is finite and attained at x* (not necessarily
unique)

convergence result: f(x()) — f* decreases at least as fast as 1/k?
@ with fixed step size 1, = 1/L

@ with suitable line search
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Reformulation of FISTA

define 6; = 2/(k + 1) and introduce an intermediate variable v(¥)

algorithm: choose x(¥) = v(9: for k > 1, repeat the steps

y= (1 — 6% 4 gD
xR = prox,,(y — % Vg(y))

NONN S N OBV CIN
Ok

substituting expression for v(%) in formula for y gives FISTA of page 4
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Important inequalities

choice of ¢;: the sequence 0, = 2/(k + 1) satisfies 6, = 1 and

upper bound on g from Lipschitz property
L
g(u) < g(z) + Ve (u—2) + 5l = A3 Vuz

upper bound on . from definition of prox-operator

1
h(u) < h(z) + ;(w —u) (u—2) Vw, u = prox,,(w), z
Note min, th(u) + 1|ju — w|3 gives 0 € t9h(u) + (u — w) gives
0 € tOh(u) + (u — w). Hence, (w — u) € Oh(u).
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Progress in one iteration

define x = xU=1 xt = x(0) y = =Dyt =) s = 0 = 6,

@ upper bound from Lipschitz property: if 0 <t < 1/L

g(xt) < gy) + V) (xt —y) + %HX* —yl3 (1)

@ upper bound from definition of prox-operator:

M) < A(2) + V80) (e ) 1 (" ) (e o) Ve

@ add the upper bounds and use convexity of g

1 1
Fh) @)+ =) (e —xt) + 2l -l vz
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@ make convex combination of upper bounds for z = x and z = x*

fFQT) = f = (1= 0)(f(x) —f7)
= f(x) =0 — (1 - 0)f ()

1 1
;(x+’——y)T(9x*-%(1 —0)x —xT) + E;HX+’—'YH%

IN

1 « *

57 (y = (1= 6)x— bx 13 = [lx* = (1= 6)x — 6x*|3)
2

o7 (v =x[3 = [v* = x[15)

conclusion: if the inequality (1) holds at iteration i, then

li i * NG *
i (FED) =) + 310 =23

< (1 -0 i—1

t o (@)
() =) + 30 =3

i
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Analysis for fixed step size

take t; = t = 1/L and apply (2) recursively, using (1 — 6;)/67 < 1/6? ;

L) )+ I B

?
k
(L=00t (.0 o\, Ly 2
< _ z _
< S e =) O -l
1 .
= EHX(O) —x"||3
therefore
(k)_*<9j © _ w2 2L o) w2
F&) = f [ — x| [ — x|
Y 27 (k4 1)2 2

conclusion: reaches f(x%)) — f* < e after O(1/+/€) iterations
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Example: quadratic program with box constraints

minimize (1/2)x"Ax + b"x

subjectto 0<x<1

100 -- FISTA

1079 10 20 30 40 50
k

n = 3000; fixed step size r = 1 /Anax(A)
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1-norm regularized least-squares

1
minimize EHAx — b5+ ||x|1

— gradient
-- FISTA

1075 20 40 60 80 100
k

randomly generated A € R?900x1000; step £ = 1 /L with L = Apax (ATA)
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Outline

© FISTA with line search
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Key steps in the analysis of FISTA
@ the starting point (page 11) is the inequality

1
(") <g0) + Ve (" = y) + Il —yll2 (1)
this inequality is known to hold for 0 < ¢ < 1/L
@ if (1) holds, then the progress made in iteration i is bounded by

L

. 1 .
(PO =) 4+ 310D =3

‘7"2 )
< (1 —G?Qi)ti <f(x(i—1) —f*> n %Hv(i—1> e
@ to combine these inequalities recursively, we need
(1 -6t < ti_1 (i>2) 3)

7o,

1
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e if §, = 1, combing the inequalities (2) from i = 1 to k gives the
bound

92
FEO) = < SE O — )13
2t

conclusion: rate 1/k* convergence if (1) and (3) hold with

07 1
2 = 9G2)
FISTA with fixed step size
1 2
W= =

these values satisfies (1) and (3) with

0; 4L

1y (k+ 1)2
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FISTA with line search (method 1)

replace update of x in iteration k (page 9) with
ti=tr_1 (define 1o =7 > 0)
x 1= prox, (y — tVg(y))

. 1
while g(x) > g(y) + Vg(n)" (x =) + 5 x =I5

t:= [t
x := prox,,(y — tVg(y))
end

@ inequality (1) holds trivially, by the backtracking exit condition
@ inequality (3) holds with 6, =2/(k + 1) because #;, <t

@ Lipschitz continuity of Vg guarantees 7 > ty,i, = min{z, 3/L}
@ preserves 1/k* convergence rate because 67 /1, = O(1/k%):

0? 4
173 - (k+ 1)zl‘min
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FISTA with line search (method 2)

replace update of y and x in iteration k (page 9) with

t:=1>0

6 := positive root of 7,_10* = 67 (1 — 6)

yi= (1 —)x* D 4 gy=b

x = prox,, (y — 1Vg(y))

while g(x) > g00) + V()" (x ~ ) + 5. v — I3
t:=pt
6 := positive root of 7,_10* = 07 (1 — 6)
yi= (1 —)x* =D 4 gy=b

x = prox,,(y — tVg(y))
end

assume 1y = 0 in the first iteration (k = 1), i.e., take §; = 1,y = x(©)
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discussion
@ inequality (1) holds trivially, by the backtracking exit condition
@ inequality (3) holds trivially, bu construction of 6
@ Lipschitz contimuity of Vg guarantees #, > ty,in = min{z, 3/L}
@ 0, is defined as the positive root of 67 /1; = (1 — 6,)6?_,/t;_1; hence

Vier _ V(=006 _ ViV
2

01 0; -0

combine inequalities from i = 2 to k to get /1; < L 22 V4T

O
@ rearranging shows that 62 /1, = O(1/k*):

92 1 - 4
_(f+ Sio VA T (k4 1) hmin
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Comparison of line search methods

method 1
@ uses nonincreasing stepsizes (enforces # < t;—1)

@ one evaluation of g(x), one prox,, evaluation per line search
iteration

method 2
@ allows non-monotonic step sizes

@ one evaluation of g(x), one evaluation of g(y), Vg(y), one
evaluation of prox,, per line search iteration

the two strategies cann be combined and extended in various ways
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Outline

© FISTA as descent method
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Descent version of FISTA

choose x(© = v(: for k > 1, repeat the steps

= (1= x4 g
u = prox,,(y — tVg(y))
NOR { u flu) < fx*=D)

xk=1) otherwise

W0 — 1) 91(,4 )

k

e step 3 implies f(x®)) < f(x*=1)
@ use 0 =2/(k+1) and 5 = 1/L, or one of the line search
methods

@ same iteration complexity as original FISTA
@ changes on page 11: replace x* with u and use f(x™) < f(u)
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Example

(from page 7)

10 ‘
— gradient
FISTA
10" -~ FISTA-d |4
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Outline

@ Nesterov’'s second method
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Nesterov’s second method

algorithm: choose x(© = v(0); for k > 1, repeat the steps
y = (1 — Hk)x(kil) + 91{V(k71)

_ 1
v = PIOX (4 /) <V(k V- GIZVg(y))

x(k) = (1 — Hk)x(kil) + Hkv(k)

@ use 0y =2/(k+ 1) and # = 1/L, or one of the line search
methods

@ identical to FISTAif h(x) =0

@ unlike in FISTA, y is feasible (in dom ) if we take x(¥) € dom &
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Convergence of Nesterov’s second method

assumptions
@ g convex; Vg is Lipschitz continuous on dom ~z C dom g

Ve(x) = Vel < Lllx =yl Vx,y € domh
@ his closed and convex (so that prox,, («) is well defined)

@ optimal value f* is finite and attained at x* (not necessarily
unique)

convergence result: f(x()) — * decrease at least as fast as 1/k?
@ with fixed step size 1, = 1/L

@ with suitable line search
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Analysis of one iteration

define x = xU=1 xt = x() y = =Dyt =) s = 0 =0,
@ from Lipschitz property if 0 <t < 1/L

8% < 80) + V80 (" — ) + o " 3

@ pluginxt =(1-0)x+ 6wt andxt —y=0(v" —v)
T 02 2
(") < g() + Ve() (1 = O)x + " —y) + = |v" —v[3
@ from convexity of g, h

2
(1= 0)8() + 0e0y) + Vo0) (+* — ) + 2 [ — i3

(1 — 0)h(x) + Oh(v")

oQ
—~

=
+
~—
IN

=
—~
=
+
~—
IN
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@ upper bound on & from page 10 (with u = v, w=v — (t/0)V(y))

M) < hE) + VR0 (e V) — Tt )T —2) v

@ combine the upper bounds on g(x*), A(x"), h(vt) with z = x*

6> 62
f6) < (=0 (x) +6f = — (v = V)" —x) + 51 - v|[3
= (1= 0)f(0) +0f" + (v —x 13— v = x*3)
this is identical to final inequality (2) in the analysis of FISTA on page

12
14 i " ST, *
o (F6D) =)+ S0 =3
(=0t (. oty ) L Ly=1) a2
< S T ) gD -
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Nesterov’s third method (not covered in this lecture)
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Outline

e Proof by estimating sequence
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FOM Framework: f* = min{f(x), x € X}

f(x) € ¢, (X) convex. X C R” closed convex. Find x € X: f(x) —f* <

FOM Framework

Input: xo = yo, choose Ly, < By, n = 1. fork=1,2,...,N do
Q = (1 —w)y—1 4+ Wx—1

@ . = argmin, ey { (VF(a), ) + Zlx — v 13}

©Q = (1 — W)y—1+nx

@ Sequences: {xt}, {y«}, {z}. Parameters: {y}, {5}

Vi
-5 VE(z),

Xk—1 Zk Vi-1
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FOM: Techniques for complexity analysis

Lemma 1.(Estimating sequence)

1 t=1
Lety, € (0,1],2=1,2,...,denote I', = . If the
7 € (0,1] ! { (1—y)Try  t>2
sequences {A;}>o satisfies A, < (1 —y)A,_1 +B, t=1,2,..., then

k
we have A, < Fk(l = 'Yl)AO + Iy Z %
i=1

Remark:
@ Let Ay =f () —f(x*) or Ay = [lxx — x*[|3
@ Estimate {x:}, let f(xx) —f(x*) < (1 — ) (F(xk—1) — F(x*)) +Bx
Ak Ak—]

e Note Pk = (1 — ’Yk)(l —’yk_l)...(l — 72); If Yk = % = Pk = %;

2 _ 2 . _ 3 — 6
fw=rg=>Tv=mn Tw=rz=>Tr= e
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FOM Framework: Convergence

Main Goal: £ () — f(x*) < (1 — ) (Fr—1) — f(x*)) +By.
e N
Ak Ap_y

We have: f(x) € Ci’l (X); convexity; optimality condition of subproblem.

L
FOR) < F@) (V@)= a) + 5 D=l

2
= (=) (@) + (V@) y—1 — 2] + welf @) + (VF(a), % — )] + L%ka — x|
- L 2
(1= v )f Ok—1) + wlf (@) + (V@) o — )] + THM( — x—1l

IN

Since x; = argmin, ¢y {(Vf(zk),x) + % [[x — xx—1 |I§}, by the optimal condition

= (Vf(z) + Bl —xe—1), % —x) < 0, Vxe€X

1
= (o1 —x 0 —x) < —(VF(y),x —x)
B

! I - ”2 ! [l — ”2 (k— ) : I HZ
= |lxx — x = I, —x||7 = (x — X, X — X) — = |lxp —x
2 k k—1 B k—1 k—1 ks Xk 5 k

A

! Il —af)? L (Vf (), x — x) — ! lle — 1
Xj— X y X X X X
5 =1 + e Vf (zk k 5 1%

Note L < fi
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FOM Framework: Convergence

Main inequality:
FOR) = f() < (1= v [FGk—1 —F()] + M(Hn{ 1=l = e — xl1?)

Main estimation:

. ) Lyl —m) . Ty Bii 2 2
FOR) = £(x) < =S (FG0) — £() + —2 S A !
r 2 =T
(%)
Bim k(B Bicimie 2 2
() ==l — «l* + = S ) oy = P = Bewlella — |
ry ; T Liy ’
Bim k(B Bicimie 2
< xo —xl? + - S ) py (here Dy = sup flx =)
L I E:jz T o % sup
Observation:
Br—1Vk— . B
2k > B o () < B} = p() - () < B0}
Bk—1Vk— Y
i 0k < Il o () < B0 g — I =7 08) — 700 < TP g —
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FOM Framework: Convergence

Main results:
QLletg=Ly=1=>Ir=1, BF—Z":L. We have

L, L

FOr) =) < 5pD% - fOr) = f (") < Splkvo — ]2
Q Letpg =2 W= k+1 =T = k(k+l)’ lﬁ—zk =2L. We have
2L 4L
B 17—
Q Let B = . % = iz = Ik = ey A = > A,
We have
9L )

fOr) —f(x") < 2(]€+1—)(1€_'_2)DX
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