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Mathematical optimization

(mathematical) optimization problem

min f0(x)

s.t. fi(x) ≤ bi, i = 1, . . . ,m

x = (x1, x2, . . . , xn) : optimization variables

f0 : Rn → R : objective function

fi : Rn → R, i = 1, . . . ,m : constraint functions

optimal solution x∗ has smallest value of f0 among all vectors that
satisfy the constraints
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Examples

portfolio optimization

variables: amounts invested in different assets

constraints: budget, max./min. investment per asset, minimum return

objective: overall risk or return variance

device sizing in electronic circuits

variables: device widths and lengths

constraints: manufacturing limits, timing requirements, maximum area

objective: power consumption

data fitting

variables: model parameters

constraints: prior information, parameter limits

objective: measure of misfit or prediction error
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Solving optimization problems

general optimization problem

very difficult to solve

methods involve some compromise, e.g., very long computation
time, or not always finding the solution

exceptions : certain problem classes can be solved efficiently and reliably

least-squares problems

linear programming problems

convex optimization problems
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Least-squares

min ‖Ax− b‖2
2

solving least-squares problems

analytical solution: x∗ = (ATA)−1ATb

reliable and efficient algorithms and software

computation time proportional to n2k (A ∈ Rk×n); less if structured

a mature technology

using least-squares

least-squares problems are easy to recognize

a few standard techniques increase flexibility (e.g., including
weights, adding regularization terms)
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Linear programming

min cTx

s.t. aT
i x ≤ bi, i = 1, . . . ,m

solving linear programs

no analytical formula for solution

reliable and efficient algorithms and software

computation time proportional to n2m if m ≥ n; less with structure

a mature technology

using linear programming

not as easy to recognize as least-squares problems

a few standard tricks used to convert problems into linear
programs (e.g., problems involving `1- or `∞- norms,
piecewise-linear functions)
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Convex optimization problem

min f0(x)

s.t. fi(x) ≤ bi, i = 1, . . . ,m

objective and constraint functions are convex:

fi(αx + βy) ≤ αfi(x) + βfi(y)

if α+ β = 1, α ≥ 0, β ≥ 0

includes least-squares problems and linear programs as special
cases
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solving convex optimization problems

no analytical solution

reliable and efficient algorithms

computation time (roughly) proportional to max{n3, n2m,F},
where F is cost of evaluating fi’s and their first and second
derivatives

almost a technology

using convex optimization

often difficult to recognize

many tricks for transforming problems into convex form

surprisingly many problems can be solved via convex
optimization
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Example
m lamps illuminating n (small, flat) patches

Example

m lamps illuminating n (small, flat) patches

lamp power pj

illumination Ik

rkj
θkj

intensity Ik at patch k depends linearly on lamp powers pj:

Ik =

m∑

j=1

akjpj, akj = r−2
kj max{cos θkj, 0}

problem: achieve desired illumination Ides with bounded lamp powers

minimize maxk=1,...,n | log Ik − log Ides|
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m
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intensity Ik at patch k depends linearly on lamp powers pj :

Ik =

m∑

j=1

akjpj, akj = r−2
kj max{cos θkj, 0}

problem: achieve desired illumination Ides with bounded lamp powers

min max
k=1,...,n

| log Ik − log Ides|

s.t. 0 ≤ pj ≤ pmax, j = 1, . . . ,m
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how to solve?
1 use uniform power: pj = p, vary p

2 use least-squares:

min
∑n

k=1
(Ik − Ides)

2

round pj if pj > pmax or pj < 0

3 use weighted least-squares:

min
∑n

k=1
(Ik − Ides)

2 +
∑m

j=1
wj(pj − pmax/2)2

iteratively adjust weights wj until 0 ≤ pj ≤ pmax

4 use linear programming:

min max k=1,...,n |Ik − Ides|
s.t. 0 ≤ pj ≤ pmax, j = 1, . . . ,m

which can be solved via linear programming

of course these are approximate (suboptimal) ’solutions’
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5 use convex optimization: problem is equivalent to

min f0(p) = max k=1,...,n h(Ik/Ides)

s.t. 0 ≤ pj ≤ pmax, j = 1, . . . ,m

with h(u) = max{u, 1/u}

5. use convex optimization: problem is equivalent to

minimize f0(p) = maxk=1,...,n h(Ik/Ides)
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

with h(u) = max{u, 1/u}
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f0 is convex because maximum of convex functions is convex

exact solution obtained with effort ≈ modest factor × least-squares effort
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f0 is convex because maximum of convex functions is convex

exact solution obtained with effort ≈ modest factor × least-squares effort
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additional constraints: does adding (1) or (2) below complicate the
problem?

1 no more than half of total power is in any 10 lamps

2 no more than half of the lamps are on (pj > 0)

answer: with (1), still easy to solve; with (2), extremely difficult

moral: (untrained) intuition doesn’t always work; without the
proper background very easy problems can appear quite similar
to very difficult problems
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Course goals and topics

goals
1 recognize/formulate problems (such as the illumination problem)

as convex optimization problems

2 develop code for problems of moderate size (1000 lamps, 5000
patches)

3 characterize optimal solution (optimal power distribution), give
limits of performance, etc.

topics
1 convex sets, functions, optimization problems

2 examples and applications

3 algorithms



15/16

Nonlinear optimization

traditional techniques for general nonconvex problems involve
compromises

local optimization methods (nonlinear programming)
find a point that minimizes f0 among feasible points near it

fast, can handle large problems

require initial guess

provide no information about distance to (global) optimum

global optimization methods
find the (global) solution

worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems
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Brief history of convex optimization

theory (convex analysis): ca1900-1970

algorithms
1947: simplex algorithm for linear programming (Dantzig)

1960s: early interior-point methods (Fiacco & McCormick, Dikin, ... )

1970s: ellipsoid method and other subgradient methods

1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

late 1980s-now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications
before 1990: mostly in operations research; few in engineering

since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, ... ); new problem classes
(semidefinite and second-order cone programming, robust
optimization)


