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Mathematical optimization

(mathematical) optimization problem

min  fy(x)

st filx) <b;, i=1,....m
@ x = (x1,x2,...,X,) : optimization variables
@ fy : R" — R : objective function
@ /i :R" - R,i=1,...,m: constraint functions

optimal solution x* has smallest value of f, among all vectors that
satisfy the constraints
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Examples

portfolio optimization
@ variables: amounts invested in different assets
@ constraints: budget, max./min. investment per asset, minimum return
@ objective: overall risk or return variance
device sizing in electronic circuits
@ variables: device widths and lengths
@ constraints: manufacturing limits, timing requirements, maximum area
@ objective: power consumption
data fitting
@ variables: model parameters
@ constraints: prior information, parameter limits

@ objective: measure of misfit or prediction error
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Solving optimization problems

general optimization problem

@ very difficult to solve
@ methods involve some compromise, e.g., very long computation
time, or not always finding the solution

exceptions : certain problem classes can be solved efficiently and reliably

@ least-squares problems
@ linear programming problems

@ convex optimization problems
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Least-squares

min  ||Ax — b||3

solving least-squares problems

@ analytical solution: x* = (ATA)~!'ATb
@ reliable and efficient algorithms and software
@ computation time proportional to n’k (A € R¥*"); less if structured

@ a mature technology

using least-squares

@ least-squares problems are easy to recognize

@ a few standard techniques increase flexibility (e.g., including
weights, adding regularization terms)
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Linear programming

min  ¢’x
s.t. a,-Txgbi, i=1,....m
solving linear programs

@ no analytical formula for solution

@ reliable and efficient algorithms and software

@ computation time proportional to n’m if m > n; less with structure
@ a mature technology

using linear programming

@ not as easy to recognize as least-squares problems

@ a few standard tricks used to convert problems into linear
programs (e.g., problems involving ¢;- or {.- norms,
piecewise-linear functions)
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Convex optimization problem

min  fo(x)
s.t. ,-(x)gb,-, i=1,....m

@ objective and constraint functions are convex:

filax + By) < afi(x) + Bfi(y)
fa+B8=1,a>0,6>0

@ includes least-squares problems and linear programs as special
cases
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solving convex optimization problems

@ no analytical solution
@ reliable and efficient algorithms

@ computation time (roughly) proportional to max{n*, n’m, F},
where F is cost of evaluating f;’s and their first and second
derivatives

@ almost a technology

using convex optimization

@ often difficult to recognize
@ many tricks for transforming problems into convex form

@ surprisingly many problems can be solved via convex
optimization
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Example

m lamps illuminating » (small, flat) patches

lamp power p;

illumination Iy,

intensity I, at patch k£ depends linearly on lamp powers p; :

m
-2
I, = g agpj, Ak = ry max{cos 0,0}
J=1

problem: achieve desired illumination /4. with bounded lamp powers

min max | log Iy — log Iges|
=1,....,n
s.t. ngjgpmam j:l,...,m
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how to solve?
@ use uniform power: p; = p, vary p
@ use least-squares:

n
. Z 2
min =1 (Ik — Ides)
round p; if pj > pmax Or p; <0

© use weighted least-squares:
min Zzzl(lk — Iaes)” + ij:1 wi(pj — Pmax/2)?
iteratively adjust weights w; until 0 < p; < pmax
© use linear programming:
min = max g=1,_, [l — lges|
st. 0<p <pmax, j=1,....m
which can be solved via linear programming

of course these are approximate (suboptimal) 'solutions’ e



@ use convex optimization: problem is equivalent to

min  fo(p) = max j—1 ., "h(lk/les)
s.t. OSPjSPmaxa jzlv"'vm

with A(u) = max{u, 1/u}

5

4

2
u
fo is convex because maximum of convex functions is convex

exact solution obtained with effort ~ modest factor x least-squares effort

12/16



additional constraints: does adding (1) or (2) below complicate the
problem?

@ no more than half of total power is in any 10 lamps

@ no more than half of the lamps are on (p; > 0)

@ answer: with (1), still easy to solve; with (2), extremely difficult

@ moral: (untrained) intuition doesn’t always work; without the
proper background very easy problems can appear quite similar
to very difficult problems
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Course goals and topics

goals

@ recognize/formulate problems (such as the illumination problem)
as convex optimization problems

@ develop code for problems of moderate size (1000 lamps, 5000
patches)

© characterize optimal solution (optimal power distribution), give
limits of performance, etc.

topics
@ convex sets, functions, optimization problems

@ examples and applications

© algorithms
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Nonlinear optimization

traditional techniques for general nonconvex problems involve
compromises

local optimization methods (nonlinear programming)
@ find a point that minimizes f, among feasible points near it
@ fast, can handle large problems
@ require initial guess

@ provide no information about distance to (global) optimum

global optimization methods
@ find the (global) solution

@ worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems
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Brief history of convex optimization

theory (convex analysis): ca1900-1970

algorithms
@ 1947: simplex algorithm for linear programming (Dantzig)
@ 1960s: early interior-point methods (Fiacco & McCormick, Dikin, ... )
@ 1970s: ellipsoid method and other subgradient methods

@ 1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

@ late 1980s-now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications
@ before 1990: mostly in operations research; few in engineering

@ since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, ... ); new problem classes
(semidefinite and second-order cone programming, robust

optimization)
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