
Lecture: Numerical Linear Algebra Background

http://bicmr.pku.edu.cn/~wenzw/opt-2017-fall.html

Acknowledgement: this slides is based on Prof. Lieven Vandenberghe’s and Michael
Grant’s lecture notes

1/38

http://bicmr.pku.edu.cn/~wenzw/opt-2017-fall.html

2/38

Introduction

matrix structure and algorithm complexity

solving linear equations with factored matrices

LU, Cholesky, LDLT factorization

block elimination and the matrix inversion lemma

sparse numerical linear algebra

3/38

Matrix structure and algorithm complexity

cost (execution time) of solving Ax = b with A ∈ Rn×n

for general methods, grows as n3

less if A is structured (banded, sparse, Toeplitz, ...)

flop counts

flop (floating-point operation): one addition, subtraction,
multiplication, or division of two floating-point numbers

to estimate complexity of an algorithm: express number of flops
as a (polynomial) function of the problem dimensions, and
simplify by keeping only the leading terms

not an accurate predictor of computation time on modern
computers

useful as a rough estimate of complexity

4/38

vector-vector operations (x, y ∈ Rn)

inner product xTy: 2n− 1 flops (or 2n if n is large)

sum x + y, scalar multiplication αx: n flops

matrix-vector product y = Ax with A ∈ Rm×n

m(2n− 1) flops (or 2mn if n large)

2N if A is sparse with N nonzero elements

2p(n + m) if A is given as A = UVT ,U ∈ Rm×p,V ∈ Rn×p

matrix-matrix product C = AB with A ∈ Rm×n,B ∈ Rn×p

mp(2n− 1) flops (or 2mnp if n large)

less if A and/or B are sparse

(1/2)m(m + 1)(2n− 1) ≈ m2n if m = p and C symmetric

5/38

Basic Linear Algebra Subroutines (BLAS)

written by people who had the foresight to understand the future
benefits of a standard suite of “kernel” routines for linear algebra.
created and orgnized in three levels:

Level 1, 1973-1977: O(n) vector operations: addition, scaling,
dot product, norms
Level 2, 1984-1986: O(n2) matrix-vector operations:
matrix-vector product, trigular matrix-vector solves, rank-1 and
symmetric rank-2 updates
Level 3, 1987-1990: O(n3) matrix-matrix operations:
matrix-matrix products, trigular matrix solves, low-rank updates

6/38

BLAS operations

Level 1 addition/scaling αx, αx + y
dot products, norms xTy, ‖x‖2, ‖x‖1

Level 2 matrix/vector products αAx + βy, αATx + βy
rank 1 updates A + αxyT , A + αxxT

rank 2 updates A + αxyT + αyxT

triangular solves αT−1x, αT−Tx

Level 3 matrix/matrix products αAB + βC, αABT + βC
αATB + βC, αATBT + βC

rank-k updates αAAT + βC, αATA + βC
rank-k updates αATB + αBTA + βC
triangular solves αT−1C, αT−TC

7/38

Level 1 BLAS naming convention

BLAS routines have a Fortran-inspired naming convention:

cblas_ X XXXX
prefix data type operation

data types:

s single precision real d double precision real
c single precision complex z double precision complex

operations:

axpy y← αx + y dot r ← xTy
nrm2 r ← ‖x‖2 =

√
xTx asum r ← ‖x‖1 =

∑
i |xi|

example:

cblas_ddot double precision real dot product

8/38

BLAS naming convention: Level 2/3

cblas_ X XX XXX
prefix data type structure operation

matrix structure:

tr triangular tp packed triangular tb banded triangular
sy symmetric sp packed symmetric sb banded symmetric
hy Hermitian hp packed Hermitian hn banded Hermitian
ge general gb banded general

operations:
mv y← αAx + βy sv x← A−1x (triangular only)

r A← A + xxT r2 A← A + xyT + yxT

mm C← αAB + βC r2k C← αABT + αBAT + βC

example:

cblas_dtrmv double precision real triangular matrix-vector product
cblas_dsyr2k double precision real symmetric rank-2k update

9/38

Using BLAS efficiently

always choose a higher-level BLAS routine over multiple calls to a
lower-level BLAS routine

A← A +

k∑
i=1

xiyT
i , A ∈ Rm×n, xi ∈ Rm, yi ∈ Rn

two choices: k seperate calls to the Level 2 routine cblas_dger

A← A + x1yT
1 , . . . A← A + xkyT

k

or a single call to the Level 3 routine cblas_dgemm

A← A + XYT , X = [x1 . . . xk], Y = [y1 . . . yk]

the Level 3 choice will perform much better

10/38

Is BLAS necessary?

why use BLAS when writing your own routines is so easy?

A← A + XYT , A ∈ Rm×n, xi ∈ Rm×p, yi ∈ Rn×p

Aij ← Aij +

p∑
k=1

XikYjk

void matmutadd(int m, int n, int p, double* A,
const double* X, const double* Y) {

int i, j, k;
for (i = 0 ; i < m ; ++i)
for (j = 0 ; j < n ; ++j)
for (k = 0 ; k < p ; ++k)
A[i + j * n] += X[i + k * p] * Y[j + k * p];

}

11/38

Is BLAS necessary?

tuned/optimized BLAS will ran faster than your home-brew
version — often 10× or more

BLAS is tuned by selecting block sizes that fit well with your
processor, cache sizes

ATLAS (automatically tuned linear algebra software)

http://math-atlas.sourceforge.net

uses automated code generation and testing methods to
generate an optimized BLAS library for a specific computer

http://math-atlas.sourceforge.net

12/38

Linear Algebra PACKage (LAPACK)

LAPACK contains routines for solving linear systems and performing
common matrix decompositions and factorizations

first release: February 1992; latest version (3.0): May 2000
supercedes predecessors EISPACK and LINPACK
supports same data types (single/double precision, real/complex)
and matrix structure types (symmetric, banded, . . .) as BLAS
uses BLAS for internal computations
routines divided into three categories: auxiliary routines,
computational routines, and driver routines

13/38

LAPACK computational routines

compitational routines perform single, specific tasks

factorizations: LU,LLT/LLH,LDLT/LDLH,QR,LQ,QRZ,
generalized QR and RQ

symmetric/Hermitian and nonsymmetric eigenvalue
decomposition
singular value decompositions
generalized eigenvalue and singular value decomposition

14/38

LAPACK driver routines

driver routines call a sequence of computational routines to solve
standard linear algebra problems, such as

linear equations: AX = B

linear least square: minimizex‖b− Ax‖2

linear least-norm:

minimizex ‖c− Ax‖2 minimizey ‖y‖2

subject to Bx = d subject to d = Ax + By

15/38

Linear equations that are easy to solve

diagonal matrices (aij = 0 if i 6= j): n flops

x = A−1b = (b1/a11, ..., bn/ann)

lower triangular (aij = 0 if j > i): n2 flops

x1 := b1/a11

x2 := (b2 − a21x1)/a22

x3 := (b3 − a31x1 − a32x2)/a33

...
xn := (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann

called forward substitution

upper triangular (aij = 0 if j < i): n2 flops via backward substitution

16/38

orthogonal matrices: A−1 = AT

2n2 flops to compute x = ATb for general A

less with structure, e.g., if A = I − 2uuT with ‖u‖2 = 1, we can
compute x = ATb = b− 2(uTb)u in 4n flops

permutation matrices:

aij =

{
1 j = πi

0 otherwise

where π = (π1, π2, ..., πn) is a permutation of (1, 2, ..., n)

interpretation: Ax = (xπ1 , ..., xπn)

satisfies A−1 = AT , hence cost of solving Ax = b is 0 flops

example:

A =

 0 1 0
0 0 1
1 0 0

 , A−1 = AT =

 0 0 1
1 0 0
0 1 0



17/38

The factor-solve method for solving Ax = b

factor A as a product of simple matrices (usually 2 or 3):

A = A1A2 · · ·Ak

(Ai diagonal, upper or lower triangular, etc)

compute x = A−1b = A−1
k · · ·A

−1
2 A−1

1 b by solving k ’easy’
equations

A1x1 = b, A2x2 = x1, ..., Akx = xk−1

cost of factorization step usually dominates cost of solve step

equations with multiple righthand sides

Ax1 = b1, Ax2 = b2, ..., Axm = bm

cost: one factorization plus m solves

18/38

LU factorization

every nonsingular matrix A can be factored as

A = PLU

with P a permutation matrix, L lower triangular, U upper triangular

cost: (2/3)n3 flops

Solving linear equations by LU factorization.

given a set of linear equations Ax = b, with A nonsingular.
1 LU factorization. Factor A as A = PLU ((2/3)n3 flops).
2 Permutation. Solve Pz1 = b (0 flops).
3 Forward substitution. Solve Lz2 = z1 (n2 flops).
4 Backward substitution. Solve Ux = z2 (n2 flops).

cost: (2/3)n3 + 2n2 ≈ (2/3)n3 for large n

19/38

sparse LU factorization

A = P1LUP2

adding permutation matrix P2 offers possibility of sparser L, U
(hence, cheaper factor and solve steps)

P1 and P2 chosen (heuristically) to yield sparse L, U

choice of P1 and P2 depends on sparsity pattern and values of A

cost is usually much less than (2/3)n3; exact value depends in a
complicated way on n, number of zeros in A, sparsity pattern

20/38

Cholesky factorization

every positive definite A can be factored as

A = LLT

with L lower triangular

cost: (1/3)n3 flops

Solving linear equations by Cholesky factorization.

given a set of linear equations Ax = b, with A ∈ Sn
++.

1 Cholesky factorization. Factor A as A = LLT

((1/3)n3 flops).
2 Forward substitution. Solve Lz1 = b (n2 flops).
3 Backward substitution. Solve LTx = z1 (n2 flops).

cost: (1/3)n3 + 2n2 ≈ (1/3)n3 for large n

21/38

sparse Cholesky factorization

A = PLLTPT

adding permutation matrix P offers possibility of sparser L

P chosen (heuristically) to yield sparse L

choice of P only depends on sparsity pattern of A (unlike sparse LU)

cost is usually much less than (1/3)n3; exact value depends in a
complicated way on n, number of zeros in A, sparsity pattern

22/38

LDLT factorization

every nonsingular symmetric matrix A can be factored as

A = PLDLTPT

with P a permutation matrix, L lower triangular, D block diagonal with
1× 1 or 2× 2 diagonal blocks

cost: (1/3)n3

cost of solving symmetric sets of linear equations by LDLT

actorization: (1/3)n3 + 2n2 ≈ (1/3)n3 for large n

for sparse A, can choose P to yield sparse L; cost� (1/3)n3

23/38

Equations with structured sub-blocks

[
A11 A12
A21 A22

] [
x1
x2

]
=

[
b1
b2

]
(1)

variables x1 ∈ Rn1 , x2 ∈ Rn2 ; blocks Aij ∈ Rni×nj

if A11 is nonsingular, can eliminate x1: x1 = A−1
11 (b1 − A12x2);

to compute x2, solve

(A22 − A21A−1
11 A12)x2 = b2 − A21A−1

11 b1

Solving linear equations by block elimination.

given a nonsingular set of linear equations (1), with A11
nonsingular.

1 Form A−1
11 A12 and A−1

11 b1.
2 Form S = A22 − A21A−1

11 A12 and b̃ = b2 − A21A−1
11 b1.

3 Determine x2 by solving Sx2 = b̃.
4 Determine x1 by solving A11x1 = b1 − A12x2.

24/38

dominant terms in flop count

step 1: f + n2s (f is cost of factoring A11; s is cost of solve step)

step 2: 2n2
2n1 (cost dominated by product of A21 and A−1

11 A12)

step 3: (2/3)n3
2

total: f + n2s + 2n2
2n1 + (2/3)n3

2

examples

general A11 (f = (2/3)n3
1, s = 2n2

1): no gain over standard method

#flops = (2/3)n3
1 + 2n2

1n2 + 2n2
2n1 + (2/3)n3

2 = (2/3)(n1 + n2)
3

block elimination is useful for structured A11 (f � n3)
for example, diagonal (f = 0, s = n1): #flops ≈ 2n2

2n1 + (2/3)n3
2

25/38

Structured matrix plus low rank term

(A + BC)x = b

A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n

assume A has structure (Ax = b easy to solve)

first write as [
A B
C −I

] [
x
y

]
=

[
b
0

]
now apply block elimination: solve

(I + CA−1B)y = CA−1b,

then solve Ax = b− By

this proves the matrix inversion lemma: if A and A+BC nonsingular,

(A + BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1

26/38

example: A diagonal, B,C dense

method 1: form D = A + BC , then solve Dx = b

cost: (2/3)n3 + 2pn2

method 2 (via matrix inversion lemma): solve

(I + CA−1B)y = CA−1b, (2)

then compute x = A−1b− A−1By

total cost is dominated by (2): 2p2n + (2/3)p3 (i.e., linear in n)

27/38

Underdetermined linear equations

if A ∈ Rp×n with p < n, rank A = p,

{x|Ax = b} = {Fz + x̂|z ∈ Rn−p}

x̂ is (any) particular solution

columns of F ∈ Rn×(n−p) span nullspace of A

there exist several numerical methods for computing F
(QR factorization, rectangular LU factorization, ...)

28/38

Sparse matries

A ∈ Rm×n is sparse if it has “enough zeros that it pays to take
advantage ot them” (J. Wilkinson)
usually this means nNZ,number of elements known to be
nonzero, is small: nNZ � mn

29/38

Sparse matries

sparse matrices can save memory and time
storing A ∈ Rm×n using double precision numbers
– dense: 8mn bytes
– sparse: ≈ 16nNZ bytes or less, depending on storage format
operation y← y + Ax
– dense: mn flops
– sparse: nNZ flops
operation x← T−1x,T ∈ Rn×n triangular, nonsigular:
– dense: n2/2 flops
– sparse: nNZ flops

30/38

Representing sparse matrices

several methods used

simplest (but typically not used) is to store the data as list of
(i, j,Aij) triples

column compressed format: an array of pairs (Aij, i), and an array
of pointers into this array that indicate the start os a new column

for high end work, exotic data structures are used

sadly, no universal standard (yet)

31/38

Sparse BLAS?

sadly there is not (yet) a standard sparse matrix BLAS library
the “official” sparse BLAS

http://www.netlib.org/blas/blast-forum

http://math.nist.gov/spblas

C++: Boost uBlas, Matrix Template Library, SparseLib++

MKL from intel

Pyhton: SciPy, PySparse, CVXOPT

http://www.netlib.org/blas/blast-forum
http://math.nist.gov/spblas

32/38

Sparse factorization

library for factoring/solving systems with sparse matrices
most comprehensive: SuiteSparse (Tim Davis)

http:
//www.cise.ufl.edu.research/sparse/SuiteSparse

others include SuperLU, TAUCS, SPOOLES
typically include
-A = PLLTPT Cholesky
-A = PLDLTPT for symmetric indefinite systems
-A = P1LUPT

2 for general (nonsymmetric) matrices
P,P1,P2 are permutations or orderings

http://www.cise.ufl.edu.research/sparse/SuiteSparse
http://www.cise.ufl.edu.research/sparse/SuiteSparse

33/38

Sparse orderings

sparse orderings can have a dramatic effect on the sparsity of a
factorization

left: spy diagram of original NW arrow matrix
center: spy diagram of Cholesky factor with no permutation
(P = I)

right: spy diagram of Cholesky factor with the best permutation
(permute 1→ n)

34/38

Sparse orderings

general problem of choosing the ordering that produces the
sparest factorization is hard

but, several simple heuristics are very effective

more exotic ordering methods, e.g., nested disection, can work
very well

35/38

Symbolic factorization

for Cholesky factorization, the ordering can be chosen based
only on the sparsity pattern of A, and not its numerical values
facatorization can be divided into two stages: symbolic
factorization and numerical factorization

- when solving multiple linear systems with identical sparsity
patterns, symbolic factorization can be computed just once

- more effort can go into selecting an ordering, since it will be
amortizzed across multiple numerical factorizations

ordering for LDLT factorization usually has to be done on the fly,
i.e., based on the data

36/38

Computing dominant eigenpairs/singular pairs

Eigenvalue pairs
ARPACK (eigs in matlab)
LOBPCG
Arrabit
SLEPc

Singular value pairs
PROPACK, a good implementation is lansvd in
http://www.math.nus.edu.sg/~mattohkc/NNLS.html

LMSVD with warm-starting:
https://ww2.mathworks.cn/matlabcentral/
fileexchange/46875-lmsvd-m

http://www.math.nus.edu.sg/~mattohkc/NNLS.html
https://ww2.mathworks.cn/matlabcentral/fileexchange/46875-lmsvd-m
https://ww2.mathworks.cn/matlabcentral/fileexchange/46875-lmsvd-m

37/38

Other plantform of Lapack

Parallel and distributed computation
Scalapack
http://www.netlib.org/scalapack/

Elemental
https://github.com/elemental/Elemental

GPU:
MAGMA
http://icl.cs.utk.edu/magma/

PLASMA
https://bitbucket.org/icl/plasma

http://www.netlib.org/scalapack/
https://github.com/elemental/Elemental
http://icl.cs.utk.edu/magma/
https://bitbucket.org/icl/plasma

38/38

Other methods

we list some other areas in numerical linear algebra that have
received significant attention:

iterative methods for sparse and structure linear systems
parallel and distributed methods (MPI)
fast linear operations: fast Fouroer transforms (FFTs),
convolutions, state-space linear system simulations

there is considerable existing research, and accompanying public
demain (or freely licensed) code

