Lecture: Numerical Linear Algebra Background

http://bicmr.pku.edu.cn/~wenzw/opt-2017-fall.html

Acknowledgement: this slides is based on Prof. Lieven Vandenberghe’s and Michael
Grant’s lecture notes

1/38

http://bicmr.pku.edu.cn/~wenzw/opt-2017-fall.html

Introduction

matrix structure and algorithm complexity

solving linear equations with factored matrices

LU, Cholesky, LDLT factorization

block elimination and the matrix inversion lemma

@ sparse numerical linear algebra

2/38

Matrix structure and algorithm complexity

cost (execution time) of solving Ax = b with A € R"*"

e for general methods, grows as n*
@ less if A is structured (banded, sparse, Toeplitz, ...)

flop counts

@ flop (floating-point operation): one addition, subtraction,
multiplication, or division of two floating-point numbers

@ to estimate complexity of an algorithm: express number of flops
as a (polynomial) function of the problem dimensions, and
simplify by keeping only the leading terms

@ not an accurate predictor of computation time on modern
computers

@ useful as a rough estimate of complexity

3/38

vector-vector operations (x,y € R")

@ inner product x”y: 2n — 1 flops (or 2x if n is large)
p

@ sum x + y, scalar multiplication ax: n flops

matrix-vector product y = Ax with A € R"*"

@ m(2n — 1) flops (or 2mn if n large)
@ 2N if A is sparse with N nonzero elements
@ 2p(n+m)ifAisgivenas A = UV, U € R"™P |V € R™P

matrix-matrix product C = AB with A € R™*" B € R"*P

@ mp(2n — 1) flops (or 2mnp if n large)
@ less if A and/or B are sparse
@ (1/2)m(m+1)(2n— 1) =~ m*n if m = p and C symmetric

4/38

Basic Linear Algebra Subroutines (BLAS)

written by people who had the foresight to understand the future
benefits of a standard suite of “kernel” routines for linear algebra.
created and orgnized in three levels:

@ Level 1,1973-1977: O(n) vector operations: addition, scaling,
dot product, norms

@ Level 2, 1984-1986: O(n*) matrix-vector operations:
matrix-vector product, trigular matrix-vector solves, rank-1 and
symmetric rank-2 updates

@ Level 3, 1987-1990: O(n*) matrix-matrix operations:
matrix-matrix products, trigular matrix solves, low-rank updates

5/38

BLAS operations

Level 1

Level 2

Level 3

addition/scaling
dot products, norms

matrix/vector products
rank 1 updates

rank 2 updates
triangular solves

matrix/matrix products
rank-k updates

rank-k updates
triangular solves

ax, ax-4+y
xly, 2, Il

aAx + By, aAlx+ By
A+axy!, A+ axx?
A+ axy” + ayx!
aT 'x, aT Tx

aAB + BC, aABT + 3C
aATB + pC, aATBT + pC
aAAT + BC, aATA 4 BC
aATB + aBTA + pC
aT~'C, orT TC

6/38

Level 1 BLAS naming convention

BLAS routines have a Fortran-inspired naming convention:

cblas X XXXX
prefix datatype operation

data types:

s single precision real d double precision real
c single precision complex z double precision complex

operations:

axpy y<ax+y dot r«xTy

nrm2 r <« x|l = vValx asum r« ||l = >, |xil
example:

cblas_ddot double precision real dot product

7/38

BLAS naming convention: Level 2/3

cblas X XX XXX
prefix datatype structure operation

matrix structure:

tr triangular tp packed triangular tb banded triangular

sy symmetric sp packed symmetric sb banded symmetric

hy Hermitian hp packed Hermitian hn banded Hermitian

ge general gb banded general
operations:

mv y< adx+ By sv x< A~ lx(triangular only)
ro A« A+xl 2 A<+ A+xy" + T
mm C <+ aAB+ C 12k C + aAB”T + aBAT + C

example:

cblas_dtrmv double precision real triangular matrix-vector product

cblas_dsyr2k double precision real symmetric rank-2k update -

Using BLAS efficiently

always choose a higher-level BLAS routine over multiple calls to a
lower-level BLAS routine

k
A A+ inyiT, AeR™" x; e R" y; € R"

i=1
two choices: k seperate calls to the Level 2 routine cblas_dger
A—A+xpyl, . Ae—A+xl
or a single call to the Level 3 routine cblas_dgemm
A—A+XYT, X=[x...xx], Y=1[n...%]

the Level 3 choice will perform much better

9/38

Is BLAS necessary?

why use BLAS when writing your own routines is so easy?

A—A+XYT AeR™" x; e R™P y; € R

p
Ajj A+ XaYy
k=1
int n, int p,
const doublex Y) {

void matmutadd(int m, double* A,
const doublex X,

int i, 3, k;
for (1 =0 ;
for (J =0 ;
for ((k =0
i+ 3 *

<m ; ++1i)
J < n; ++3)
k <p ; ++k)
+= X[1 + k » p]

i

n] *Y[j+k*p];

10/38

Is BLAS necessary?

@ tuned/optimized BLAS will ran faster than your home-brew
version — often 10x or more

@ BLAS is tuned by selecting block sizes that fit well with your
processor, cache sizes
@ ATLAS (automatically tuned linear algebra software)
http://math-atlas.sourceforge.net

uses automated code generation and testing methods to
generate an optimized BLAS library for a specific computer

11/38

http://math-atlas.sourceforge.net

Linear Algebra PACKage (LAPACK)

LAPACK contains routines for solving linear systems and performing
common matrix decompositions and factorizations

first release: February 1992; latest version (3.0): May 2000
supercedes predecessors EISPACK and LINPACK

supports same data types (single/double precision, real/complex)
and matrix structure types (symmetric, banded, ...) as BLAS

uses BLAS for internal computations

routines divided into three categories: auxiliary routines,
computational routines, and driver routines

12/38

LAPACK computational routines

compitational routines perform single, specific tasks

@ factorizations: LU, LL" /LL" | LDL” /LDL", QR, LQ, QRZ,
generalized QR and RQ

@ symmetric/Hermitian and nonsymmetric eigenvalue
decomposition

@ singular value decompositions
@ generalized eigenvalue and singular value decomposition

13/38

LAPACK driver routines

driver routines call a sequence of computational routines to solve
standard linear algebra problems, such as

@ linear equations: AX = B
@ linear least square: minimize,||b — Ax||,
@ linear least-norm:

minimize, ||c — Ax||2 minimizey, ||y||2
subjectto Bx=d subjectto d = Ax+ By

14/38

Linear equations that are easy to solve
diagonal matrices (a; = 0 if i # j): n flops

X = A_lb = (bl/an, ...,bn/a,m)
lower triangular (a; = 0 if j > i): n* flops

X1 = bl/au
xp = (by — az1x1)/ax

x3 = (b3 — az1x; — axnxz)/as3

Xn = (bn — aplX1 —ap2Xp — - — an,n—lxn—1>/ann

called forward substitution

upper triangular (a; = 0 if j < i): n” flops via backward substitution

15/38

orthogonal matrices: A~! = A7
@ 2n? flops to compute x = A”b for general A

@ less with structure, e.g., if A = I — 2uu” with |jul, = 1, we can
compute x = ATh = b — 2(u’b)u in 4n flops

permutation matrices:
L j=m
ajj = .
0 otherwise
where © = (7, m2, ..., m,) is @ permutation of (1,2, ...,n)

@ interpretation: Ax = (xz,, ..., xr,)

@ satisfies A~! = AT, hence cost of solving Ax = b is 0 flops

example:

ATl =AT =

>
I
— o o
oo~
o = o
o~ o
— o o
e

16/38

The factor-solve method for solving Ax = b

@ factor A as a product of simple matrices (usually 2 or 3):
A=AAy - A
(A; diagonal, upper or lower triangular, etc)

e compute x =A"'b=A;'---A;'A7'b by solving k easy’
equations

Axy = b, Arxy = Xy, s Arx = X1
cost of factorization step usually dominates cost of solve step
equations with multiple righthand sides
Ax; = by, Axy = by, . Ax;, = by,

cost: one factorization plus m solves

17/38

LU factorization

every nonsingular matrix A can be factored as
A =PLU

with P a permutation matrix, L lower triangular, U upper triangular
cost: (2/3)n? flops

Solving linear equations by LU factorization.

given a set of linear equations Ax = b, with A nonsingular.
@ LU factorization. Factor A as A = PLU ((2/3)n> flops).
© Permutation. Solve Pz; = b (0 flops).
© Forward substitution. Solve Lz, = z; (n? flops).
@ Backward substitution. Solve Ux = z, (n” flops).

cost: (2/3)n’ + 2n* ~ (2/3)n> for large n

18/38

sparse LU factorization

A = PLUP,

@ adding permutation matrix P, offers possibility of sparser L, U
(hence, cheaper factor and solve steps)

@ P; and P, chosen (heuristically) to yield sparse L, U
@ choice of P; and P, depends on sparsity pattern and values of A

@ cost is usually much less than (2/3)n?; exact value depends in a
complicated way on n, number of zeros in A, sparsity pattern

19/38

Cholesky factorization

every positive definite A can be factored as
A=LL"

with L lower triangular
cost: (1/3)n? flops

Solving linear equations by Cholesky factorization.

given a set of linear equations Ax = b, with A € §"| .
@ Cholesky factorization. Factor A as A = LL”
((1/3)n flops).
@ Forward substitution. Solve Lz, = b (n* flops).
© Backward substitution. Solve LTx = z; (n” flops).

cost: (1/3)n + 2n> ~ (1/3)n3 for large n

20/38

sparse Cholesky factorization

A=PLLTPT

@ adding permutation matrix P offers possibility of sparser L
@ P chosen (heuristically) to yield sparse L
@ choice of P only depends on sparsity pattern of A (unlike sparse LU)

@ cost is usually much less than (1/3)n?; exact value depends in a
complicated way on n, number of zeros in A, sparsity pattern

21/38

LDLT factorization

every nonsingular symmetric matrix A can be factored as
A= PLDLTPT

with P a permutation matrix, L lower triangular, D block diagonal with
1 x 1 or 2 x 2 diagonal blocks

cost: (1/3)n

@ cost of solving symmetric sets of linear equations by LDL"
actorization: (1/3)n® + 2n? ~ (1/3)n? for large n

@ for sparse A, can choose P to yield sparse L; cost < (1/3)n?

22/38

Equations with structured sub-blocks

|:A11 A12}[x1}_[b1]
Ay Ax X2 by
@ variables x; € R™ , x, € R™ ; blocks Aij c RXn

@ if Aj; is nonsingular, can eliminate x;: x; = Aﬁl (by — A1ax2);
to compute x;, solve

(Axa — Ay AL A1) xs = by — AniAL by

Solving linear equations by block elimination.

nonsingular.
@ FormAj'Aj; and A}y
@ Form S = Ay — AyAj A and b = by — Ay 1A' by
© Determine x, by solving Sx, = b.
© Determine x; by solving Aj1x; = by — Apox;.

given a nonsingular set of linear equations (1), with Ay,

23/38

dominant terms in flop count

@ step 1: f + nys (f is cost of factoring Ay; s is cost of solve step)
@ step 2: 2n3n (cost dominated by product of A, and AfllAlz)
@ step 3: (2/3)n3

total: f + nas + 2n3n; + (2/3)n3

examples
@ general Ay (f = (2/3)n3, s = 2n}): no gain over standard method
#flops = (2/3)n; + 2niny + 2m3n1 + (2/3)m3 = (2/3)(m1 + ma)?

@ block elimination is useful for structured A;; (f < n?)
for example, diagonal (f = 0, s = n;): #flops ~ 2m3n; + (2/3)n3

24/38

Structured matrix plus low rank term
(A+BC)x=b

@ AcR™' BecRY™P CecRPX"

@ assume A has structure (Ax = b easy to solve)

e S -10)

now apply block elimination: solve

first write as

(I+CA™'B)y =CA™'b,
then solve Ax = b — By

this proves the matrix inversion lemma: if A and A + BC nonsingular,

(A+BC) '=Aa"1'—A"'BU+cA™'B)"'cAa™!

25/38

example: A diagonal, B, C dense

@ method 1: form D = A + BC , then solve Dx = b
cost: (2/3)n + 2pn®
@ method 2 (via matrix inversion lemma): solve
(I+CA™'B)y=cA™'b, (2)
then compute x = A~'b — A~ 'By
total cost is dominated by (2): 2p%n + (2/3)p? (i.e., linear in n)

26/38

Underdetermined linear equations

if A € RP*" with p < n, rank A = p,

{x|Ax = b} = {Fz+ x|z € R" "}

@ xis (any) particular solution
@ columns of F € R"*("7) span nullspace of A

@ there exist several numerical methods for computing F
(QR factorization, rectangular LU factorization, ...)

27/38

Sparse matries

@ A € R™*" is sparse if it has “enough zeros that it pays to take
advantage ot them” (J. Wilkinson)

@ usually this means nyz,number of elements known to be
nonzero, is small: nyz < mn

28/38

Sparse matries

sparse matrices can save memory and time

@ storing A € R™*" using double precision numbers

— dense: 8mn bytes

— sparse: ~ 16nyz bytes or less, depending on storage format
@ operationy < y + Ax

— dense: mn flops

— sparse: nynz flops
@ operation x < T~'x, T € R™" triangular, nonsigular:

— dense: n?/2 flops

— sparse: nynz flops

29/38

Representing sparse matrices

@ several methods used

@ simplest (but typically not used) is to store the data as list of
(i,j,Ay) triples

@ column compressed format: an array of pairs (4;, i), and an array
of pointers into this array that indicate the start os a new column

@ for high end work, exotic data structures are used

@ sadly, no universal standard (yet)

30/38

Sparse BLAS?

sadly there is not (yet) a standard sparse matrix BLAS library
@ the “official” sparse BLAS

http://www.netlib.org/blas/blast-forum

http://math.nist.gov/spblas
@ C++: Boost uBlas, Matrix Template Library, SparseLib++
@ MKL from intel

@ Pyhton: SciPy, PySparse, CVXOPT

31/38

http://www.netlib.org/blas/blast-forum
http://math.nist.gov/spblas

Sparse factorization

library for factoring/solving systems with sparse matrices
@ most comprehensive: SuiteSparse (Tim Davis)
http:
//www.cise.ufl.edu.research/sparse/SuiteSparse
@ others include SuperLU, TAUCS, SPOOLES

@ typically include
-A = PLLTPT Cholesky
-A = PLDLT P for symmetric indefinite systems
-A = P,LUPY for general (nonsymmetric) matrices
P, Py, P, are permutations or orderings

32/38

http://www.cise.ufl.edu.research/sparse/SuiteSparse
http://www.cise.ufl.edu.research/sparse/SuiteSparse

Sparse orderings

sparse orderings can have a dramatic effect on the sparsity of a
factorization

@ left: spy diagram of original NW arrow matrix

@ center: spy diagram of Cholesky factor with no permutation
(P=1)

@ right: spy diagram of Cholesky factor with the best permutation
(permute 1 — n)

33/38

Sparse orderings

@ general problem of choosing the ordering that produces the
sparest factorization is hard

@ but, several simple heuristics are very effective

@ more exotic ordering methods, e.g., nested disection, can work
very well

34/38

Symbolic factorization

@ for Cholesky factorization, the ordering can be chosen based
only on the sparsity pattern of A, and not its numerical values
o facatorization can be divided into two stages: symbolic
factorization and numerical factorization
- when solving multiple linear systems with identical sparsity
patterns, symbolic factorization can be computed just once
- more effort can go into selecting an ordering, since it will be
amortizzed across multiple numerical factorizations
@ ordering for LDL' factorization usually has to be done on the fly,
i.e., based on the data

35/38

Computing dominant eigenpairs/singular pairs

Eigenvalue pairs
@ ARPACK (eigs in matlab)
e LOBPCG
@ Arrabit
@ SLEPc
Singular value pairs

@ PROPACK, a good implementation is lansvd in
http://www.math.nus.edu.sg/~mattohkc/NNLS.html

@ LMSVD with warm-starting:
https://ww2.mathworks.cn/matlabcentral/
fileexchange/46875-1msvd-m

36/38

http://www.math.nus.edu.sg/~mattohkc/NNLS.html
https://ww2.mathworks.cn/matlabcentral/fileexchange/46875-lmsvd-m
https://ww2.mathworks.cn/matlabcentral/fileexchange/46875-lmsvd-m

Other plantform of Lapack

Parallel and distributed computation

@ Scalapack
http://www.netlib.org/scalapack/

@ Elemental
https://github.com/elemental/Elemental

GPU:

o MAGMA
http://icl.cs.utk.edu/magma/

@ PLASMA
https://bitbucket.org/icl/plasma

37/38

http://www.netlib.org/scalapack/
https://github.com/elemental/Elemental
http://icl.cs.utk.edu/magma/
https://bitbucket.org/icl/plasma

Other methods

we list some other areas in numerical linear algebra that have
received significant attention:

@ jterative methods for sparse and structure linear systems
@ parallel and distributed methods (MPI)

@ fast linear operations: fast Fouroer transforms (FFTs),
convolutions, state-space linear system simulations

there is considerable existing research, and accompanying public
demain (or freely licensed) code

38/38

