8. Conjugate functions

- closed functions
- conjugate function
Closed set

a set C is closed if it contains its boundary:

$$x^k \in C, \quad x^k \to \bar{x} \implies \bar{x} \in C$$

operations that preserve closedness

- the intersection of (finitely or infinitely many) closed sets is closed
- the union of a finite number of closed sets is closed
- inverse under linear mapping: $\{x \mid Ax \in C\}$ is closed if C is closed
Image under linear mapping

the image of a closed set under a linear mapping is not necessarily closed

example \((C\) is closed, \(AC = \{Ax \mid x \in C\}\) is open):

\[
C = \{(x_1, x_2) \in \mathbb{R}_+^2 \mid x_1x_2 \geq 1\}, \quad A = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad AC = \mathbb{R}_{++}
\]

sufficient condition: \(AC\) is closed if

- \(C\) is closed and convex
- and \(C\) does not have a recession direction in the nullspace of \(A\). i.e.,

\[
Ay = 0, \quad \hat{x} \in C, \quad \hat{x} + \alpha y \in C \quad \forall \alpha \geq 0 \implies y = 0
\]

in particular, this holds for any \(A\) if \(C\) is bounded
Closed function

definition: a function is closed if its epigraph is a closed set

examples

- \(f(x) = - \log(1 - x^2) \) with \(\text{dom } f = \{x \mid |x| < 1\} \)
- \(f(x) = x \log x \) with \(\text{dom } f = \mathbb{R}_+ \) and \(f(0) = 0 \)
- indicator function of a closed set \(C: f(x) = 0 \) if \(x \in C = \text{dom } f \)

not closed

- \(f(x) = x \log x \) with \(\text{dom } f = \mathbb{R}_{++} \), or with \(\text{dom } f = \mathbb{R}_+ \) and \(f(0) = 1 \)
- indicator function of a set \(C \) if \(C \) is not closed
Properties

sublevel sets: f is closed if and only if all its sublevel sets are closed

minimum: if f is closed with bounded sublevel sets then it has a minimizer

common operations on convex functions that preserve closedness

- **sum:** $f + g$ is closed if f and g are closed (and $\text{dom } f \cap \text{dom } g \neq \emptyset$)

- **composition with affine mapping:** $f(Ax + b)$ is closed if f is closed

- **supremum:** $\sup_{\alpha} f_{\alpha}(x)$ is closed if each function f_{α} is closed
Outline

- closed functions
- conjugate function
Conjugate function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$$

f^* is closed and convex even if f is not

Fenchel’s inequality

$$f(x) + f^*(y) \geq x^T y \quad \forall x, y$$

(extends inequality $x^T x/2 + y^T y/2 \geq x^T y$ to non-quadratic convex f)
Quadratic function

\[f(x) = \frac{1}{2} x^T A x + b^T x + c \]

strictly convex case \((A \succ 0)\)

\[f^*(y) = \frac{1}{2} (y - b)^T A^{-1} (y - b) - c \]

general convex case \((A \succeq 0)\)

\[f^*(y) = \frac{1}{2} (y - b)^T A^\dagger (y - b) - c, \quad \text{dom } f^* = \text{range}(A) + b \]
negative entropy

\[f(x) = \sum_{i=1}^{n} x_i \log x_i \quad f^*(y) = \sum_{i=1}^{n} e^{y_i - 1} \]

negative logarithm

\[f(x) = - \sum_{i=1}^{n} \log x_i \quad f^*(y) = - \sum_{i=1}^{n} \log(-y_i) - n \]

matrix logarithm

\[f(X) = - \log \det X \quad (\text{dom } f = S^{++}_n) \quad f^*(Y) = - \log \det(-Y) - n \]

Conjugate functions
Indicator function and norm

Indicator of convex set C: conjugate is support function of C

$$f(x) = \begin{cases} 0 & x \in C \\ +\infty & x \notin C \end{cases} \quad f^*(y) = \sup_{x \in C} y^T x$$

Norm: conjugate is indicator of unit dual norm ball

$$f(x) = \|x\| \quad f^*(y) = \begin{cases} 0 & \|y\|_* \leq 1 \\ +\infty & \|y\|_* > 1 \end{cases}$$

(see next page)
proof: recall the definition of dual norm:

\[\|y\|_* = \sup_{\|x\| \leq 1} x^T y \]

to evaluate \(f^*(y) = \sup_x (y^T x - \|x\|) \) we distinguish two cases

- if \(\|y\|_* \leq 1 \), then (by definition of dual norm)
 \[y^T x \leq \|x\| \quad \forall x \]
 and equality holds if \(x = 0 \); therefore \(\sup_x (y^T x - \|x\|) = 0 \)

- if \(\|y\|_* > 1 \), there exists an \(x \) with \(\|x\| \leq 1 \), \(x^T y > 1 \); then
 \[f^*(y) \geq y^T (tx) - \|tx\| = t(y^T x - \|x\|) \]
 and r.h.s. goes to infinity if \(t \to \infty \)
The second conjugate

\[f^{**}(x) = \sup_{y \in \text{dom } f^*} (x^T y - f^*(y)) \]

- \(f^{**} \) is closed and convex
- from Fenchel’s inequality \((x^T y - f^*(y) \leq f(x) \) for all \(y \) and \(x \)):
 \[f^{**}(x) \leq f(x) \quad \forall x \]
 equivalently, \(\text{epi } f \subseteq \text{epi } f^{**} \) (for any \(f \))
- if \(f \) is closed and convex, then
 \[f^{**}(x) = f(x) \quad \forall x \]
 equivalently, \(\text{epi } f = \text{epi } f^{**} \) (if \(f \) is closed convex); proof on next page
proof \((f^{**} = f \text{ if } f \text{ is closed and convex}) \): by contradiction

suppose \((x, f^{**}(x)) \notin \text{epi } f \); then there is a strict separating hyperplane:

\[
\begin{bmatrix}
a \\
b \\
\end{bmatrix}^T \begin{bmatrix}
z - x \\
- s + f^{**}(x) \\
\end{bmatrix} \leq c < 0 \quad \forall (z, s) \in \text{epi } f
\]

for some \(a, b, c \) with \(b \leq 0 \) (\(b > 0 \) gives a contradiction as \(s \to \infty \))

- if \(b < 0 \), define \(y = a/(-b) \) and maximize l.h.s. over \((z, s) \in \text{epi } f\):

\[
f^*(y) - y^Tx + f^{**}(x) \leq c/(-b) < 0
\]

this contradicts Fenchel’s inequality

- if \(b = 0 \), choose \(\hat{y} \in \text{dom } f^* \) and add small multiple of \((\hat{y}, -1)\) to \((a, b) \):

\[
\begin{bmatrix}
a + \epsilon \hat{y} \\
- \epsilon
\end{bmatrix}^T \begin{bmatrix}
z - x \\
- s + f^{**}(x) \\
\end{bmatrix} \leq c + \epsilon \left(f^*(\hat{y}) - x^T\hat{y} + f^{**}(x)\right) < 0
\]

now apply the argument for \(b < 0 \)
Conjugates and subgradients

If \(f \) is closed and convex, then

\[
y \in \partial f(x) \iff x \in \partial f^*(y) \iff x^T y = f(x) + f^*(y)
\]

Proof: if \(y \in \partial f(x) \), then \(f^*(y) = \sup_u (y^T u - f(u)) = y^T x - f(x) \)

\[
f^*(v) = \sup_u (v^T u - f(u)) \\
\geq v^T x - f(x) \\
= x^T (v - y) - f(x) + y^T x \\
= f^*(y) + x^T (v - y)
\]

for all \(v \); therefore, \(x \) is a subgradient of \(f^* \) at \(y \) \((x \in \partial f^*(y)) \)

reverse implication \(x \in \partial f^*(y) \implies y \in \partial f(x) \) follows from \(f^{**} = f \)
Some calculus rules

separable sum

\[f(x_1, x_2) = g(x_1) + h(x_2) \quad f^*(y_1, y_2) = g^*(y_1) + h^*(y_2) \]

scalar multiplication: (for \(\alpha > 0 \))

\[f(x) = \alpha g(x) \quad f^*(y) = \alpha g^*(y/\alpha) \]

addition to affine function

\[f(x) = g(x) + a^T x + b \quad f^*(y) = g^*(y - a) - b \]

infimal convolution

\[f(x) = \inf_{u+v=x} (g(u) + h(v)) \quad f^*(y) = g^*(y) + h^*(y) \]
References

