Disciplined Convex Programming and CVX

Stephen Boyd and Michael Grant
Electrical Engineering Department
Stanford University

Convex Optimization, Boyd & Vandenberghe
Outline

• convex optimization solvers

• modeling systems

• disciplined convex programming

• CVX
Convex optimization solvers

- **LP solvers**
 - lots available (GLPK, Excel, Matlab’s `linprog`, . . .)

- **cone solvers**
 - typically handle (combinations of) LP, SOCP, SDP cones
 - several available (SDPT3, SeDuMi, CSDP, . . .)

- **general convex solvers**
 - some available (CVXOPT, MOSEK, . . .)

- plus lots of special purpose or application specific solvers

- could write your own
Transforming problems to standard form

- there are lots of tricks for transforming a problem into an equivalent one that has a standard form (e.g., LP, SDP)
 - introducing slack variables
 - introducing new variables that upper bound expressions

- these tricks greatly extend the applicability of standard solvers

- writing code to carry out this transformation is often painful

- **modeling systems** can partly automate this step
Modeling systems

A typical modeling system

- automates most of the transformation to standard form; supports
 - declaring optimization variables
 - describing the objective function
 - describing the constraints
 - choosing (and configuring) the solver

- when given a problem instance, calls the solver

- interprets and returns the solver’s status (optimal, infeasible, . . .)

- (when solved) transforms the solution back to original form
Some current modeling systems

- AMPL & GAMS (proprietary)
 - developed in the 1980s, still widely used in traditional OR
 - no support for convex optimization
- YALMIP (‘Yet Another LMI Parser’)
 - first object-oriented convex optimization modeling system
 - supports many solvers; handles some nonconvex problems
- CVX
 - matlab based, GPL, uses SDPT3/SeDuMi
 - supports several solvers, handles some nonconvex problems
- CVXPY/CVXOPT (in alpha)
 - python based, completely GPLed
 - cone and custom solvers
Disciplined convex programming

- describe objective and constraints using expressions formed from
 - a set of basic atoms (convex, concave functions)
 - a restricted set of operations or rules (that preserve convexity)

- modeling system keeps track of affine, convex, concave expressions

- rules ensure that
 - expressions recognized as convex (concave) are convex (concave)
 - but, some convex (concave) expressions are not recognized as convex (concave)

- problems described using DCP are convex by construction
CVX

- uses DCP
- runs in Matlab, between the `cvx_begin` and `cvx_end` commands
- relies on SDPT3 or SeDuMi (LP/SOCP/SDP) solvers
- refer to user guide, online help for more info
- the CVX example library has more than a hundred examples
Example: Constrained norm minimization

A = randn(5, 3);
b = randn(5, 1);
cvx_begin
 variable x(3);
 minimize(norm(A*x - b, 1))
 subject to
 -0.5 <= x;
 x <= 0.3;
(cvx_end)

• between cvx_begin and cvx_end, x is a CVX variable
• statement subject to does nothing, but can be added for readability
• inequalities are interpreted elementwise
What CVX does

after cvx_end, CVX

• transforms problem into an LP
• calls solver SDPT3
• overwrites (object) x with (numeric) optimal value
• assigns problem optimal value to cvx_optval
• assigns problem status (which here is Solved) to cvx_status

(had problem been infeasible, cvx_status would be Infeasible and x would be NaN)
Variables and affine expressions

• declare variables with variable name[(dims)] [attributes]
 - variable x(3);
 - variable C(4,3);
 - variable S(3,3) symmetric;
 - variable D(3,3) diagonal;
 - variables y z;

• form affine expressions
 - A = randn(4, 3);
 - variables x(3) y(4);
 - 3*x + 4
 - A*x - y
 - x(2:3)
 - sum(x)
Some functions

<table>
<thead>
<tr>
<th>function</th>
<th>meaning</th>
<th>attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>norm(x, p)</td>
<td>$|x|_p$</td>
<td>cvx</td>
</tr>
<tr>
<td>square(x)</td>
<td>x^2</td>
<td>cvx</td>
</tr>
<tr>
<td>square_pos(x)</td>
<td>$(x_+)^2$</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>pos(x)</td>
<td>x_+</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>sum_largest(x,k)</td>
<td>$x[1] + \cdots + x[k]$</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>sqrt(x)</td>
<td>$\sqrt{x} \ (x \geq 0)$</td>
<td>ccv, nondecr</td>
</tr>
<tr>
<td>inv_pos(x)</td>
<td>$1/x \ (x > 0)$</td>
<td>cvx, nonincr</td>
</tr>
<tr>
<td>max(x)</td>
<td>$\max{x_1, \ldots, x_n}$</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>quad_over_lin(x,y)</td>
<td>$x^2/y \ (y > 0)$</td>
<td>cvx, nonincr in y</td>
</tr>
<tr>
<td>lambda_max(X)</td>
<td>$\lambda_{\text{max}}(X) \ (X = X^T)$</td>
<td>cvx</td>
</tr>
<tr>
<td>huber(x)</td>
<td>$\begin{cases} x^2, &</td>
<td>x</td>
</tr>
</tbody>
</table>
Composition rules

- can combine atoms using valid composition rules, \textit{e.g.}:
 - a convex function of an affine function is convex
 - the negative of a convex function is concave
 - a convex, nondecreasing function of a convex function is convex
 - a concave, nondecreasing function of a concave function is concave
Composition rules — multiple arguments

• for convex h, $h(g_1, \ldots, g_k)$ is recognized as convex if, for each i,
 - g_i is affine, or
 - g_i is convex and h is nondecreasing in its ith arg, or
 - g_i is concave and h is nonincreasing in its ith arg

• for concave h, $h(g_1, \ldots, g_k)$ is recognized as concave if, for each i,
 - g_i is affine, or
 - g_i is convex and h is nonincreasing in ith arg, or
 - g_i is concave and h is nondecreasing in ith arg
Valid (recognized) examples

u, v, x, y are scalar variables; X is a symmetric 3×3 variable

- **convex:**
 - $\text{norm}(A\cdot x - y) + 0.1\text{norm}(x, 1)$
 - $\text{quad_over_lin}(u - v, 1 - \text{square}(v))$
 - $\text{lambda_max}(2\cdot X - 4\cdot \text{eye}(3))$
 - $\text{norm}(2\cdot X - 3, \text{'fro'})$

- **concave:**
 - $\text{min}(1 + 2\cdot u, 1 - \text{max}(2, v))$
 - $\sqrt{v} - 4.55\cdot \text{inv_pos}(u - v)$
Rejected examples

u, v, x, y are scalar variables

• neither convex nor concave:
 – \(\text{square}(x) - \text{square}(y) \)
 – \(\text{norm}(A\times x - y) - 0.1*\text{norm}(x, 1) \)

• rejected due to limited DCP ruleset:
 – \(\sqrt{\text{sum}(\text{square}(x)))} \) (is convex; could use \(\text{norm}(x) \))
 – \(\text{square}(1 + x^2) \) (is convex; could use \(\text{square}_\text{pos}(1 + x^2) \), or \(1 + 2*\text{pow}_\text{pos}(x, 2) + \text{pow}_\text{pos}(x, 4) \))
Sets

- some constraints are more naturally expressed with convex sets
- sets in CVX work by creating unnamed variables constrained to the set
- examples:
 - semidefinite(n)
 - nonnegative(n)
 - simplex(n)
 - lorentz(n)
- `semidefinite(n)`, say, returns an unnamed (symmetric matrix) variable that is constrained to be positive semidefinite
Using the semidefinite cone

variables: X (symmetric matrix), z (vector), t (scalar)
constants: A and B (matrices)

- $X == \text{semidefinite}(n)$
 - means $X \in S^n_+$ (or $X \succeq 0$)

- $A*X*A' - X == B*\text{semidefinite}(n)*B'$
 - means $\exists Z \succeq 0$ so that $AXA^T - X = BZB^T$

- $[X \ z; \ z' \ t] == \text{semidefinite}(n+1)$
 - means $\begin{bmatrix} X & z \\ z^T & t \end{bmatrix} \succeq 0$
Objectives and constraints

- **objective** can be
 - minimize(convex expression)
 - maximize(concave expression)
 - omitted (feasibility problem)

- **constraints** can be
 - convex expression \(\leq\) concave expression
 - concave expression \(\geq\) convex expression
 - affine expression \(==\) affine expression
 - omitted (unconstrained problem)
More involved example

```matlab
A = randn(5);
A = A'*A;
cvx_begin
    variable X(5, 5) symmetric;
    variable y;
    minimize(norm(X) - 10*sqrt(y))
    subject to
        X - A == semidefinite(5);
        X(2,5) == 2*y;
        X(3,1) >= 0.8;
        y <= 4;

cvx_end
```
Defining new functions

- can make a new function using existing atoms

Example: the convex deadzone function

\[f(x) = \max\{|x| - 1, 0\} = \begin{cases}
0, & |x| \leq 1 \\
 x - 1, & x > 1 \\
 1 - x, & x < -1
\end{cases} \]

- create a file `deadzone.m` with the code

```matlab
function y = deadzone(x)
    y = max(abs(x) - 1, 0)
```

- `deadzone` makes sense both within and outside of CVX
Defining functions via incompletely specified problems

• suppose f_0, \ldots, f_m are convex in (x, z)

• let $\phi(x)$ be optimal value of convex problem, with variable z and parameter x

$$\begin{align*}
\text{minimize} & \quad f_0(x, z) \\
\text{subject to} & \quad f_i(x, z) \leq 0, \quad i = 1, \ldots, m \\
& \quad A_1 x + A_2 z = b
\end{align*}$$

• ϕ is a convex function

• problem above sometimes called *incompletely specified* since x isn’t (yet) given

• an incompletely specified concave maximization problem defines a concave function
CVX functions via incompletely specified problems

implement in cvx with
function cvx_optval = phi(x)
cvx_begin
 variable z;
 minimize(f0(x, z))
 subject to
 f1(x, z) <= 0; ...
 A1*x + A2*z == b;
cvx_end

• function phi will work for numeric x (by solving the problem)

• function phi can also be used inside a CVX specification, wherever a convex function can be used
Simple example: Two element max

• create file max2.m containing

```matlab
function cvx_optval = max2(x, y)
    cvx_begin
        variable t;
        minimize(t)
        subject to
            x <= t;
            y <= t;
    cvx_end
```

• the constraints define the epigraph of the max function
• could add logic to return $\max(x, y)$ when x, y are numeric
 (otherwise, an LP is solved to evaluate the max of two numbers!)
A more complex example

• $f(x) = x + x^{1.5} + x^{2.5}$, with $\text{dom } f = \mathbb{R}_+$, is a convex, monotone increasing function

• its inverse $g = f^{-1}$ is concave, monotone increasing, with $\text{dom } g = \mathbb{R}_+$

• there is no closed form expression for g

• $g(y)$ is optimal value of problem

$$\begin{align*}
\text{maximize} & \quad t \\
\text{subject to} & \quad t_+ + t_+^{1.5} + t_+^{2.5} \leq y
\end{align*}$$

(for $y < 0$, this problem is infeasible, so optimal value is $-\infty$)
• implement as
 function cvx_optval = g(y)
 cvx_begin
 variable t;
 maximize(t)
 subject to
 pos(t) + pow_pos(t, 1.5) + pow_pos(t, 2.5) <= y;
 cvx_end

• use it as an ordinary function, as in g(14.3), or within CVX as a concave function:
 cvx_begin
 variables x y;
 minimize(quad_over_lin(x, y) + 4*x + 5*y)
 subject to
 g(x) + 2*g(y) >= 2;
 cvx_end
Example

• optimal value of LP

\[f(c) = \inf \{ c^T x \mid Ax \leq b \} \]

is concave function of \(c \)

• by duality (assuming feasibility of \(Ax \leq b \)) we have

\[f(c) = \sup \{ -\lambda^T b \mid A^T \lambda + c = 0, \lambda \succeq 0 \} \]
• define f in CVX as

```matlab
function cvx_optval = lp_opt_val(A,b,c)
cvx_begin
    variable lambda(length(b));
    maximize(-lambda'*b);
    subject to
        A'*lambda + c == 0; lambda >= 0;
    cvx_end
```

• in `lp_opt_val(A,b,c)` A, b must be constant; c can be affine
CVX hints/warnings

• watch out for = (assignment) versus == (equality constraint)

• $X \geq 0$, with matrix X, is an elementwise inequality

• $X \geq \text{semidefinite}(n)$ means: X is elementwise larger than some positive semidefinite matrix (which is likely not what you want)

• writing subject to is unnecessary (but can look nicer)

• use brackets around objective functions:
 use minimize $(c'\times)$, not minimize $c'\times$

• double inequalities like $0 \leq x \leq 1$ don’t work;
 use $0 \leq x; x \leq 1$ instead
• many problems traditionally stated using convex quadratic forms can posed as norm problems (which can have better numerical properties):
 \[x^* P x \leq 1 \] can be replaced with \[\text{norm}(\text{chol}(P) * x) \leq 1 \]

• \(\log, \exp, \) entropy-type functions implemented using successive approximation method, which can be slow, unreliable