Lecture: Introduction to LP, SDP and SOCP

Zaiwen Wen

Beijing International Center For Mathematical Research
Peking University

http://bicmr.pku.edu.cn/~wenzw/bigdata2015.html
wenzw@pku.edu.cn

Acknowledgement: this slides is based on Prof. Farid Alizadeh lecture notes
Linear Programming (LP)

Primal

\[\begin{align*}
\text{min} & \quad c_1 x_1 + \ldots + c_n x_n \\
\text{s.t.} & \quad a_{11} x_1 + \ldots + a_{1n} x_n = b_1 \\
& \quad \ldots \\
& \quad a_{m1} x_1 + \ldots + a_{mn} x_n = b_m \\
x_i & \geq 0
\end{align*} \]

Dual

\[\begin{align*}
\text{max} & \quad b_1 y_1 + \ldots + b_m y_m \\
\text{s.t.} & \quad a_{11} y_1 + \ldots + a_{m1} y_m \leq c_1 \\
& \quad \ldots \\
& \quad a_{1n} y_1 + \ldots + a_{mn} y_m \leq c_n
\end{align*} \]
Linear Programming (LP)

more succinctly

Primal (P)

\[
\begin{align*}
\text{min} & \quad c^\top x \\
\text{s.t.} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}
\]

Dual (D)

\[
\begin{align*}
\text{max} & \quad b^\top y \\
\text{s.t.} & \quad A^\top y + s = c \\
& \quad s \geq 0
\end{align*}
\]
Weak duality

Suppose

- \(x \) is feasible to (P)
- \((y, s)\) is feasible to (D)

Then

\[
0 \leq x^\top s \quad \text{because} \quad x_i s_i \geq 0
\]

\[
= x^\top (c - A^\top y)
\]

\[
= c^\top x - (Ax)^\top y
\]

\[
= c^\top x - b^\top y
\]

\[
= \text{duality gap}
\]
Key Properties of LP

- **Strong duality**: If both Primal and Dual are feasible then at the optimum

\[c^\top x = b^\top y \iff x^\top s = 0 \]

- **Complementary slackness**: This implies

\[x^\top s = x_1 s_1 + \ldots + x_n s_n = 0 \quad \text{and therefore} \]
\[x_i s_i = 0 \]
Putting together primal feasibility, dual feasibility and complementarity together we get a square system of equations

\[\begin{align*}
Ax &= b \\
A^\top y + s &= c \\
x_is_i &= 0 \quad \text{for } i = 1, \ldots, n
\end{align*} \]

At least in principle this system determines the primal and dual optimal values
Algebraic characterization

- We can define $x \circ s = (x_1 s_1, \ldots, x_n s_n)^\top$ and
 \[
 L_x : y \rightarrow (x_1 y_1, \ldots, x_n y_n)^\top \text{ i.e. } L_x = \text{Diag}(x)
 \]

- We can write complementary slackness conditions as
 \[
 x \circ s = L_x s = L_x L_s 1 = 0
 \]

- 1, the vector of all ones, is the identity element:
 \[
 x \circ 1 = x
 \]
Semidefinite Programming (SDP)

- $X \succeq Y$ means that the symmetric matrix $X - Y$ is positive semidefinite.

- X is positive semidefinite

 $$a^\top X a \geq 0 \text{ for all vector } a \iff X = B^\top B \iff$$

 all eigenvalues of X is nonnegative
Semidefinite Programming (SDP)

\[\langle X, Y \rangle = \sum_{ij} X_{ij} Y_{ij} = \text{Tr}(XY) \]

Primal (P)

\[
\begin{align*}
\text{min} & \quad \langle C_1, X_1 \rangle + \ldots + \langle C_n, X_n \rangle \\
\text{s.t.} & \quad \langle A_{11}, X_1 \rangle + \ldots + \langle A_{1n}, X_n \rangle = b_1 \\
& \quad \ldots \\
& \quad \langle A_{m1}, X_1 \rangle + \ldots + \langle A_{mn}, X_n \rangle = b_m \\
X_i & \geq 0
\end{align*}
\]

Dual (D)

\[
\begin{align*}
\text{max} & \quad b_1 y_1 + \ldots + b_m y_m \\
\text{s.t.} & \quad A_{11} y_1 + \ldots + A_{m1} y_m + S_1 = c_1 \\
& \quad \ldots \\
& \quad A_{1n} y_1 + \ldots + A_{mn} y_m + S_n = c_n \\
S_i & \geq 0
\end{align*}
\]
For simplicity we deal with single variable SDP:

Primal (P)

\[
\begin{align*}
\text{min} & \quad \langle C, X \rangle \\
\text{s.t.} & \quad \langle A_1, X \rangle = b_1 \\
& \quad \ldots \\
& \quad \langle A_m, X \rangle = b_m \\
& \quad X \succeq 0
\end{align*}
\]

Dual (D)

\[
\begin{align*}
\text{max} & \quad b^\top y \\
\text{s.t.} & \quad \sum_i y_i A_i + S = C \\
& \quad S \succeq 0
\end{align*}
\]

- A single variable LP is trivial
- But a single matrix SDP is as general as a multiple matrix
Weak duality in SDP

- Just as in LP
 \[\langle X, S \rangle = \langle C, X \rangle - b^\top y \]

- Also if both \(X \succeq 0 \) and \(S \succeq 0 \) then
 \[\langle X, S \rangle = \text{Tr}(XS^{1/2}S^{1/2}) = \text{Tr}(S^{1/2}XS^{1/2}) \geq 0 \]
 because \(S^{1/2}XS^{1/2} \succeq 0 \)

- Thus
 \[\langle X, S \rangle = \langle C, X \rangle - b^\top y \geq 0 \]
Complementarity Slackness Theorem

- $X \succeq 0$ and $S \succeq 0$ and $\langle X, S \rangle = 0$ implies $XS = 0$

Proof:

$\langle X, S \rangle = \text{Tr}(XS^{1/2}S^{1/2}) = \text{Tr}(S^{1/2}XS^{1/2})$

Thus $\text{Tr}(S^{1/2}XS^{1/2}) = 0$. Since $S^{1/2}XS^{1/2} \succeq 0$, then

$S^{1/2}XS^{1/2} = 0 \implies S^{1/2}X^{1/2}X^{1/2}S^{1/2} = 0$

$X^{1/2}S^{1/2} = 0 \implies XS = 0$
For reasons to become clear later it is better to write complementary slackness conditions as

\[
\frac{XS + SX}{2} = 0
\]

It can be shown that if \(X \succeq 0 \) and \(S \succeq 0 \), then \(XS = 0 \) iff

\[
XS + SX = 0
\]
Algebraic properties of SDP

- Definition: \(X \circ S = \frac{XS + SX}{2} \)

- The binary operation \(\circ \) is commutative \(X \circ S = S \circ X \)

- \(\circ \) is not associative: \(X \circ (Y \circ Z) \neq (X \circ Y) \circ Z \) in general

- But \(X \circ (X \circ X) = (X \circ X) \circ X \). Thus \(X^p = X^{op} \) is well defined

- In general \(X \circ (X^2 \circ Y) = X^2 \circ (X \circ Y) \)

- The identity matrix \(I \) is identity w.r.t \(\circ \)

- Define the operator

\[
L_X : Y \rightarrow X \circ Y, \text{ thus } X \circ S = L_X(S) = L_X(L_S(I))
\]
Constraint Qualifications

Unlike LP we need some conditions for the optimal values of Primal and Dual SDP to coincide

Here are two:
- If there is primal-feasible $X \succ 0$ (i.e. X is positive definite)
- If there is dual-feasible $S \succ 0$

When strong duality holds $\langle X, S \rangle = 0$
KKT Condition

Thus just like LP The system of equations

\[
\langle A_i, X \rangle = b_i, \quad \text{for } i = 1, \ldots, m
\]

\[
\sum_i y_i A_i + S = C
\]

\[
X \circ S = 0
\]

Gives us a square system
Second Order Cone Programming (SOCP)

- For simplicity we deal with single variable SOCP:
 Primal (P)
 \[
 \begin{align*}
 \text{min} & \quad c^\top x \\
 \text{s.t.} & \quad Ax = b \\
 & \quad x_Q \succeq 0
 \end{align*}
 \]
 Dual (D)
 \[
 \begin{align*}
 \text{max} & \quad b^\top y \\
 \text{s.t.} & \quad A^\top y + s = c \\
 & \quad s_Q \succeq 0
 \end{align*}
 \]

- the vectors \(x, s, c\) are indexed from zero

- If \(z = (z_0, z_1, \ldots, z_n)^\top\) and \(\bar{z} = (z_1, \ldots, z_n)^\top\)
 \[
 z_Q \succeq 0 \iff z_0 \geq \|\bar{z}\|\]
Illustration of SOC

\[Q = \{ z \mid z_0 \geq ||\bar{z}|| \} \]
Weak Duality in SOCP

The single block SOCP is not as trivial as LP but it still can be solved analytically.

weak duality: Again as in LP and SDP

\[x^T s = c^T x - b^T y = \text{duality gap} \]

If \(x, s \succeq_Q 0 \), then

\[
\begin{align*}
 x^T s &= x_0 s_0 + \bar{x}^T \bar{s} \\
 &\geq \|\bar{x}\| \cdot \|\bar{s}\| + \bar{x}^T \bar{s} \quad \text{since } x, s \succeq_Q 0 \\
 &\geq |\bar{x}^T \bar{s}| + \bar{x}^T \bar{s} \quad \text{Cauchy-Schwartz inequality} \\
 &\geq 0
\end{align*}
\]
Complementary Slackness for SOCP

- Given $x \succeq_\mathcal{Q} 0$, $s \succeq_\mathcal{Q} 0$ and $x^\top s = 0$. Assume $x_0 > 0$ and $s_0 > 0$

- We have

\begin{align*}
\text{(*)} & \quad x_0^2 \geq \sum_{i=1}^{n} x_i^2 \\
\text{(**)} & \quad s_0^2 \geq \sum_{i=1}^{n} s_i^2 \iff x_0^2 \geq \sum_{i=1}^{n} \frac{s_i^2 x_0^2}{s_0^2} \\
\text{(***)} & \quad x^\top s = 0 \iff -x_0 s_0 = \sum_{i} x_i s_i \iff -2x_0^2 = \sum_{i=1}^{n} \frac{2x_i s_i x_0}{s_0} \\
\end{align*}

- Adding (*), (**), (***)\ we get $0 \geq \sum_{i=1}^{n} \left(x_i + \frac{s_i x_0}{s_0} \right)^2$

- This implies

$$x_i s_0 + x_0 s_i = 0, \text{ for } i = 1, \ldots, n$$
When $x \succeq_Q 0, s \succeq_Q 0$ are orthogonal both must be on the boundary in such a way that their projection on the x_1, \ldots, x_n plane is collinear.
Strong Duality

- at the optimum
 \[c^\top x = b^\top y \iff x^\top s = 0 \]
- Like SDP constraint qualifications are required
- If there is primal-feasible \(x \succ Q \ 0 \)
- If there is dual-feasible \(s \succ Q \ 0 \)
Thus again we have a square system

\[
\begin{align*}
Ax &= b, \\
A^\top y + s &= c \\
x^\top s &= 0 \\
x_0s_i + s_0x_i &= 0
\end{align*}
\]
Let us define a binary operation for vectors x and s both indexed from zero

\[
\begin{pmatrix}
 x_0 \\
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix}
\circ
\begin{pmatrix}
 s_0 \\
 s_1 \\
 \vdots \\
 s_n
\end{pmatrix}
=
\begin{pmatrix}
 x^\top s \\
 x_0s_1 + s_0x_1 \\
 \vdots \\
 x_0s_n + s_0x_n
\end{pmatrix}
\]
Algebraic properties of SOCP

- The binary operation \(\circ \) is commutative: \(x \circ s = s \circ x \)
- \(\circ \) is not associative: \(x \circ (y \circ z) \neq (x \circ y) \circ z \) in general
- But \(x \circ (x \circ x) = (x \circ x) \circ x \). Thus \(x^{\circ p} = x^p \) is well defined
- In general \(x \circ (x^2 \circ y) = x^2 \circ (x \circ y) \)
- The identity matrix \(I \) is identity w.r.t \(\circ \)
- \(e = (1, 0, \ldots, 0)^\top \) is the identity: \(x \circ e = x \)
Define the operator

$$L_x : y \rightarrow x \circ y$$

$$L_x = Arw(x) = \begin{pmatrix} x_0 & \bar{x}^\top \\ \bar{x} & x_0I \end{pmatrix}$$

$$x \circ s = Arw(x)s = Arw(x)Arw(s)e$$
Summary

Properties

<table>
<thead>
<tr>
<th></th>
<th>LP</th>
<th>SDP</th>
<th>SOCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>binary operator</td>
<td>$x \circ s = (x_i s_i)$</td>
<td>$X \circ S = \frac{XS + SX}{2}$</td>
<td>$x \circ s = \left(\begin{array}{c} x \top s \ x_0 \bar{s} + s_0 \bar{x} \end{array} \right)$</td>
</tr>
<tr>
<td>identity</td>
<td>1</td>
<td>I</td>
<td>$e = (1, 0, \ldots, 0)^\top$</td>
</tr>
<tr>
<td>associative</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Primal feasibility</td>
<td>$Ax = b$</td>
<td>$\langle A_i, X \rangle = b_i$</td>
<td>$Ax = b$</td>
</tr>
<tr>
<td>dual feasibility</td>
<td>$A \top y + s = c$</td>
<td>$\sum_i y_i A_i + S = C$</td>
<td>$A \top y + s = c$</td>
</tr>
<tr>
<td>complementarity</td>
<td>$L_x L_s 1 = 0$</td>
<td>$L_X (L_S(I)) = 0$</td>
<td>$L_x L_s e = 0$</td>
</tr>
</tbody>
</table>
A set $K \subseteq \mathbb{R}^n$ is a proper cone if

- It is a cone: If $x \in K \implies ax \in K$ for all $\alpha \geq 0$
- It is convex: $x, y \in K \implies \alpha x + (1 - \alpha)y \in K$ for $\alpha \in [0, 1]$
- It is pointed: $K \cap (-K) = \{0\}$
- It is closed
- It has non-empty interior in \mathbb{R}^n
- Dual cone:

$$K^* = \{x \mid \text{for all } z \in K, \langle x, z \rangle \geq 0\}$$
Conic LP

Conic-LP is defined as the following optimization problem:

Primal (P)

\[
\begin{align*}
\text{min} & \quad c^\top x \\
\text{s.t.} & \quad Ax = b \\
x & \in K
\end{align*}
\]

Dual (D)

\[
\begin{align*}
\text{max} & \quad b^\top y \\
\text{s.t.} & \quad A^\top y + s = c \\
s & \in K^*
\end{align*}
\]

- For LP, \(K \) is the nonnegative orthant
- For SDP, \(K \) is the cone of positive semidefinite matrices
- For SOCP, \(K \) is the circular or Lorentz cone
- In all three cases, the cones are self-dual, \(K = K^* \)