Homework 3 for “Algorithms for Big-Data Analysis”

Acknowledgement: problems 1, 2, 4 are taken from Prof. Lieven Vandenberghe’s course “EE236C - Optimization Methods for Large-Scale Systems (Spring 2013-14)”

May 5, 2015

1. For each of the following function on \(\mathbb{R}^n \), explain how to calculate a subgradient at a given \(x \).
 A reference on subgradients is http://bicmr.pku.edu.cn/~wenzw/bigdata/subgradients.pdf

 (a) \(f(x) = \|Ax - b\|_2 + \|x\|_2 \) where \(A \in \mathbb{R}^{m \times n} \) and \(x \in \mathbb{R}^n \).

 (b) \(f(x) = \inf_y \|Ay - x\|_\infty \) where \(A \in \mathbb{R}^{n \times m} \) and \(x \in \mathbb{R}^n \).

2. Give a formula or simple algorithm for evaluating the proximal operator
 \(\text{prox}_f(x) = \arg \min_u \left(f(u) + \frac{1}{2} \|u - x\|_F^2 \right) \).

 (a) \(f(x) = \|x\|_1 \) with domain \(\text{dom}(f) = \{ x \mid \|x\|_\infty \leq 1 \} \)

 (b) \(f(x) = \max_k x_k \)

 (c) \(f(x) = \|Ax - b\|_1 \) where \(AA^T = D \) and \(D \) is a diagonal matrix whose diagonal elements are positive.

3. Given \(w \in \mathbb{R}^n, \alpha, \sigma > 0 \), write down an algorithm for solving the problem
 \[
 \min_{t,y} \phi(t,y),
 \]
 where
 \[
 \phi(t,y) := t + \frac{1}{(1 - \alpha)n} \sum_{i=1}^{n} (y_i - t)_+ + \frac{\sigma}{2} \|y - w\|_2^2,
 \]
 where \(x_+ := \max(x, 0) \).

4. Let \(S^n = \{ X \in \mathbb{R}^{n \times n} \mid X^T = X \} \) and \(S^++_n = \{ X \in \mathbb{R}^{n \times n} \mid X^T = X, X \text{ is positive definite} \} \). Find the proximal operator of the function \(f(X) = -\log \det X \) where \(X \in S^n \) and \(\text{dom} f = S^++_n \). Here, the proximal operator is defined as
 \[
 \text{prox}_f(X) = \arg \min_U \left(f(U) + \frac{1}{2} \|U - X\|_F^2 \right),
 \]
 where \(\| \cdot \|_F \) is the Frobenius norm.