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Notation: K is a local field of character 0. BI( is the ring of overconvergent elements and B,

is the Robba ring of K.

1 Finiteness of Bil.g L/Biig[(

In this section, we will prove that

Thm 1.1. For finite extension L/ K, Biig 1, 18 finite over Blig x- More preciously, B:ig L= BE ®pt
; : . i
T
Bm’g,K .
We only need to prove the case L/K is Galois. So we make this assumption from now on.

) = B

lemma 1.1. If L/K is finite Galois, then (BT rig K

rig,L

H
Proof. Let x € (Biig’L) EE L we may choose x; € Bz tend to z under Frechet topology. Then
. H
‘Zr(ml)‘ tend to z and € Bl since Bl /" = Bl.. Thus = € Bj_ig K O
L/K >

n

+ .
As a corollary, By, ; is integral over B,

proof to the theorem. Step 1: We prove that BTL ®ut Biig ) is a domain.
i ,

In fact, it is sufficient to prove Biig x is transcendental over Bi(. We use the power series
definition.
Recall that B}( is the ring of bounded analytic functions on {z € C,, : r <|z| < 1} (T, g) for

some r < 1 with coefficients in K| and Biig i 1s the ring of analytic functions on {z € C, : r <
|z| < 1} for some 7 < 1 with coefficients in K}, (I't""" ). (Following Kedlaya’s notation in [1])

con, K
If we have X" +a, 1 X" ' +...4a9=0foran X € BI;;K and a; € B}{ Vi, then one can prove
that X is bounded by > sup|a;|.

Step 2: BE ®BL BL%K is a normal domain.

In fact, we can prove the following statment.

lemma 1.2. Suppose k is a field and A is an k—algebra which is also a normal domain. Letl is a
separable finite extension of k, and | @ A is also a domain. Then | ®; A is normal.



proof to the lemma. Since everything remains the same after taking direct limit, we may assume A
is finitely generated.

Thus we only need to check Serre’s (R1) and (S2) conditions.

(R1) holds since | ®; A/A is unramified.

Now we check (S2). Let P is an ideal of height 2 (height 0,1 is trivial). Then P N A is also of
height 2 since | ®j, A/k is finite. The (S2) condition as well as [ @, AN K = A, while K is the
quotient field of A, imply the statement. O

"

rig K and so is

The theorem is now easy to prove. The lemmal tells us Bii g1, 1s integral over B

+

integral over BE ®gt B, 9K Comparing the degree of extension one may prove that they have the
| ,

same fractional field. Then the lemmal implies they are same. O

Cor 1.1. Hn(HL/K7BIig,L) =0 for all n > 0.

2 Galois descent
Let L/K be finite Galois.

Thm 2.1. Let M be a finite free B! 1 module with a semi-linear Hy i action. Then M =

rig,
MHL/E @y Biig 1 as twisted Hy i module.
rig, K ’

lemma 2.1. (Biigj()X = (BL)*

proof to the Galois descent. We induct on the rank of M.
If the rank is 1, we choose a basis e of M. Define y(e) = p(y)e. Then ¢ is a cross homomorphism

from Hp, gk to (Biig’K)X. By the lemma, ¢ is a cross homomorphism from Hp, g to (B}()X. By

Galois descent of field (Recall Gal(BTL/BL) = Hp /i), we have done in this case.

If we have done for rk(M) =n — 1, assume now rk(M) = n.

By the Galois descent of field (use it to the quotient fields of Robba rings), we find that there
exists an Hp,x invariant element e # 0 € M. Let N be the saturated span of e in M (See Kedlaya).
Then N is a rank 1 submodule of M, which is closed under the action of Hy, k.

Thus we have the following commutative diagram.

0 N M M/N—— =0

| B ]

Hy ok t Hpx It
Nk — Bl @ M —= Bl oy

(M/N)s% ——0

n
0 Brig,N ®BZ‘1¥Q,K

By the corl.1, f is surjective, then use 5-lemma and the induction hypothesis, £ is isomorphic.
O



3 More on B}{ and Blig,K

We use the method in §1 to prove more properties of Bk and Biiq,K.

For a finite extension L/K, we fix an element 77, € E;" such that E; = Ex(mr). Let P be
the monic minimal polynomial of 77, P be a lifting of P in A;,f x. By Hensel’s lemma, P has a

solution in B}( and moreover BE = Bk(wL).

Thm 3.1. We choose a sufficiently large v such that 7 € BE’T and P'(r) is invertible in BE’T'.
Then we have,

(1)- By = By m]
(2)- BrigL = Byig iclmi]
Proof. Just use the same argument in thl.1. O

As an application we use the result to consider the image of ¢,. Recall we have r,, = p" (p—1)
and we have define ¢ : BM" — BI.. Let X = mx, t = log(1 + X). Then for sufficiently large r,

. . . t.r r
there exists an isomorphism between B - and I'f,, .

Def 3.1. We define ¢, =190 ™"

Prop 3.1. For sufficiently large n, Ln(BIZ;:'K) C K, [[t], while K,, = K (ppn).

Proof. Let F' be the maximal unramified extension of @, in K. Then for sufficiently large r,

BZ;;F = I, p, and mr can be chosen to be X. Since ,(X) = e(")em‘p(;—’n) — 1, we prove the
proposition.

For K, notice that the map pr o, = 6 o ¢™ while pr is the natural projection from B(J{R to C,.
Thus pr o Ln(BIig’K) C Koo

Now use the theorem3.1, Ln(BLg’K) contains in F,[[t]][tn(7K)], which is finite etale over F,[[t]]
for n large enough. By commutative algebra, F,[[t]][tn (7K )] equals to K'[[t]] for some finite exten-
sion K’ C K. Thus K’ C K,, for large enough n. O

4 Recover Dy

"

Let D be a ¢ module over B,/ r.

lemma 4.1. Forr >> 0, there exists a unique BI;Z x submodule D,.. Such that B:ig K ®pir Dp=
? ? rig, K

t,r
D and ¢(D,) C B ®ptr D,

rig, K
Proof. Not hard, see [3]Th1.3.3. O
We define D,, = D, for n >> 0. Consider D,, = K,,[[t]] ®LBT;_M D,,. We have a natural map
rig, K
D, % Kallt) @, (Bl ©fpen D) = Kallll €1, D
" " BI%Q?K rig, K BI%?}K " " BI%QT:&K P Al



Notice that if we consider D,, 11 as a Bj,;;’fK module via a * x := p(a)z, then the map

Kn[[t“ X Dn+1 - Dn+1
(a,2) »a®x

is bilinear. Thus we have K,[[t]] ®Z*’T" . D1 — Dpg.

rig, K’
Now we have constructed a natural map D,, — D,,;; which is K,[[t]] linear. Taking direct
limit, we get a K[[t]] module.
There is another way to understand this construction better.
Let R = EHBI;IZTK7 then lin : R — K[[t]] is a ring homomorphism. The module can also be
¥ tn
defined as Koo[[t]] ®n llnDn. One can see that it is of the same rank as D by this definition. The

@
I' action provides a connection on it (Luo).

5 Compare with Dy;¢

Recall, given a representation p : Gx — GLg,(V), while V' is a Q, space of dimension n, we can
construct a p-adic differential equation Dg; (V)
Luo Jinyue has prove that

t

Thm 5.1. The p-adic differential equation associated to Drig(V) is naturally isomorphic to Dg; ¢ (V).

6 p-compatible lattice and (¢, [')-modules

In this section, we will have a glimpse of the reason why we need ’filtered’.

Recall for any D € @ . of rank d, we constructed a sequence of free modules D,, over K, ][t]]
rig,

for n >> 0. Moreover, by the construction, we have K, 1[[t]] ®,, (1) Dn = Dny1-

Def 6.1. A p-compatible lattice of D, [1] is a sequence of K, [[t]]- lattice M, of D,, [}] forn >>0
such that My, 11 = M, @, 1] Kn+1[[t]]. We say two such lattices are equal if they are equal for
sufficiently large n.

One can see that D,, itself is such a lattice. In general, if D’ is a sub-¢-module of D [%] (finite
rank of course), then D!, is a p-compatible lattice.

In fact, all p-compatible lattice comes from a unique D’.

We give a construction of D', for details, see [3]2.1.

Let M,, C D [1] be a ¢-compatible lattice.

lemma 6.1. There exists an h > 0 such that t"D,, ¢ M,, C t~"D,, for all n >> 0.

Now for n >> 0, let M,, = {z € t—hD,, : 1 ®§;‘,w x € M,,, Ym > n}. (Cautions: 1®Z’;’,ﬂm S

rig, K rig, K
M,,, dose not imply 1 ®Z’;ﬁiﬂ+l x € M4 but 1 ®;3‘7?’T”;( o(x) € My,)
rig, K rig,

lemma 6.2. M, is a free module over B:[;;f‘K of rank d



lemma 6.3. K,[[t]] ®"" M, =M,

tirn
Brig‘K

We omit the proofs, since we to analyze the Frechet topology carefully. See [3]2.1 and [2]4.2.
Let D’ = lim M, the previous lemma implies that D! = M,,.
—

7 Filtered (¢, N, Gx)-modules

In this section, we introduce the language of filtered (¢, N, Gx)—modules. For a local field K over
Qp, define K¢ be the maximal unramified extension of K/Q, and o be the frobenius W (z + zP).

7.1 Why isocrystals?

This part comes from [4]2.7 (Page 83-101).
For simply, we only consider elliptic curves, all things also hold for general abelian varieties.
For an elliptic curve E/K and any prime [ # p, we have:

Thm 7.1. E has a good reduction if and only if T)(E) is an unramified Galois representation. In
fact, we have

Gg ~>T,(E)

|

Gy ~~—=T,(E)
But when we consider the case when [ = p, the previous theorem files since the reduction of
does not have so mach p—torsion points. Grothendieck gave a good analogue of the criterion.

Thm 7.2. E has a good reduction if and only if E[p"] admits an integral model 4, (i.e.there exists
a finite flat group scheme 4, /Ok such that Ep"| = K ®y,c 9,) for any n.

The previous ¥, satisfies:

(1). 4, is of order p*".

(2). There exists 4, : 9, — Dn41 comes from the inclusion Ep"] — E[p"t1].

(3). ip is an isomorphism from ¥, to %,11[p"].

These properties make us to consider a new object, so called p-divisible group’, and the number
2 is called the height. A theorem by Dieudonné tells us:

Thm 7.3. If k is a perfect field of character p > 0. There exists an anti-equivalence between
the category of p-divisible groups over k and the category of free W (k)-modules D equipped with a
Frobenius semi-linear action F such that pD C F(D).

These facts provide us a covariant functor from elliptic curves with good reduction to p—modules
over W(k), denoted by D
Recall we have

Thm 7.4. For two elliptic curves Ey, Eo, | # p, the natural map
Zp K7 HOTTL(El, EQ) — HOT)’LGK (E(El), E(Eg))

18 1njective.



Likewise, we have:

Thm 7.5. D is faithful.

7.2 Definitions

For details, see [5]6.4, or [4]2.8 (page 101-127).
We have already seen that ¢ can be used to classify abelian varieties which have good reductions.
For those with bad reductions, we need another operator N.

Def 7.1. Let L/K/Q, be two local fields such that L/K is Galois. A (o, N,Gp/k)-module is a
finite dimensional vector space V' over Ly with a o-semilinear action ¢, a G, xk —semilinear action
and a linear endomorphism NV, such that:

(1).¢ is invertible.

(2).ppoN=Nogp

(3).The action of G/ is commute with N and ¢.

Def 7.2. A filtered (¢, N,Gp,/k)-module is a (o, N,Gp/k)-module D as well as a separable and
exhaustive descending filtration on Dy, which is compatible with G, /. We do not assume anything
between the filtration and (¢, N) action.

A (¢, N,Gp K )-module is considered to be the same as its base changes.

Def 7.3. Given two filtered (¢, N, G /k)-modules D1, Dy, we define their tensor product Dy ® Do
as:

(1). The vector space D1 ®p, Da;

(2). p(z@y) = ( ) ® p2(y) the same as G,/ k-action;

(). Naoy) =M@ ey+reNy):

(4). lek(XL ®r YL) = Z FilZ(XL) X1 FilJ(YL)

i+j=k
Moreover, for a (¢, N,Gp/k)-module D, define the filtration of /\k Dy, to be the images of

Fill(Q" D), | € Z.

e, define

For a (¢, N, G k)-module D of dimension 1, choose a basis e and suppose p(e) =
= tn(A? D) and

tn(D) = vp(N), tu(D) = max{k : Fil*(Dy) # 0}. If dimz,D = d, define tx(D)
tr(D) = tg(A\" D).

lemma 7.1. N is nilpotent.

Proof. Let D" = NIm(N™), then ¢(D’) = D’ and N is invertible on D’. Choose a basis and write
¢, N as matrixes F, A.
Then we have pF A% = AF, thus pd™ P det F det A = det F det A which implies dim D =0 [

Def 7.4. A filtered (¢, N, G,k )-module D is called weakly admissible if ¢ (D) = t5 (D) and for
all submodule D’ of D, t5(D’) < ty(D").



8 Filtered (¢, N,Gk)-modules and (p,I')-modules
8.1 From filtered (p, N, Gx)-modules to (¢, [')-modules

Let {x be a variable which is considered as ’log(X)’ and we prolong the Biig to B:[?g[ x]. Let

log be the p-adic logarithm such that log(p) = 0. Given an f € Q,[[X]]*, we define log(f) as
log(f(0)) +log (77 )-

Def 8.1. We prolong the (¢, 'k )-action as following;:
(1). ¢(fx) = Lx +log (TX)>

(2). v(lx) = £x +log ”S?)
Prolong the ¢, as:

(3). tn(lx) = log(tn(X))
Finally define the monodromy operator N as:

(4). N(f) = 27 7

Let D be a filtered (¢, N) — module (over K), consider V = (BLQK
N is defined to be N(a ® ) = N(a) ® x + a ® Np(z).)

[(x] @Ky, D)V=0. (Recall,

lemma 8.1. V is a finite free module over Biigj( of rank dim(D).

Proof. Recall, the operator N on D is nilpotent.
We induct on dim(D). If dim(D) = 1, then Np = 0, thus the lemma holds since (Biig’K [Ux]))N=0 =
Bt

tig.xc- 1 the lemma holds for dim < n, let dim(D) =n
We consider an exact sequence

0—-D —-D—=Ky—0

while D’ is a subspace of dimension n — 1 contains Np (D).
Thus by snake lemma, we have an exact sequence

0— (B

rig, K[KX} ®K0 D/)NZO - (Bizg,KMX] ®K0 D)NZO - (Blzg,K[gx] ®K0 KO)NZO

We only need to prove that the last one is surjective. In fact, let e € D maps to 1. Then
T . .
; (p%) 0% ® Nj(e) is a preimage of 1. O
1=

Thus V is a (¢, 'x)-module. We then use the given filtration to 'twist’ V', which is what we
want. .

Let D™ be the (¢, N)-module K, ®%, D (ie. the (p,N) operators stay the same but the
scalar multiplication is given by a * x = p~"(a)x). The filtration of D} = K ®x, D™ is the one
passed from K ®, D by id® ¢". We endow K, ((t)) with the natural filtration ' K, [[t]] and define

M, (D) = Fil° (Kn((t)) DK Dg”)

lemma 8.2. {M, (D)} is a K,[[t]]-lattice of V,, = K,,((t)) %%, Vi, for n >> 0 and they form

Tirn
Bigk

a p—compatible lattice.



Proof. Notice that for n >> 0, we have

N=0
Kn((0) @t V= Knl(0) @i, (Bi;;’:Kw Dt (Blrcllx] @, D) )
rig, 9,

rig, K &3

= KallD) S5, 1oy (

= K,((t)) ®%," D = K,((t)) ®x D"

BI;;’,LK [EX] @K, D)

Choose a basis {e;} compatible with filtration and let h; = h(e;) (i.e. FilmDE?) = > Ke).

h;>m
Then Fil° (Kn((t)) ®K D%)) has a K, [[t]]—basis consists of t 7" @ e;.

The p—compactiblity can be proved by {¢(e;)} forms a basis of D%LH) with hpme) (¢(e;)) =
hpo (€:). O

We define M(D) to be the (¢, I' x)-module which is included in V [}] and associated to M, (D).

?
Now if D is a (¢, N, G i )-module, one can check that Mp(D) is a (»,I'L)—module with a

G /k-action. We define M(D) = My (D)Cr/x

8.2 From (p,I')-modules to filtered (¢, N, Gx)-modules

8.2.1 General facts about connections

Let E be a field of character 0. We define V(f) = t% for all f € E((t)). Let M be a finite
dimensional E((t))—space. A connection on M is an additive map Vs : M — M such that
Vu(Az) = V(A)x + AV ().

lemma 8.3. dimp MV¥=0 < dimpg)) M
Proof. In fact, we may prove that the natural map MV*=° @y E((t)) — M is injective. O

We say the connection is trivial if dimp MY =Y = dimp;)) M (or MV¥= @5 E((t)) — M is
bijective).

lemma 8.4. The connection is trivial if and only if there exists an E|[t]]—lattice My such that
Vo (My) C tMy

Proof. If V) is trivial, then let My = E[[t]] @ g MY ¥ =0,
Now suppose My is such a lattice. For any x € My, if V;(x) = t"y, then
t"y

VM(I‘)) =Vum(z)—Vy(—)= _w

VM(m -
n n n

etd!

Now use this fact and t—adically approximation, we can choose elements e, ...,eq € My such
that their projection to My/tMy form a basis. O

The proof as well as Nakayama’s lemma also imply that the lattice is unique.

lemma 8.5. If N is a subspace of M which is stable under Vs and Vs is trivial on M, then V
is trivial on N.



Proof. Let My = E[[t]] @ MV¥=0_ it is a lattice of M since Vy is trivial on M. Thus My N N is
a lattice of N, which implies dimp NV¥=0 = dimpg(4)) N (lemma 8.4) O

Def 8.2. Let D € T

rig, K

, we have constructed a K,((t))-space Dy, [1] for n >> 0 with a

I'k-action, define

It is a connection on D, [1]
Def 8.3. We say D is of locally trivial differential if Vp is trivial on D,, for n >> 0.
lemma 8.6. Let D be a (v, N,Gg)-module, then M(D) is of locally trivial differential.

Proof. See the proof of lemma 8.2 O

8.2.2 Construction
We will use the following p-adic local monodromy theorem:

Thm 8.1. Let D € P with a connection Vp, then there exists a finite extension L/K such

rig, K
that Vp is trivial on Bi;;’:L [(x] ®plyra D.
Proof. [1] [

For D € ®I'yi , we define

Sol(D) = (Blig,L[fX] ®51197K D)FL§SL(D) = (Bj‘ig,L[EX] ®BL’97K D)v=0

It is a fact that there exists an L such that Solp (D) = Si(D) and dimg, S;(D) = rank(D). In
this case, SolL(D) is a (¢, N,Gp,k)—module.

Thm 8.2. Let M be a (¢, 'k )—module with locally trivial differential, then there exists a (¢, g )—module
D C M [}] such that D [1] = M [}] and Vm(D) C tD.
Moreover, D determines a filtration on L ®r, Solr, (M) whose induced (¢, I'x)—module is M

Proof. The first part comes from lemma 8.4 and its remark.
Now we prove the second part.
Notice that

L[] ®f;n Solr, (M) = L,[[t]] ®Z'i;;% D,

For n >> 0, L,((t)) & D, = L,((t)) & M,, has a natural filtration given by

t,rn t.rn
Bligk Bk

t* L, [[t]] @7 .. M,,. Restrict the filtration on L ®‘£;n Solr,(M) then pull back to L ®p, Soly (M),

Bl
we construct the filtration. O

Thm 8.3 (Theorem A in Berger’s thesis). The functor M is an equivalence between the cat-

egory of (¢,T'x)—modules over BL@ i With locally trivial differential to the category of filtered
(¢, N, G )—modules.



9 Slopes and weakly admissible filtered (¢, NV, G )-modules

In this section, we will prove the following theorem by calculation.

Thm 9.1 (Theorem B in Berger’s thesis[3]). The functor M induces an equivalence between the

category of étale (¢,T i )—modules over Biig’K with locally trivial differential to the category of
weakly admissible filtered (¢, N, G g )—modules.

In fact, we will prove that:
Thm 9.2. For a (¢, N,Gr/i)-module D, then the slope of det D is equal to tn (D) — tu(D).

Proof. One can check that M is an exact tensor functor, so we only need to prove for dim D = 1.
In this case, Np = 0, assume D = Lge, ¢(e) = Ae where A € Lo, tg = h (so ty = vp(A)). Then,
Mp(D)[1] = B:ig’L (2] e. A naive calculation provides that My (D) = t_hBLg’L ® V, where
V= BiigyLe.
Thus, p(t~"e) = p~""At~"e, this proves the theorem. O
To prove the theorem, we only need to show that.
lemma 9.1. Let D is a semi-stable ¢p-module over Biig’K of slope 0. Then D is étale.
Proof. See Ji Yibo’s note. O

10 Application

Thm 10.1 (Theorem A by Colmez-Fontaine). Any weakly admissible (¢, N, Gx)—module comes
from a potentially semi-stable representation.

Proof. Let D be a weakly admissible (¢, N, Gx)—module, then M (D) is étale (¢, 'k )-module, so
comes from a Galois representation V.

I'r
Recall 2] Dy (V) = (BT [%,KX] Rpt . Diig(V)) . Thus we have

rig,L

- - 'y
Dy, (V) = (BL%L —lx ®5l,, M(D)>
- - Iy
= (B:zg L |5 x ®Bj«ig,K (ML(D))GL/K>
' - T'r
= (BMQ’L _Z’gX_ ®B:ig,L ML(D)> (Galois descent)
- - I'r
=B Lile B 1L | @, D)V
- rig,L _t ’ X_ Biig‘L[ﬂ rig,L t’ X Lo
| - Iy
= (B,T-ig,L ZaéX ®rL, D> =Ly®r, D=D

10



This proves that V' is semi-stable after restricting on G,

Thus we only need to check the given filtration on Dy, is the same as the one comes from
Bar ®Qp V.

In fact, we have

I'r
L®p, Dst,.(V) — L ®L, (Bi%:ﬁ 4. 0x] @pirn, Diis(v)m)

|

Ty 11 T
Briy'L [£:¢x] ®BI;;7K Dyig(V)

tn

Bar ®g, V Bl 1 6x] ®q, V

Tn

for n >> 0.
A theorem by Fontaine implies

La[lf]] @, Dl (V) = Fil’(La((t) ©z Dar,t(V)™)

trn T
Br'ig,L 9

Hence

Fil(L,((t)) ®1, D) = Fil®(Ly((t)) ®1, Dag,(V)™)
which proves the two filtrations are the equal. O
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