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Notation: K is a local field of character 0. B†K is the ring of overconvergent elements and B†rig,K
is the Robba ring of K.

1 Finiteness of B†rig,L/B
†
rig,K

In this section, we will prove that

Thm 1.1. For finite extension L/K, B†rig,L is finite over B†rig,K . More preciously, B†rig,L = B†L⊗B†K
B†rig,K .

We only need to prove the case L/K is Galois. So we make this assumption from now on.

lemma 1.1. If L/K is finite Galois, then (B†rig,L)
HL/K

= B†rig,K

Proof. Let x ∈ (B†rig,L)
HL/K

, we may choose xi ∈ B†L tend to x under Frechet topology. Then
Tr(xi)

|HL/K | tend to x and ∈ B†K since B†L
HL/K

= B†K . Thus x ∈ B†rig,K

As a corollary, B†rig,L is integral over B†rig,K

proof to the theorem. Step 1: We prove that B†L ⊗B†K B
†
rig,K is a domain.

In fact, it is sufficient to prove B†rig,K is transcendental over B†K . We use the power series
definition.

Recall that B†K is the ring of bounded analytic functions on {x ∈ Cp : r < |x| < 1} (Γrcon,K) for

some r < 1 with coefficients in K ′0 and B†rig,K is the ring of analytic functions on {x ∈ Cp : r <

|x| < 1} for some r < 1 with coefficients in K ′0 (Γan,rcon,K). (Following Kedlaya’s notation in [1])

If we have Xn+an−1X
n−1 + ...+a0 = 0 for an X ∈ B†,rrig,K and ai ∈ B†,rK ∀i, then one can prove

that X is bounded by
∑
sup|ai|.

Step 2: B†L ⊗B†K B
†
rig,K is a normal domain.

In fact, we can prove the following statment.

lemma 1.2. Suppose k is a field and A is an k−algebra which is also a normal domain. Let l is a
separable finite extension of k, and l ⊗k A is also a domain. Then l ⊗k A is normal.
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proof to the lemma. Since everything remains the same after taking direct limit, we may assume A
is finitely generated.

Thus we only need to check Serre’s (R1) and (S2) conditions.
(R1) holds since l ⊗k A/A is unramified.
Now we check (S2). Let P is an ideal of height 2 (height 0, 1 is trivial). Then P ∩ A is also of

height 2 since l ⊗k A/k is finite. The (S2) condition as well as l ⊗k A ∩ K = A, while K is the
quotient field of A, imply the statement.

The theorem is now easy to prove. The lemma1 tells us B†rig,L is integral over B†rig,K , and so is

integral over B†L⊗B†K B
†
rig,K . Comparing the degree of extension one may prove that they have the

same fractional field. Then the lemma1 implies they are same.

Cor 1.1. Hn(HL/K ,B†rig,L) = 0 for all n > 0.

2 Galois descent

Let L/K be finite Galois.

Thm 2.1. Let M be a finite free B†rig,L module with a semi-linear HL/K action. Then M =

MHL/K ⊗B†rig,K B
†
rig,L as twisted HL/K module.

lemma 2.1. (B†rig,K)× = (B†K)×

proof to the Galois descent. We induct on the rank of M .
If the rank is 1, we choose a basis e of M . Define γ(e) = ϕ(γ)e. Then ϕ is a cross homomorphism

from HL/K to (B†rig,K)×. By the lemma, ϕ is a cross homomorphism from HL/K to (B†K)×. By

Galois descent of field (Recall Gal(B†L/B
†
K) = HL/K), we have done in this case.

If we have done for rk(M) = n− 1, assume now rk(M) = n.
By the Galois descent of field (use it to the quotient fields of Robba rings), we find that there

exists an HL/K invariant element e 6= 0 ∈M . Let N be the saturated span of e in M (See Kedlaya).
Then N is a rank 1 submodule of M , which is closed under the action of HL/K .

Thus we have the following commutative diagram.

0 // N // M // M/N // 0

0 // B†rig,N ⊗B†rig,K N
HL/K //

α

OO

B†rig,L ⊗B†rig,K M
HL/K

β

OO

f // B†rig,L ⊗B†rig,K (M/N)HL/K

γ

OO

// 0

By the cor1.1, f is surjective, then use 5-lemma and the induction hypothesis, β is isomorphic.
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3 More on B†K and B†rig,K
We use the method in §1 to prove more properties of B†K and B†rig,K .

For a finite extension L/K, we fix an element π̄L ∈ EL+ such that EL = EK(πL). Let P be
the monic minimal polynomial of πL, P̃ be a lifting of P in Ainf,K . By Hensel’s lemma, P̃ has a

solution in B†K and moreover B†L = B†K(πL).

Thm 3.1. We choose a sufficiently large r such that πL ∈ B†,rL and P̃ ′(πL) is invertible in B†,rL .
Then we have,

(1). B†,rL = B†,rK [πL]

(2). B†,rrig,L = B†,rrig,K [πL]

Proof. Just use the same argument in th1.1.

As an application we use the result to consider the image of ιn. Recall we have rn = pn(p− 1)
and we have define ι0 : B̃†,r0 → B+

dR. Let X = πK , t = log(1 + X). Then for sufficiently large r,

there exists an isomorphism between B†,rrig,K and Γrcon,K .

Def 3.1. We define ιn = ι0 ◦ ϕ−n.

Prop 3.1. For sufficiently large n, ιn(B†,rnrig,K) ⊂ Kn[[t]], while Kn = K(µpn).

Proof. Let F be the maximal unramified extension of Qp in K. Then for sufficiently large r,

B†,rrig,F = Γran,F , and πF can be chosen to be X. Since ιn(X) = ε(n)exp( t
pn ) − 1, we prove the

proposition.
For K, notice that the map pr ◦ ιn = θ ◦ ϕn while pr is the natural projection from B+

dR to Cp.
Thus pr ◦ ιn(B†rig,K) ⊂ K̂∞.

Now use the theorem3.1, ιn(B†rig,K) contains in Fn[[t]][ιn(πK)], which is finite etale over Fn[[t]]
for n large enough. By commutative algebra, Fn[[t]][ιn(πK)] equals to K ′[[t]] for some finite exten-

sion K ′ ⊂ K̂∞. Thus K ′ ⊂ Kn for large enough n.

4 Recover Ddif

Let D be a ϕ module over B†rig,K .

lemma 4.1. For r >> 0, there exists a unique B†,rrig,K submodule Dr. Such that B†rig,K⊗B†,rrig,KDr =

D and ϕ(Dr) ⊂ B†,rrig,K ⊗B†,rrig,K Dr

Proof. Not hard, see [3]Th1.3.3.

We define Dn = Drn for n >> 0. Consider Dn = Kn[[t]]⊗ιn
B†,rnrig,K

Dn. We have a natural map

Dn
id⊗ϕ−−−→ Kn[[t]]⊗ιn

B†,rnrig,K

(
B†,rn+1

rig,K ⊗
ϕ

B†,rnrig,K

Dn

)
= Kn[[t]]⊗ιn

B†,rnrig,K ,ϕ
Dn+1
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Notice that if we consider Dn+1 as a B†,rnrig,K module via a ∗ x := ϕ(a)x, then the map

Kn[[t]]×Dn+1 → Dn+1

(a, x) 7→ a⊗ x

is bilinear. Thus we have Kn[[t]]⊗ιn
B†,rnrig,K ,ϕ

Dn+1 → Dn+1.

Now we have constructed a natural map Dn → Dn+1 which is Kn[[t]] linear. Taking direct
limit, we get a K∞[[t]] module.

There is another way to understand this construction better.
Let R = lim

−→
ϕ

B†,rnrig,K , then lim
−→
ιn

: R → K∞[[t]] is a ring homomorphism. The module can also be

defined as K∞[[t]]⊗R lim
−→
ϕ

Dn. One can see that it is of the same rank as D by this definition. The

ΓK action provides a connection on it (Luo).

5 Compare with Ddif

Recall, given a representation ρ : GK → GLQp(V ), while V is a Qp space of dimension n, we can
construct a p-adic differential equation Ddif (V )

Luo Jinyue has prove that

Thm 5.1. The p-adic differential equation associated to D†rig(V ) is naturally isomorphic to Ddif (V ).

6 ϕ-compatible lattice and (ϕ,Γ)-modules

In this section, we will have a glimpse of the reason why we need ’filtered’.
Recall for any D ∈ ΦB†rig,K

of rank d, we constructed a sequence of free modules Dn over Kn[[t]]

for n >> 0. Moreover, by the construction, we have Kn+1[[t]]⊗Kn[[t]] Dn = Dn+1.

Def 6.1. A ϕ-compatible lattice of D∗
[

1
t

]
is a sequence of Kn[[t]]- lattice Mn of Dn

[
1
t

]
for n >> 0

such that Mn+1 = Mn ⊗Kn[[t]] Kn+1[[t]]. We say two such lattices are equal if they are equal for
sufficiently large n.

One can see that Dn itself is such a lattice. In general, if D′ is a sub-ϕ-module of D
[

1
t

]
(finite

rank of course), then D′n is a ϕ-compatible lattice.
In fact, all ϕ-compatible lattice comes from a unique D′.
We give a construction of D′, for details, see [3]2.1.
Let Mn ⊂ D

[
1
t

]
be a ϕ-compatible lattice.

lemma 6.1. There exists an h ≥ 0 such that thDn ⊂Mn ⊂ t−hDn for all n >> 0.

Now for n >> 0, let Mn = {x ∈ t−hDn : 1⊗ιm
B†,rmrig,K

x ∈Mm ∀m ≥ n}. (Cautions: 1⊗ιm
B†,rmrig,K

x ∈

Mm dose not imply 1⊗ιm+1

B
†,rm+1
rig,K

x ∈Mm+1 but 1⊗ιm
B†,rmrig,K

ϕ(x) ∈Mm)

lemma 6.2. Mn is a free module over B†,rnrig,K of rank d
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lemma 6.3. Kn[[t]]⊗ιn
B†,rnrig,K

Mn = Mn

We omit the proofs, since we to analyze the Frechet topology carefully. See [3]2.1 and [2]4.2.
Let D′ = lim

→
Mn, the previous lemma implies that D′n = Mn.

7 Filtered (ϕ,N,GK)-modules

In this section, we introduce the language of filtered (φ,N,GK)−modules. For a local field K over
Qp, define K0 be the maximal unramified extension of K/Qp and σ be the frobenius W (x 7→ xp).

7.1 Why isocrystals?

This part comes from [4]2.7 (Page 83-101).
For simply, we only consider elliptic curves, all things also hold for general abelian varieties.
For an elliptic curve E/K and any prime l 6= p, we have:

Thm 7.1. E has a good reduction if and only if Tl(E) is an unramified Galois representation. In
fact, we have

GK //

��

Tl(E)

��
Gk // Tl(Ē)

But when we consider the case when l = p, the previous theorem files since the reduction of E
does not have so mach p−torsion points. Grothendieck gave a good analogue of the criterion.

Thm 7.2. E has a good reduction if and only if E[pn] admits an integral model Gn (i.e.there exists
a finite flat group scheme Gn/OK such that E[pn] = K ⊗oK Gn) for any n.

The previous Gn satisfies:
(1). Gn is of order p2n.
(2). There exists in : Gn → Gn+1 comes from the inclusion E[pn]→ E[pn+1].
(3). in is an isomorphism from Gn to Gn+1[pn].
These properties make us to consider a new object, so called ’p-divisible group’, and the number

2 is called the height. A theorem by Dieudonné tells us:

Thm 7.3. If k is a perfect field of character p > 0. There exists an anti-equivalence between
the category of p-divisible groups over k and the category of free W (k)-modules D equipped with a
Frobenius semi-linear action F such that pD ⊂ F(D).

These facts provide us a covariant functor from elliptic curves with good reduction to ϕ−modules
over W (k), denoted by D

Recall we have

Thm 7.4. For two elliptic curves E1, E2, l 6= p, the natural map

Zp ⊗Z Hom(E1, E2)→ HomGK (Tl(E1), Tl(E2))

is injective.
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Likewise, we have:

Thm 7.5. D is faithful.

7.2 Definitions

For details, see [5]6.4, or [4]2.8 (page 101-127).
We have already seen that ϕ can be used to classify abelian varieties which have good reductions.

For those with bad reductions, we need another operator N .

Def 7.1. Let L/K/Qp be two local fields such that L/K is Galois. A (ϕ,N,GL/K)-module is a
finite dimensional vector space V over L0 with a σ-semilinear action φ, a GL,K−semilinear action
and a linear endomorphism N , such that:

(1).ϕ is invertible.
(2).pϕ ◦N = N ◦ ϕ
(3).The action of GL/K is commute with N and ϕ.

Def 7.2. A filtered (ϕ,N,GL/K)-module is a (ϕ,N,GL/K)-module D as well as a separable and
exhaustive descending filtration on DL, which is compatible with GL/K . We do not assume anything
between the filtration and (ϕ,N) action.

A (ϕ,N,GL/K)-module is considered to be the same as its base changes.

Def 7.3. Given two filtered (ϕ,N,GL/K)-modules D1, D2, we define their tensor product D1⊗D2

as:
(1). The vector space D1 ⊗L0 D2;
(2). ϕ(x⊗ y) = ϕ1(x)⊗ ϕ2(y) the same as GL/K-action;
(3). N(x⊗ y) = N1(x)⊗ y + x⊗N2(y);
(4). Filk(XL ⊗L YL) =

∑
i+j=k

Fili(XL)⊗L Filj(YL)

Moreover, for a (ϕ,N,GL/K)-module D, define the filtration of
∧k

DL to be the images of

Fill(
⊗k

DL), l ∈ Z.

For a (ϕ,N,GL/K)-module D of dimension 1, choose a basis e and suppose ϕ(e) = λe, define

tN (D) = vp(λ), tH(D) = max{k : Filk(DL) 6= 0}. If dimL0
D = d, define tN (D) = tN (

∧d
D) and

tH(D) = tH(
∧d

D).

lemma 7.1. N is nilpotent.

Proof. Let D′ = ∩Im(Nn), then ϕ(D′) = D′ and N is invertible on D′. Choose a basis and write
ϕ,N as matrixes F,A.

Then we have pFAϕ = AF , thus pdimD detF detA = detF detA which implies dimD = 0

Def 7.4. A filtered (ϕ,N,GL/K)-module D is called weakly admissible if tN (D) = tH(D) and for
all submodule D′ of D, tN (D′) ≤ tH(D′).
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8 Filtered (ϕ,N,GK)-modules and (ϕ,Γ)-modules

8.1 From filtered (ϕ,N,GK)-modules to (ϕ,Γ)-modules

Let `X be a variable which is considered as ’log(X)’ and we prolong the B̃†rig to B̃†rig[`X ]. Let
log be the p-adic logarithm such that log(p) = 0. Given an f ∈ Qp[[X]]∗, we define log(f) as

log(f(0)) + log
(

f
f(0)

)
.

Def 8.1. We prolong the (ϕ,ΓK)-action as following:

(1). ϕ(`X) = `X + log
(
ϕ(X)
X

)
.

(2). γ(`X) = `X + log
(
γ(X)
X

)
.

Prolong the ιn as:
(3). ιn(`X) = log(ιn(X))
Finally define the monodromy operator N as:
(4). N(f) = − p

p−1
d
d`X

Let D be a filtered (ϕ,N) −module (over K), consider V = (B†rig,K [`X ] ⊗K0
D)N=0.

(
Recall,

N is defined to be N(a⊗ x) = N(a)⊗ x+ a⊗ND(x).
)

lemma 8.1. V is a finite free module over B†rig,K of rank dim(D).

Proof. Recall, the operator N on D is nilpotent.
We induct on dim(D). If dim(D) = 1, thenND = 0, thus the lemma holds since (B†rig,K [`X ])N=0 =

B†rig,K . If the lemma holds for dim ≤ n, let dim(D) = n
We consider an exact sequence

0→ D′ → D → K0 → 0

while D′ is a subspace of dimension n− 1 contains ND(D).
Thus by snake lemma, we have an exact sequence

0→ (B†rig,K [`X ]⊗K0 D
′)N=0 → (B†rig,K [`X ]⊗K0 D)N=0 → (B†rig,K [`X ]⊗K0 K0)N=0

We only need to prove that the last one is surjective. In fact, let e ∈ D maps to 1. Then∑
i≥0

(
p
p−1

)i
`iX ⊗N i

D(e) is a preimage of 1.

Thus V is a (ϕ,ΓK)-module. We then use the given filtration to ’twist’ V , which is what we
want.

Let D(n) be the (ϕ,N)-module K0 ⊗ϕ
−n

K0
D (i.e. the (ϕ,N) operators stay the same but the

scalar multiplication is given by a ∗ x = ϕ−n(a)x). The filtration of Dn
K = K ⊗K0

D(n) is the one
passed from K⊗K0

D by id⊗ϕn. We endow Kn((t)) with the natural filtration tiKn[[t]] and define

Mn(D) = Fil0
(
Kn((t))⊗K D

(n)
K

)
lemma 8.2. {Mn(D)} is a Kn[[t]]-lattice of Vn = Kn((t))⊗ιn

B†,rnrig,K

Vrn for n >> 0 and they form

a ϕ−compatible lattice.
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Proof. Notice that for n >> 0, we have

Kn((t))⊗ιn
B†,rnrig,K

V = Kn((t))⊗ιn
B†,rnrig,K [`X ]

(
B†,rnrig,K [`X ]⊗B†,rnrig,K

(
B†,rnrig,K [`X ]⊗K0 D

)N=0
)

= Kn((t))⊗ιn
B†,rnrig,K [`X ]

(
B†,rnrig,K [`X ]⊗K0

D
)

= Kn((t))⊗ϕ
−n

K0
D = Kn((t))⊗K D

(n)
K

Choose a basis {ei} compatible with filtration and let hi = h(ei) (i.e. FilmD
(n)
K =

∑
hi≥m

Kei).

Then Fil0
(
Kn((t))⊗K D

(n)
K

)
has a Kn[[t]]−basis consists of t−hi ⊗ ei.

The ϕ−compactiblity can be proved by {ϕ(ei)} forms a basis of D
(n+1)
K with hD(n+1)(ϕ(ei)) =

hD(n)(ei).

We defineM(D) to be the (ϕ,ΓK)-module which is included in V
[

1
t

]
and associated to Mn(D).

Now if D is a (ϕ,N,GL/K)-module, one can check that ML(D) is a (ϕ,ΓL)−module with a

GL/K-action. We define M(D) =ML(D)
GL/K

8.2 From (ϕ,Γ)-modules to filtered (ϕ,N,GK)-modules

8.2.1 General facts about connections

Let E be a field of character 0. We define ∇(f) = tdfdt for all f ∈ E((t)). Let M be a finite
dimensional E((t))−space. A connection on M is an additive map ∇M : M → M such that
∇M (λx) = ∇(λ)x+ λ∇M (x).

lemma 8.3. dimEM
∇M=0 ≤ dimE((t))M

Proof. In fact, we may prove that the natural map M∇M=0 ⊗E E((t))→M is injective.

We say the connection is trivial if dimEM
∇M=0 = dimE((t))M (or M∇M=0 ⊗E E((t))→M is

bijective).

lemma 8.4. The connection is trivial if and only if there exists an E[[t]]−lattice M0 such that
∇M (M0) ⊂ tM0

Proof. If ∇M is trivial, then let M0 = E[[t]]⊗E M∇M=0.
Now suppose M0 is such a lattice. For any x ∈M0, if ∇M (x) = tny, then

∇M (x− ∇M (x)

n
) = ∇M (x)−∇M (

tny

n
) = − t

n∇M (y)

n
∈ tM0

.
Now use this fact and t−adically approximation, we can choose elements e1, ..., ed ∈ M0 such

that their projection to M0/tM0 form a basis.

The proof as well as Nakayama’s lemma also imply that the lattice is unique.

lemma 8.5. If N is a subspace of M which is stable under ∇M and ∇M is trivial on M , then ∇M
is trivial on N .
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Proof. Let M0 = E[[t]]⊗E M∇M=0, it is a lattice of M since ∇M is trivial on M . Thus M0 ∩N is
a lattice of N , which implies dimE N

∇M=0 = dimE((t))N (lemma 8.4)

Def 8.2. Let D ∈ ΦΓB†rig,K
, we have constructed a Kn((t))-space Dn

[
1
t

]
for n >> 0 with a

ΓK-action, define

∇D = lim
γ→1

log γ

logp χ(γ)

It is a connection on Dn

[
1
t

]
Def 8.3. We say D is of locally trivial differential if ∇D is trivial on Dn for n >> 0.

lemma 8.6. Let D be a (ϕ,N,GK)-module, then M(D) is of locally trivial differential.

Proof. See the proof of lemma 8.2

8.2.2 Construction

We will use the following p-adic local monodromy theorem:

Thm 8.1. Let D ∈ ΦB†rig,K
with a connection ∇D, then there exists a finite extension L/K such

that ∇D is trivial on B†,rnrig,L[`X ]⊗B†,rnrig,K
D.

Proof. [1]

For D ∈ ΦΓB†rig,K
, we define

SolL(D) = (B†rig,L[`X ]⊗B†rig,K D)ΓL ;SL(D) = (B†rig,L[`X ]⊗B†rig,K D)∇=0

It is a fact that there exists an L such that SolL(D) = SL(D) and dimL0 SL(D) = rank(D). In
this case, SolL(D) is a (ϕ,N,GL/K)−module.

Thm 8.2. Let M be a (ϕ,ΓK)−module with locally trivial differential, then there exists a (ϕ,ΓK)−module
D ⊂M

[
1
t

]
such that D

[
1
t

]
= M

[
1
t

]
and ∇M(D) ⊂ tD.

Moreover, D determines a filtration on L⊗L0 SolL(M) whose induced (ϕ,ΓK)−module is M

Proof. The first part comes from lemma 8.4 and its remark.
Now we prove the second part.
Notice that

Ln[[t]]⊗ϕ
−n

L0
SolL(M) = Ln[[t]]⊗ιn

B†,rnrig,K

Dn

For n >> 0, Ln((t)) ⊗ιn
B†,rnrig,K

Dn = Ln((t)) ⊗ιn
B†,rnrig,K

Mn has a natural filtration given by

tkLn[[t]]⊗ιn
B†,rnrig,K

Mn. Restrict the filtration on L⊗ϕ
−n

L0
SolL(M) then pull back to L⊗L0

SolL(M),

we construct the filtration.

Thm 8.3 (Theorem A in Berger’s thesis). The functor M is an equivalence between the cat-

egory of (φ,ΓK)−modules over B†rig,K with locally trivial differential to the category of filtered
(φ,N,GK)−modules.

9



9 Slopes and weakly admissible filtered (φ,N,GK)-modules

In this section, we will prove the following theorem by calculation.

Thm 9.1 (Theorem B in Berger’s thesis[3]). The functor M induces an equivalence between the

category of étale (φ,ΓK)−modules over B†rig,K with locally trivial differential to the category of
weakly admissible filtered (φ,N,GK)−modules.

In fact, we will prove that:

Thm 9.2. For a (ϕ,N,GL/K)-module D, then the slope of detD is equal to tN (D)− tH(D).

Proof. One can check that M is an exact tensor functor, so we only need to prove for dimD = 1.
In this case, ND = 0, assume D = L0e, ϕ(e) = λe where λ ∈  L0, tH = h (so tN = vp(λ)). Then,

ML(D)
[

1
t

]
= B†rig,L

[
1
t

]
e. A naive calculation provides that ML(D) = t−hB†rig,L ⊗ V , where

V = B†rig,Le.
Thus, ϕ(t−he) = p−hλt−he, this proves the theorem.

To prove the theorem, we only need to show that.

lemma 9.1. Let D is a semi-stable φ-module over B†rig,K of slope 0. Then D is étale.

Proof. See Ji Yibo’s note.

10 Application

Thm 10.1 (Theorem A by Colmez-Fontaine). Any weakly admissible (φ,N,GK)−module comes
from a potentially semi-stable representation.

Proof. Let D be a weakly admissible (φ,N,GK)−module, then M(D) is étale (φ,ΓK)-module, so
comes from a Galois representation V .

Recall [2] Dst,L(V ) =

(
B†rig,L

[
1
t , `X

]
⊗B†rig,K D

†
rig(V )

)ΓL

. Thus we have

Dst,L(V ) =

(
B†rig,L

[
1

t
, `X

]
⊗B†rig,KM(D)

)ΓL

=

(
B†rig,L

[
1

t
, `X

]
⊗B†rig,K (ML(D))GL/K

)ΓL

=

(
B†rig,L

[
1

t
, `X

]
⊗B†rig,LML(D)

)ΓL

(Galois descent)

=

(
B†rig,L

[
1

t
, `X

]
⊗B†rig,L[ 1

t ]
(B†rig,L

[
1

t
, `X

]
⊗L0

D)N=0

)ΓL

=

(
B†rig,L

[
1

t
, `X

]
⊗L0

D

)ΓL

= L0 ⊗L0
D = D
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This proves that V is semi-stable after restricting on GL
Thus we only need to check the given filtration on DL is the same as the one comes from

BdR ⊗Qp V .
In fact, we have

L⊗L0
Dst,L(V ) //

��

L⊗L0

(
B†,rnrig,L

[
1
t , `X

]
⊗B†,rnrig,K

D†rig(V )
rn

)ΓL

��
B†,rnrig,L

[
1
t , `X

]
⊗B†,rnrig,K

D†rig(V )
rn

��
BdR ⊗Qp V B†,rnrig

[
1
t , `X

]
⊗Qp V

ιnoo

for n >> 0.
A theorem by Fontaine implies

Ln[[t]]⊗ιn
B†,rnrig,L

D†,rnrig (V ) = Fil0(Ln((t))⊗L DdR,L(V )(n))

Hence
Fil0(Ln((t))⊗L D(n)

L ) = Fil0(Ln((t))⊗L DdR,L(V )(n))

which proves the two filtrations are the equal.
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