Sketch of the proof to ThA

Jiahong Yu

August 2020

Notation: K is a local field of character $0 . \mathcal{B}_{K}^{\dagger}$ is the ring of overconvergent elements and $\mathcal{B}_{r i g, K}^{\dagger}$ is the Robba ring of K.

1 Finiteness of $\mathcal{B}_{\text {rig,L }}^{\dagger} / \mathcal{B}_{\text {rig,K }}^{\dagger}$

In this section, we will prove that
Thm 1.1. For finite extension $L / K, \mathcal{B}_{\text {rig,L }}^{\dagger}$ is finite over $\mathcal{B}_{\text {rig,K}}^{\dagger}$. More preciously, $\mathcal{B}_{\text {rig }, L}^{\dagger}=\mathcal{B}_{L}^{\dagger} \otimes_{\mathcal{B}_{K}^{\dagger}}$ $\mathcal{B}_{r i g, K}^{\dagger}$.

We only need to prove the case L / K is Galois. So we make this assumption from now on.
lemma 1.1. If L / K is finite Galois, then $\left(\mathcal{B}_{\text {rig }, L}^{\dagger}\right)^{H_{L / K}}=\mathcal{B}_{\text {rig }, K}^{\dagger}$
Proof. Let $x \in\left(\mathcal{B}_{r i g, L}^{\dagger}\right)^{H_{L / K}}$, we may choose $x_{i} \in \mathcal{B}_{L}^{\dagger}$ tend to x under Frechet topology. Then $\frac{\operatorname{Tr}\left(x_{i}\right)}{\left|H_{L / K}\right|}$ tend to x and $\in \mathcal{B}_{K}^{\dagger}$ since $\mathcal{B}_{L}^{\dagger} H_{L / K}=\mathcal{B}_{K}^{\dagger}$. Thus $x \in \mathcal{B}_{r i g, K}^{\dagger}$

As a corollary, $\mathcal{B}_{\text {rig,L }}^{\dagger}$ is integral over $\mathcal{B}_{\text {rig,K }}^{\dagger}$
proof to the theorem. Step 1: We prove that $\mathcal{B}_{L}^{\dagger} \otimes_{\mathcal{B}_{K}^{\dagger}} \mathcal{B}_{r i g, K}^{\dagger}$ is a domain.
In fact, it is sufficient to prove $\mathcal{B}_{\text {rig,K }}^{\dagger}$ is transcendental over $\mathcal{B}_{K}^{\dagger}$. We use the power series definition.

Recall that $\mathcal{B}_{K}^{\dagger}$ is the ring of bounded analytic functions on $\left\{x \in \mathbb{C}_{p}: r<|x|<1\right\}$ ($\Gamma_{\text {con,K }}^{r}$) for some $r<1$ with coefficients in K_{0}^{\prime} and $\mathcal{B}_{r i q, K}^{\dagger}$ is the ring of analytic functions on $\left\{x \in \mathbb{C}_{p}: r<\right.$ $|x|<1\}$ for some $r<1$ with coefficients in $K_{0}^{\prime}\left(\Gamma_{\text {con }, K}^{a n, r}\right)$. (Following Kedlaya's notation in [1])

If we have $X^{n}+a_{n-1} X^{n-1}+\ldots+a_{0}=0$ for an $X \in \mathcal{B}_{r i g, K}^{\dagger, r}$ and $a_{i} \in \mathcal{B}_{K}^{\dagger, r} \forall i$, then one can prove that X is bounded by \sum sup $\left|a_{i}\right|$.

Step 2: $\mathcal{B}_{L}^{\dagger} \otimes_{\mathcal{B}_{K}^{\dagger}} \mathcal{B}_{r i g, K}^{\dagger}$ is a normal domain.
In fact, we can prove the following statment.
lemma 1.2. Suppose k is a field and A is an k-algebra which is also a normal domain. Let l is a separable finite extension of k, and $l \otimes_{k} A$ is also a domain. Then $l \otimes_{k} A$ is normal.
proof to the lemma. Since everything remains the same after taking direct limit, we may assume A is finitely generated.

Thus we only need to check Serre's (R1) and (S2) conditions.
(R1) holds since $l \otimes_{k} A / A$ is unramified.
Now we check (S2). Let \mathcal{P} is an ideal of height 2 (height 0,1 is trivial). Then $\mathcal{P} \cap A$ is also of height 2 since $l \otimes_{k} A / k$ is finite. The (S2) condition as well as $l \otimes_{k} A \cap K=A$, while K is the quotient field of A, imply the statement.

The theorem is now easy to prove. The lemma1 tells us $\mathcal{B}_{r i g, L}^{\dagger}$ is integral over $\mathcal{B}_{r i g, K}^{\dagger}$, and so is integral over $\mathcal{B}_{L}^{\dagger} \otimes_{\mathcal{B}_{K}^{\dagger}} \mathcal{B}_{\text {rig,K }}^{\dagger}$. Comparing the degree of extension one may prove that they have the same fractional field. Then the lemma1 implies they are same.
Cor 1.1. $H^{n}\left(H_{L / K}, \mathcal{B}_{r i g, L}^{\dagger}\right)=0$ for all $n>0$.

2 Galois descent

Let L / K be finite Galois.
Thm 2.1. Let M be a finite free $\mathcal{B}_{\text {rig }, L}^{\dagger}$ module with a semi-linear $H_{L / K}$ action. Then $M=$ $M^{H_{L / K}} \otimes_{\mathcal{B}_{r i g, K}^{\dagger}} \mathcal{B}_{r i g, L}^{\dagger}$ as twisted $H_{L / K}$ module.
lemma 2.1. $\left(\mathcal{B}_{r i g, K}^{\dagger}\right)^{\times}=\left(\mathcal{B}_{K}^{\dagger}\right)^{\times}$
proof to the Galois descent. We induct on the rank of M.
If the rank is 1 , we choose a basis e of M. Define $\gamma(e)=\varphi(\gamma) e$. Then φ is a cross homomorphism from $H_{L / K}$ to $\left(\mathcal{B}_{r i g, K}^{\dagger}\right)^{\times}$. By the lemma, φ is a cross homomorphism from $H_{L / K}$ to $\left(\mathcal{B}_{K}^{\dagger}\right)^{\times}$. By Galois descent of field (Recall $\operatorname{Gal}\left(\mathcal{B}_{L}^{\dagger} / \mathcal{B}_{K}^{\dagger}\right)=H_{L / K}$), we have done in this case.

If we have done for $\operatorname{rk}(M)=n-1$, assume now $\operatorname{rk}(M)=n$.
By the Galois descent of field (use it to the quotient fields of Robba rings), we find that there exists an $H_{L / K}$ invariant element $e \neq 0 \in M$. Let N be the saturated span of e in M (See Kedlaya). Then N is a rank 1 submodule of M, which is closed under the action of $H_{L / K}$.

Thus we have the following commutative diagram.

By the cor1.1, f is surjective, then use 5-lemma and the induction hypothesis, β is isomorphic.

3 More on $\mathcal{B}_{K}^{\dagger}$ and $\mathcal{B}_{\text {rig }, K}^{\dagger}$

We use the method in $\S 1$ to prove more properties of $\mathcal{B}_{K}^{\dagger}$ and $\mathcal{B}_{\text {rig,K }}^{\dagger}$.
For a finite extension L / K, we fix an element $\pi_{L} \in \mathbb{E}_{L}{ }^{+}$such that $\mathbb{E}_{L}=\mathbb{E}_{K}\left(\pi_{L}\right)$. Let P be the monic minimal polynomial of π_{L}, \tilde{P} be a lifting of P in $\mathcal{A}_{\text {inf }, K}$. By Hensel's lemma, \tilde{P} has a solution in $\mathcal{B}_{K}^{\dagger}$ and moreover $\mathcal{B}_{L}^{\dagger}=\mathcal{B}_{K}^{\dagger}\left(\pi_{L}\right)$.

Thm 3.1. We choose a sufficiently large r such that $\pi_{L} \in \mathcal{B}_{L}^{\dagger, r}$ and $\tilde{P}^{\prime}\left(\pi_{L}\right)$ is invertible in $\mathcal{B}_{L}^{\dagger, r}$. Then we have,
(1). $\mathcal{B}_{L}^{\dagger, r}=\mathcal{B}_{K}^{\dagger, r}\left[\pi_{L}\right]$
(2). $\mathcal{B}_{\text {rig }, L}^{\dagger, r}=\mathcal{B}_{\text {rig }, K}^{\dagger, r}\left[\pi_{L}\right]$

Proof. Just use the same argument in th1.1.
As an application we use the result to consider the image of ι_{n}. Recall we have $r_{n}=p^{n}(p-1)$ and we have define $\iota_{0}: \tilde{\mathcal{B}}^{\dagger, r_{0}} \rightarrow \mathcal{B}_{d R}^{+}$. Let $X=\pi_{K}, t=\log (1+X)$. Then for sufficiently large r, there exists an isomorphism between $\mathcal{B}_{r i g, K}^{\dagger, r}$ and $\Gamma_{\text {con }, K}^{r}$.
Def 3.1. We define $\iota_{n}=\iota_{0} \circ \varphi^{-n}$.
Prop 3.1. For sufficiently large $n, \iota_{n}\left(\mathcal{B}_{r i g, K}^{\dagger}, r_{n}\right) \subset K_{n}[[t]]$, while $K_{n}=K\left(\mu_{p^{n}}\right)$.
Proof. Let F be the maximal unramified extension of \mathbb{Q}_{p} in K. Then for sufficiently large r, $\mathcal{B}_{\text {rig, } F}^{\dagger, r}=\Gamma_{a n, F}^{r}$, and π_{F} can be chosen to be X. Since $\iota_{n}(X)=\epsilon^{(n)} \exp \left(\frac{t}{p^{n}}\right)-1$, we prove the proposition.

For K, notice that the map $p r \circ \iota_{n}=\theta \circ \varphi^{n}$ while $p r$ is the natural projection from $\mathcal{B}_{d R}^{+}$to \mathbb{C}_{p}. Thus $p r \circ \iota_{n}\left(\mathcal{B}_{r i g, K}^{\dagger}\right) \subset \widehat{K_{\infty}}$.

Now use the theorem3.1, $\iota_{n}\left(\mathcal{B}_{r i g, K}^{\dagger}\right)$ contains in $F_{n}[[t]]\left[\iota_{n}\left(\pi_{K}\right)\right]$, which is finite etale over $F_{n}[[t]]$ for n large enough. By commutative algebra, $F_{n}[[t]]\left[\iota_{n}\left(\pi_{K}\right)\right]$ equals to $K^{\prime}[[t]]$ for some finite extension $K^{\prime} \subset \widehat{K_{\infty}}$. Thus $K^{\prime} \subset K_{n}$ for large enough n.

4 Recover $D_{\text {dif }}$

Let D be a φ module over $\mathcal{B}_{\text {rig,K }}^{\dagger}$.
lemma 4.1. For $r \gg 0$, there exists a unique $\mathcal{B}_{r i g, K}^{\dagger, r}$ submodule D_{r}. Such that $\mathcal{B}_{r i g, K}^{\dagger} \otimes_{\mathcal{B}_{r i q, K}^{\dagger r}} D_{r}=$ D and $\varphi\left(D_{r}\right) \subset \mathcal{B}_{r i g, K}^{\dagger, r} \otimes_{\mathcal{B}_{r r g, K}^{\dagger, r}} D_{r}$
Proof. Not hard, see [3]Th1.3.3.
We define $D_{n}=D_{r_{n}}$ for $n \gg 0$. Consider $\mathbf{D}_{n}=K_{n}[[t]] \otimes_{\mathcal{B}_{r r, K}^{+, r_{n}}}^{\iota_{n}} D_{n}$. We have a natural map

$$
\mathbf{D}_{n} \xrightarrow{i d \otimes \varphi} K_{n}[[t]] \otimes_{\mathcal{B}_{r i q, K}^{\dagger+, r_{n}}}^{\iota_{n}}\left(\mathcal{B}_{r i g, K}^{\dagger, r_{n}+1} \otimes_{\mathcal{B}_{r i g, K}^{\dagger+r_{n}}}^{\varphi} D_{n}\right)=K_{n}[[t]] \otimes_{\mathcal{B}_{r i q, K}^{\dagger}, r_{n}}^{\iota_{n}^{n}, r_{n}, \varphi} D_{n+1}
$$

Notice that if we consider \mathbf{D}_{n+1} as a $\mathcal{B}_{r i g, K}^{\dagger, r_{n}}$ module via $a * x:=\varphi(a) x$, then the map

$$
\begin{aligned}
K_{n}[[t]] \times D_{n+1} & \rightarrow \mathbf{D}_{n+1} \\
(a, x) & \mapsto a \otimes x
\end{aligned}
$$

is bilinear. Thus we have $K_{n}[[t]] \otimes_{\mathcal{B}_{r i g, K}^{\dagger}, \varphi}^{\iota_{n}, r_{n}}, D_{n+1} \rightarrow \mathbf{D}_{n+1}$.
Now we have constructed a natural map $\mathbf{D}_{n} \rightarrow \mathbf{D}_{n+1}$ which is $K_{n}[[t]]$ linear. Taking direct limit, we get a $K_{\infty}[[t]]$ module.

There is another way to understand this construction better.
Let $\mathfrak{R}=\underset{\varphi}{\lim } \mathcal{B}_{r i g, K}^{\dagger, r_{n}}$, then $\underset{\iota_{n}}{\lim }: \Re \rightarrow K_{\infty}[[t]]$ is a ring homomorphism. The module can also be defined as $K_{\infty}[[t]] \otimes_{\mathfrak{R}} \underset{\varphi}{\lim } D_{n}$. One can see that it is of the same rank as D by this definition. The Γ_{K} action provides a connection on it (Luo).

5 Compare with $D_{d i f}$

Recall, given a representation $\rho: G_{K} \rightarrow G L_{\mathbb{Q}_{p}}(V)$, while V is a \mathbb{Q}_{p} space of dimension n, we can construct a p-adic differential equation $D_{d i f}(V)$

Luo Jinyue has prove that
Thm 5.1. The p-adic differential equation associated to $D_{r i g}^{\dagger}(V)$ is naturally isomorphic to $D_{d i f}(V)$.

6φ-compatible lattice and (φ, Γ)-modules

In this section, we will have a glimpse of the reason why we need 'filtered'.
Recall for any $D \in \Phi_{\mathcal{B}_{r i g, K}^{\dagger}}$ of rank d, we constructed a sequence of free modules \mathbf{D}_{n} over $K_{n}[[t]]$ for $n \gg 0$. Moreover, by the construction, we have $K_{n+1}[[t]] \otimes_{K_{n}[[t]]} \mathbf{D}_{n}=\mathbf{D}_{n+1}$.
Def 6.1. A φ-compatible lattice of $\mathbf{D}_{*}\left[\frac{1}{t}\right]$ is a sequence of $K_{n}[[t]]$ - lattice \mathbf{M}_{n} of $\mathbf{D}_{n}\left[\frac{1}{t}\right]$ for $n \gg 0$ such that $\mathbf{M}_{n+1}=\mathbf{M}_{n} \otimes_{K_{n}[[t]]} K_{n+1}[[t]]$. We say two such lattices are equal if they are equal for sufficiently large n.

One can see that \mathbf{D}_{n} itself is such a lattice. In general, if D^{\prime} is a sub- φ-module of $D\left[\frac{1}{t}\right]$ (finite rank of course), then \mathbf{D}_{n}^{\prime} is a φ-compatible lattice.

In fact, all φ-compatible lattice comes from a unique D^{\prime}.
We give a construction of D^{\prime}, for details, see [3]2.1.
Let $\mathbf{M}_{n} \subset \mathbf{D}\left[\frac{1}{t}\right]$ be a φ-compatible lattice.
lemma 6.1. There exists an $h \geq 0$ such that $t^{h} \mathbf{D}_{n} \subset \mathbf{M}_{n} \subset t^{-h} \mathbf{D}_{n}$ for all $n \gg 0$.
Now for $n \gg 0$, let $M_{n}=\left\{x \in t-h \mathbf{D}_{n}: 1 \otimes_{\mathcal{B}_{r i g, K}^{\dagger}+r_{m}}^{\iota_{m}} x \in \mathbf{M}_{m} \forall m \geq n\right\}$. (Cautions: $1 \otimes_{\mathcal{B}_{r i g, K}}^{\iota_{m}, r_{m}} \mid x \in$ \mathbf{M}_{m} dose not imply $1 \otimes_{\mathcal{B}_{r i g, K}^{\dagger+, r_{m+1}}}^{\iota_{m+1}} x \in \mathbf{M}_{m+1}$ but $\left.1 \otimes_{\mathcal{B}_{r i g, K}^{\dagger} \iota_{m}, r_{m}}^{\iota_{m},} \varphi(x) \in \mathbf{M}_{m}\right)$
lemma 6.2. M_{n} is a free module over $\mathcal{B}_{\text {rig,K }}^{\dagger, r_{n}}$ of rank d
lemma 6.3. $K_{n}[[t]] \otimes_{\mathcal{B}_{r i g, K}^{\dagger}, r_{n}}^{\iota_{n}} M_{n}=\mathbf{M}_{n}$
We omit the proofs, since we to analyze the Frechet topology carefully. See [3]2.1 and [2]4.2. Let $D^{\prime}=\lim _{\rightarrow} M_{n}$, the previous lemma implies that $\mathbf{D}_{n}^{\prime}=M_{n}$.

7 Filtered $\left(\varphi, N, G_{K}\right)$-modules

In this section, we introduce the language of filtered $\left(\phi, N, G_{K}\right)$-modules. For a local field K over \mathbb{Q}_{p}, define K_{0} be the maximal unramified extension of K / \mathbb{Q}_{p} and σ be the frobenius $W\left(x \mapsto x^{p}\right)$.

7.1 Why isocrystals?

This part comes from [4]2.7 (Page 83-101).
For simply, we only consider elliptic curves, all things also hold for general abelian varieties.
For an elliptic curve E / K and any prime $l \neq p$, we have:
Thm 7.1. E has a good reduction if and only if $T_{l}(E)$ is an unramified Galois representation. In fact, we have

But when we consider the case when $l=p$, the previous theorem files since the reduction of E does not have so mach p-torsion points. Grothendieck gave a good analogue of the criterion.

Thm 7.2. E has a good reduction if and only if $E\left[p^{n}\right]$ admits an integral model \mathscr{G}_{n} (i.e.there exists a finite flat group scheme $\mathscr{G}_{n} / \mathcal{O}_{K}$ such that $E\left[p^{n}\right]=K \otimes_{\imath_{K}} \mathscr{G}_{n}$) for any n.

The previous \mathscr{G}_{n} satisfies:
(1). \mathscr{G}_{n} is of order $p^{2 n}$.
(2). There exists $i_{n}: \mathscr{G}_{n} \rightarrow \mathscr{G}_{n+1}$ comes from the inclusion $E\left[p^{n}\right] \rightarrow E\left[p^{n+1}\right]$.
(3). i_{n} is an isomorphism from \mathscr{G}_{n} to $\mathscr{G}_{n+1}\left[p^{n}\right]$.

These properties make us to consider a new object, so called 'p-divisible group', and the number 2 is called the height. A theorem by Dieudonné tells us:

Thm 7.3. If k is a perfect field of character $p>0$. There exists an anti-equivalence between the category of p-divisible groups over k and the category of free $W(k)$-modules D equipped with a Frobenius semi-linear action \mathcal{F} such that $p D \subset \mathcal{F}(D)$.

These facts provide us a covariant functor from elliptic curves with good reduction to φ-modules over $W(k)$, denoted by \mathbf{D}

Recall we have
Thm 7.4. For two elliptic curves $E_{1}, E_{2}, l \neq p$, the natural map

$$
\mathbb{Z}_{p} \otimes_{\mathbb{Z}} \operatorname{Hom}\left(E_{1}, E_{2}\right) \rightarrow \operatorname{Hom}_{G_{K}}\left(T_{l}\left(E_{1}\right), T_{l}\left(E_{2}\right)\right)
$$

is injective.

Likewise, we have:
Thm 7.5. D is faithful.

7.2 Definitions

For details, see [5]6.4, or [4]2.8 (page 101-127).
We have already seen that φ can be used to classify abelian varieties which have good reductions. For those with bad reductions, we need another operator N.

Def 7.1. Let $L / K / \mathbb{Q}_{p}$ be two local fields such that L / K is Galois. A $\left(\varphi, N, G_{L / K}\right)$-module is a finite dimensional vector space V over L_{0} with a σ-semilinear action ϕ, a $G_{L, K}$-semilinear action and a linear endomorphism N, such that:
(1). φ is invertible.
(2). $p \varphi \circ N=N \circ \varphi$
(3). The action of $G_{L / K}$ is commute with N and φ.

Def 7.2. A filtered $\left(\varphi, N, G_{L / K}\right)$-module is a $\left(\varphi, N, G_{L / K}\right)$-module D as well as a separable and exhaustive descending filtration on D_{L}, which is compatible with $G_{L / K}$. We do not assume anything between the filtration and (φ, N) action.

A $\left(\varphi, N, G_{L / K}\right)$-module is considered to be the same as its base changes.
Def 7.3. Given two filtered $\left(\varphi, N, G_{L / K}\right)$-modules D_{1}, D_{2}, we define their tensor product $D_{1} \otimes D_{2}$ as:
(1). The vector space $D_{1} \otimes_{L_{0}} D_{2}$;
(2). $\varphi(x \otimes y)=\varphi_{1}(x) \otimes \varphi_{2}(y)$ the same as $G_{L / K}$-action;
(3). $N(x \otimes y)=N_{1}(x) \otimes y+x \otimes N_{2}(y)$;
(4). $F i l^{k}\left(X_{L} \otimes_{L} Y_{L}\right)=\sum_{i+j=k} F i l^{i}\left(X_{L}\right) \otimes_{L} F i l^{j}\left(Y_{L}\right)$

Moreover, for a $\left(\varphi, N, G_{L / K}\right)$-module D, define the filtration of $\bigwedge^{k} D_{L}$ to be the images of $\operatorname{Fil}^{l}\left(\bigotimes^{k} D_{L}\right), l \in \mathbb{Z}$.

For a $\left(\varphi, N, G_{L / K}\right)$-module D of dimension 1, choose a basis e and suppose $\varphi(e)=\lambda e$, define $t_{N}(D)=v_{p}(\lambda), t_{H}(D)=\max \left\{k: F i l^{k}\left(D_{L}\right) \neq 0\right\}$. If $\operatorname{dim}_{L_{0}} D=d$, define $t_{N}(D)=t_{N}\left(\bigwedge^{d} D\right)$ and $t_{H}(D)=t_{H}\left(\bigwedge^{d} D\right)$.
lemma 7.1. N is nilpotent.
Proof. Let $D^{\prime}=\cap \operatorname{Im}\left(N^{n}\right)$, then $\varphi\left(D^{\prime}\right)=D^{\prime}$ and N is invertible on D^{\prime}. Choose a basis and write φ, N as matrixes F, A.

Then we have $p F A^{\varphi}=A F$, thus $p^{\operatorname{dim} D} \operatorname{det} F \operatorname{det} A=\operatorname{det} F \operatorname{det} A$ which implies $\operatorname{dim} D=0$
Def 7.4. A filtered $\left(\varphi, N, G_{L / K}\right)$-module D is called weakly admissible if $t_{N}(D)=t_{H}(D)$ and for all submodule D^{\prime} of $D, t_{N}\left(D^{\prime}\right) \leq t_{H}\left(D^{\prime}\right)$.

8 Filtered $\left(\varphi, N, G_{K}\right)$-modules and (φ, Γ)-modules

8.1 From filtered $\left(\varphi, N, G_{K}\right)$-modules to (φ, Γ)-modules

Let ℓ_{X} be a variable which is considered as ${ }^{\prime} \log (X)$ ' and we prolong the $\tilde{\mathcal{B}}_{\text {rig }}^{\dagger}$ to $\tilde{\mathcal{B}}_{\text {rig }}^{\dagger}\left[\ell_{X}\right]$. Let \log be the p-adic logarithm such that $\log (p)=0$. Given an $f \in \mathbb{Q}_{p}[[X]]^{*}$, we define $\log (f)$ as $\log (f(0))+\log \left(\frac{f}{f(0)}\right)$.
Def 8.1. We prolong the $\left(\varphi, \Gamma_{K}\right)$-action as following:
(1). $\varphi\left(\ell_{X}\right)=\ell_{X}+\log \left(\frac{\varphi(X)}{X}\right)$.
(2). $\gamma\left(\ell_{X}\right)=\ell_{X}+\log \left(\frac{\gamma(X)}{X}\right)$.

Prolong the ι_{n} as:
(3). $\iota_{n}\left(\ell_{X}\right)=\log \left(\iota_{n}(X)\right)$

Finally define the monodromy operator N as:
(4). $N(f)=-\frac{p}{p-1} \frac{d}{d \ell_{X}}$

Let D be a filtered (φ, N) - module (over K), consider $V=\left(\mathcal{B}_{r i g, K}^{\dagger}\left[\ell_{X}\right] \otimes_{K_{0}} D\right)^{N=0}$. (Recall, \mathbf{N} is defined to be $\left.\mathbf{N}(a \otimes x)=N(a) \otimes x+a \otimes N_{D}(x).\right)$
lemma 8.1. V is a finite free module over $\mathcal{B}_{\text {rig }, K}^{\dagger}$ of $\operatorname{rank} \operatorname{dim}(D)$.
Proof. Recall, the operator N on D is nilpotent.
We induct on $\operatorname{dim}(D)$. If $\operatorname{dim}(D)=1$, then $N_{D}=0$, thus the lemma holds since $\left(\mathcal{B}_{\text {rig,K }}^{\dagger}\left[\ell_{X}\right]\right)^{N=0}=$ $\mathcal{B}_{\text {rig,K }}^{\dagger}$. If the lemma holds for $\operatorname{dim} \leq n$, let $\operatorname{dim}(D)=n$

We consider an exact sequence

$$
0 \rightarrow D^{\prime} \rightarrow D \rightarrow K_{0} \rightarrow 0
$$

while D^{\prime} is a subspace of dimension $n-1$ contains $N_{D}(D)$.
Thus by snake lemma, we have an exact sequence

$$
0 \rightarrow\left(\mathcal{B}_{r i g, K}^{\dagger}\left[\ell_{X}\right] \otimes_{K_{0}} D^{\prime}\right)^{\mathbf{N}=0} \rightarrow\left(\mathcal{B}_{r i g, K}^{\dagger}\left[\ell_{X}\right] \otimes_{K_{0}} D\right)^{\mathbf{N}=0} \rightarrow\left(\mathcal{B}_{r i g, K}^{\dagger}\left[\ell_{X}\right] \otimes_{K_{0}} K_{0}\right)^{\mathbf{N}=0}
$$

We only need to prove that the last one is surjective. In fact, let $e \in D$ maps to 1 . Then $\sum_{i \geq 0}\left(\frac{p}{p-1}\right)^{i} \ell_{X}^{i} \otimes N_{D}^{i}(e)$ is a preimage of 1.

Thus V is a $\left(\varphi, \Gamma_{K}\right)$-module. We then use the given filtration to 'twist' V, which is what we want.

Let $D^{(n)}$ be the (φ, N)-module $K_{0} \otimes_{K_{0}}^{\varphi^{-n}} D$ (i.e. the (φ, N) operators stay the same but the scalar multiplication is given by $\left.a * x=\varphi^{-n}(a) x\right)$. The filtration of $D_{K}^{n}=K \otimes_{K_{0}} D^{(n)}$ is the one passed from $K \otimes_{K_{0}} D$ by $i d \otimes \varphi^{n}$. We endow $K_{n}((t))$ with the natural filtration $t^{i} K_{n}[[t]]$ and define

$$
M_{n}(D)=F i l^{0}\left(K_{n}((t)) \otimes_{K} D_{K}^{(n)}\right)
$$

lemma 8.2. $\left\{M_{n}(D)\right\}$ is a $K_{n}[[t]]$-lattice of $\mathbf{V}_{n}=K_{n}((t)) \otimes_{\mathcal{B}_{r i g, K}^{\dagger}}^{\iota_{n}, r_{n}} V_{r_{n}}$ for $n \gg 0$ and they form a φ-compatible lattice.

Proof. Notice that for $n \gg 0$, we have

$$
\begin{aligned}
& K_{n}((t)) \otimes_{\mathcal{B}_{r i g, K}^{\dagger}, \iota_{n}}^{\iota_{n}} \quad V=K_{n}((t)) \otimes_{\mathcal{B}_{r i g, K}^{\dagger, ~}, r_{n}\left[\ell_{X}\right]}^{\iota_{n}}\left(\mathcal{B}_{r i g, K}^{\dagger, r_{n}}\left[\ell_{X}\right] \otimes_{\mathcal{B}_{r i g, K}^{\dagger, r_{n}}}\left(\mathcal{B}_{r i g, K}^{\dagger, r_{n}}\left[\ell_{X}\right] \otimes_{K_{0}} D\right)^{N=0}\right) \\
& =K_{n}((t)) \otimes_{\mathcal{B}_{r i g, K}^{\dagger}+\ell_{n}}^{\iota_{n}}\left[\ell_{X}\right]\left(\mathcal{B}_{r i g, K}^{\dagger, r_{n}}\left[\ell_{X}\right] \otimes_{K_{0}} D\right) \\
& =K_{n}((t)) \otimes_{K_{0}}^{\varphi^{-n}} D=K_{n}((t)) \otimes_{K} D_{K}^{(n)}
\end{aligned}
$$

Choose a basis $\left\{e_{i}\right\}$ compatible with filtration and let $h_{i}=h\left(e_{i}\right)$ (i.e. $F i l^{m} D_{K}^{(n)}=\sum_{h_{i} \geq m} K e_{i}$). Then $F i l^{0}\left(K_{n}((t)) \otimes_{K} D_{K}^{(n)}\right)$ has a $K_{n}[[t]]$-basis consists of $t^{-h_{i}} \otimes e_{i}$.

The φ-compactiblity can be proved by $\left\{\varphi\left(e_{i}\right)\right\}$ forms a basis of $D_{K}^{(n+1)}$ with $h_{D^{(n+1)}}\left(\varphi\left(e_{i}\right)\right)=$ $h_{D^{(n)}}\left(e_{i}\right)$.

We define $\mathcal{M}(D)$ to be the $\left(\varphi, \Gamma_{K}\right)$-module which is included in $V\left[\frac{1}{t}\right]$ and associated to $M_{n}(D)$.
Now if D is a $\left(\varphi, N, G_{L / K}\right)$-module, one can check that $\mathcal{M}_{L}(D)$ is a $\left(\varphi, \Gamma_{L}\right)$-module with a $G_{L / K}$-action. We define $\mathcal{M}(D)=\mathcal{M}_{L}(D)^{G_{L / K}}$

8.2 From (φ, Γ)-modules to filtered $\left(\varphi, N, G_{K}\right)$-modules

8.2.1 General facts about connections

Let E be a field of character 0 . We define $\nabla(f)=t \frac{d f}{d t}$ for all $f \in E((t))$. Let M be a finite dimensional $E((t))$-space. A connection on M is an additive map $\nabla_{M}: M \rightarrow M$ such that $\nabla_{M}(\lambda x)=\nabla(\lambda) x+\lambda \nabla_{M}(x)$.
lemma 8.3. $\operatorname{dim}_{E} M^{\nabla_{M}=0} \leq \operatorname{dim}_{E((t))} M$
Proof. In fact, we may prove that the natural map $M^{\nabla_{M}=0} \otimes_{E} E((t)) \rightarrow M$ is injective.
We say the connection is trivial if $\operatorname{dim}_{E} M^{\nabla_{M}=0}=\operatorname{dim}_{E((t))} M\left(\right.$ or $M^{\nabla_{M}=0} \otimes_{E} E((t)) \rightarrow M$ is bijective).
lemma 8.4. The connection is trivial if and only if there exists an $E[[t]]$-lattice M_{0} such that $\nabla_{M}\left(M_{0}\right) \subset t M_{0}$

Proof. If ∇_{M} is trivial, then let $M_{0}=E[[t]] \otimes_{E} M^{\nabla_{M}=0}$.
Now suppose M_{0} is such a lattice. For any $x \in M_{0}$, if $\nabla_{M}(x)=t^{n} y$, then

$$
\nabla_{M}\left(x-\frac{\nabla_{M}(x)}{n}\right)=\nabla_{M}(x)-\nabla_{M}\left(\frac{t^{n} y}{n}\right)=-\frac{t^{n} \nabla_{M}(y)}{n} \in t_{0}^{M}
$$

Now use this fact and t-adically approximation, we can choose elements $e_{1}, \ldots, e_{d} \in M_{0}$ such that their projection to $M_{0} / t M_{0}$ form a basis.

The proof as well as Nakayama's lemma also imply that the lattice is unique.
lemma 8.5. If N is a subspace of M which is stable under ∇_{M} and ∇_{M} is trivial on M, then ∇_{M} is trivial on N.

Proof. Let $M_{0}=E[[t]] \otimes_{E} M^{\nabla_{M}=0}$, it is a lattice of M since ∇_{M} is trivial on M. Thus $M_{0} \cap N$ is a lattice of N, which implies $\operatorname{dim}_{E} N^{\nabla_{M}=0}=\operatorname{dim}_{E((t))} N$ (lemma 8.4)
Def 8.2. Let $D \in \Phi \Gamma_{\mathcal{B}_{r i g, K}^{\dagger}}$, we have constructed a $K_{n}((t))$-space $\mathbf{D}_{n}\left[\frac{1}{t}\right]$ for $n \gg 0$ with a Γ_{K}-action, define

$$
\nabla_{D}=\lim _{\gamma \rightarrow 1} \frac{\log \gamma}{\log _{p} \chi(\gamma)}
$$

It is a connection on $\mathbf{D}_{n}\left[\frac{1}{t}\right]$
Def 8.3. We say D is of locally trivial differential if ∇_{D} is trivial on \mathbf{D}_{n} for $n \gg 0$.
lemma 8.6. Let D be a $\left(\varphi, N, G_{K}\right)$-module, then $\mathcal{M}(D)$ is of locally trivial differential.
Proof. See the proof of lemma 8.2

8.2.2 Construction

We will use the following p-adic local monodromy theorem:
Thm 8.1. Let $D \in \Phi_{\mathcal{B}_{r i g, K}^{\dagger}}$ with a connection ∇_{D}, then there exists a finite extension L / K such that ∇_{D} is trivial on $\mathcal{B}_{r i g, L}^{\dagger, r_{n}}\left[\ell_{X}\right] \otimes_{\mathcal{B}_{r i g, K}^{\dagger}, r_{n}} D$.

Proof. [1]
For $D \in \Phi \Gamma_{\mathcal{B}_{r i g, K}^{\dagger}}$, we define

$$
\operatorname{Sol}_{L}(D)=\left(\mathcal{B}_{r i g, L}^{\dagger}\left[\ell_{X}\right] \otimes_{\mathcal{B}_{r i g, K}^{\dagger}} D\right)^{\Gamma_{L}} ; S_{L}(D)=\left(\mathcal{B}_{r i g, L}^{\dagger}\left[\ell_{X}\right] \otimes_{\mathcal{B}_{r i g, K}^{\dagger}} D\right)^{\nabla=0}
$$

It is a fact that there exists an L such that $\operatorname{Sol}_{L}(D)=S_{L}(D)$ and $\operatorname{dim}_{L_{0}} S_{L}(D)=\operatorname{rank}(D)$. In this case, $\operatorname{Sol}_{L}(D)$ is a $\left(\varphi, N, G_{L / K}\right)$-module.
Thm 8.2. Let \mathbf{M} be a $\left(\varphi, \Gamma_{K}\right)$-module with locally trivial differential, then there exists a $\left(\varphi, \Gamma_{K}\right)$-module $\mathbf{D} \subset \mathbf{M}\left[\frac{1}{t}\right]$ such that $\mathbf{D}\left[\frac{1}{t}\right]=\mathbf{M}\left[\frac{1}{t}\right]$ and $\nabla_{\mathbf{M}}(\mathbf{D}) \subset t \mathbf{D}$.

Moreover, \mathbf{D} determines a filtration on $L \otimes_{L_{0}} \operatorname{Sol}_{L}(\mathbf{M})$ whose induced $\left(\varphi, \Gamma_{K}\right)$-module is \mathbf{M}
Proof. The first part comes from lemma 8.4 and its remark.
Now we prove the second part.
Notice that

$$
L_{n}[[t]] \otimes_{L_{0}}^{\varphi^{-n}} \operatorname{Sol}_{L}(\mathbf{M})=L_{n}[[t]] \otimes_{\mathcal{B}_{r i g, K}^{\dagger}}^{\iota_{n}, r_{n}} \mathbf{D}_{n}
$$

For $n \gg 0, L_{n}((t)) \otimes_{\mathcal{B}_{r i g, K}^{\dagger+, r_{n}}}^{\iota_{n}} \mathbf{D}_{n}=L_{n}((t)) \otimes_{\mathcal{B}_{r i g, K}^{\dagger}}^{\iota_{n}, r_{n}} \mathbf{M}_{n}$ has a natural filtration given by $t^{k} L_{n}[[t]] \otimes_{\mathcal{B}_{r i g, K}^{\dagger, r r_{n}}}^{\iota_{n}} \mathbf{M}_{n}$. Restrict the filtration on $L \otimes_{L_{0}}^{\varphi^{-n}} \operatorname{Sol}_{L}(\mathbf{M})$ then pull back to $L \otimes_{L_{0}} \operatorname{Sol}_{L}(\mathbf{M})$, we construct the filtration.

Thm 8.3 (Theorem A in Berger's thesis). The functor \mathcal{M} is an equivalence between the category of $\left(\phi, \Gamma_{K}\right)$-modules over $\mathcal{B}_{\text {rig,K }}^{\dagger}$ with locally trivial differential to the category of filtered $\left(\phi, N, G_{K}\right)$-modules.

9 Slopes and weakly admissible filtered (ϕ, N, G_{K})-modules

In this section, we will prove the following theorem by calculation.
Thm 9.1 (Theorem B in Berger's thesis[3]). The functor \mathcal{M} induces an equivalence between the category of étale $\left(\phi, \Gamma_{K}\right)$-modules over $\mathcal{B}_{r i g, K}^{\dagger}$ with locally trivial differential to the category of weakly admissible filtered $\left(\phi, N, G_{K}\right)$-modules.

In fact, we will prove that:
Thm 9.2. For $a\left(\varphi, N, G_{L / K}\right)$-module D, then the slope of $\operatorname{det} D$ is equal to $t_{N}(D)-t_{H}(D)$.
Proof. One can check that \mathcal{M} is an exact tensor functor, so we only need to prove for $\operatorname{dim} D=1$.
In this case, $N_{D}=0$, assume $D=L_{0} e, \varphi(e)=\lambda e$ where $\lambda \in \mathrm{L}_{0}, t_{H}=h\left(\right.$ so $\left.t_{N}=v_{p}(\lambda)\right)$. Then, $\mathcal{M}_{L}(D)\left[\frac{1}{t}\right]=\mathcal{B}_{\text {rig,L } L}^{\dagger}\left[\frac{1}{t}\right] e$. A naive calculation provides that $\mathcal{M}_{L}(D)=t^{-h} \mathcal{B}_{\text {rig,L }}^{\dagger} \otimes V$, where $V=\mathcal{B}_{\text {rig }, L}^{\dagger} e$.

Thus, $\varphi\left(t^{-h} e\right)=p^{-h} \lambda t^{-h} e$, this proves the theorem.
To prove the theorem, we only need to show that.
lemma 9.1. Let D is a semi-stable ϕ-module over $\mathcal{B}_{\text {rig,K }}^{\dagger}$ of slope 0 . Then D is étale.
Proof. See Ji Yibo's note.

10 Application

Thm 10.1 (Theorem A by Colmez-Fontaine). Any weakly admissible (ϕ, N, G_{K})-module comes from a potentially semi-stable representation.

Proof. Let D be a weakly admissible $\left(\phi, N, G_{K}\right)$-module, then $\mathcal{M}(D)$ is étale $\left(\phi, \Gamma_{K}\right)$-module, so comes from a Galois representation V.

Recall [2] $D_{s t, L}(V)=\left(\mathcal{B}_{r i g, L}^{\dagger}\left[\frac{1}{t}, \ell_{X}\right] \otimes_{\mathcal{B}_{r i g, K}^{\dagger}} D_{r i g}^{\dagger}(V)\right)^{\Gamma_{L}}$. Thus we have

$$
\begin{aligned}
D_{s t, L}(V) & =\left(\mathcal{B}_{r i g, L}^{\dagger}\left[\frac{1}{t}, \ell_{X}\right] \otimes_{\mathcal{B}_{r i g, K}^{\dagger}} \mathcal{M}(D)\right)^{\Gamma_{L}} \\
& =\left(\mathcal{B}_{r i g, L}^{\dagger}\left[\frac{1}{t}, \ell_{X}\right] \otimes_{\mathcal{B}_{r i g, K}^{\dagger}}\left(\mathcal{M}_{L}(D)\right)^{G_{L / K}}\right)^{\Gamma_{L}} \\
& =\left(\mathcal{B}_{r i g, L}^{\dagger}\left[\frac{1}{t}, \ell_{X}\right] \otimes_{\mathcal{B}_{r i g, L}^{\dagger}} \mathcal{M}_{L}(D)\right)^{\Gamma_{L}}(\text { Galois descent }) \\
& =\left(\mathcal{B}_{r i g, L}^{\dagger}\left[\frac{1}{t}, \ell_{X}\right] \otimes_{\mathcal{B}_{r i g, L}^{\dagger}\left[\frac{1}{t}\right]}\left(\mathcal{B}_{r i g, L}^{\dagger}\left[\frac{1}{t}, \ell_{X}\right] \otimes_{L_{0}} D\right)^{N=0}\right)^{\Gamma_{L}} \\
& =\left(\mathcal{B}_{r i g, L}^{\dagger}\left[\frac{1}{t}, \ell_{X}\right] \otimes_{L_{0}} D\right)^{\Gamma_{L}}=L_{0} \otimes_{L_{0}} D=D
\end{aligned}
$$

This proves that V is semi-stable after restricting on G_{L}
Thus we only need to check the given filtration on D_{L} is the same as the one comes from $\mathcal{B}_{d R} \otimes_{\mathbb{Q}_{p}} V$.

In fact, we have

for $n \gg 0$.
A theorem by Fontaine implies

$$
L_{n}[[t]] \otimes_{\mathcal{B}_{r i g, L}^{\dagger, r_{n}}}^{\iota_{n}} D_{r i g}^{\dagger, r_{n}}(V)=F i l^{0}\left(L_{n}((t)) \otimes_{L} D_{d R, L}(V)^{(n)}\right)
$$

Hence

$$
\operatorname{Fil}^{0}\left(L_{n}((t)) \otimes_{L} D_{L}^{(n)}\right)=\operatorname{Fil}^{0}\left(L_{n}((t)) \otimes_{L} D_{d R, L}(V)^{(n)}\right)
$$

which proves the two filtrations are the equal.

References

[1] Kiran S.Kedlaya, A p-adic local monodromy theorem
[2] Laurent Berger, Représentations p-adiques et équations différentielles
[3] Laurent Berger, Représentations p-adiques et (φ, N)-modules filtrés
[4] Oliver Brinon and Brian Conrad, CMI summer school notes on p-adic hodge theory (preliminary version)
[5] J.M.Fontain and Yi Ouyang, Theory of p-adic Galois Representations

