Sketch of the proof to ThA

Jiahong Yu

August 2020

Notation: K is a local field of character 0. $\mathcal{B}_{K}^{\dagger}$ is the ring of overconvergent elements and $\mathcal{B}_{rig,K}^{\dagger}$ is the Robba ring of K.

Finiteness of $\mathcal{B}_{ria,L}^{\dagger}/\mathcal{B}_{ria,K}^{\dagger}$ 1

In this section, we will prove that

Thm 1.1. For finite extension L/K, $\mathcal{B}_{rig,L}^{\dagger}$ is finite over $\mathcal{B}_{rig,K}^{\dagger}$. More preciously, $\mathcal{B}_{rig,L}^{\dagger} = \mathcal{B}_{L}^{\dagger} \otimes_{\mathcal{B}_{L}^{\dagger}}$ $\mathcal{B}_{riq,K}^{\intercal}$.

We only need to prove the case L/K is Galois. So we make this assumption from now on.

lemma 1.1. If L/K is finite Galois, then $(\mathcal{B}_{rig,L}^{\dagger})^{H_{L/K}} = \mathcal{B}_{rig,K}^{\dagger}$

Proof. Let $x \in (\mathcal{B}_{rig,L}^{\dagger})^{H_{L/K}}$, we may choose $x_i \in \mathcal{B}_L^{\dagger}$ tend to x under Frechet topology. Then $\frac{T_{r(x_i)}}{|H_{L/K}|} \text{ tend to } x \text{ and } \in \mathcal{B}_K^{\dagger} \text{ since } \mathcal{B}_L^{\dagger}^{H_{L/K}} = \mathcal{B}_K^{\dagger}. \text{ Thus } x \in \mathcal{B}_{rig,K}^{\dagger}$

As a corollary, $\mathcal{B}_{rig,L}^{\dagger}$ is integral over $\mathcal{B}_{rig,K}^{\dagger}$

proof to the theorem. Step 1: We prove that $\mathcal{B}_L^{\dagger} \otimes_{\mathcal{B}_K^{\dagger}} \mathcal{B}_{rig,K}^{\dagger}$ is a domain.

In fact, it is sufficient to prove $\mathcal{B}_{riq,K}^{\dagger}$ is transcendental over $\mathcal{B}_{K}^{\dagger}$. We use the power series definition.

Recall that $\mathcal{B}_{K}^{\dagger}$ is the ring of bounded analytic functions on $\{x \in \mathbb{C}_{p} : r < |x| < 1\}$ $(\Gamma_{con,K}^{r})$ for some r < 1 with coefficients in K'_0 and $\mathcal{B}^{\dagger}_{rig,K}$ is the ring of analytic functions on $\{x \in \mathbb{C}_p : r < |x| < 1\}$ for some r < 1 with coefficients in K'_0 ($\Gamma^{an,r}_{con,K}$). (Following Kedlaya's notation in [1])

If we have $X^n + a_{n-1}X^{n-1} + \dots + a_0 = 0$ for an $X \in \mathcal{B}_{rig,K}^{\dagger,r}$ and $a_i \in \mathcal{B}_K^{\dagger,r} \forall i$, then one can prove that X is bounded by $\sum sup|a_i|$.

Step 2: $\mathcal{B}_L^{\dagger} \otimes_{\mathcal{B}_K^{\dagger}} \mathcal{B}_{rig,K}^{\dagger}$ is a normal domain. In fact, we can prove the following statement.

lemma 1.2. Suppose k is a field and A is an k-algebra which is also a normal domain. Let l is a separable finite extension of k, and $l \otimes_k A$ is also a domain. Then $l \otimes_k A$ is normal.

proof to the lemma. Since everything remains the same after taking direct limit, we may assume A is finitely generated.

Thus we only need to check Serre's (R1) and (S2) conditions.

(R1) holds since $l \otimes_k A/A$ is unramified.

Now we check (S2). Let \mathcal{P} is an ideal of height 2 (height 0, 1 is trivial). Then $\mathcal{P} \cap A$ is also of height 2 since $l \otimes_k A/k$ is finite. The (S2) condition as well as $l \otimes_k A \cap K = A$, while K is the quotient field of A, imply the statement.

The theorem is now easy to prove. The lemma1 tells us $\mathcal{B}_{rig,L}^{\dagger}$ is integral over $\mathcal{B}_{rig,K}^{\dagger}$, and so is integral over $\mathcal{B}_{L}^{\dagger} \otimes_{\mathcal{B}_{K}^{\dagger}} \mathcal{B}_{rig,K}^{\dagger}$. Comparing the degree of extension one may prove that they have the same fractional field. Then the lemma1 implies they are same.

Cor 1.1. $H^n(H_{L/K}, \mathcal{B}_{rig,L}^{\dagger}) = 0$ for all n > 0.

2 Galois descent

Let L/K be finite Galois.

Thm 2.1. Let M be a finite free $\mathcal{B}_{rig,L}^{\dagger}$ module with a semi-linear $H_{L/K}$ action. Then $M = M^{H_{L/K}} \otimes_{\mathcal{B}_{rig,K}^{\dagger}} \mathcal{B}_{rig,L}^{\dagger}$ as twisted $H_{L/K}$ module.

lemma 2.1. $(\mathcal{B}_{rig,K}^{\dagger})^{\times} = (\mathcal{B}_{K}^{\dagger})^{\times}$

proof to the Galois descent. We induct on the rank of M.

If the rank is 1, we choose a basis e of M. Define $\gamma(e) = \varphi(\gamma)e$. Then φ is a cross homomorphism from $H_{L/K}$ to $(\mathcal{B}_{rig,K}^{\dagger})^{\times}$. By the lemma, φ is a cross homomorphism from $H_{L/K}$ to $(\mathcal{B}_{K}^{\dagger})^{\times}$. By Galois descent of field (Recall $Gal(\mathcal{B}_{L}^{\dagger}/\mathcal{B}_{K}^{\dagger}) = H_{L/K}$), we have done in this case.

If we have done for rk(M) = n - 1, assume now rk(M) = n.

By the Galois descent of field (use it to the quotient fields of Robba rings), we find that there exists an $H_{L/K}$ invariant element $e \neq 0 \in M$. Let N be the saturated span of e in M (See Kedlaya). Then N is a rank 1 submodule of M, which is closed under the action of $H_{L/K}$.

Thus we have the following commutative diagram.

By the cor1.1, f is surjective, then use 5-lemma and the induction hypothesis, β is isomorphic.

3 More on $\mathcal{B}_{K}^{\dagger}$ and $\mathcal{B}_{riq,K}^{\dagger}$

We use the method in §1 to prove more properties of $\mathcal{B}_{K}^{\dagger}$ and $\mathcal{B}_{riq,K}^{\dagger}$.

For a finite extension L/K, we fix an element $\overline{\pi_L} \in \mathbb{E}_L^+$ such that $\mathbb{E}_L = \mathbb{E}_K(\pi_L)$. Let P be the monic minimal polynomial of π_L , \tilde{P} be a lifting of P in $\mathcal{A}_{inf,K}$. By Hensel's lemma, \tilde{P} has a solution in \mathcal{B}_K^{\dagger} and moreover $\mathcal{B}_L^{\dagger} = \mathcal{B}_K^{\dagger}(\pi_L)$.

Thm 3.1. We choose a sufficiently large r such that $\pi_L \in \mathcal{B}_L^{\dagger,r}$ and $\tilde{P}'(\pi_L)$ is invertible in $\mathcal{B}_L^{\dagger,r}$. Then we have,

(1).
$$\mathcal{B}_L^{\dagger,r} = \mathcal{B}_K^{\dagger,r}[\pi_L]$$

(2). $\mathcal{B}_{rig,L}^{\dagger,r} = \mathcal{B}_{rig,K}^{\dagger,r}[\pi_L]$

Proof. Just use the same argument in th1.1.

As an application we use the result to consider the image of ι_n . Recall we have $r_n = p^n(p-1)$ and we have define $\iota_0 : \tilde{\mathcal{B}}^{\dagger,r_0} \to \mathcal{B}^+_{dR}$. Let $X = \pi_K$, t = log(1+X). Then for sufficiently large r, there exists an isomorphism between $\mathcal{B}^{\dagger,r}_{rig,K}$ and $\Gamma^r_{con,K}$.

Def 3.1. We define $\iota_n = \iota_0 \circ \varphi^{-n}$.

Prop 3.1. For sufficiently large n, $\iota_n(\mathcal{B}_{rig,K}^{\dagger,r_n}) \subset K_n[[t]]$, while $K_n = K(\mu_{p^n})$.

Proof. Let F be the maximal unramified extension of \mathbb{Q}_p in K. Then for sufficiently large r, $\mathcal{B}_{rig,F}^{\dagger,r} = \Gamma_{an,F}^r$, and π_F can be chosen to be X. Since $\iota_n(X) = \epsilon^{(n)} exp(\frac{t}{p^n}) - 1$, we prove the proposition.

For K, notice that the map $pr \circ \iota_n = \theta \circ \varphi^n$ while pr is the natural projection from \mathcal{B}_{dR}^+ to \mathbb{C}_p . Thus $pr \circ \iota_n(\mathcal{B}_{rig,K}^{\dagger}) \subset \widehat{K_{\infty}}$.

Now use the theorem 3.1, $\iota_n(\mathcal{B}_{rig,K}^{\dagger})$ contains in $F_n[[t]][\iota_n(\pi_K)]$, which is finite etale over $F_n[[t]]$ for n large enough. By commutative algebra, $F_n[[t]][\iota_n(\pi_K)]$ equals to K'[[t]] for some finite extension $K' \subset \widehat{K_{\infty}}$. Thus $K' \subset K_n$ for large enough n.

4 Recover D_{dif}

Let D be a φ module over $\mathcal{B}_{rig,K}^{\dagger}$.

lemma 4.1. For r >> 0, there exists a unique $\mathcal{B}_{rig,K}^{\dagger,r}$ submodule D_r . Such that $\mathcal{B}_{rig,K}^{\dagger} \otimes_{\mathcal{B}_{rig,K}^{\dagger,r}} D_r = D$ and $\varphi(D_r) \subset \mathcal{B}_{rig,K}^{\dagger,r} \otimes_{\mathcal{B}_{rig,K}^{\dagger,r}} D_r$

Proof. Not hard, see [3]Th1.3.3.

We define $D_n = D_{r_n}$ for n >> 0. Consider $\mathbf{D}_n = K_n[[t]] \otimes_{\mathcal{B}_{rin,K}^{i,r_n}}^{\iota_n} D_n$. We have a natural map

$$\mathbf{D}_n \xrightarrow{id \otimes \varphi} K_n[[t]] \otimes^{\iota_n}_{\mathcal{B}^{\dagger,r_n}_{rig,K}} \left(\mathcal{B}^{\dagger,r_{n+1}}_{rig,K} \otimes^{\varphi}_{\mathcal{B}^{\dagger,r_n}_{rig,K}} D_n \right) = K_n[[t]] \otimes^{\iota_n}_{\mathcal{B}^{\dagger,r_n}_{rig,K},\varphi} D_{n+1}$$

Notice that if we consider \mathbf{D}_{n+1} as a $\mathcal{B}_{rig,K}^{\dagger,r_n}$ module via $a * x := \varphi(a)x$, then the map

$$K_n[[t]] \times D_{n+1} \to \mathbf{D}_{n+1}$$
$$(a, x) \mapsto a \otimes x$$

is bilinear. Thus we have $K_n[[t]] \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_n},\varphi}^{\iota_n} D_{n+1} \to \mathbf{D}_{n+1}.$

Now we have constructed a natural map $\mathbf{D}_n \to \mathbf{D}_{n+1}$ which is $K_n[[t]]$ linear. Taking direct limit, we get a $K_{\infty}[[t]]$ module.

There is another way to understand this construction better.

 Γ_K action provides a connection on it (Luo).

5 Compare with D_{dif}

Recall, given a representation $\rho: G_K \to GL_{\mathbb{Q}_p}(V)$, while V is a \mathbb{Q}_p space of dimension n, we can construct a p-adic differential equation $D_{dif}(V)$

Luo Jinyue has prove that

Thm 5.1. The p-adic differential equation associated to $D_{rig}^{\dagger}(V)$ is naturally isomorphic to $D_{dif}(V)$.

6 φ -compatible lattice and (φ, Γ) -modules

In this section, we will have a glimpse of the reason why we need 'filtered'.

Recall for any $D \in \Phi_{\mathcal{B}_{rig,K}^{\dagger}}$ of rank d, we constructed a sequence of free modules \mathbf{D}_n over $K_n[[t]]$ for n >> 0. Moreover, by the construction, we have $K_{n+1}[[t]] \otimes_{K_n[[t]]} \mathbf{D}_n = \mathbf{D}_{n+1}$.

Def 6.1. A φ -compatible lattice of $\mathbf{D}_*\left[\frac{1}{t}\right]$ is a sequence of $K_n[[t]]$ - lattice \mathbf{M}_n of $\mathbf{D}_n\left[\frac{1}{t}\right]$ for n >> 0 such that $\mathbf{M}_{n+1} = \mathbf{M}_n \otimes_{K_n[[t]]} K_{n+1}[[t]]$. We say two such lattices are equal if they are equal for sufficiently large n.

One can see that \mathbf{D}_n itself is such a lattice. In general, if D' is a sub- φ -module of $D\left\lfloor \frac{1}{t} \right\rfloor$ (finite rank of course), then \mathbf{D}'_n is a φ -compatible lattice.

In fact, all φ -compatible lattice comes from a unique D'. We give a construction of D', for details, see [3]2.1. Let $\mathbf{M}_n \subset \mathbf{D} \begin{bmatrix} 1 \\ t \end{bmatrix}$ be a φ -compatible lattice.

lemma 6.1. There exists an $h \ge 0$ such that $t^h \mathbf{D}_n \subset \mathbf{M}_n \subset t^{-h} \mathbf{D}_n$ for all n >> 0.

Now for n >> 0, let $M_n = \{x \in t - h\mathbf{D}_n : 1 \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_m}}^{\iota_m} x \in \mathbf{M}_m \ \forall m \ge n\}$. (Cautions: $1 \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_m}}^{\iota_m} x \in \mathbf{M}_m$ dose not imply $1 \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_m+1}}^{\iota_{m+1}} x \in \mathbf{M}_{m+1}$ but $1 \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_m}}^{\iota_m} \varphi(x) \in \mathbf{M}_m$)

lemma 6.2. M_n is a free module over $\mathcal{B}_{rig,K}^{\dagger,r_n}$ of rank d

lemma 6.3. $K_n[[t]] \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_n}}^{\iota_n} M_n = \mathbf{M}_n$

We omit the proofs, since we to analyze the Frechet topology carefully. See [3]2.1 and [2]4.2. Let $D' = \lim M_n$, the previous lemma implies that $\mathbf{D}'_n = M_n$.

7 Filtered (φ, N, G_K) -modules

In this section, we introduce the language of filtered (ϕ, N, G_K) -modules. For a local field K over \mathbb{Q}_p , define K_0 be the maximal unramified extension of K/\mathbb{Q}_p and σ be the frobenius $W(x \mapsto x^p)$.

7.1 Why isocrystals?

This part comes from [4]2.7 (Page 83-101).

For simply, we only consider elliptic curves, all things also hold for general abelian varieties. For an elliptic curve E/K and any prime $l \neq p$, we have:

Thm 7.1. E has a good reduction if and only if $T_l(E)$ is an unramified Galois representation. In fact, we have

But when we consider the case when l = p, the previous theorem files since the reduction of E does not have so mach p-torsion points. Grothendieck gave a good analogue of the criterion.

Thm 7.2. *E* has a good reduction if and only if $E[p^n]$ admits an integral model \mathscr{G}_n (i.e. there exists a finite flat group scheme $\mathscr{G}_n/\mathcal{O}_K$ such that $E[p^n] = K \otimes_{l_K} \mathscr{G}_n$) for any *n*.

The previous \mathscr{G}_n satisfies:

(1). \mathscr{G}_n is of order p^{2n} .

(2). There exists $i_n : \mathscr{G}_n \to \mathscr{G}_{n+1}$ comes from the inclusion $E[p^n] \to E[p^{n+1}]$.

(3). i_n is an isomorphism from \mathscr{G}_n to $\mathscr{G}_{n+1}[p^n]$.

These properties make us to consider a new object, so called 'p-divisible group', and the number 2 is called the height. A theorem by Dieudonné tells us:

Thm 7.3. If k is a perfect field of character p > 0. There exists an anti-equivalence between the category of p-divisible groups over k and the category of free W(k)-modules D equipped with a Frobenius semi-linear action \mathcal{F} such that $pD \subset \mathcal{F}(D)$.

These facts provide us a covariant functor from elliptic curves with good reduction to φ -modules over W(k), denoted by **D**

Recall we have

Thm 7.4. For two elliptic curves $E_1, E_2, l \neq p$, the natural map

 $\mathbb{Z}_p \otimes_{\mathbb{Z}} Hom(E_1, E_2) \to Hom_{G_K}(T_l(E_1), T_l(E_2))$

is injective.

Likewise, we have:

Thm 7.5. D is faithful.

Definitions 7.2

For details, see [5]6.4, or [4]2.8 (page 101-127).

We have already seen that φ can be used to classify abelian varieties which have good reductions. For those with bad reductions, we need another operator N.

Def 7.1. Let $L/K/\mathbb{Q}_p$ be two local fields such that L/K is Galois. A $(\varphi, N, G_{L/K})$ -module is a finite dimensional vector space V over L_0 with a σ -semilinear action ϕ , a $G_{L,K}$ -semilinear action and a linear endomorphism N, such that:

- (1). φ is invertible.
- $(2).p\varphi \circ N = N \circ \varphi$

(3). The action of $G_{L/K}$ is commute with N and φ .

Def 7.2. A filtered $(\varphi, N, G_{L/K})$ -module is a $(\varphi, N, G_{L/K})$ -module D as well as a separable and exhaustive descending filtration on D_L , which is compatible with $G_{L/K}$. We do not assume anything between the filtration and (φ, N) action.

A $(\varphi, N, G_{L/K})$ -module is considered to be the same as its base changes.

Def 7.3. Given two filtered $(\varphi, N, G_{L/K})$ -modules D_1, D_2 , we define their tensor product $D_1 \otimes D_2$ as:

(1). The vector space $D_1 \otimes_{L_0} D_2$;

(2). $\varphi(x \otimes y) = \varphi_1(x) \otimes \varphi_2(y)$ the same as $G_{L/K}$ -action;

- (3). $N(x \otimes y) = N_1(x) \otimes y + x \otimes N_2(y);$ (4). $Fil^k(X_L \otimes_L Y_L) = \sum_{i+j=k} Fil^i(X_L) \otimes_L Fil^j(Y_L)$

Moreover, for a $(\varphi, N, G_{L/K})$ -module D, define the filtration of $\bigwedge^k D_L$ to be the images of $Fil^l(\bigotimes^k D_L), \ l \in \mathbb{Z}.$

For a $(\varphi, N, G_{L/K})$ -module D of dimension 1, choose a basis e and suppose $\varphi(e) = \lambda e$, define $t_N(D) = v_p(\lambda), t_H(D) = \max\{k : Fil^k(D_L) \neq 0\}$. If $dim_{L_0}D = d$, define $t_N(D) = t_N(\bigwedge^d D)$ and $t_H(D) = t_H(\bigwedge^d D).$

lemma 7.1. N is nilpotent.

Proof. Let $D' = \cap Im(N^n)$, then $\varphi(D') = D'$ and N is invertible on D'. Choose a basis and write φ, N as matrixes F, A.

Then we have $pFA^{\varphi} = AF$, thus $p^{\dim D} \det F \det A = \det F \det A$ which implies $\dim D = 0$

Def 7.4. A filtered $(\varphi, N, G_{L/K})$ -module D is called weakly admissible if $t_N(D) = t_H(D)$ and for all submodule D' of D, $t_N(D') \leq t_H(D')$.

8 Filtered (φ, N, G_K) -modules and (φ, Γ) -modules

8.1 From filtered (φ, N, G_K) -modules to (φ, Γ) -modules

Let ℓ_X be a variable which is considered as $\log(X)$, and we prolong the $\tilde{\mathcal{B}}_{rig}^{\dagger}$ to $\tilde{\mathcal{B}}_{rig}^{\dagger}[\ell_X]$. Let log be the *p*-adic logarithm such that $\log(p) = 0$. Given an $f \in \mathbb{Q}_p[[X]]^*$, we define $\log(f)$ as $\log(f(0)) + \log\left(\frac{f}{f(0)}\right)$.

Def 8.1. We prolong the (φ, Γ_K) -action as following:

(1). $\varphi(\ell_X) = \ell_X + \log\left(\frac{\varphi(X)}{X}\right)$. (2). $\gamma(\ell_X) = \ell_X + \log\left(\frac{\gamma(X)}{X}\right)$. Prolong the ι_n as: (3). $\iota_n(\ell_X) = \log(\iota_n(X))$ Finally define the monodromy operator N as: (4). $N(f) = -\frac{p}{p-1}\frac{d}{d\ell_X}$

Let D be a filtered $(\varphi, N) - module$ (over K), consider $V = (\mathcal{B}_{rig,K}^{\dagger}[\ell_X] \otimes_{K_0} D)^{N=0}$. (Recall, **N** is defined to be $\mathbf{N}(a \otimes x) = N(a) \otimes x + a \otimes N_D(x)$.)

lemma 8.1. V is a finite free module over $\mathcal{B}^{\dagger}_{rig,K}$ of rank dim(D).

Proof. Recall, the operator N on D is nilpotent. We induct on dim(D). If dim(D) = 1, then $N_D = 0$, thus the lemma holds since $(\mathcal{B}_{rig,K}^{\dagger}[\ell_X])^{N=0} = \mathcal{B}_{rig,K}^{\dagger}$. If the lemma holds for dim $\leq n$, let dim(D) = n We consider an exact sequence

$$0 \to D' \to D \to K_0 \to 0$$

while D' is a subspace of dimension n-1 contains $N_D(D)$.

Thus by snake lemma, we have an exact sequence

$$0 \to (\mathcal{B}_{rig,K}^{\dagger}[\ell_X] \otimes_{K_0} D')^{\mathbf{N}=0} \to (\mathcal{B}_{rig,K}^{\dagger}[\ell_X] \otimes_{K_0} D)^{\mathbf{N}=0} \to (\mathcal{B}_{rig,K}^{\dagger}[\ell_X] \otimes_{K_0} K_0)^{\mathbf{N}=0}$$

We only need to prove that the last one is surjective. In fact, let $e \in D$ maps to 1. Then $\sum_{i\geq 0} \left(\frac{p}{p-1}\right)^i \ell_X^i \otimes N_D^i(e) \text{ is a preimage of 1.} \square$

Thus V is a (φ, Γ_K) -module. We then use the given filtration to 'twist' V, which is what we want.

Let $D^{(n)}$ be the (φ, N) -module $K_0 \otimes_{K_0}^{\varphi^{-n}} D$ (i.e. the (φ, N) operators stay the same but the scalar multiplication is given by $a * x = \varphi^{-n}(a)x$). The filtration of $D_K^n = K \otimes_{K_0} D^{(n)}$ is the one passed from $K \otimes_{K_0} D$ by $id \otimes \varphi^n$. We endow $K_n((t))$ with the natural filtration $t^i K_n[[t]]$ and define

$$M_n(D) = Fil^0\left(K_n((t)) \otimes_K D_K^{(n)}\right)$$

lemma 8.2. $\{M_n(D)\}$ is a $K_n[[t]]$ -lattice of $\mathbf{V}_n = K_n((t)) \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_n}}^{\iota_n} V_{r_n}$ for n >> 0 and they form a φ -compatible lattice.

Proof. Notice that for n >> 0, we have

$$K_{n}((t)) \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_{n}}}^{\iota_{n}} V = K_{n}((t)) \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_{n}}[\ell_{X}]}^{\iota_{n}} \left(\mathcal{B}_{rig,K}^{\dagger,r_{n}}[\ell_{X}] \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_{n}}} \left(\mathcal{B}_{rig,K}^{\dagger,r_{n}}[\ell_{X}] \otimes_{K_{0}} D \right)^{N=0} \right)$$
$$= K_{n}((t)) \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_{n}}[\ell_{X}]}^{\iota_{n}} \left(\mathcal{B}_{rig,K}^{\dagger,r_{n}}[\ell_{X}] \otimes_{K_{0}} D \right)$$
$$= K_{n}((t)) \otimes_{K_{0}}^{\varphi^{-n}} D = K_{n}((t)) \otimes_{K} D_{K}^{(n)}$$

Choose a basis $\{e_i\}$ compatible with filtration and let $h_i = h(e_i)$ (i.e. $Fil^m D_K^{(n)} = \sum_{h_i \ge m} Ke_i$).

Then $Fil^0\left(K_n((t))\otimes_K D_K^{(n)}\right)$ has a $K_n[[t]]$ -basis consists of $t^{-h_i}\otimes e_i$.

The φ -compactibility can be proved by $\{\varphi(e_i)\}$ forms a basis of $D_K^{(n+1)}$ with $h_{D^{(n+1)}}(\varphi(e_i)) = h_{D^{(n)}}(e_i)$.

We define $\mathcal{M}(D)$ to be the (φ, Γ_K) -module which is included in $V\left[\frac{1}{t}\right]$ and associated to $M_n(D)$. Now if D is a $(\varphi, N, G_{L/K})$ -module, one can check that $\mathcal{M}_L(D)$ is a (φ, Γ_L) -module with a $G_{L/K}$ -action. We define $\mathcal{M}(D) = \mathcal{M}_L(D)^{G_{L/K}}$

8.2 From (φ, Γ) -modules to filtered (φ, N, G_K) -modules

8.2.1 General facts about connections

Let *E* be a field of character 0. We define $\nabla(f) = t \frac{df}{dt}$ for all $f \in E((t))$. Let *M* be a finite dimensional E((t))-space. A connection on *M* is an additive map $\nabla_M : M \to M$ such that $\nabla_M(\lambda x) = \nabla(\lambda)x + \lambda \nabla_M(x)$.

lemma 8.3. dim_E $M^{\nabla_M=0} \leq \dim_{E((t))} M$

Proof. In fact, we may prove that the natural map $M^{\nabla_M=0} \otimes_E E((t)) \to M$ is injective.

We say the connection is trivial if $\dim_E M^{\nabla_M=0} = \dim_{E((t))} M$ (or $M^{\nabla_M=0} \otimes_E E((t)) \to M$ is bijective).

lemma 8.4. The connection is trivial if and only if there exists an E[[t]]-lattice M_0 such that $\nabla_M(M_0) \subset tM_0$

Proof. If ∇_M is trivial, then let $M_0 = E[[t]] \otimes_E M^{\nabla_M = 0}$.

Now suppose M_0 is such a lattice. For any $x \in M_0$, if $\nabla_M(x) = t^n y$, then

$$\nabla_M(x - \frac{\nabla_M(x)}{n}) = \nabla_M(x) - \nabla_M(\frac{t^n y}{n}) = -\frac{t^n \nabla_M(y)}{n} \in t_0^M$$

Now use this fact and t-adically approximation, we can choose elements $e_1, ..., e_d \in M_0$ such that their projection to M_0/tM_0 form a basis.

The proof as well as Nakayama's lemma also imply that the lattice is unique.

lemma 8.5. If N is a subspace of M which is stable under ∇_M and ∇_M is trivial on M, then ∇_M is trivial on N.

Proof. Let $M_0 = E[[t]] \otimes_E M^{\nabla_M = 0}$, it is a lattice of M since ∇_M is trivial on M. Thus $M_0 \cap N$ is a lattice of N, which implies $\dim_E N^{\nabla_M = 0} = \dim_{E((t))} N$ (lemma 8.4)

Def 8.2. Let $D \in \Phi \Gamma_{\mathcal{B}_{rig,K}^{\dagger}}$, we have constructed a $K_n((t))$ -space $\mathbf{D}_n\left[\frac{1}{t}\right]$ for n >> 0 with a Γ_K -action, define

$$\nabla_D = \lim_{\gamma \to 1} \frac{\log \gamma}{\log_p \chi(\gamma)}$$

It is a connection on $\mathbf{D}_n\left[\frac{1}{t}\right]$

Def 8.3. We say D is of locally trivial differential if ∇_D is trivial on \mathbf{D}_n for n >> 0.

lemma 8.6. Let D be a (φ, N, G_K) -module, then $\mathcal{M}(D)$ is of locally trivial differential.

Proof. See the proof of lemma 8.2

8.2.2 Construction

We will use the following p-adic local monodromy theorem:

Thm 8.1. Let $D \in \Phi_{\mathcal{B}_{rig,K}^{\dagger}}$ with a connection ∇_D , then there exists a finite extension L/K such that ∇_D is trivial on $\mathcal{B}_{rig,L}^{\dagger,r_n}[\ell_X] \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_n}} D$.

Proof. [1]

For $D \in \Phi \Gamma_{\mathcal{B}_{ria,K}^{\dagger}}$, we define

$$Sol_L(D) = (\mathcal{B}_{rig,L}^{\dagger}[\ell_X] \otimes_{\mathcal{B}_{rig,K}^{\dagger}} D)^{\Gamma_L}; S_L(D) = (\mathcal{B}_{rig,L}^{\dagger}[\ell_X] \otimes_{\mathcal{B}_{rig,K}^{\dagger}} D)^{\nabla=0}$$

It is a fact that there exists an L such that $Sol_L(D) = S_L(D)$ and $\dim_{L_0} S_L(D) = rank(D)$. In this case, $Sol_L(D)$ is a $(\varphi, N, G_{L/K})$ -module.

Thm 8.2. Let **M** be a (φ, Γ_K) -module with locally trivial differential, then there exists a (φ, Γ_K) -module $\mathbf{D} \subset \mathbf{M}\begin{bmatrix} \frac{1}{t} \end{bmatrix}$ such that $\mathbf{D}\begin{bmatrix} \frac{1}{t} \end{bmatrix} = \mathbf{M}\begin{bmatrix} \frac{1}{t} \end{bmatrix}$ and $\nabla_{\mathbf{M}}(\mathbf{D}) \subset t\mathbf{D}$.

Moreover, **D** determines a filtration on $L \otimes_{L_0} Sol_L(\mathbf{M})$ whose induced (φ, Γ_K) -module is **M**

Proof. The first part comes from lemma 8.4 and its remark.

Now we prove the second part.

Notice that

$$L_n[[t]] \otimes_{L_0}^{\varphi^{-n}} Sol_L(\mathbf{M}) = L_n[[t]] \otimes_{\mathcal{B}_{rig}^{\dagger,r_n}}^{\iota_n} \mathbf{D}_n$$

For n >> 0, $L_n((t)) \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_n}}^{\iota_n} \mathbf{D}_n = L_n((t)) \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_n}}^{\iota_n} \mathbf{M}_n$ has a natural filtration given by $t^k L_n[[t]] \otimes_{\mathcal{B}_{rig,K}^{\dagger,r_n}}^{\iota_n} \mathbf{M}_n$. Restrict the filtration on $L \otimes_{L_0}^{\varphi^{-n}} Sol_L(\mathbf{M})$ then pull back to $L \otimes_{L_0} Sol_L(\mathbf{M})$, we construct the filtration.

Thm 8.3 (Theorem A in Berger's thesis). The functor \mathcal{M} is an equivalence between the category of (ϕ, Γ_K) -modules over $\mathcal{B}^{\dagger}_{rig,K}$ with locally trivial differential to the category of filtered (ϕ, N, G_K) -modules.

9 Slopes and weakly admissible filtered (ϕ, N, G_K) -modules

In this section, we will prove the following theorem by calculation.

Thm 9.1 (Theorem B in Berger's thesis[3]). The functor \mathcal{M} induces an equivalence between the category of étale (ϕ, Γ_K) -modules over $\mathcal{B}_{rig,K}^{\dagger}$ with locally trivial differential to the category of weakly admissible filtered (ϕ, N, G_K) -modules.

In fact, we will prove that:

Thm 9.2. For a $(\varphi, N, G_{L/K})$ -module D, then the slope of det D is equal to $t_N(D) - t_H(D)$.

Proof. One can check that \mathcal{M} is an exact tensor functor, so we only need to prove for dim D = 1. In this case, $N_D = 0$, assume $D = L_0 e$, $\varphi(e) = \lambda e$ where $\lambda \in \mathcal{L}_0$, $t_H = h$ (so $t_N = v_p(\lambda)$). Then, $\mathcal{M}_L(D) \begin{bmatrix} 1 \\ t \end{bmatrix} = \mathcal{B}_{rig,L}^{\dagger} \begin{bmatrix} 1 \\ t \end{bmatrix} e$. A naive calculation provides that $\mathcal{M}_L(D) = t^{-h} \mathcal{B}_{rig,L}^{\dagger} \otimes V$, where $V = \mathcal{B}_{rig,L}^{\dagger} e$.

Thus, $\varphi(t^{-h}e) = p^{-h}\lambda t^{-h}e$, this proves the theorem.

To prove the theorem, we only need to show that.

lemma 9.1. Let D is a semi-stable ϕ -module over $\mathcal{B}_{ria,K}^{\dagger}$ of slope 0. Then D is étale.

Proof. See Ji Yibo's note.

10 Application

Thm 10.1 (Theorem A by Colmez-Fontaine). Any weakly admissible (ϕ, N, G_K) -module comes from a potentially semi-stable representation.

Proof. Let D be a weakly admissible (ϕ, N, G_K) -module, then $\mathcal{M}(D)$ is étale (ϕ, Γ_K) -module, so comes from a Galois representation V.

Recall [2]
$$D_{st,L}(V) = \left(\mathcal{B}_{rig,L}^{\dagger}\left[\frac{1}{t},\ell_{X}\right] \otimes_{\mathcal{B}_{rig,K}^{\dagger}} D_{rig}^{\dagger}(V)\right)^{\Gamma}$$
. Thus we have
 $D_{st,L}(V) = \left(\mathcal{B}_{rig,L}^{\dagger}\left[\frac{1}{t},\ell_{X}\right] \otimes_{\mathcal{B}_{rig,K}^{\dagger}} \mathcal{M}(D)\right)^{\Gamma_{L}}$
 $= \left(\mathcal{B}_{rig,L}^{\dagger}\left[\frac{1}{t},\ell_{X}\right] \otimes_{\mathcal{B}_{rig,L}^{\dagger}} (\mathcal{M}_{L}(D))^{G_{L/K}}\right)^{\Gamma_{L}}$
 $= \left(\mathcal{B}_{rig,L}^{\dagger}\left[\frac{1}{t},\ell_{X}\right] \otimes_{\mathcal{B}_{rig,L}^{\dagger}} \mathcal{M}_{L}(D)\right)^{\Gamma_{L}}$ (Galois descent)
 $= \left(\mathcal{B}_{rig,L}^{\dagger}\left[\frac{1}{t},\ell_{X}\right] \otimes_{\mathcal{B}_{rig,L}^{\dagger}}\left[\frac{1}{t}\right] (\mathcal{B}_{rig,L}^{\dagger}\left[\frac{1}{t},\ell_{X}\right] \otimes_{L_{0}} D)^{N=0}\right)^{\Gamma_{L}}$
 $= \left(\mathcal{B}_{rig,L}^{\dagger}\left[\frac{1}{t},\ell_{X}\right] \otimes_{L_{0}} D\right)^{\Gamma_{L}} = L_{0} \otimes_{L_{0}} D = D$

This proves that V is semi-stable after restricting on G_L

Thus we only need to check the given filtration on D_L is the same as the one comes from $\mathcal{B}_{dR} \otimes_{\mathbb{Q}_p} V$.

In fact, we have

for n >> 0.

A theorem by Fontaine implies

$$L_n[[t]] \otimes_{\mathcal{B}_{rig,L}^{\dagger,r_n}}^{\iota_n} D_{rig}^{\dagger,r_n}(V) = Fil^0(L_n((t)) \otimes_L D_{dR,L}(V)^{(n)})$$

Hence

$$Fil^{0}(L_{n}((t)) \otimes_{L} D_{L}^{(n)}) = Fil^{0}(L_{n}((t)) \otimes_{L} D_{dR,L}(V)^{(n)})$$

which proves the two filtrations are the equal.

References

- [1] Kiran S.Kedlaya, A p-adic local monodromy theorem
- [2] Laurent Berger, Représentations p-adiques et équations différentielles
- [3] Laurent Berger, Représentations p-adiques et (φ, N) -modules filtrés
- [4] Oliver Brinon and Brian Conrad, CMI summer school notes on p-adic hodge theory (preliminary version)
- [5] J.M.Fontain and Yi Ouyang, Theory of p-adic Galois Representations