OVERCONVERGENT THEORY

Contents

1.	Construction of Robba rings	1
2.	Colmez-Tate-Sen conditions and proof of Theorem 0.1	13
2.1.	. Colmez-Tate-Sen Condition for $\tilde{\mathbf{B}}^{\dagger,r}$	13
2.2.	. Theorem of Cherbonnier-Colmez	24
References		25

The goal of this lecture is to explain the meaning of "overconvergent" and to prove the following theorem of Cherbonnier-Colmez.

Theorem 0.1. (See [Ber1, Corollary 25.3])

The functor $V \mapsto D^{\dagger}(V)$ induces an equivalence from the category of p-adic representations of Gal_K to the category of étale overconvergent (φ, Γ) -modules over \mathbf{B}_K^{\dagger} .

The main reference is Colmez's paper [Col, Section 4,5,6,7,8,9].

1. Construction of Robba Rings

Recall that for every $k \ge 0$, there exists a function $w_k : \tilde{\mathbf{A}} \to \mathbb{R} \cup \{+\infty\}$ defined by $w_k(x) = \inf_{0 \le i \le k} \nu_{\mathbf{E}}(x_i)$ if $x = \sum_{i \ge 0} p^i[x_i]$ satisfying following properties (See [Ber1, Section 16]).

Fact 1.1. (1) $w_k(x) = +\infty$ if and only if $x \in p^{k+1}\tilde{\mathbf{A}}$;

(2)
$$w_k(x+y) \ge \inf(w_k(x), w_k(y));$$
 if $w_k(x) \ne w_k(y),$ it takes " = ";

- (3) $w_k(xy) \ge \inf_{i+j \le k} (w_i(x) + w_j(y));$
- (4) $w_k(\varphi(x)) = pw_k(x);$
- (5) $w_k([\lambda]x) = w_k(x) + \nu_{\mathbf{E}}(\lambda)$ for $\forall \lambda \in \tilde{\mathbf{E}}$;
- (6) $w_k(\sigma(x)) = w_k(x)$ for $\forall \sigma \in \operatorname{Gal}_K$.

These functions $\{w_k\}_{k\geq 0}$ define the canonical (or weak) topology on \mathbf{A} . For w_k , we also have the following property. **Lemma 1.2.** If r > 0 and if $x = \sum_{n \ge 0} p^n[x_n] \in \tilde{\mathbf{A}}$, then

(1) $\lim_{k \to +\infty} (\nu_{\mathbf{E}}(x_k) + kr) = +\infty$ if and only if $\lim_{k \to +\infty} (w_k(x) + kr) = +\infty$ and

(2) in this case $\inf_{k>0}(\nu_{\mathbf{E}}(x_k) + kr) = \inf_{k>0}(w_k(x) + kr).$

Proof. (1) We only prove that $\lim_{k \to +\infty} (\nu_{\mathbf{E}}(x_k) + kr) = +\infty$ implies $\lim_{k \to +\infty} (w_k(x) + kr) = +\infty$; the other direction is obvious since $w_k(x) \le \nu_{\mathbf{E}}(x_k)$.

We define a function $i : \mathbb{N} \to \mathbb{N}$ by $i(k) = \sup\{n \mid w_k(x) = \nu_{\mathbf{E}}(x_n) \mid n \leq k\}$. Then *i* is an increasing function (because $w_{k+1}(x) \leq w_k(x)$). Clearly, $i(k) \leq k$.

Case I: $\lim_{k \to +\infty} i(k) = +\infty$.

In this case, $w_k(x) + kr = \nu_{\mathbf{E}}(x_{i(k)}) + kr \ge \nu_{\mathbf{E}}(x_{i(k)}) + i(k)r \to +\infty.$

Case II: $\lim_{k \to +\infty} i(k) = n$ for some $n \in \mathbb{N}$.

In this case, there exists an $N \in \mathbb{N}$ such that i(k) = n for all $k \geq N$. In particular, for $k \geq N$, $w_k(x) + kr = \nu_{\mathbf{E}}(x_N) + kr \to +\infty$.

(2) $\inf_{k\geq 0}(\nu_{\mathbf{E}}(x_k) + kr) \geq \inf_{k\geq 0}(w_k(x) + kr) = \inf_{k\geq 0}(\nu_{\mathbf{E}}(x_{i(k)}) + kr) \geq \inf_{k\geq 0}(\nu_{\mathbf{E}}(x_{i(k)}) + i(k)r) \geq \inf_{k\geq 0}(\nu_{\mathbf{E}}(x_k) + kr).$

Define

$$\tilde{\mathbf{A}}^{\dagger,r} = \{ x \in \tilde{\mathbf{A}} \mid \inf_{k \ge 0} (w_k(x) + \frac{krp}{p-1}) \ge 0 \text{ and } \lim_{k \to +\infty} (w_k(x) + \frac{krp}{p-1}) = +\infty \}$$
$$= \{ x \in \tilde{\mathbf{A}} \mid \inf_{k \ge 0} (\nu_{\mathbf{E}}(x_k) + \frac{krp}{p-1}) \ge 0 \text{ and } \lim_{k \to +\infty} (\nu_{\mathbf{E}}(x_k) + \frac{krp}{p-1}) = +\infty \}.$$

Also, we define a function $\nu_r : \tilde{\mathbf{A}}^{\dagger,r} \to \mathbb{R}_{\geq 0}$ by $\nu_r(x) = \inf_{k \geq 0} (w_k(x) + \frac{krp}{p-1})$ for $x \in \tilde{\mathbf{A}}^{\dagger,r}$.

For simplicity, we define $s(r) = \frac{pr}{p-1}$ for $r \ge 0$.

It is straightforward from the definition of $\tilde{\mathbf{A}}^{\dagger,r}$ that for any $r_2 > r_1 > r > 0$,

- (1) $\tilde{\mathbf{A}}^{\dagger,r_1} \subset \tilde{\mathbf{A}}^{\dagger,r_2}$ and
- (2) $\nu_{r_2}(x) \ge \nu_{r_1}(x)$ for $x \in \tilde{\mathbf{A}}^{\dagger,r}$.

Thus, we can define a function $f_x : \mathbb{R}_{\geq r} \to \mathbb{R}$ by $f_x(t) = \nu_t(x)$.

Proposition 1.3 (Newton Polygon of x). Assume r > 0 and $x = \sum_{n \ge 0} [x_n] p^n \in \tilde{\mathbf{A}}^{\dagger,r}$.

(1) The function $f_x : \mathbb{R}_{\geq r} \to \mathbb{R}_{\geq 0}$ is an increasing, piecewise linear, concave continuous function. All slopes of f_x belong to $\frac{p}{p-1}\mathbb{Z}_{\geq 0}$ and f_x has finitely many slopes and cusps.

(2) Let $\partial_l f_x$ (resp. $\partial_r f_x$) be the left (resp. right) derivation of f_x . Then $\frac{p-1}{p}\partial_l f_x(t)$ (resp. $\frac{p-1}{p}\partial_r f_x(t)$) is the maximal (resp. minimal) integer N satisfying $v_t(x) =$

 $\mathbf{2}$

 $\nu_{\mathbf{E}}(x_N) + \frac{tpN}{p-1}$. As a consequence, $f_x(t)$ is derivable at $t = t_0 > r$ if and only if there exists exactly one $= k \ge 0$ such that $\nu_{t_0}(x) = \nu_{\mathbf{E}}(x_k) + ks(t_0)$ and $k = \frac{p-1}{p}f'_x(t_0)$.

(3) If $x_0 \neq 0$, then there exists an $r_0 \geq r$ such that for any $t \geq r_0$, $f_x(t) = \nu_{\mathbf{E}}(x_0)$. In particular, the last slope of f_x is 0.

Proof. By definition of f_x , it is increasing.

For $r_0 \geq r$, because $x \in \tilde{\mathbf{A}}^{\dagger, r_0}$, the set

$$\Omega_x := \{ i \in \mathbb{N} \mid f_x(r_0) (= \nu_{r_0}(x)) = \nu_{\mathbf{E}}(x_i) + is(r_0) \}$$

is finite. Thus, we can write $\Omega_x = \{n_1 < n_2 < \cdots < n_k\}.$

Since $\lim_{m\to+\infty} \nu_{\mathbf{E}}(x_m) + ms(r_0) = +\infty$, there exists an $M > f_x(r_0)$ such that for any $n \notin \Omega_x$, $\nu_{\mathbf{E}}(x_n) + ns(r_0) \ge M$. Therefore, for any $r' \approx r_0$ (of course, we require $r' \ge r$), $f_x(r') = \inf_{1 \le i \le k} \nu_{\mathbf{E}}(x_{n_i}) + n_i s(r') = f_x(r_0) + \inf_{1 \le i \le k} (\frac{pn_i}{p-1}(r'-r_0))$. When $(r \le)r' < r_0$, $f_x(r') = f_x(r_0) + \frac{pn_k}{p-1}(r'-r_0)$. When $r' \ge r_0$, $f_x(r') = f_x(r_0) + \frac{pn_1}{p-1}(r'-r_0)$.

This shows (1) and (2).

To prove (3), we notice that for every r' > r

$$\nu_{r'}(x) = \inf(\nu_{\mathbf{E}}(x_0), \inf_{i>1}(\nu_{\mathbf{E}}(x_i) + is(r'))).$$

The second term

$$\inf_{i \ge 1} (\nu_{\mathbf{E}}(x_i) + is(r')) \ge \nu_r(x) + s(r') - s(r).$$

Thus, for $r' \gg r$, we have $f_x(r') = \nu_{\mathbf{E}}(x_0)$. This completes the proof.

Lemma 1.4. Assume r > 0.

- (1) $\tilde{\mathbf{A}}^{\dagger,r}$ is a sub-ring of $\tilde{\mathbf{A}}$ which is stable under the action of $\operatorname{Gal}_{\mathbb{Q}_p}$.
- (2) $\varphi: \tilde{\mathbf{A}}^{\dagger,r} \to \tilde{\mathbf{A}}^{\dagger,pr}$ is a bijection.

Proof. Put s = s(r).

(1) If $x, y \in \tilde{\mathbf{A}}^{\dagger, r}$, by Fact 1.1 (2), (3), we have that

$$w_k(x+y) + sk \ge \inf(w_k(x) + sk, w_k(y) + sk)$$

and that

$$w_k(xy) + sk \ge \inf_{i+j \le k} (w_i(x) + w_j(y)) + sk \ge \inf_{i+j \le k} (w_i(x) + is) + (w_j(y) + js).$$

In particular, both of x + y and xy belong to $\tilde{\mathbf{A}}^{\dagger,r}$. Also, we prove that $\nu_r(xy) \ge \nu_r(x) + \nu_r(y)$ and that $\nu_r(x+y) \ge \inf(\nu_r(x), \nu_r(y))$ which takes equality when $\nu_r(x) \ne \nu_r(y)$.

(2) If
$$x = \sum_{n \ge 0} p^n[x_n] \in \tilde{\mathbf{A}}$$
, then $\varphi(x) = \sum_{n \ge 0} p^n[x_n^p]$. From
 $w_k(\varphi(x)) + ks(pr) = pw_k(x) + ks(pr) = p(w_k(x) + ks(r)),$

we see that $x \in \tilde{\mathbf{A}}^{\dagger,r}$ if and only if $\varphi(x) \in \tilde{\mathbf{A}}^{\dagger,pr}$ and in this situation $\nu_{pr}(\varphi(x)) = p\nu_r(x)$.

The next Lemma shows that ν_r is a norm on $\tilde{\mathbf{A}}^{\dagger,r}$.

Lemma 1.5. Assume r > 0. Let $x = \sum_{n \ge 0} p^n[x_n], y = \sum_{n \ge 0} p^n[y_n] \in \tilde{\mathbf{A}}^{\dagger, r}$ and $\alpha \in \tilde{\mathbf{E}}$.

(1)
$$\nu_r(x) = +\infty$$
 if and only if $x = 0$;
(2) $\nu_r(x+y) \ge \inf(\nu_r(x), \nu_r(y))$;
(3) $\nu_r(xy) = \nu_r(x) + \nu_r(y)$;
(4) $\nu_{pr}(\varphi(x)) = p\nu_r(x)$;
(5) $\nu_r(px) = \nu_r(x) + s(r)$ and $\nu_r([\alpha]x) = \nu_{\mathbf{E}}(\alpha) + \nu_r(x)$;
(6) $\nu_r(\sigma(x)) = \nu_r(x)$ for all $\sigma \in \operatorname{Gal}_{\mathbb{Q}_p}$.

Proof. We have established (2) and (4) in the proof of Lemma 1.4. From the definition of ν_r that $\nu_r(x) = \inf_{n\geq 0}(\nu_{\mathbf{E}}(x_n) + ns(r))$, (1), (5) and (6) are easy to check. We only prove (3) here.

Recall we have proved (3)' which says $\nu_r(xy) \ge \nu_r(x) + \nu_r(y)$ in the proof of Lemma 1.4.

By Proposition 1.3, except finitely many $r' \ge r$, there exists a unique n and a unique m such that $\nu_{r'}(x) = \nu_{\mathbf{E}}(x_n) + ns(r') < \nu_{r'}(x - [x_n]p^n)$ and that $\nu_{r'}(y) = \nu_{\mathbf{E}}(y_m) + ms(r') < \nu_{r'}(y - [y_m]p^m)$. Considering

$$xy = [x_n y_m]p^{n+m} + (x - [x_n]p^n)y + [x_n]p^n(y - [y_m]p^m),$$

by (3)', $\nu_{r'}$ takes values at the last two terms strictly bigger than $\nu_r(x) + \nu_r(y)$. By (2), $\nu_{r'}(xy) = \nu_{\mathbf{E}}(x_n y_m) + (n+m)s(r') = \nu_{r'}(x) + \nu_{r'}(y)$. In other words, $f_{xy}(r') = f_x(r') + f_y(r')$ for all but finitely many $r' \in \mathbb{R}_{\geq r}$. By continuities, $f_{xy}(t) = f_x(t) + f_y(t)$ for all $t \geq r$. In particular, $\nu_r(xy) = \nu_r(x) + \nu_r(y)$. \Box

Remark 1.1. By Lemma 1.5, we see that (1) $f_{xy} = f_x + f_y$; (2) $\frac{1}{p} f_{\varphi(x)}(p \bullet) = f_x(\bullet)$; (3) $f_{px}(\bullet) = f_x(\bullet) + s(\bullet)$; (4) $f_{[\alpha]x}(\bullet) = f_x(\bullet) + \nu_{\mathbf{E}}(\alpha)$.

Define $\tilde{\mathbf{B}}^{\dagger,r} = \tilde{\mathbf{A}}^{\dagger,r}[\frac{1}{p}]$. By using Lemma 1.5 (5), one can extend ν_r to a norm on $\tilde{\mathbf{B}}^{\dagger,r}$ such that Proposition 1.3 and Lemma 1.5 are still true for elements in $\tilde{\mathbf{B}}^{\dagger,r}$.

We remark that $\tilde{\mathbf{A}}^{\dagger,r}$ is not the ring of integers in $(\tilde{\mathbf{B}}^{\dagger,r},\nu_r)$ (for example, $r = \frac{p-1}{p}$, then $\nu_r(\frac{[\tilde{p}]}{p}) = 0$). However, $\tilde{\mathbf{A}}^{\dagger,r}$ is the ring of integers in $(\tilde{\mathbf{B}}^{\dagger,r} \cap \tilde{\mathbf{A}},\nu_r)$.

If $x = \sum_{n \gg -\infty} [x_n] p^n \in \tilde{\mathbf{B}}^+$, we can define $\nu_0(x) = \inf_k \nu_{\mathbf{E}}(x_k)$. Then the above properties are still true except that it happens that f_x has infinitely many slopes and cusps (in a neighborhood of 0).

Fact 1.6. For every $0 \neq \alpha \in \tilde{\mathbf{E}}$ and r > 0, $[\alpha] \in \tilde{\mathbf{B}}^{\dagger,r}$, therefore it is a unit. This is because there exists an $N \geq 0$ such that $p^N[\alpha] \in \tilde{\mathbf{A}}^{\dagger,r}$.

Proposition 1.7. The topology on $\tilde{\mathbf{A}}^{\dagger,r}$ is separated and completed.

Proof. The separateness follows from Lemma 1.5 (1). We remain check the completeness.

Let $\{x_i\}_{i\geq 0}$ be a sequence converging to 0. Then $\nu_r(x_i) \to +\infty$ while $i \to +\infty$. Therefore, for a fixed $k \geq 0$, $w_k(x_i) \geq \nu_r(x_i) - ks(r) \to +\infty$. In other words, the sequence $\{x_i\}_{i\geq 0}$ converges to 0 in $\tilde{\mathbf{A}}$ under the canonical topology. Put $x = \sum_{i\geq 0} x_i$. Then $w_k(x) + ks(r) \geq \inf_i w_k(x_i) + ks(r) \geq 0$ for all $k \geq 0$.

We need to check that $x \in \tilde{\mathbf{A}}^{\dagger, r}$.

For any given M > 0, there exists an $N \in \mathbb{N}$ such that for every $i \geq N$, $\nu_r(x_i) \geq M$. In particular, $w_k(x_i) + ks(r) > M$ for all $k \geq 0$ and $i \geq N$. There exists an K > N such that for every $i \leq N$ and $k \geq K$, $w_k(x_i) + ks(r) > M$. Therefore, for every $k \geq K$,

$$w_k(x) + ks(r) \ge \inf(\inf_{i \le N} (w_k(x_i) + ks(r)), \inf_{i \ge N} (w_k(x_i) + ks(r))) > M$$

Thus, $x \in \tilde{\mathbf{A}}^{\dagger, r}$.

Lemma 1.8. Assume r > 0.

- (1) The action of $\operatorname{Gal}_{\mathbb{Q}_n}$ on $\tilde{\mathbf{A}}^{\dagger,r}$ is continuous
- (2) The map $\varphi : \tilde{\mathbf{A}}^{\dagger,r} \to \tilde{\mathbf{A}}^{\dagger,pr}$ is an homeomorphism.

Proof. The (2) follows from Lemma 1.5 (4). By Lemma 1.5 (6), it remains to prove that for a given $x = \sum_{n\geq 0} [x_n] p^n \in \tilde{\mathbf{A}}^{\dagger,r}$, the function $\operatorname{Gal}_{\mathbb{Q}_p} \to \mathbb{R}$ by mapping $\sigma \mapsto \nu_r(\sigma(x))$ is continuous. It suffices to check that $\lim_{\sigma \to 1} \nu_r(\sigma(x) - x) = +\infty$.

By Fact 1.1 (2), (6), for every $k \ge 0$, $w_k(\sigma(x) - x) + ks(r) \ge w_k(x) + ks(r)$. Thus, for any given M > 0, there is an N > 0 such that for every $k \ge N$, $w_k(\sigma(x) - x) + ks(r) \ge w_k(x) + ks(r) > M$. For $k \le N$, since $\operatorname{Gal}_{\mathbb{Q}_p}$ acts on $\tilde{\mathbf{A}}$ continuously, there exists an open subgroup $H \le \operatorname{Gal}_{\mathbb{Q}_p}$ such that for every $\sigma \in H$, $w_k(\sigma(x) - x) + ks(r) = 0$

ks(r) > M. Therefore, for any $\sigma \in H$, we have $\inf_k(w_k(\sigma(x) - x) + ks(r)) > M$; that is $\nu_r(\sigma(x) - x) > M$. This proves the lemma.

Recall $H_K = \operatorname{Gal}_{K(\zeta_{p^{\infty}})}$. Thus, we can define $\tilde{\mathbf{B}}_K^{\dagger,r} = (\tilde{\mathbf{B}}^{\dagger,r})^{H_K}$. Also, we can define $\mathbf{B}^{\dagger,r} = \tilde{\mathbf{B}}^{\dagger,r} \cap \mathbf{B}$ as well as $\mathbf{B}_K^{\dagger,r} = (\mathbf{B}^{\dagger,r})^{H_K}$. Similarly, the meaning of $\tilde{\mathbf{A}}_K^{\dagger,r}$, $\mathbf{A}^{\dagger,r}$ and $\mathbf{A}_K^{\dagger,r}$ are clear.

Define $\tilde{\mathbf{B}}^{\dagger} = \bigcup_{r>0} \tilde{\mathbf{B}}^{\dagger,r}$. Then the meaning of \mathbf{B}^{\dagger} and \mathbf{B}_{K}^{\dagger} are clear as well.

Proposition 1.9. The ring $\tilde{\mathbf{B}}^{\dagger}$ is a field. As a consequence, all of $\tilde{\mathbf{B}}_{K}^{\dagger}$, \mathbf{B}^{\dagger} and \mathbf{B}_{K}^{\dagger} are fields.

To prove this Proposition, we need to study units of $\tilde{\mathbf{A}}^{\dagger,r}$.

Lemma 1.10. Let $x = \sum_{n\geq 0} p^n[x_n] \in \tilde{\mathbf{A}}^{\dagger,r}$. Then x is a unit if and only if for all $k\geq 1, 0 = \nu_r(x) = \nu_{\mathbf{E}}(x_0) < \nu_{\mathbf{E}}(x_k) + ks(r)$.

Proof. Assume that for all $k \ge 1$, we have $0 = \nu_r(x) = \nu_{\mathbf{E}}(x_0) < \nu_{\mathbf{E}}(x_k) + ks(r)$. Since $x_0 \in \tilde{\mathbf{E}}^+$, $[x_0]$ is a unit in $\tilde{\mathbf{A}}^{\dagger,r}$. Thus, we may assume that $x_0 = 1$ by using $[x_0]^{-1}x$ instead of x. In this case, x = 1 - x' for some $x' \in \tilde{\mathbf{A}}^{\dagger,r}$ satisfying $\nu_r(x') > 0$. Then $\sum_{n\ge 0} (x')^n$ converges in $\tilde{\mathbf{A}}^{\dagger,r}$ and is the inverse of x = 1 - x'.

Conversely, if x is a unit of $\tilde{\mathbf{A}}^{\dagger,r}$ with the inverse $y = \sum_{n\geq 0} p^n [y_n]$. Since xy = 1, modulo p, we must have $x_0y_0 = 1$. Moreover, because $\nu_r(x), \nu_r(y) \geq 0$, it follows from

$$0 = \nu_r(1) = \nu_r(xy) = \nu_r(x) + \nu_r(y)$$

that $\nu_r(x) = 0 = \nu_r(y)$. On the other hand, since $\nu_{\mathbf{E}}(x_0) \ge \nu_r(x) = 0$, $x_0 \in \tilde{\mathbf{E}}^+$. For the same reason $y_0 \in \tilde{\mathbf{E}}^+$. Thus, $\nu_{\mathbf{E}}(x_0) = \nu_{\mathbf{E}}(y_0) = 0$.

It remains to show that $\inf_{k\geq 1}(\nu_{\mathbf{E}}(x_k) + ks(r)) > 0$ (equivalently, $\nu_r(x - [x_0]) > 0$). We may assume that $x_0 = y_0 = 1$. Otherwise, assume $\nu_r(x - 1) = 0$, then we claim that $\nu_r(y-1) = 0$. In fact, if -z = y-1 satisfying $\nu_r(z) > 0$, then $\nu_r(x-1) = \nu_r(\sum_{n\geq 1} z^n) > 0$, which is impossible. Now, let n_0 (resp m_0) be the largest integer such that $\nu_{\mathbf{E}}(x_{n_0}) + n_0 s(r) = \nu_r(x-1)$ (resp. $\nu_{\mathbf{E}}(y_{m_0}) + m_0 s(r) = \nu_r(y-1)$). Since

$$1 = xy \equiv \sum_{n+m < n_0 + m_0} [x_n y_m] p^m + [\sum_{n+m = n_0 + m_0} x_n y_m] p^{n_0 + m_0} + p^{n_0 + m_0 + 1} z$$

for some $z \in \tilde{\mathbf{A}}$, by the addition law for Witt vectors, there exists an element

$$S(\dots, x_{ij}, \dots) \in \mathbb{F}_p[x_{ij}^{\frac{1}{p^{n_0+m_0-i-j}}} \mid i+j < n_0+m_0]$$

 $\mathbf{6}$

which is homogenous of degree 1 (putting deg $x_{ij} = 1$) such that

$$0 = \sum_{n+m=n_0+m_0} x_n y_m + S(\dots, x_i y_j, \dots).$$

By the choice of (n_0, m_0) , for every $(n, m) \neq (n_0, m_0)$ satisfying $n + m \leq n_0 + m_0$, $\nu_{\mathbf{E}}(x_n y_m) + (n_0 + m_0)s(r) > 0$. As a consequence,

$$\nu_{\mathbf{E}}(S(\ldots, x_i y_i, \ldots)) + (n_0 + m_0)s(r) > 0.$$

This implies that

$$0 = \nu_{\mathbf{E}}(x_{n_0}y_{m_0}) + (n_0 + m_0)s(r) = \nu_{\mathbf{E}}(\sum_{n+m=n_0+m_0, n \neq n_0} x_n y_m + S(\dots, x_i y_j, \dots)) + (n_0 + m_0)s(r)$$

$$\geq \inf(\inf_{n+m=n_0+m_0, n \neq n_0} (\nu_{\mathbf{E}}(x_n y_m)), \nu_{\mathbf{E}}(S(\dots, x_i y_j, \dots))) + (n_0 + m_0)s(r) > 0.$$

A contradiction! We complete the proof.

Corollary 1.11. $x = \sum_{n \ge 0} p^n[x_n] \in \tilde{\mathbf{A}}^{\dagger,r}$ is a unit if and only if the set of slopes of f_x is exact $\{0\}$ and 0 is the only integer satisfying $0 = \nu_r(x) = \nu_{\mathbf{E}}(x_k) + ks(r)$.

Corollary 1.12. For $x = \sum_{n\geq 0} p^n[x_n] \in \tilde{\mathbf{A}}^{\dagger,r}$ such that $[x_0] \neq 0$, there is an $r_0 > r$ such that $\frac{x}{|x_0|}$ is a unit in $\tilde{\mathbf{A}}^{\dagger,r_0}$.

Proof. Since $x_0 \neq 0$, by Proposition1.3 (3), we can choose $r_1 \geq r$ such that for all $t \geq r_1$, $f_x(t) = \nu_{\mathbf{E}}(x_0)$. Put $y = \frac{x}{[x_0]}$, since $f_x(t) = f_y(t) + \nu_{\mathbf{E}}(x_0)$, we see that $y \in \tilde{\mathbf{A}}^{\dagger,r_1}$ and $f_y(t) = 0$ for $t \geq r_1$. Using Proposition1.3 (2), for any $r_2 > r_1$, 0 is the only integer satisfying $\nu_{r_2}(y) = \nu_{\mathbf{E}}(y_k) + ks(r_2)$. Thus if we fix an $r_0 > r_1$, then y is a unit in $\tilde{\mathbf{A}}^{\dagger,r_0}$.

Example 1.13. For $r \geq 1$, $\frac{\pi}{|\pi|}$ is a unit in $\tilde{\mathbf{A}}^{\dagger,r}$.

In fact, $\pi = [\epsilon] - 1 = \sum_{n \ge 0} p^n[x_n]$. Then $x_0 = \bar{\pi} = \epsilon - 1$ and for $k \ge 1$, x_k is a polynomial in $\epsilon^{\frac{1}{p^k}} - 1$ of degree p^k with no constant term. Thus, $\nu_{\mathbf{E}}(x_k) \ge \nu_{\mathbf{E}}(\epsilon^{\frac{1}{p^k}} - 1) = \frac{1}{p^{k-1}(p-1)}$. For $r \ge 1$,

$$\nu_{\mathbf{E}}(x_k) + ks(r) - \nu_{\mathbf{E}}(\bar{\pi}) \ge \frac{1}{p^{k-1}(p-1)} + \frac{p}{p-1}(kr-1) > 0.$$

Thus, by Lemma 1.10, $\frac{\pi}{|\bar{\pi}|}$ is a unit in $\tilde{\mathbf{A}}^{\dagger,r}$.

(In fact, $r > \frac{p-1}{p}$ is enough.)

Proof. (of Proposition 1.9)

For any given $x \in \tilde{\mathbf{B}}^{\dagger}$, since p is invertible, by definition of $\tilde{\mathbf{B}}^{\dagger}$, we may assume $x \in \tilde{\mathbf{A}}^{\dagger,r}$ for some r > 0.

We claim that for any $z \in \tilde{\mathbf{A}}^{\dagger,r} \cap p\tilde{\mathbf{A}}$, there exists a $0 \neq \alpha \in \tilde{\mathbf{E}}$ such that $\frac{[\alpha]}{p} z \in \tilde{\mathbf{A}}^{\dagger,r}$.

In fact, put $y = \frac{z}{p}$. Then $w_k(y) = w_{k+1}(z)$. Choose $0 \neq \alpha$ satisfying $\nu_{\mathbf{E}}(\alpha) > s(r)$, then

$$w_k([\alpha]y) + ks(r) \ge w_{k+1}(z) + (k+1)s(r).$$

This implies that $[\alpha]y \in \tilde{\mathbf{A}}^{\dagger,r}$.

Now, by Fact 1.6, for any $0 \neq \alpha \in \tilde{\mathbf{E}}$, $[\alpha]$ is invertible in $\tilde{\mathbf{B}}^{\dagger,r}$. We may assume $x = \sum_{n\geq 0} [x_n] p^n \in \tilde{\mathbf{A}}^{\dagger,r}$ such that $x_0 \neq 0$ for some r > 0. By Corollary 1.12, there exists an $r_0 > r$ such that $\frac{x}{[x_0]}$ is a unit in $\tilde{\mathbf{A}}^{\dagger,r_0}$. It follows that x is invertible in $\tilde{\mathbf{B}}^{\dagger,r_0}$.

This completes the proof.

Now, let V be a p-adic representation of Gal_K , then $\operatorname{D}^{\dagger}(V) := (V \otimes \mathbf{B}^{\dagger})^{H_K}$ is a vector space of dimension $\leq \dim(V)$ over \mathbf{B}_K^{\dagger} .

We say V is *overconvergent* if $\dim_{\mathbf{B}_{K}^{\dagger}}(\mathbf{D}^{\dagger}(V)) = \dim(V)$. Equivalently, V is overconvergent if and only if

$$D^{\dagger}(V) \otimes_{\mathbf{B}^{\dagger}_{\mathcal{H}}} \mathbf{B}^{\dagger} \simeq V \otimes \mathbf{B}^{\dagger}.$$

Since φ acts on \mathbf{B}^{\dagger} , $\mathbf{D}^{\dagger}(V)$ is a (φ, Γ_K) -module over \mathbf{B}_K^{\dagger} . A (φ, Γ_K) -module \mathbf{D}^{\dagger} over \mathbf{B}_k^{\dagger} is étale if $\mathbf{D}^{\dagger} \otimes_{\mathbf{B}_K^{\dagger}} \mathbf{B}_K$ is an étale (φ, Γ_K) -module over \mathbf{B}_K .

In the rest of this section, we shall show that $\mathbf{B}_{K}^{\dagger,r}$ is a ring consisting of Laurent series on some annulus for suitable r.

We fix some notations.

- K: a finite extension of \mathbb{Q}_p ;
- F: the maximal unramified subfield of K_{∞} .

 k_F : the residue field of F.

By previous talks, we have $\mathbf{E}_F = k_F[[\bar{\pi}]][\bar{\pi}^{-1}]$ with ring of integers $\mathbf{E}_F^+ = k_F[[\bar{\pi}]]$. $\mathbf{A}_F^+ = \mathcal{O}_F[[\pi]], \ \mathbf{A}_F = \mathcal{O}_F[\widehat{[\pi]}][\pi^{-1}]$ and $\mathbf{B}_F = \mathbf{A}_F[\frac{1}{p}]$.

Also, $\mathbf{E}_K/\mathbf{E}_F$ is totally ramified with index $e_K = e(K_{\infty}/\mathbb{Q}_{p,\infty})$ and $\mathbf{E}_F/\mathbf{E}_{\mathbb{Q}_p}$ is unramified of degree $f_K = f(K_{\infty}/\mathbb{Q}_{p,\infty})$. Put $d_K = e_K f_K$, then

$$d_K = [\mathbf{B}_K : \mathbf{B}_{\mathbb{Q}_p}] = [\mathbf{E}_K : \mathbf{E}_{\mathbb{Q}_p}] = [K_\infty : \mathbb{Q}_{p,\infty}]$$

Let $\bar{\pi}_K$ be a uniformizer of \mathbf{E}_K and let \bar{P}_K be the minimal polynomial of $\bar{\pi}_K$ over \mathbf{E}_F^+ . We choose a lifting $P_K \in \mathbf{A}_F^+[T]$ of \bar{P}_K . By Hensel's Lemma, there exists a unique $\pi_K \in \mathbf{A}_K$ with reduction $\bar{\pi}_K$ modulo p satisfying $P_K(\pi_K) = 0$.

Let \mathcal{D}_K be the relative differential of \mathbf{E}_K over \mathbf{E}_F . Then $\nu_{\mathbf{E}}(\mathcal{D}_K) = \nu_{\mathbf{E}}(\bar{P}'_K(\bar{\pi}_K))$.

Lemma 1.14. For every $k \ge 1$, $w_k(\pi_K) \ge -(2k-1)\nu_{\mathbf{E}}(\mathcal{D}_K)$.

Proof. (See [Col, Lemma 6.4])

If $\pi_K = \sum_{i\geq 0} [x_i]p^i$, then we need to show that for every $k \geq 1$, $w_k(\pi_K) \geq -(2k-1)\nu_{\mathbf{E}}(\mathcal{D}_K)$. Put $z_k = \sum_{i=0}^k p^i[x_i]$. Then $P_K(z_k) \in p^{k+1}\mathbf{A}_K$.

Firstly, assume k = 1. Because $P_K \in \mathbf{A}_F^+[T]$, if $P_K([\bar{\pi}_K]) = p[u] + p^2 v$, then $u \in \mathbf{E}^+$. Therefore, we have

$$0 \equiv P_K(z_1) = P_K([\bar{\pi}_K] + p[x_1]) \equiv P_K([\bar{\pi}_K]) + P'_K([\bar{\pi}_K])[x_1]p \equiv [u + \bar{P}'_K(\bar{\pi}_K)x_1]p \mod p^2 \mathbf{A}_K.$$

Thus, $\nu_{\mathbf{E}}(x_1) \geq -\nu_{\mathbf{E}}(\bar{P}'_K(\bar{\pi}_K))$ as desired.

For general case, we do induction on k. By inductive hypothesis, for every $n \ge k+1$, we have

$$w_{n}(P_{K}(z_{k})) \geq \inf_{1 \leq i_{j} \leq k, i_{1} + \dots + i_{r} \leq n} - (2i_{j} - 1)\nu_{\mathbf{E}}(\bar{P}'_{K}(\bar{\pi}_{K}))$$

$$= \inf_{1 \leq i_{j} \leq k, i_{1} + \dots + i_{r} = n} - (2i_{j} - 1)\nu_{\mathbf{E}}(\bar{P}'_{K}(\bar{\pi}_{K}))$$

$$= -\sup_{1 \leq i_{j} \leq k, i_{1} + \dots + i_{r} = n} (2n - r)\nu_{\mathbf{E}}(\bar{P}'_{K}(\bar{\pi}_{K}))$$

$$\geq -(2n - 2)\nu_{\mathbf{E}}(\bar{P}'_{K}(\bar{\pi}_{K})) \qquad (\because n \geq k + 1 \therefore r \geq 2).$$

In particular, we get $w_{k+1}(P_K(z_k)) \ge -2k\nu_{\mathbf{E}}(\bar{P}_K(\bar{\pi}_K))$. In other words, if we write $P_K(z_k) = p^{k+1}[y_{k+1}] + p^{k+2}v$, then $\nu_{\mathbf{E}}(y_{k+1}) \ge -2k\nu_{\mathbf{E}}(\bar{P}_K(\bar{\pi}_K))$. Therefore, we have

$$0 \equiv P_K(z_{k+1}) = P_K(z_k + p^{k+1}[x_{k+1}]) \equiv P_K(z_k) + P'_K(z_k)[x_{k+1}]p^{k+1}$$
$$\equiv [y_{k+1}]p^{k+1} + P'_K([\bar{\pi}_K])[x_{k+1}]p^{k+1} \equiv [y_{k+1} + \bar{P}'_K(\bar{\pi}_K)x_{k+1}]p^{k+1} \mod p^{k+2}.$$
Thus, $\nu_{\mathbf{E}}(x_{k+1}) \geq -(2k+1)\nu_{\mathbf{E}}(\bar{P}_K(\bar{\pi}_K))$ as desired.

Corollary 1.15. For every $k \ge 1$, $w_k(P'_K(\pi_K)) \ge -(2k-1)\nu_{\mathbf{E}}(\bar{P}'_K(\bar{\pi}_K))$.

Proof. The proof is similar to the proof of general case in Lemma 1.14.

Let $P_K(T) = a_d T^d + a_{d-1} T^{d_1} + \dots + a_0 \in \mathbf{A}_F^+[T]$ with $a_d = 1$. Then for every $n \ge 1$,

$$P'_K(\pi_K) \equiv \sum_{i=0}^{d-1} (i+1)a_{i+1} (\sum_{j=0}^n p^j [x_j])^i \mod p^{n+1}.$$

Because $a_k \in \mathbf{A}_F^+$, by Lemma 1.14, we see that

$$w_{n}(P_{K}'(\pi_{K})) \geq \inf_{1 \leq i_{j} \leq n, i_{1} + \dots + i_{r} \leq n} -(2i_{j}-1)\nu_{\mathbf{E}}(\bar{P}_{K}(\bar{\pi}_{K}))$$

$$\geq \inf_{1 \leq i_{j} \leq n, i_{1} + \dots + i_{r} \leq n} -(2n-r)\nu_{\mathbf{E}}(\bar{P}_{K}(\bar{\pi}_{K})) \geq -(2n-1)\nu_{\mathbf{E}}(\bar{P}_{K}(\bar{\pi}_{K}))$$

xpected. \Box

as expected.

Define

$$r_{K} = \begin{cases} \frac{2\nu_{\mathbf{E}}(\mathcal{D}_{K})(p-1)}{p}, & \text{if } \mathbf{E}_{K}/\mathbf{E}_{\mathbb{Q}_{p}}\text{ramified} \\ \frac{p-1}{p}, & \text{if } \mathbf{E}_{K}/\mathbf{E}_{\mathbb{Q}_{p}}\text{unramified} \end{cases}$$

Lemma 1.16. For $r > r_K$, $\pi_K \in \mathbf{A}_K^{\dagger,r}$. Moreover, we have

(1) $\frac{\pi_K}{[\bar{\pi}_K]}$ is a unit $in \in \mathbf{A}_K^{\dagger,r}$; (2) $\frac{P'_K(\pi_K)}{[\bar{P}'_K(\bar{\pi}_K)]}$ is a unit $in \in \mathbf{A}_K^{\dagger,r}$.

Proof. By Lemma 1.14, for any $k \geq 1$, $w_k(\pi_K) + ks(r_K) \geq \nu_{\mathbf{E}}(\bar{P}'_K(\bar{\pi}_K))$. Thus, for any $r > r_K$ and $k \ge 1$, $w_k(\pi_K) + ks(r) \ge \nu_{\mathbf{E}}(\bar{P}'_K(\bar{\pi}_K)) + ks(r - r_K)$. Thus, $\pi_K \in \mathbf{A}_K^{\dagger,r}$ and by Lemma 1.10 $\frac{\pi_K}{[\bar{\pi}_K]}$ is a unit. The proof of (2) is similar.

Now, we put $f_i = \pi_K^{i-1}$ for $1 \le i \le e_K$. Then $\{f_i\}_{1 \le i \le e_K}$ is a basis of \mathbf{A}_K over \mathbf{A}_{F} . Let $\{f_{i}^{*}\}_{1\leq i\leq e_{K}}$ be the dual basis of \mathbf{A}_{K} over \mathbf{A}_{F} with respect to the perfect pair

$$(-,-)$$
: $\mathbf{A}_K \times \mathbf{A}_K \to \mathbf{A}_F$, $(x,y) \mapsto \operatorname{Tr}_{\mathbf{B}_K/\mathbf{B}_F}(xy)$.

Lemma 1.17. For $1 \le i \le e_K$, $P'_K(\pi_K)f^*_i \in \mathbf{A}^+_F[\pi_K]$.

Proof. By [Ser, III.§6.Lemma 2], we see that

$$\operatorname{Tr}\left(\frac{\pi_{K}^{j}}{P_{K}'(\pi_{K})}\right) = \begin{cases} 0, & 0 \le j \le e_{K} - 2\\ 1, & j = e_{K} - 1 \end{cases}$$

Since for all $i \ge 0$, π_K^i is a linear combination of π_K^j for $0 \le j \le e_K - 1$, we see that f_i^* is of form $\frac{Q_i(\pi_K)}{P'_K(\pi_K)}$ for some monic polynomial $Q_i \in \mathbf{A}_F^+[T]$. This shows the lemma.

Corollary 1.18. For $r > r_K$, $\mathbf{B}_K^{\dagger,r}$ is a free module over $\mathbf{B}_{\mathbb{Q}_p}^{\dagger,r}$ of rank d_K . As a consequence, $[\mathbf{B}_{K}^{\dagger}:\mathbf{B}_{\mathbb{O}_{n}}^{\dagger}] = d_{K}.$

Proof. By Lemma1.16 (2), $f_i^* \in \mathbf{B}_K^{\dagger,r}$ for $r > r_K$. (In fact, $[\bar{P}'_K(\bar{\pi}_K)]f_i^* \in \mathbf{A}_K^{\dagger,r}$.) Thus, for any $x \in \mathbf{B}_{K}^{\dagger,r}$, x can be uniquely written as

$$x = \sum_{j=0}^{e_K - 1} \operatorname{Tr}(x \pi_K^j) f_j^*.$$

Therefore, $\{f_j^*\}_{1 \le j \le e_K}$ is a basis of $\mathbf{B}_K^{\dagger,r}$ over $\mathbf{B}_F^{\dagger,r}$.

For K = F, this follows from the fact $\mathbf{B}_F = \mathbf{B}_{\mathbb{Q}_p} \otimes_{\mathbb{Z}_p} \mathcal{O}_F$.

Recall we have proved following Lemma in previous talks.

Lemma 1.19. For any $x \in \mathbf{A}_K$, x can be uniquely written as

$$x = \sum_{n \in \mathbb{Z}} a_n \pi_K^n, \quad a_n \in \mathcal{O}_F$$

satisfying $\lim_{n \to -\infty} a_n = 0$.

Proof. Recall $\mathbf{E}_K = k_F[[\bar{\pi}_K]][\bar{\pi}_K^{-1}]$. We define a section $s : \mathbf{E}_K \to \mathbf{A}_K$ of natural projection $\mathbf{A}_K \to \mathbf{E}_K$ by

$$s(\sum_{n\gg-\infty}\bar{b}_n\bar{\pi}_K^n)=\sum_{n\gg-\infty}[\bar{b}_n]\pi_K^n.$$

For $x \in \mathbf{A}_K$, put $x_0 := x$. Define $x_{n+1} = \frac{x - s(\bar{x}_n)}{p}$ inductively. Then we have

$$x = \sum_{n \ge 0} p^n s(\bar{x}_n).$$

The uniqueness is trivial by construction.

Lemma 1.20. Assume $r > r_K$ For $\bar{x} \in \mathbf{E}_K$, then $s(\bar{x}) \in \mathbf{A}_K^{\dagger,r}[\frac{1}{[\bar{\pi}]}]$. In this case, $\nu_r(s(\bar{x})) = \nu_{\mathbf{E}}(\bar{x})$.

Proof. Because \mathbf{E}_K is a free module over \mathbf{E}_F of rank e_K with a set of basis $\{\bar{\pi}_K^j\}_{0\leq j\leq e_K-1}$, it suffices to check that $s(\bar{\pi}_K)\in \mathbf{A}_K^{\dagger,r}$. This follows from Lemma1.16.

If $\bar{x} = \sum_{n \ge n_0} a_n \bar{\pi}_K^n$ $(a_n \in k_F)$ with $0 \ne a_{n_0}$, then $\nu_{\mathbf{E}}(\bar{x}) = n_0 \nu_{\mathbf{E}}(\bar{\pi}_K)$. However, for $n \ge n_0$, $\nu_r([a_n]\pi_K^n) = \nu_r([a_n\bar{\pi}_K^n]) = n\nu_{\mathbf{E}}(\bar{\pi}_K)$. Thus, $\nu_r(s(\bar{x})) = \nu_{\mathbf{E}}(\bar{x})$.

Lemma 1.21. If $x \in \mathbf{A}_K$ and if $k \ge 0$, then

$$w_k(\frac{x-s(\bar{x})}{p}) \ge \inf(w_{k+1}(x), w_0(x) - (k+1)s(r_K)).$$

Proof. Replacing x by a multiplication of x by a power of $[\bar{\pi}_K]$, we may assume $\bar{x} \in \mathbf{E}_K^{+,\times}$; that is $\nu_{\mathbf{E}}(\bar{x}) = 0$. Since

$$w_k(\frac{x-s(\bar{x})}{p}) = w_{k+1}(x-s(\bar{x})) \ge \inf(w_{k+1}(x), w_{k+1}(s(\bar{x}))),$$

it suffices to check that $w_{k+1}(s(\bar{x})) \ge -(k+1)s(r_K)$.

For $n \ge 0$, by Fact1.1 and Lemma1.14,

$$w_{k+1}(\pi_K^n) \ge \inf_{i_1+\dots+i_n=k+1} (w_{i_1}(\pi_K) + \dots + w_{i_n}(\pi_K))$$

OVERCONVERGENT THEORY

$$\geq \inf_{i_1 + \dots + i_n = k+1} ((2i_1 - 1)\nu_{\mathbf{E}}(\mathcal{D}_K) + \dots + (2i_n - 1)\nu_{\mathbf{E}}(\mathcal{D}_K))$$

$$\geq -(2k + 2 - n)\nu_{\mathbf{E}}(\mathcal{D}_K) \geq -(k + 1)(2\nu_{\mathbf{E}}(\mathcal{D}_K)) = -(k + 1)s(r_K).$$

Because we have assumed $\bar{x} \in \mathbf{E}_{K}^{+,\times}$, $w_{k+1}(s(\bar{x})) \ge -(k+1)s(r_{K})$ by definition of s.

For $x \in \mathbf{A}_K$, we define $x_0 = x$ and define $x_{n+1} = \frac{x_n - s(\bar{x}_n)}{p}$ inductively.

Corollary 1.22. If $n \ge 0$, then $\nu_{\mathbf{E}}(\bar{x}_n) \ge \inf_{0 \le i \le n} (w_i(x) - (n-i)s(r_K))$.

Proof. For n = 0, the result is trivial. So we assume $n \ge 1$.

We prove that for every $k \ge 0$, for $n \ge 1$,

$$w_k(x_n) \ge \inf(w_{k+n}(x), \inf_{0 \le i \le n-1} (w_i(x) - (k+n-i)s(r_K))).$$

The result is the case for k = 0.

We give the proof by induction on n. For n = 1, this is the result of Lemma1.21. By Lemma1.21 again,

$$w_k(x_{n+1}) \ge \inf(w_{k+1}(x_n), w_0(x_n) - (k+1)s(r_K)).$$

By inductive hypothesis (on n), $w_0(x_n) \ge w_n(x)$ and

$$w_{k+1}(x_n) \ge \inf(w_{k+1+n}(x), \inf_{0 \le i \le n-1}(w_i(x) - (k+1+n-i)s(r_K))).$$

Combining these inequalities, we prove the desired result for n + 1.

Let \mathcal{A}_F^r be the ring of Laurent series $f(T) = \sum_{n \in \mathbb{Z}} a_n T^n$ with $a_n \in \mathcal{O}_F$ such that $\nu_p(a_n) + nr \ge 0$ and that $\lim_{n \to -\infty} \nu_p(a_n) + nr = +\infty$. If $f \in \mathcal{A}_F^r$, we define $\omega_r(f) = \inf_n(\nu_p(a_n) + nr)$. Then it can be checked that ω_r is a valuation on \mathcal{A}_F^r . The \mathcal{A}_F^r can be viewed as the ring of analytic functions on annulus $\{0 < \nu_p(T) \le r\}$ which are bounded by 1 with coefficients in \mathcal{O}_F . Let $\mathcal{B}_F^r = \mathcal{A}_F^r[\frac{1}{p}]$, which is the ring of bounded analytic functions on annulus $\{0 < \nu_p(T) \le r\}$ whose coefficients belong to F. Then we have the following theorem.

Theorem 1.23. Assume $r > r_K$.

(1) The map $f \mapsto f(\pi_K)$ induces an isomorphism of topological rings from $(\mathcal{A}_F^{\frac{1}{re_K}}, s(r)\omega_{\frac{1}{re_K}})$ to $(\mathbf{A}_K^{\dagger,r}, \nu_r)$ such that $s(r)\omega_{\frac{1}{re_K}}(f) = \nu_r(f(\pi_K))$. (2) The map $f \mapsto f(\pi_K)$ induces an isomorphism from $\mathcal{B}_F^{\frac{1}{re_K}}$ to $\mathbf{B}_K^{\dagger,r}$. *Proof.* The (2) is a consequence of (1). So we only need to prove (1).

Assume $f = \sum_{n \in \mathbb{Z}} a_n T^n \in \mathcal{A}_F^{\frac{1}{re_K}}$. By Lemma1.16, $a_n \pi_K^n = p^{\nu_p(a_n)}[\bar{\pi}_K]^n u_n$ for some unit $u_n \in \mathbf{A}_K^{\dagger,r}$. Therefore, $\nu_r(a_n \pi_K^n) = \nu_p(a_n)s(r) + n\nu_{\mathbf{E}}(\bar{\pi}_K)$. Recall $\nu_{\mathbf{E}}(\bar{\pi}_K) = \frac{1}{e_K} \cdot \frac{p}{p-1} = s(\frac{1}{e_K})$. It follows that

$$\nu_r(a_n \pi_K^n) = s(r)\nu_p(a_n) + ns(\frac{1}{e_K}) = s(r)(\nu_p(a_n) + \frac{n}{re_K}) = s(r)\omega_{\frac{1}{re_K}}(a_n T^n).$$

Therefore, for such an $f = \sum_{n \in \mathbb{Z}} a_n T^n \in \mathcal{A}_F^{\frac{1}{re_K}}$, we see that $f(\pi_K) \in \mathbf{A}_K^{\dagger,r}$ and that $\nu_r(f(\pi_K)) \ge \inf_n \nu_r(a_n \pi_K^n) = s(r) \omega_{\frac{1}{re_K}}(f)$.

Conversely, assume $x \in \mathbf{A}_{K}^{\dagger,r}$. By the proof of Lemma1.19, $x = \sum_{n\geq 0} p^{n} s(\bar{x}_{n})$. Put $d_{n} = \frac{\nu_{\mathbf{E}}(\bar{x}_{n})}{\nu_{\mathbf{E}}(\bar{\pi}_{K})}$. By definition of s, there exists a unique $f_{n} \in T^{d_{n}}\mathcal{O}_{F}[[T]]$ such that $s(\bar{x}_{n}) = f_{n}(\pi_{K})$. Therefore $x = \sum_{n\geq 0} p^{n} f_{n}(\pi_{K})$.

We need to show that $p^n f_n \in \mathcal{A}_F^{\frac{1}{re_K}}$. Assume $f_n = T^{d_n} \sum_{j \ge 0} b_j T^j$ with $b_i \in \mathcal{O}_F$. Then $\omega_{\frac{1}{re_K}}(b_j p^n T^{d_n+j}) \ge n + \frac{d_n+j}{re_K}$. Recall $d_n = \frac{\nu_{\mathbf{E}}(\bar{x}_n)}{\nu_{\mathbf{E}}(\bar{\pi}_K)}$. So $\frac{d_n}{re_K} = \frac{\nu_{\mathbf{E}}(\bar{x}_n)}{s(r)}$. By Corollary1.22,

$$\frac{d_n}{re_K} \ge \frac{1}{s(r)} \inf_{0 \le i \le n} (w_i(x) - (n-i)s(r_K)).$$

Then we deduce that

$$\omega_{\frac{1}{re_{K}}}(b_{i}p^{n}T^{d_{n}+j}) \geq \frac{j}{re_{K}} + \frac{1}{s(r)} \inf_{0 \leq i \leq n} (w_{i}(x) + is(r) + (n-i)s(r-r_{K}))$$

and thus $p^n f_n \in \mathcal{A}_F^{\frac{1}{r_{e_K}}}$. Moreover, from above formula, we also see that

$$s(r)\omega_{\frac{1}{re_K}}(p^n f_n) \ge \inf(w_n(x) + ns(r), \nu_r(x) + s(r - r_K)) \ge \nu_r(x).$$

Therefore $f := \sum_{n \ge 0} p^n f_n \in \mathcal{A}_F^{\frac{1}{re_K}}$ satisfying $f(\pi_K) = x$ and $s(r)\omega_{\frac{1}{re_K}}(f) \ge \nu_r(x)$. These complete the proof.

2. Colmez-Tate-Sen conditions and proof of Theorem 0.1

2.1. Colmez-Tate-Sen Condition for $\tilde{\mathbf{B}}^{\dagger,r}$. Recall ([Ber1, Section 19]): let $\tilde{\Omega}$ be a \mathbb{Q}_p -algebra endowed with a map

$$\nu_{\omega}: \Omega \to \mathbb{R} \cup \{+\infty\}$$

such that

(1)
$$\nu_{\Omega}(x) = 0$$
 if and only if $x = 0$;
(2) $\nu_{\Omega}(x+y) \ge \inf(\nu_{\Omega}(x), \nu_{\Omega}(y))$;
(3) $\nu_{\Omega}(xy) \ge \nu_{\Omega}(x) + \nu_{\Omega}(y)$;
(4) $\nu_{\Omega}(p) > 0$ and $\nu_{\Omega}(px) = \nu_{\Omega}(p) + \nu_{\Omega}(x)$.

We assume that (Ω, ν_{Ω}) is a completed Banach space over \mathbb{Q}_p and that Gal_K acts on Ω as isometries. Then we say $\widetilde{\Omega}$ satisfies Colmez-Sen-Tate conditions if there exists c_1, c_2 and c_3 in $\mathbb{R}_{\geq 0}$ such that following conditions are fulfilled.

(CST 1) For every finite extensions M/L of K, there exists $\alpha \in \widetilde{\Omega}^{H_M}$ such that $\nu_{\Omega}(\alpha) > -c_1$ and that $\operatorname{Tr}_{M_{\infty}/L_{\infty}}(\alpha) = 1$;

(CST 2) For every finite extension finite L/K, there is an increasing sequence $\{\Omega_{L,n}\}_{n\geq 0}$ of closed sub- \mathbb{Q}_p -algebra of $\widetilde{\Omega}$ together with maps $R_{L,n}: \widetilde{\Omega}^{H_L} \to \Omega_{L,n}$ satisfying following properties:

- (i) if $x \in \widetilde{\Omega}^{H_L}$, then $\nu_{\Omega}(R_{L,n}(x)) \ge \nu_{\Omega}(x) c_2$ and $\lim_{n \to \infty} R_{L,n}(x) = x$;
- (*ii*) if $L_1 \subset L_2$, then $\Omega_{L_1,n} \subset \Omega_{L_2,n}$ and the restriction of $R_{L_2,n}$ to $\Omega_{L_1,n}$ is $R_{L_1,n}$; (*iii*) $R_{L,n}$ is $\Omega_{L,n}$ -linear and is the identify on $\Omega_{L,n}$;
- (*iv*) if $\sigma \in \text{Gal}_K$, then $\sigma(\Omega_{L,n}) = \Omega_{\sigma(L),n}$ and $R_{\sigma(L),n} \circ \sigma = g \circ R_{L,n}$.

(CST 3) For every finite extension L/K, there exists an $m(L) \ge n(L)$ such that if $\gamma \in \Gamma_L$ and $n \ge \sup(n(\gamma), m(L))$, then $(1 - \gamma)$ is invertible on $X_{L,n} = (1 - R_{L,n})(\tilde{\Omega}^{H_L})$ and $\nu_{\Omega}((\gamma - 1)^{-1}(x)) \ge \nu_{\Omega}(x) - c_3$ for $x \in X_{L,n}$.

Example 2.1. (\mathbb{C}_p, ν_p) satisfies CST-conditions.

In this section, we shall give another example.

Proposition 2.2 (CST 1). Let L/K be finite extensions of \mathbb{Q}_p . Fix an r > 0, for any $\delta > 0$, there exists an $\alpha \in \tilde{\mathbf{B}}_L^{\dagger,r}$ with $\nu_r(\alpha) > -\delta$ such that $\operatorname{Tr}_{L_{\infty}/M_{\infty}}(\alpha) = 1$.

Proof. Since $\tilde{\mathbf{E}}_L/\tilde{\mathbf{E}}_K$ is separated, there exists some $\beta \in \tilde{\mathbf{E}}_L$ satisfying $\operatorname{Tr}(\beta) = 1$. Because $\nu_{\mathbf{E}}(\varphi^{-n}(\beta)) = p^{-n}\nu_{\mathbf{E}}(\beta)$, we may assume that $\nu_{\mathbf{E}}(\beta) > \sup(-s(r), -\delta)$.

Then we see that $\operatorname{Tr}([\beta]) = 1 + \sum_{n \ge 1} [x_n] p^n$ with

$$\nu_{\mathbf{E}}(x_k) \ge \nu_{\mathbf{E}}(\beta) > -ks(r).$$

Therefore, $\operatorname{Tr}([\beta]) \in \tilde{\mathbf{A}}_{K}^{\dagger,r}$ and $\nu_{r}(\operatorname{Tr}([\beta]) - 1) > 0$. By Lemma1.10, $\operatorname{Tr}([\beta])$ is a unit in $\tilde{\mathbf{A}}_{K}^{\dagger,r}$. Put $\alpha = \frac{[\beta]}{\operatorname{Tr}([\beta])}$, then $\nu_{r}(\alpha) = \nu_{\mathbf{E}}(\beta) > -\delta$.

Define $I = \mathbb{Z}\begin{bmatrix}\frac{1}{p}\end{bmatrix} \cap [0,1)$ and $I_m = \{x \in I \mid \nu_p(x) \ge -m\}$ for $m \ge 0$.

Define $\mathbf{E}_{K,m} = \varphi^{-m}(\mathbf{E}_K)$ for $m \ge 0$. Then $\mathbf{E}_{K,m}/\mathbf{E}_K$ is purely inseparable of degree p^m and $\tilde{\mathbf{E}}_K$ is the completion of $\mathbf{E}_{K,\infty} = \bigcup_{m\ge 0} \mathbf{E}_{K,m}$ with respect to $\nu_{\mathbf{E}}$.

The following Lemma is obvious and we omit the proof.

Lemma 2.3. If $m \ge 0$, then $\{\epsilon^i\}_{i \in I_m}$ is a basis of $\mathbf{E}^+_{\mathbb{O}_n,m}$ over $\mathbf{E}^+_{\mathbb{O}_n}$.

Proposition 2.4. Assume $c_K = \nu_{\mathbf{E}}(\mathcal{D}_K) + \nu_{\mathbf{E}}(\bar{\pi})$.

(1) For every element $x \in \mathbf{E}_{K,m}$, it can be uniquely written as

$$x = \sum_{i \in I_m} a_i(x)\epsilon^i, \quad a_i(x) \in \mathbf{E}_K$$

such that $\nu_{\mathbf{E}}(x) - c_K \leq \inf_{i \in I_m} \nu_{\mathbf{E}}(a_i(x)) \leq \nu_{\mathbf{E}}(x)$.

(2) For every element $x \in \tilde{\mathbf{E}}_K$, it can be uniquely written as

$$x = \sum_{i \in I} a_i(x)\epsilon^i, \quad a_i(x \in \mathbf{E}_K)$$

such that $\lim_{i \to I} a_i(x) = 0$ and that $\nu_{\mathbf{E}}(x) - c_K \leq \inf_{i \in I} \nu_{\mathbf{E}}(a_i(x)) \leq \nu_{\mathbf{E}}(x)$.

Proof. (1) Since $\mathbf{E}_{\mathbb{Q}_p,m}/\mathbf{E}_{\mathbb{Q}_p}$ is purely inseparable and $\mathbf{E}_K/\mathbf{E}_{\mathbb{Q}_p}$ is separable, a basis of $\mathbf{E}_{\mathbb{Q}_p,m}$ over $\mathbf{E}_{\mathbb{Q}_p,m}$ is also a basis of $\mathbf{E}_{K,m}/\mathbf{E}_K$. So the existence and the uniqueness is clear. It is trivial that $\inf_{i\in I_m} \nu_{\mathbf{E}}(a_i(x)) \leq \nu_{\mathbf{E}}(x)$. By uniqueness, the function a_i is \mathbf{E}_K -linear.

In the case where K = F (thus $c_F = \nu_{\mathbf{E}}(\bar{\pi})$), up to a multiplication by some power of $\bar{\pi}$, we may assume $0 \leq \nu_{\mathbf{E}}(x) < \nu_{\mathbf{E}}(\bar{\pi})$. Since $\{\epsilon\}_{i \in I_m}$ is a basis of $\mathbf{E}_{F,m}^+$ over \mathbf{E}_F^+ , we see that $\nu_{\mathbf{E}}(a_i(x)) \geq 0 \geq \nu_{\mathbf{E}}(x) - c_F$.

In the general case, we choose $\{e_1, \ldots, e_d\}$ to be a basis of $\mathbf{E}_K^+/\mathbf{E}_F^+$ with $d = [\mathbf{E}_K : \mathbf{E}_F] = e_K$. Let $\{e_i^*\}_{1 \le i \le d}$ be the dual basis of $\mathbf{E}_K/\mathbf{E}_F$ under the perfect pairing $(x, y) \mapsto \operatorname{Tr}_{\mathbf{E}_K/\mathbf{E}_F}(xy)$ on \mathbf{E}_K . Then $\{e_i^*\}_{1 \le i \le d}$ is the basis of \mathcal{D}_K^{-1} over \mathbf{E}_F^+ (recall \mathcal{D}_K is the idea of relative differentials). In particular, $\nu_{\mathbf{E}}(e_i^*) \ge -\nu_{\mathbf{E}}(\mathcal{D}_K)$. Clearly, for every $m \ge 0$, $\{e_1, \ldots, e_d\}$ is a basis of $\mathbf{E}_{K,m}/\mathbf{E}_{F,m}$ and $\{e_i^*\}_{1 \le i \le d}$ is the corresponding dual basis under

$$(x, y) \mapsto \operatorname{Tr}_{\mathbf{E}_{K, M}/\mathbf{E}_{F, m}}(xy) = \operatorname{Tr}_{\mathbf{E}_{K}/\mathbf{E}_{F}}(xy).$$

Therefore, if $x \in \mathbf{E}_{K,m}$, $x = \sum_{j=1}^{d} \operatorname{Tr}(xe_j)e_j^*$. Since $\operatorname{Tr}(xe_j) \in \mathbf{E}_F$ and $\nu_{\mathbf{E}}(\operatorname{Tr}(xe_j)) \ge \nu_{\mathbf{E}}(x)$, if we define $a_i(x) = \sum_{j=1}^{d} a_i(\operatorname{Tr}(xe_j))e_j^*$, then

$$\nu_{\mathbf{E}}(a_i(x)) \ge \inf_j \nu_{\mathbf{E}}(a_i(\operatorname{Tr}(xe_j))) - \nu_{\mathbf{E}}(\mathcal{D}_K) \ge \nu_{\mathbf{E}}(x) - c_K.$$

(2) By the proof of (1), we see that a_i is continuous and \mathbf{E}_K -linear. Then (2) follows from (1) and the fact that $\tilde{\mathbf{E}}_K$ is the completion of $\mathbf{E}_{K,\infty}$.

Remark 2.1. From the proof of Proposition2.4, when K is unramified over \mathbb{Q}_p , $x \in \tilde{\mathbf{E}}_K^+$ if and only if $a_i(x) \in \mathbf{E}_K^+$.

For $m \ge 0$, we define $\mathbf{A}_{K,m} = \varphi^{-m}(\mathbf{A}_K)$, which is a Cohen ring of $\mathbf{E}_{K,m}$. Define $\mathbf{A}_{K,\infty} = \bigcup_{m\geq 0} \mathbf{A}_{K,m}$. Then \mathbf{A}_K is the completion of $\mathbf{A}_{K,\infty}$ with respect to the canonical topology on **A**.

Then it is conceivable that the following proposition is true.

Proposition 2.5. (1) For every $x \in \mathbf{A}_{K,m}$, x can be uniquely written by formula

$$x = \sum_{i \in I_m} a_i(x) [\epsilon]^i, \quad a_i(x) \in \mathbf{A}_K.$$

(2) For every $x \in \tilde{\mathbf{A}}_K$, x can be uniquely written by formula

$$x = \sum_{i \in I} a_i(x) [\epsilon]^i, \quad a_i(x) \in \mathbf{A}_K$$

such that $a_i(x) \to 0$ for the canonical topology on \mathbf{A} .

(3) When K/\mathbb{Q}_p is unramified, $x \in \tilde{\mathbf{A}}_K^+$ if and only if $a_i(x) \in \mathbf{A}_K^+$ for all *i*.

Proof. It suffices to prove (1).

We define $s: \mathbf{E}_{K,m} \to \mathbf{A}_{K,m}$ by $s(\sum_{i \in I_m} a_i(\bar{x})\epsilon^i) = \sum_{i \in I_m} [a_i(\bar{x})][\epsilon]^i$, which is a section of the natural projection $\mathbf{A}_{K,m} \to \mathbf{E}_{K,m}$. Put $x_0 = x$. For $n \ge 0$, we put $x_{n+1} = \frac{(x_n - s(\bar{x}_n))}{p}$ inductively. If we define $a_i(x) = \sum_{n \ge 0} p^n[a_i(\bar{x}_n)]$, then we deduce that

$$x = \sum_{i \in I_m} a_i(x) [\epsilon]^i.$$

The uniqueness is clear by the construction and the uniqueness criterion of Proposition2.4.

Clearly, a_i is \mathbf{A}_K -linear and continuous under the canonical topology.

Corollary 2.6. For $n \ge 0$, put $R_{K,m} : \tilde{\mathbf{A}}_K \to \mathbf{A}_{K,m}$ by $R_{K,m}(x) = \sum_{i \in I_m} a_i(x)[\epsilon]^i$. Then we have

- (1) $\lim_{m \to +\infty} R_{K,m}(x) = x;$
- (2) $R_{K,m} = \varphi^{-m} \circ R_{K,0} \circ \varphi^{m};$
- (3) $R_{K,m}$ is an $\mathbf{A}_{K,m}$ -linear, continuous section of the inclusion $\mathbf{A}_{K,m} \hookrightarrow \tilde{\mathbf{A}}_{K}$;
- (4) if $\sigma \in \operatorname{Gal}_{\mathbb{Q}_p}$, then $\sigma \circ R_{K,m} = R_{\sigma(K),m} \circ \sigma$.

Proof. The (1) is trivial. For (2), since $a_0 = R_{K,0}$ is \mathbf{A}_K -linear, we deduce that

$$R_{K,0}(\varphi^m(x)) = \sum_{i \in I_m} \varphi^m(a_i(x))[\epsilon]^{p^m i}.$$

This shows (2) and thus (3) (by applying (2)).

For (4), one can prove Proposition 2.5 by replacing ϵ by $\sigma(\epsilon)$. Then (4) follows from the uniqueness criterion.

Clearly, we can extend $R_{K,n}$ to \mathbf{B}_K .

For r > 0 and $m \ge 0$, we define $\mathbf{A}_{K,m}^{\dagger,r} = \tilde{\mathbf{A}}_{K}^{\dagger,r} \cap \mathbf{A}_{K,m}$. Then we also have $\mathbf{A}_{K,m}^{\dagger,r} = \varphi^{-m}(\mathbf{A}_{K}^{\dagger,p^{m_{r}}})$. We want to show that for suitable r, if we restrict $R_{K,n}$ to $\tilde{\mathbf{B}}_{K}^{\dagger,r}$, then the image of $R_{K,n}$ is contained in $\mathbf{B}_{K,n}^{\dagger,r}$. Thus, (CSD 2) holds for $\tilde{\mathbf{B}}^{\dagger,r}$ for suitable r and hence for $\tilde{\mathbf{B}}^{\dagger}$.

Lemma 2.7. If $\alpha \in \tilde{\mathbf{E}}$ and $l \in \mathbb{Z}$ satisfying $\nu_{\mathbf{E}}(\alpha) \geq -l\nu_{\mathbf{E}}(\bar{\pi})$, then $[\alpha]$ can be uniquely written as

$$[\alpha] = \sum_{n \ge 0} \frac{p^n}{\pi^{l+a(n)}} [\beta_n]$$

with $\beta_n \in \tilde{\mathbf{E}}^+$, where $a(n) = \lfloor \frac{p-1}{p}n \rfloor$ is the smallest integer $\geq \frac{p-1}{p}n$.

Proof. Put $r = \frac{p-1}{p}$. We note that if $x = \sum_{n \ge 0} [\alpha_n] p^n \in \tilde{\mathbf{A}}$ and $b \in \mathbb{Z}$, then

$$\nu_r(\frac{[\bar{\pi}]^o}{p}(x-[\alpha_0])) = \inf_{k \ge 0}(s(b) + \nu_{\mathbf{E}}(\alpha_{k+1}) + ks(r)) \ge s(b) - 1 + \nu_r(x).$$

Now, we construct β_n inductively. Put $x_0 = \pi^l[\alpha], \beta_n = \bar{x}_n$ and

$$x_{n+1} = \frac{\pi^{a(n+1)-a(n)}}{p} (x_n - [\beta_n]) = \left(\frac{\pi}{[\bar{\pi}]}\right)^{a(n+1)-a(n)} \frac{[\bar{\pi}]^{a(n+1)-a(n)}}{p} (x_n - [\beta_n]).$$

By example 1.13, $\nu_r(\frac{\pi}{[\bar{\pi}]}) = 0$. Therefore, we deduce that

$$\nu_r(x_{n+1}) \ge s(a(n+1) - a(n)) - 1 + \nu_r(x_n).$$

By hypothesis, $\nu_r(x_0) = \nu_r([\alpha]\pi^l) \ge 0$. By induction on n, we see that

$$\nu_r(x_n) \ge s(a(n)) - n \ge 0, \quad \forall n \ge 0,$$

because $a(n) = \lfloor \frac{p-1}{p}n \rfloor$. Therefore $\nu_{\mathbf{E}}(\beta_n) \ge \nu_r(x_n) \ge 0$. The uniqueness comes from the construction.

Proposition 2.8. If $r > r_K$ and if $x \in \tilde{\mathbf{A}}_K^{\dagger,r}$, then $a_i(x) \in \mathbf{A}_K^{\dagger,r}[\frac{1}{[\pi]}]$ and for all $i \in I$,

$$\nu_r(a_i(x)) \ge \nu_r(x) - c_K$$
 and $\lim_i \nu_r(a_i(x)) = +\infty.$

Proof. We assume $x \neq 0$.

Case 1: K = F.

We assume $x = [\alpha]$ at first. Let l be the smallest integer such that $\nu_{\mathbf{E}}(\alpha) \geq l\nu_{\mathbf{E}}(\bar{\pi})$. Then $l \geq 0$. Applying above Lemma2.7, we can write $x = \sum_{n \geq 0} \frac{p^n}{\pi^{l+a(n)}} [\beta_n]$ for $\beta_n \in \tilde{\mathbf{E}}_K^+$ (by uniqueness, β_n is H_K -invariant). For $i \in I$, we put

$$a_i([\alpha]) = \sum_{n \ge 0} \frac{p^n}{\pi^{l+a(n)}} a_i([\beta_n]).$$

It remains to check that $a_i([\alpha]) \in \mathbf{A}_K^{\dagger,r}$. By Proposition2.5 (3), $a_i([\beta_n]) \in \mathbf{A}_K^+$. Put n = q(n)p + r(n) for $0 \le r(n) \le p-1$ and then a(n) = q(n)(p-1) + r(n). Therefore,

$$\nu_r(\frac{p^n}{\pi^{l+a(n)}}) = \nu_r(\frac{p^n}{[\bar{\pi}]^{l+a(n)}}) = ns(r) - s(l+a(n)) = s(nr - l - a(n)).$$

In this case, $r_K = \frac{p-1}{p}$, we see that

$$nr - l - a(n) = q(n)(rp - (p-1)) + r(n)(r-1) - l = n(r - r_K) - \frac{r(n)}{p-1} - l \ge n(r - r_K) - 1 - l$$

Since $a_i([\beta_n]) \in \mathbf{A}_K^+$, we deduce that $a_i([\alpha])[\bar{\pi}]^{l+1} \in \mathbf{A}_K^{\dagger,r}$ and that

$$\nu_r(a_i([\alpha])) \ge -s(l+1) \ge \nu_r([\alpha]) - \nu_{\mathbf{E}}(\bar{\pi}).$$

Because $a_i([\beta_n]) \in \mathbf{A}_K^+$ tends to 0 under the weak topology and $\mathbf{A}_K^+ \subset \tilde{\mathbf{A}}^+$, $\lim_i \nu_r(a_i([\beta_n])) = +\infty$ and thus $\lim_i \nu_r(a_i([\alpha])) = +\infty$.

In general, if $x = \sum_{n\geq 0} p^n[\alpha_n]$, then we define $a_i(x) = \sum_{n\geq 0} p^n a_i([\alpha_n])$. Thus, we are reduced to the above special case.

Case 2: the general case.

Let $\{f_j^*\}_{1 \le j \le e_K}$ be the basis of $\mathbf{B}_K/\mathbf{B}_F$ described in Lemma1.17. Then $P'_K(\pi_K)f_j^* \in \mathbf{A}_F^+[\pi_K]$. Therefore, by Lemma1.16, for $r > r_K$, $[\bar{P}'_K(\bar{\pi}_K)]f_j^* \in \mathbf{A}_K^{\dagger,r}$. For every $x \in \tilde{\mathbf{A}}_K^{\dagger,r}$, $x = \sum_{1 \le j \le e_K} \operatorname{Tr}(x\pi_K^j)f_j^*$ for $\operatorname{Tr} = \operatorname{Tr}_{\mathbf{E}_K/\mathbf{E}_F}$ and $[\bar{P}'_K(\bar{\pi}_K)]x \in \mathbf{A}_K^{\dagger,r}$. Furthermore, $\nu_r(\operatorname{Tr}(x\pi_K^j)) \ge \nu_r(x)$. Put $a_i(x) = \sum_{1 \le j \le e_K} a_i(\operatorname{Tr}(x\pi_K^j))f_j^*$. Then $\nu_r(a_i(x)) \ge \inf_j \nu_r(a_i(\operatorname{Tr}(x\pi_K^j))) - \nu_r([\bar{P}'_K(\bar{\pi}_K)]) \ge \nu_r(x) - \nu_{\mathbf{E}}(\bar{\pi}) - \nu_{\mathbf{E}}(\mathcal{D}_K) = \nu_r(x) - c_K$.

Now, the following corollary is straightforward.

Corollary 2.9 (CST 2). If r > 0 and $p^n r > r_K$, then $R_{K,n}(x) \in \mathbf{A}_{K,n}^{\dagger,r}[\frac{1}{[\pi]}]$. Moreover, we have that $\lim_n R_{K,n}(x) \to x$ in $\mathbf{A}_K^{\dagger,r}[\frac{1}{[\pi]}]$ and that

$$\nu_r(R_{K,n}(x)) \ge \nu_r(x) - p^{-n}c_K.$$

As a consequence, the condition (CST 2) holds for $(\tilde{\mathbf{B}}^{\dagger,r}, \nu_r)$ for maps $\{R_{K,m} : \tilde{\mathbf{B}}_K^{\dagger,r} \to \mathbf{B}_{K,m}^{\dagger,r}\}_{m \ge 0}$ when $r > r_K$.

Proof. If $n \geq 0$, we have seen that $R_{K,n} = \varphi^{-n} \circ R_{K,0} \circ \varphi^n$. If $x \in \tilde{\mathbf{A}}_{K}^{\dagger,r}[\frac{1}{[\pi]}]$, $\varphi^n(x) \in \tilde{\mathbf{A}}_{K}^{\dagger,p^n r}[\frac{1}{[\pi]}]$. Thus, by above Proposition2.8, $R_{K,0}(\varphi^n(x)) \in \mathbf{A}_{K}^{\dagger,p^n r}[\frac{1}{[\pi]}]$ and furthermore $R_{K,n}(x) \in \mathbf{A}_{K,n}^{\dagger,r}[\frac{1}{[\pi]}]$. Now, by Lemma1.5 (4), we have

$$\nu_r(R_{K,n}(x)) = p^{-n}\nu_{p^n r}(R_{K,0}(\varphi^n(x))) \ge p^{-n}\nu_{p^n r}(\varphi^n(x)) - p^{-n}c_K = \nu_r(x) - p^{-n}c_K$$

as expected.

We define
$$\mathbf{X}_{K,m}^{\dagger,r} = (1 - R_{K,m})(\tilde{\mathbf{B}}_{K}^{\dagger,r})$$
, then $\tilde{\mathbf{B}}_{K}^{\dagger,r} = \mathbf{B}_{K,m}^{\dagger,r} \oplus \mathbf{X}_{K,m}^{\dagger,r}$ for all $m \ge 0$.

Now, we study the action of Γ_K on $\tilde{\mathbf{A}}_K^{\dagger,r}$.

Recall we have proved in [Ber1, Section 9] (or [Col, Section 4]) that there exists an $n_0(K) \ge 0$ such that for all $n \ge n_0(K)$,

(1) K_{n+1}/K_n is totally ramified of degree p and $1 + p^n \mathbb{Z}_p \subset \Gamma_K$; (2) $F \subset K_n$; (3) $e(K_n/\mathbb{Q}_p(\zeta_{p^n})) = e_K$ and $f(K_n/\mathbb{Q}_p(\zeta_{p^n})) = f_K$.

(4)
$$\nu_{\mathbf{E}}(\mathcal{D}_K) = p^n \nu_p(\mathcal{D}_{K_n/\mathbb{Q}_p(\zeta_{p^n})}) = p^{n+1} \nu_p(\mathcal{D}_{K_{n+1}/\mathbb{Q}_p(\zeta_{p^{n+1}})}) \le \frac{p^{n_0(K)}}{p-1}.$$

Lemma 2.10. If $\gamma \in \Gamma_K$ has infinite order, then

(1)
$$\mathbf{E}_{K}^{\gamma=1} = \tilde{\mathbf{E}}_{K}^{\gamma=1} = k_{F}^{\gamma=1}$$
 and
(2) $\mathbf{A}_{K}^{\gamma=1} = \tilde{\mathbf{A}}_{K}^{\gamma=1} = \mathcal{O}_{F}^{\gamma=1}$.

Proof. The (2) follows from (1) by *p*-adic completeness.

If $k_F^{\gamma=1} \neq \mathbf{E}_K^{\gamma=1}$, then there exists $x \in \mathbf{E}_K^{\gamma=1}$ such that $\nu_{\mathbf{E}}(x) > 0$. Therefore, $k_F^{\gamma=1}((x))$ is a subfield of $\mathbf{E}_K^{\gamma=1}$. Since both of \mathbf{E}_K and $k_F^{\gamma=1}((x))$ have transcendent degree 1 (over \mathbb{F}_p), $\mathbf{E}_K/k_F^{\gamma=1}((x))$ is an algebraic extension. In particular, $\mathbf{E}_K/\mathbf{E}_K^{\gamma=1}$ is algebraic. Thus, the Galois closure of $\mathbf{E}_K^{\gamma=1}(\epsilon)$ in \mathbf{E}_K is a finite extension of \mathbf{E}_K . It follows that there is a $k \in \mathbb{N}$ such that $\gamma^k(\epsilon) \in \mathbf{E}_K^{\gamma=1}$. This is impossible!

If $x \in \tilde{\mathbf{E}}_{K}$, by Corollary2.6 (4), for all $n \ge 0$, $R_{K,n}(x) \in \mathbf{E}_{K,n}^{\gamma=1}$. Thus,

$$\varphi^n(R_{K,n}(x)) \in \mathbf{E}_K^{\gamma=1} = k_F^{\gamma=1}.$$

It follows that $x = \lim R_{K,n}(x) \in k_F^{\gamma=1}$.

Lemma 2.11. Assume $\gamma \in \Gamma_K$ with $n(\gamma) \ge n_0(K)$, then

$$\nu_{\mathbf{E}}(\gamma(\bar{\pi}_K) - \bar{\pi}_K) = p^{n(\gamma)}\nu_{\mathbf{E}}(\bar{\pi}) - \nu_{\mathbf{E}}(\mathcal{D}_K).$$

Proof. Put $n = n(\gamma)$. Because $n \ge n_0(K)$, K_{n+1}/K_n is totally ramified of degree p and γ is the generator of Gal (K_{n+1}/K_n) . By [Ser, IV.§1.Proposition 4], if ω is a uniformizer of K_{n+1} , then $\nu_p(\mathcal{D}_{K_{n+1}/K_n}) = (p-1)\nu_p(\gamma(\omega) - \omega)$. Recall

 $\mathbf{E}_{K}^{+} = \{(x_{m})_{m>0} \in \tilde{\mathbf{E}}^{+} \mid x_{m} \in \mathcal{O}_{K_{m}} \text{ and } N(x_{m+1}) \equiv x_{m} \mod \mathfrak{a} \text{ for } m \gg 0\},\$

where $\mathfrak{a} = \{x \in \mathcal{O}_{\widehat{K_{\infty}}} \mid \nu_p(x) \geq \frac{1}{p}\}$. Then $\overline{\pi}_K = (\pi_{K,m})_{m \geq 0}$ such that for $m \geq 1$ $n_0(K) + 1$, $\pi_{K,m}$ is a uniformizer of K_m . So

$$\nu_{\mathbf{E}}(\gamma(\bar{\pi}_{K}) - \pi_{K}) = p^{n+1}\nu_{p}(\gamma(\pi_{K,n+1}) - \pi_{K,n+1}) = \frac{p^{n+1}}{p-1}\nu_{p}(\mathcal{D}_{K_{n+1}/K_{n}})$$

$$= \frac{p^{n+1}}{p-1}(\nu_{p}(\mathcal{D}_{K_{n+1}/F_{n+1}}) + \nu_{p}(\mathcal{D}_{F_{n+1}/F_{n}}) - \nu_{p}(\mathcal{D}_{K_{n}/F_{n}}))$$

$$= \frac{p^{n+1}}{p-1}(1 + p^{-n-1}\nu_{\mathbf{E}}(\mathcal{D}_{K}) - p^{-n}\nu_{\mathbf{E}}(\mathcal{D}_{K})) = p^{n}\nu_{\mathbf{E}}(\bar{\pi}) - \nu_{\mathbf{E}}(\mathcal{D}_{K})$$
is expected.

as expected.

Lemma 2.12. If $m \ge 0$, $u \in \mathbb{Z}_p^{\times}$ and $r > \frac{p-1}{p}p^m \ge \frac{p-1}{p}$, then $\frac{[\epsilon]^{p^m}u-1}{[\overline{\pi}]^{p^m}}$ is a unit in $\mathbf{A}_{\mathbb{O}_n}^{\dagger,r}$.

Proof. Recall $[\epsilon] = 1 + \pi$. When m = 0, $\frac{[\epsilon]^{p^m u} - 1}{[\overline{\pi}]^{p^m}} = \frac{(1+\pi)^u - 1}{\pi} \frac{\pi}{[\overline{\pi}]}$. Because $u \in \mathbb{Z}_p^{\times}$, the element $\frac{(1+\pi)^u-1}{\pi}$ is a unit in $\mathbb{Z}_p[[\pi]] = \mathbf{A}_{\mathbb{Q}_p}^+$. For $r > \frac{p-1}{p}, \frac{\pi}{[\pi]}$ is a unit in $\mathbf{A}_{\mathbb{Q}_p}^{\dagger,r}$. Therefore, $\frac{(1+\pi)^u-1}{\pi}\frac{\pi}{[\bar{\pi}]}$ is a unit.

For general *m*, we see $\frac{[\epsilon]^{p^m_u}-1}{[\bar{\pi}]^{p^m}} = \varphi(\frac{(1+\pi)^u-1}{\pi}\frac{\pi}{[\bar{\pi}]})$. Since $\varphi^m : \mathbf{A}_{\mathbb{Q}_p}^{\dagger,r} \to \mathbf{A}_{\mathbb{Q}_p}^{\dagger,rp^m}$ is an isomorphism, the lemma follows.

Lemma 2.13. If $\gamma \in \Gamma_K$ satisfying $n(\gamma) \ge n_0(K)$ and if $r > \sup(r_K, \frac{p-1}{p}p^{n(\gamma)})$, then

$$\nu_r(\gamma(\pi_K) - \pi_K) = p^{n(\gamma)} \nu_{\mathbf{E}}(\bar{\pi}) - \nu_{\mathbf{E}}(\mathcal{D}_K).$$

Proof. Since \bar{P}_K is an Eisenstein polynomial on $\mathbf{E}_F^+[T]$ (because $\mathbf{E}_K/\mathbf{E}_F$ is totally ramified), the constant term of P_K is a multiplication of π by some unit in \mathbf{A}_F^+ . Therefore, $\gamma(P_K) - P_K = (\gamma(\pi) - \pi)Q$ for some $Q \in \mathbf{A}_F^+[T]$ whose constant term is unit in \mathbf{A}_{F}^{+} . So $Q(\gamma(\pi_{K}))$ is also unit in $\mathbf{A}_{K}^{\dagger,r}$. We note that

$$(\gamma(\pi) - \pi)Q(\gamma(\pi_K)) = -(\gamma(\pi_K) - \pi_K)\frac{P_K(\gamma(\pi_K)) - P_K(\pi_K)}{\gamma(\pi_K) - \pi_K}$$

Define $\alpha = \frac{P_K(\gamma(\pi_K)) - P_K(\pi_K)}{\gamma(\pi_K) - \pi_K}$. Similar to the proof of Corollary1.15, for all $k \ge 1$, $w_k(\alpha) \ge -(2k-1)\nu_{\mathbf{E}}(\bar{P}_K(\bar{\pi}_K))$. Because $\bar{\alpha} = \bar{P}'_K(\bar{\pi}_K)$, similar to Lemma1.16 (2), $\frac{\alpha}{[\tilde{P}'_{\kappa}(\bar{\pi}_K)]}$ is also a unit in $\tilde{\mathbf{A}}_K^{\dagger,r}$. Therefore, there is a unit $u \in \tilde{\mathbf{A}}_K^{\dagger,r}$ such that

$$(\gamma(\pi_K) - \pi_K)[\bar{P}'_K(\bar{\pi}_K)] = (\gamma(\pi) - \pi)u.$$

Now $(\gamma(\pi) - \pi) = [\epsilon]([\epsilon]^{p^{n(\gamma)v}} - 1)$ for some $v \in \mathbb{Z}_p^{\times}$, by above Lemma2.12,

$$(\gamma(\pi_K) - \pi_K) \frac{[P'_K(\bar{\pi}_K)]}{[\bar{\pi}]^{p^{n(\gamma)}}}$$

is a unit in $\tilde{\mathbf{A}}_{K}^{\dagger,r}$. Therefore, $\nu_{r}(\gamma(\pi_{K}) - \pi_{K}) = p^{n(\gamma)}\nu_{\mathbf{E}}(\bar{\pi}) - \nu_{\mathbf{E}}(\mathcal{D}_{K})$ as desired. \Box

Proposition 2.14. If $\gamma \in \Gamma_K$ satisfying $n(\gamma) \ge n_0(K)$ and if $r > \sup(r_K, \frac{p-1}{p}p^{n(\gamma)})$, then for any $x \in \mathbf{A}_K^{\dagger, r}$

$$\nu_r(\gamma(x) - x) \ge \nu_r(x) + p^{n(\gamma)}\nu_{\mathbf{E}}(\bar{\pi}) - c_K.$$

Proof. By Theorem1.23, there exists $f(T) = \sum_{k \in \mathbb{Z}} a_k T^k \in \mathcal{A}_F^{\frac{1}{re_K}}$ (i.e. $a_k \in \mathcal{O}_F$, $\nu_p(a_k) + \frac{k}{re_K} \ge 0$ and $\lim_{k \to -\infty} \nu_p(a_k) + \frac{k}{re_K} = +\infty$) such that $f(\pi_K) = x$ and that

$$s(r)\inf_{k}(\nu_p(a_k) + \frac{k}{re_K}) = \nu_r(x).$$

Because $n(\gamma) \ge n_0(K)$, γ acts as identity on F. Thus,

$$\gamma(x) - x = f(\gamma(\pi_K)) - f(\pi_K) = \sum_{k \ge 0} \frac{f^{(k)}(\pi_K)}{k!} (\gamma(\pi_K) - \pi_K)^k = \sum_{k \ge 0} \frac{f^{(k)}(\pi_K)\pi_K^k}{k!} (\frac{\gamma(\pi_K)}{\pi_K} - 1)^k$$

Since $\frac{f^{(k)}(\pi_K)\pi_K^k}{k!} = \sum_{n\geq 0} {n \choose k} a_n \pi_K^n$, by Theorem1.23 again, $\frac{f^{(k)}(\pi_K)\pi_K^k}{k!} \in \mathbf{A}_K^{\dagger,r}$ with $\nu_r(\frac{f^{(k)}(\pi_K)\pi_K^k}{k!}) \geq \nu_r(x).$

Therefore $\nu_r(\gamma(x) - x) \ge \nu_r(x) + \inf_{k\ge 0} \nu_r((\frac{\gamma(\pi_K)}{\pi_K} - 1)^k)$. By above Lemma2.13 and Lemma1.16

$$\nu_r(\frac{\gamma(\pi_K)}{\pi_K} - 1) = p^{n(\gamma)}\nu_{\mathbf{E}}(\bar{\pi}) - \nu_{\mathbf{E}}(\mathcal{D}_K) - \nu_{\mathbf{E}}(\bar{\pi}_K) \ge p^{n(\gamma)}\nu_{\mathbf{E}}(\bar{\pi}) - c_K \ge 0.$$

Therefore, we deduce that $\nu_r(\gamma(x) - x) \ge \nu_r(x) + p^{n(\gamma)}\nu_{\mathbf{E}}(\bar{\pi}) - c_K.$

In order to check that (CST 3) holds for $\tilde{\mathbf{B}}^{\dagger,r}$, we need to show that $(1 - \gamma)$ is invertible on $\mathbf{X}_{K,m}^{\dagger,r}$ for suitable r and $\gamma \in \Gamma_K$. The following proposition plays an important role in the proof.

Proposition 2.15. If $1 \neq \gamma \in \Gamma_K$ with $n(\gamma) \geq \sup(2, n_0(K) + 1)$ and if $r > \sup(pr_K, \frac{p-1}{p}p^{n(\gamma)})$, then $(1 - \gamma)$ is invertible on $(\mathbf{B}_K^{\dagger,r})^{\psi=0}$ and for every $x \in (\mathbf{B}_K^{\dagger,r})^{\psi=0}$,

$$\nu_r((1-\gamma)^{-1}x) \ge \nu_r(x) - pc_K - p^{n(\gamma)}\nu_{\mathbf{E}}(\bar{\pi}).$$

Proof. We need to check that for $1 \leq i \leq p-1$, $(1-\gamma)$ is invertible on $[\epsilon]^i \varphi(\mathbf{B}_K^{\dagger, \frac{r}{p}})$. Put $m = n(\gamma)$ and then there is a $u \in \mathbb{Z}_p^{\times}$ such that $\chi(\gamma) = 1 + p^m u$. For any $x \in [\epsilon]^i \varphi(\mathbf{A}_K^{\dagger, \frac{r}{p}}[\frac{1}{[\overline{\pi}]}])$, we may assume $x = [\epsilon]^i \varphi(y)$ for some $y \in \mathbf{A}_K^{\dagger, \frac{r}{p}}[\frac{1}{[\overline{\pi}]}]$. In fact, $y = a_{\frac{i}{p}}(\varphi^{-1}(x))$ by Proposition2.8. Because $r > pr_K$, we have

$$\nu_{\frac{r}{p}}(y) \ge \nu_{\frac{r}{p}}(\varphi^{-1}(x)) - c_K = p^{-1}\nu_r(x) - c_K.$$

Since $\frac{1-[\epsilon]^{p^m_u}}{[\pi]^{p^m}}$ is invertible in $\mathbf{A}_K^{\dagger,r}$, we can define a bijection

$$f_{\gamma}: [\epsilon]^{i} \varphi(\mathbf{A}_{K}^{\dagger, \frac{r}{p}}[\frac{1}{[\bar{\pi}]}]) \to [\epsilon]^{i} \varphi(\mathbf{A}_{K}^{\dagger, \frac{r}{p}}[\frac{1}{[\bar{\pi}]}])$$

by $f_{\gamma}([\epsilon]^{i}\varphi(y)) = [\epsilon]^{i} \frac{\varphi(y)}{1-[\epsilon]^{p^{m}iu}}$. Then

$$\nu_r(f_\gamma([\epsilon]^i\varphi(y))) = \nu_r([\epsilon]^i\varphi(y)) - p^m\nu_{\mathbf{E}}(\bar{\pi}).$$

Now, noticing that $\gamma([\epsilon]^i) = [\epsilon]^i [\epsilon]^{p^m i u}$, we have

$$[\epsilon]^{i}\varphi(y) - f((1-\gamma)([\epsilon]^{i}\varphi(y))) = -[\epsilon]^{i}\frac{\varphi((1-\gamma)y)}{[\epsilon]^{-p^{m}iu} - 1}$$

Because $\frac{r}{p} > \sup(r_K, \frac{p-1}{p}p^{n(\gamma)})$, by above Proposition2.14,

 $\nu_r(\varphi((1-\gamma)y)) = p\nu_{\frac{r}{p}}(y-\gamma(y)) \ge p \cdot (\nu_{\frac{r}{p}}(y) + p^m \nu_{\mathbf{E}}(\bar{\pi}) - c_K) \ge \nu_r([\epsilon]^i \varphi(y)) + p^{m+1} \nu_{\mathbf{E}}(\bar{\pi}) - 2pc_K.$ Therefore, we deduce that for $[\epsilon]^i \varphi(\mathbf{A}_K^{\dagger, \frac{r}{p}}[\frac{1}{[\bar{\pi}]}])$

$$\nu_r(x - f_{\gamma}((1 - \gamma)x)) \ge \nu_r(x) + (p^{m+1} - p^m)\nu_{\mathbf{E}}(x) - 2pc_K.$$

By our hypothesis on $m = n(\gamma)$, $(p^{m+1} - p^m)\nu_{\mathbf{E}}(x) - 2pc_K > 0$ and a fortiori $\nu_r(x - f_{\gamma}((1 - \gamma)x)) > \nu_r(x).$

For every $z \in [\epsilon]^i \varphi(\mathbf{A}_K^{\dagger, \frac{r}{p}}[\frac{1}{[\bar{\pi}]}])$, if we define $g_z : [\epsilon]^i \varphi(\mathbf{A}_K^{\dagger, \frac{r}{p}}[\frac{1}{[\bar{\pi}]}]) \to [\epsilon]^i \varphi(\mathbf{A}_K^{\dagger, \frac{r}{p}}[\frac{1}{[\bar{\pi}]}])$ by

$$g_z(x) = x - f_\gamma((1 - \gamma)x - z),$$

then g_z is contractible. Thus, there exists a unique fixed point $z_0 \in [\epsilon]^i \varphi(\mathbf{A}_K^{\dagger, \frac{1}{p}}[\frac{1}{[\overline{\pi}]}])$ of g_z . Since f_γ is bijective, we deduce that $(1 - \gamma)(z_0) = z$.

Finally, since $z_0 = z_0 - f_{\gamma}((1 - \gamma)z_0 - z)$,

$$\nu_r(z_0) = \nu_r(f_\gamma(z)) = \nu_r(z) - p^m \nu_{\mathbf{E}}(\bar{\pi}).$$

In general, if $x \in (\mathbf{B}_K^{\dagger,r})^{\psi=0}$, we may write $x = \sum_{i=1}^{p-1} [\epsilon]^i \varphi(x_i)$ with $x_i = a_{\frac{i}{p}}(\varphi^{-1}(x))$. Put $z_i = (1-\gamma)^{-1}([\epsilon]^i \varphi(x_i))$ and put $x_0 = \sum_{i=1}^{p-1} z_i$. Then $x_0 = (1-\gamma)^{-1}x$ and

$$\nu_{r}(x_{0}) \geq \inf_{i} \nu_{r}(z_{i}) = \inf_{i} \nu_{r}([\epsilon]^{i}\varphi(x_{i})) - p^{m}\nu_{\mathbf{E}}(\bar{\pi}) = p \cdot \inf_{i} \nu_{\frac{r}{p}}(a_{\frac{i}{p}}(\varphi^{-1}(x))) - p^{m}\nu_{\mathbf{E}}(\bar{\pi})$$

OVERCONVERGENT THEORY

$$\geq p\nu_{\frac{r}{p}}(\varphi^{-1}(x)) - pc_K - p^m \nu_{\mathbf{E}}(\bar{\pi}) = \nu_r(x) - pc_K - p^m \nu_{\mathbf{E}}(\bar{\pi}),$$

as desired.

Remark 2.2. Since $(1-\gamma)(1+\gamma+\cdots+\gamma^{p^m-1}) = (1-\gamma^{p^m})$ for all m, there exists an $r(K) \ge r_K > 0$ such that for every r > r(K), if $\chi(\gamma) \in 1+2p\mathbb{Z}_p$, then $(1-\gamma)$ is invertible on $(\mathbf{B}_K^{\dagger,r})^{\psi=0}$ and there is a c(K) > 0 such that for every $x \in (\mathbf{B}_K^{\dagger,r})^{\psi=0}$

$$\nu_r((1-\gamma)^{-1}x) \ge \nu_r(x) - p^{n(\gamma)}c(K)).$$

Now, for $m \ge 1$, we define $R_{K,m}^* = R_{K,m} - R_{K,m-1}$. Then

$$R_{K,m}^*(x) = \sum_{i \in I_m - I_{m-1}} a_i(x) [\epsilon]^i, \text{ for } \forall x \in \tilde{\mathbf{A}}_K.$$

Lemma 2.16. If $m \ge 1$ and if $x \in \tilde{\mathbf{A}}_K$, $R^*_{K,m}(x) \in \varphi^{-m}(\mathbf{A}_K^{\psi=0})$.

Proof. For every $i \in I_m - I_{m_1}$, there exists a unique $1 \leq r(i) \leq p-1$ such that $p^m i \equiv r(i) \mod p$. Put $q(i) = \frac{p^m i - r(i)}{p}$. Thus

$$\varphi^m(R^*_{K,m}(x)) = \sum_{i \in I_m - I_{m-1}} \varphi^m(a_i(x)[\epsilon]^i) = \sum_{i \in I_m - I_{m-1}} \varphi(\varphi^{m-1}(a_i(x))[\epsilon]^{q(i)})[\epsilon]^{r(i)}.$$

Therefore $\varphi^m(R^*_{K,m}(x)) \in \mathbf{A}_K^{\psi=0}$ and we complete the proof.

Proposition 2.17 (CST 3). If r > 0 and $n \in \mathbb{N}$ satisfying $p^n r > \sup(pr(K), \frac{p-1}{p}p^{n(\gamma)})$, for $\gamma \in \Gamma_K$ with $n \ge n(\gamma)$, $(\gamma - 1)$ is invertible on $\mathbf{X}_{K,n}^{\dagger,r}$ and there exists a c'_K such that

$$\nu_r((\gamma - 1)^{-1}x) \ge \nu_r(x) - p^{n(\gamma) - n}c'_K.$$

Proof. By Lemma2.10, $(\gamma - 1)$ is injective on $\mathbf{X}_{K,n}^{\dagger,r}$. If $x \in \mathbf{X}_{K,n}^{\dagger,r}$, we see that $R_{K,n}(x) = 0$. Thus, $x = \sum_{m \ge n+1} R_{K,m}^*(x)$. Because $R_{K,m}^* = R_{K,m} - R_{K,m-1}$, by Corollary2.9,

$$\nu_r(R^*_{K,m}(x)) \ge \nu_r(x) - p^{1-m}c_K.$$

Because $R_{K,m}^*(x) = \sum_{i \in I_m - I_{m-1}} a_i(x) [\epsilon]^i$, we see that $\varphi^m(R_{K,m}^*(x)) \in (\mathbf{B}_K^{\dagger,p^m r})^{\psi=0}$. By remark2.2, there exists a $z_m \in (\mathbf{B}_K^{\dagger,p^m r})^{\psi=0}$ satisfying

$$\varphi^m(R^*_{K,m}(x)) = (\gamma - 1)z_m \text{ and } \nu_{p^m r}(z_m) \ge p^m \nu_r(R^*_{K,m}(x)) - p^{n(\gamma)}c(K)).$$

Thus, $\nu_r(\varphi^{-m}(z_m)) \ge \nu_r(R^*_{K,m}(x)) - p^{-m}p^{n(\gamma)}c(K))$. Since $R^*_{K,m}(x) \to 0$ in $\tilde{\mathbf{B}}^{\dagger,r}_K$, we deduce that $z = \sum_{m \ge n+1} \varphi^{-m}(z_m)$ converges in $\tilde{\mathbf{B}}^{\dagger,r}_K$. By construction, $(\gamma - 1)z = x$ and

$$\nu_r(z) \ge \inf_{m \ge n+1} \nu_r(\varphi^{-m}(z_m)) \ge \inf_{m \ge n+1} (\nu_r(R^*_{K,m}(x)) - p^{-m} p^{n(\gamma)} c(K))$$

23

$$\geq \nu_r(x) - p^{-n} \sup_{m \geq n+1} (p^{1-m+n} c_K + p^{-m+n} p^{n(\gamma)} c(K)).$$

Thus, if we choose $c'_K > 0$ satisfying $p^{n(\gamma)}c'_K \ge \sup_{k\ge 1}(p^{1-k}c_K + p^{-k}p^{n(\gamma)}c(K))$, then the proposition follows.

Now, the following theorem is obvious.

Theorem 2.18. There exists an $r'_K > 0$ such that for any $r > r_K$, $(\tilde{\mathbf{B}}^{\dagger,r}, \nu_r)$ satisfies conditions of CST.

2.2. Theorem of Cherbonnier-Colmez. Now, we can prove Theorem0.1 at the beginning of this note.

Lemma 2.19. If V is a p-adic representation of Gal_K of dimension d then there is a finite extension L/K and an s(V) > 0 such that if $s \ge s(V)$, then $(\tilde{\mathbf{B}}^{\dagger,s} \otimes V)^{H_L}$ admits a free $\mathbf{B}_L^{\dagger,s}$ -submodule $\mathbf{D}_L^{\dagger,s}$ of rank d and stable under the action of Gal_K and such that $\tilde{\mathbf{B}}^{\dagger,s} \otimes V = \tilde{\mathbf{B}}^{\dagger,s} \otimes_{\mathbf{B}_L^{\dagger,s}} \mathbf{D}_L^{\dagger,s}$ and $\mathbf{B}_L^{\dagger} \otimes_{\mathbf{B}_L^{\dagger,s}} \mathbf{D}_L^{\dagger,s} \subset \tilde{\mathbf{B}}^{\dagger} \otimes V$ is stable by φ .

Proof. We choose an r > 0 such that $(\tilde{\mathbf{B}}^{\dagger,r}, \nu_r)$ satisfies CST conditions. By [Ber1, Theorem 19.1], there exists a finite extension L/K and a finite free $\mathbf{B}_{L,n}^{\dagger,r}$ -module $D_{L,n}^{\dagger,r} \subset (\tilde{\mathbf{B}}^{\dagger,r} \otimes V)^{H_L}$ of rank d which is stable under the action of Gal_K such that

$$\mathbf{D}_{L,n}^{\dagger,r} \otimes_{\mathbf{B}_{L,n}^{\dagger,r}} \tilde{\mathbf{B}}^{\dagger,r} = \tilde{\mathbf{B}}^{\dagger,r} \otimes V,$$

for some $n \gg 0$. Therefore, the $\mathbf{B}_{L}^{\dagger,p^{n}r}$ -module generated by $\varphi^{n}(\mathbf{D}_{L,n}^{\dagger,r})$, namely $\mathbf{D}_{L}^{\dagger,p^{n}r}$, is finite of rank d and is stable under the action of Gal_{K} . Moreover, we also have $\mathbf{D}_{L}^{\dagger,p^{n}r} \otimes_{\mathbf{B}_{r}^{\dagger,p^{n}r}} \tilde{\mathbf{B}}^{\dagger,p^{n}r} = \tilde{\mathbf{B}}^{\dagger,p^{n}r} \otimes V$ because $\varphi^{n}(\tilde{\mathbf{B}}^{\dagger,r}) = \tilde{\mathbf{B}}^{\dagger,p^{n}r}$.

We remain to study the action of φ . By [Ber1, Theorem 19.8], we deduce that

$$\mathbf{D}_{L,\infty}^{\dagger,p^{n+1}r} = \mathbf{D}_{L}^{\dagger,p^{n}r} \otimes_{\mathbf{B}_{L}^{\dagger,p^{n}r}} \mathbf{B}_{L,\infty}^{\dagger,p^{n+1}r}$$

and that under a basis contained in $\mathbf{D}_{L}^{\dagger,p^{n_{r}}r}$, the matrix of φ belongs to $\mathbf{M}_{d}(\mathbf{B}_{L,\infty}^{\dagger,p^{n+1}r})$ and furthermore belongs to $\mathbf{M}_{d}(\mathbf{B}_{L,m}^{\dagger,p^{n+1}r})$ for some $m \gg 0$. Now, let $\mathbf{D}_{L}^{\dagger,p^{n+m+1}r}$ be the $\mathbf{B}^{\dagger,p^{n+m+1}r}$ -module generated by $\varphi^{m}(\mathbf{D}_{L}^{\dagger,p^{n}r})$. Then it

Now, let $D_L^{\dagger, p^{n+m+1}r}$ be the $\mathbf{B}^{\dagger, p^{n+m+1}r}$ -module generated by $\varphi^m(D_L^{\dagger, p^n r})$. Then it satisfies all conditions we need. Put $s(V) = rp^{n+m+1}$. We complete the proof. \Box

Theorem 2.20. (1) Let V be a p-adic representation of Gal_K . Then V is overconvergent and $\operatorname{D}^{\dagger}(V) \otimes_{\mathbf{B}_K^{\dagger}} \mathbf{B}_K = \operatorname{D}(V)$ is the étale (ϕ, Γ) -module over \mathbf{B}_K associated to V under the equivalence described in [Ber1, Theorem 18.8].

(2) The functor $V \mapsto D^{\dagger}(V)$ induce an equivalence from the category of p-adic representations of Gal_K to the category of étale (φ, Γ) -modules over \mathbf{B}_K^{\dagger} . (By an étale (φ, Γ) -module over \mathbf{B}_K^{\dagger} , we mean a finite free (φ, Γ) -module which is étale after base-changing to \mathbf{B}_K .)

Proof. (1) By above Lemma2.19, for a given p-adic representation V of Gal_K of dimension d, we can find a finite Galois extension L/K and an $s \geq s(V)$ such that $D_L^{\dagger} = D_L^{\dagger,s} \otimes_{\mathbf{B}_L^{\dagger,s}} \mathbf{B}_L^{\dagger}$ is a (φ, Γ) -module over \mathbf{B}_L^{\dagger} together with an action of Gal_K . Define $D_L = D_L^{\dagger} \otimes_{\mathbf{B}_L^{\dagger}} \mathbf{B}_L$. Then D_L is a (φ, Γ) -module over \mathbf{B}_L satisfying

$$D_L \otimes_{\mathbf{B}_L} \tilde{\mathbf{B}} \simeq D_L^{\dagger} \otimes_{\mathbf{B}_L^{\dagger}} \tilde{\mathbf{B}}^{\dagger} \otimes_{\tilde{\mathbf{B}}^{\dagger}} \tilde{\mathbf{B}} \simeq V \otimes \tilde{\mathbf{B}}^{\dagger} \otimes_{\tilde{\mathbf{B}}^{\dagger}} \tilde{\mathbf{B}} \simeq V \otimes \tilde{\mathbf{B}}.$$

Thus, D_L is étale and then there is a *p*-adic representation W of Gal_L such that

$$W \otimes \tilde{\mathbf{B}} = D_L \otimes_{\mathbf{B}_L} \tilde{\mathbf{B}} = V \otimes \tilde{\mathbf{B}}$$

By taking φ -invariant part, we deduce that W = V (as representations of Gal_L). As a consequence, we get $D_L^{\dagger} \subset D_L^{\dagger}(V) = (\mathbf{B}^{\dagger} \otimes V)^{H_L}$. Since both of sides are vector spaces over \mathbf{B}_L^{\dagger} , it follows from

$$\dim \mathcal{D}_L^{\dagger}(V) \le \dim V = d = \dim \mathcal{D}_L^{\dagger}$$

that $D_L^{\dagger} = D_L^{\dagger}(V)$. For the same reason, $D_L^{\dagger} \otimes_{\mathbf{B}_L^{\dagger}} \mathbf{B}_L = D_L(V)$.

By Corollary 1.18, $\mathbf{B}_L^{\dagger}/\mathbf{B}_K^{\dagger}$ is a Galois extension with Galois group

$$\operatorname{Gal}(\mathbf{B}_L^{\dagger}/\mathbf{B}_K^{\dagger}) = \operatorname{Gal}(H_K/H_L).$$

Therefore, by Hilbert's theorem 90, we see that $D^{\dagger}(V) = (D_L^{\dagger})^{H_K}$ is of dimension d and that $D^{\dagger}(V) \otimes_{\mathbf{B}_K^{\dagger}} \mathbf{B}_L^{\dagger} = D_L^{\dagger}$. Hence,

$$D^{\dagger}(V) \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{B} = D_{L}^{\dagger} \otimes_{\mathbf{B}_{L}^{\dagger}} \mathbf{B} = D_{L}(V) \otimes_{\mathbf{B}_{L}} \mathbf{B} = V \otimes \mathbf{B}.$$

By taking H_K -invariants, we get $D^{\dagger}(V) \otimes_{\mathbf{B}_{k'}} \mathbf{B}_K = D(V)$ as desired.

(2) This follows from (1).

References

- [Ber1] L. Berger: Galois representations and (φ, Γ) -modules, available at http://perso.enslyon.fr/laurent.berger/other.php
- [CC] F. Cherbonnier, P. Colmez: Représentations de p-adiques surconvergentes, Invent. math. 133, 581-611 (1998).
- [Col] P. Colmez: Espaces vectoriels de dimension finie et représentations de de Rham, Astérisque No. 319 (2008).
- [Ked] Kiran. S. Kedlaya: New methods for (φ, Γ) -modules

[Ser] J-P. Serre: Local fields GTM 67