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The goal of this lecture is to explain the meaning of ”overconvergent” and to

prove the following theorem of Cherbonnier-Colmez.

Theorem 0.1. (See [Berll Corollary 25.3])
The functor V + DT (V) induces an equivalence from the category of p-adic
representations of Galk to the category of étale overconvergent (¢,T')-modules over

Bl..
The main reference is Colmez’s paper [Col, Section 4,5,6,7,8,9].

1. CONSTRCUTION OF ROBBA RINGS

Recall that for every k > 0, there exists a function wy, : A — R U {400} defined
by wi(z) = info<i<p ve(z;) if @ = Y ,5p'[x;] satisfying following properties (See

[Berll, Section 16]).

)
wi(z +y) > inf(wg(x), w(y)); if w(x) # wg(y), it takes ” =7

These functions {wy }x>o define the canonical (or weak) topology on A.

For wy,, we also have the following property.
1
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Lemma 1.2. Ifr >0 and if v =3 -,p"[z,] € A, then
(1) limg— 400 (VE(2K) + k1) = F00 if and only if limg 4o (w(x) + k1) = 400
and

(2) in this case infy>o(vE(xk) + kr) = infi>o(wi(z) + kr).

Proof. (1) We only prove that limg_, o (VE (2 )+kr) = +00 implies limy_, 1 o0 (Wi (z)+
kr) = +o0; the other direction is obvious since wg(z) < vg(zk).

We define a function i : N — N by i(k) = sup{n | wg(z) = ve(z,) n < k}. Then
i is an increasing function (because wyy1(x) < wg(z)). Clearly, i(k) < k.

Case I limy_, o i(k) = +o0.

In this case, wy(x) + kr = ve(zix)) + kr > ve(z1)) + i(k)r — +o00.

Case II: limy_, ;o i(k) = n for some n € N.

In this case, there exists an N € N such that i(k) = n for all K > N. In
particular, for k > N, wi(z) + kr = vg(an) + kr — +o00.

(2) inszo(l/E(l'k) + k?”') > inszo(wk(x) + k?") = inszo(l/E(xi(k)) + k?“) >

inszo(VE({L‘i(k)) + Z(k’)r) > inkaO(VE(xk) + k?”) O
Define
A’M‘_{ EA\inf( (z) + k?“p)>0 nd lim (wg(z)+ krp)_+ }
=T kzowkx p—l - a k—>+00wkx p—]. o o
—fwe Al (o) + L) > 0ad lim (ve(o) + ~L) = oo}
={z nl E(Tk 17 e (Ve (T » = Ty

-1
Also, we define a function v, : A" — Rsq by v,(x) = infpso(ws(z) + ;fi’;) for
z e Abr.

For simplicity, we define s(r) = ;25 for r > 0.

It is straightforward from the definition of AT that for any ro > 11 >1 >0,
(1) At ¢ At and

(2) vy, (@) > vy, () for z € AbT.

Thus, we can define a function f, : R>, — R by f,(t) = v(z).

Proposition 1.3 (Newton Polygon of z). Assume r > 0 and x =) . [zn]p" €
Afr,

(1) The function fy : R>, — R is an increasing, piecewise linear, concave
continuous function. All slopes of f, belong to p}%lZzO and f has finitely many
slopes and cusps.

(2) Let O, f,, (resp.Oyfy) be the left (resp. right) derivation of f,.. Then p%alfx(t)

(resp.pp%larfw(t)) is the mazimal (resp. minimal) integer N satisfying ve(z) =



OVERCONVERGENT THEORY 3

VE(ZCN)“‘:%A{

exists exactly one =k > 0 such that v, (z) = ve(zk) + ks(to) and k = %f;(to),
(3) If xg # 0, then there exists an ro > r such that for anyt > ro, f.(t) = ve(zg).

. As a consequence, f.(t) is derivable at t = to > r if and only if there

In particular, the last slope of f, is 0.

Proof. By definition of f,, it is increasing.

For rg > r, because x € AT’TO, the set

Q= {i € N| falro)(= vy (2)) = ve(2i) +is(ro)}

is finite. Thus, we can write Q, = {n; <ng < -+ < ng}.

Since limy,—s 400 VE(Tm) + ms(rg) = 400, there exists an M > f,(rg) such that
for any n ¢ Q, vg(z,) + ns(ro) > M. Therefore, for any r’ =~ ry (of course, we
require ' > 1), fu(r') = inf1<;<p vE(20,)+ni8(r") = fx(ro)—|—inf1§i§k(%(r’—ro)).

When (r <)r’ <o, fo(r') = fu(ro) + %(r' — 7).

When ' > ro, fo(r") = fa(ro) + %(r' —1p).

This shows (1) and (2).

To prove (3), we notice that for every r’ > r
v (x) = inf(vg(xg), il’>1£(l/E($1) +1s(r'))).
The second term
inf (v (1) + i5(1")) 2 v &) + 5(4°) = (1)
Thus, for ' > r, we have f,(r") = vg(xo). This completes the proof. O

Lemma 1.4. Assume r > 0.
(1) AP is a sub-ring of A which is stable under the action of Galg, -
(2) ¢ : AT — ATP" s 4 bijection.

Proof. Put s = s(r).
(1) If 2,y € AY7, by Fact [1.1] (2), (3), we have that

wi(xz +y) + sk > inf(wy () + sk, wi(y) + sk)
and that

wy,(vy) + sk > iﬁgik(wi(w) +wiy)) +sk =, +1§,1£ (i) +is) + (w;(y) + js)-

In particular, both of z + y and zy belong to AT". Also, we prove that ve(xy) >
ve(x) + vr(y) and that v.(x + y) > inf(v.(x),v,-(y)) which takes equality when

vr(x) 7 vr(y)-
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@) Ifz=>3 00" [za] € A, then p(z) = > onsoP"[2}]. From
wi(p(2)) + ks(pr) = pwg(z) + ks(pr) = p(wy(z) + ks(r)),

we see that z € AP if and only if ¢(z) € AP and in this situation v, (¢(z)) =
pp(T). O

The next Lemma shows that v, is a norm on Afr.

Lemma 1.5. Assume r > 0. Let x =Y oo p"[xn],y = 350" [Un) € AT and

(

(2) vr(z +y) = inf(v(2), v (y));

(3) vr(zy) = ve(x) + 2 (y);

(4) vpr(p(x)) = pro(2);

(5) vr(px) = ve(z) + s(r) and vr([a]z) = ve(a) + v (2);
(6) = vp(x) for all o € Galg, .

Proof. We have established (2) and (4) in the proof of Lemma From the
definition of v, that v,(z) = inf,,>0(ve(zs) + ns(r)), (1), (5) and (6) are easy to
check. We only prove (3) here.

!

Recall we have proved (3)" which says v,.(zy) > v.(z) 4+ v-(y) in the proof of
Lemma [[4

By Proposition [1.3] except finitely many 7’ > r, there exists a unique n and a
unique m such that v,v(z) = ve(z,) + ns(r’) < v (z — [2,]p") and that v, (y) =

VE(Ym) + ms(r’) < v (y — [ym]p™). Considering
2y = [Enymlp" T + (2 = [2a]0")y + [2a]p" (Y = [ym]p™),

by (3)', v, takes values at the last two terms strictly bigger than v,.(x) 4+ v.(y).
By (2), vr(zy) = vE(Tnym) + (n + m)s(r’) = v (x) + v (y). In other words,

foy(r") = fo(r') + fy (") for all but finitely many ' € Rs,. By continuities,
fay(t) = fo(t) + fy(t) for all ¢ > r. In particular, v, (zy) = vr(z) + v, (y). O

Remark 1.1. By Lemma we see that (1) fay = fo+ fy; (2) 2fo() (p®) = fulo);
(3) fpr(.) = fm(.) + S(.); (4) f[a]x(.) = fx(.) + VE(O‘)'

Define Bf" = AT*T[%]. By using Lemma (5), one can extend v, to a norm on
B such that Proposition and Lemma are still true for elements in BT
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We remark that A™" is not the ring of integers in (B, 1,.) (for example, r = B
then Vr([%]) = 0). However, A""" is the ring of integers in (B N A, ).

Ife=>3 o lwa]p" € B, we can define vy(z) = infy, vg(z1). Then the above
properties are still true except that it happens that f, has infinitely many slopes

and cusps (in a neighborhood of 0).

Fact 1.6. For every 0 # a € E and r > 0, [a] € BY", therefore it is a unit. This is
because there exists an N > 0 such that p¥[a] € At".

Proposition 1.7. The topology on At s separated and completed.

Proof. The separateness follows from Lemma (1). We remain check the com-
pleteness.

Let {z;}i>0 be a sequence converging to 0. Then v, (z;) — +oc while i — +o0.
Therefore, for a fixed k& > 0, wg(x;) > vr(x;) — ks(r) — +o0o. In other words,
the sequence {;};>0 converges to 0 in A under the canonical topology. Put = =
> is0 @i Then wy(x) + ks(r) > inf; wi(z;) + ks(r) > 0 for all k > 0.

We need to check that z € AT,

For any given M > 0, there exists an N € N such that for every ¢ > N,
ve(x;) > M. In particular, wi(z;) + ks(r) > M for all k > 0 and ¢ > N. There
exists an K > N such that for every ¢« < N and k > K, wg(z;) + ks(r) > M.
Therefore, for every k > K,

wi(z) + ks(r) > inf(}gﬁ,(wk(xi) + ks(r)), (w(z;) + ks(r))) > M

inf
i>N
Thus, z € At O

Lemma 1.8. Assume r > 0.
(1) The action of Galg, on A" s continuous

(2) The map ¢ : A" — ATP" s an homeomorphism.

Proof. The (2) follows from Lemma [L.5] (4). By Lemma [L.5 (6), it remains to prove
that for a given = = Y7 j[zn]p" € A'", the function Galg, — R by mapping
o — v.(o(x)) is continuous. It suffices to check that lim,_, v,.(o(z) — z) = +o0.
By Fact[L.1](2), (6), for every k > 0, wy,(0(z) —z) +ks(r) > wy () +ks(r). Thus,
for any given M > 0, there is an N > 0 such that for every k > N, wy(o(z) — ) +
ks(r) > wy(x) 4+ ks(r) > M. For k < N, since Galg, acts on A continuously, there
exists an open subgroup H < Galg, such that for every o € H, wy(o(x) — x) +
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ks(r) > M. Therefore, for any o € H, we have infy(wg(o(z) — z) + ks(r)) > M;
that is v,.(o(z) — ) > M. This proves the lemma. O

Recall Hx = Galg(¢ ). Thus, we can define f}y = (BT")Hx . Also, we can
define Bt = B N B as well as B}g = (B"7)Hx Similarly, the meaning of A}{,
AP" and AL are clear.

Define Bt = U0 BP". Then the meaning of B and BTK are clear as well.

Proposition 1.9. The ring Bt is a field. As a consequence, all of BJ}(, Bt and
B}{ are fields.

To prove this Proposition, we need to study units of A,

Lemma 1.10. Letz =}, -,p"[zn] € AT Then x is a unit if and only if for all
kE>1,0=v.(z) =ve(z) < ve(xk) + ks(r).

Proof. Assume that for all k¥ > 1, we have 0 = v,.(z) = ve(zo) < ve(zk) + ks(r).
Since xy € ET, [x0] is a unit in AtT. Thus, we may assume that ro = 1 by using
[20] ' instead of z. In this case, z = 1—a’ for some 2/ € A" satisfying v, (') > 0.
Then }, - o(2)" converges in A" and is the inverse of z = 1 — 2.

Conversely, if z is a unit of A" with the inverse y = > n>0P"[Yn]. Since zy = 1,
modulo p, we must have xoyo = 1. Moreover, because v,-(z),v,-(y) > 0, it follows

from
0=1r,.(1) = v.(zy) = vp(z) + vr-(y)

that v,.(z) = 0 = v,(y). On the other hand, since vg(zo) > vp(x) = 0, 2o € ET.
For the same reason yo € ET. Thus, vg(zo) = vg(ye) = 0.

It remains to show that infy>1(ve(zx) + ks(r)) > 0 (equivalently, v,.(z — [xo]) >
0). We may assume that g = yo = 1. Otherwise, assume v,.(z — 1) = 0, then we
claim that v,.(y—1) = 0. In fact, if —z = y—1 satisfying v,.(2) > 0, then v,.(z—1) =
Vr(D_p>1 2") > 0, which is impossible. Now, let ng (resp mo) be the largest integer

such that vg(zn,) +nos(r) = vr(z—1) (resp. VE(Ym,) +mos(r) = v-(y—1)). Since

1 = zy = Z [xnym]pm + [ Z xnym]pn0+m0 +pn0+m0+12

n+m<ng+mo n+m=ng+mo

for some z € A, by the addition law for Witt vectors, there exists an element

S( ..,mij,...) S Fp[x?’-leJFMOiz !

ij \i+j<n0+m0]
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which is homogenous of degree 1 (putting degx;; = 1) such that
0= Z TnlYm +S( . @iyy, ...
n+m=ng+mo

By the choice of (ng, mg), for every (n,m) # (ng, mo) satisfying n + m < ng + my,
VE(Tnym) + (no + mo)s(r) > 0. As a consequence,
ve(S(..., %Y, ...)) + (ng +mg)s(r) > 0.
This implies that
0 = VE(ZnoYmo )+ (no+mo)s(r) = vg( Z TnYm+S(. .., 2yj, ... ))+(no+mo)s(r)
n+m=ng+mo,n#ng
> inf( inf (VE(Tnym)), ve(S(. ., 2y;,...))) + (no +mo)s(r) > 0.

n+m=ng+mo,n#ng

A contradiction! We complete the proof. |

Corollary 1.11. z =) . p"[z,] € AT s a unit if and only if the set of slopes
of fr is exact {0} and 0 is the only integer satisfying 0 = v,.(x) = ve(xy) + ks(r).

Corollary 1.12. For z = }_ -,p"[z,] € A" such that [xo] # 0, there is an

ro > r such that =5 is a unit in Afro,

[wo]

Proof. Since xg # 0, by Propositio (3), we can choose r; > r such that for all
t >y, fz(t) = ve(zg). Put y = o] Since fz(t) = fy(t) + ve(xo), we see that
y € At and f,(t) = 0 for t > ri. Using Propositio (2), for any ro > 71, 0
is the only integer satisfying v, (y) = vg(yr) + ks(r2). Thus if we fix an rg > rq,

then y is a unit in Atro, ([l

FEzxzample 1.13. For r > 1, [ZT] is a unit in AT
In fact, 7 =[] — 1 = anop”[a:n]. Then g = @ = ¢ — 1 and for & > 1, x;

1
is a polynomial in e»* — 1 of degree p* with no constant term. Thus, vg(zy) >

VE(GI%"' -1 = m. For r > 1,
_ 1 p
ve(rk) + ks(r) — ve(T) > —— + (kr — 1) > 0.

pPtp—1) p-1
Thus, by Lemma , [’T?] is a unit in A

(In fact, r > % is enough.)

Proof. (of Proposition |1.9)
For any given 2 € B, since p is invertible, by definition of Bf, we may assume

x € AT" for some r > 0.
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We claim that for any z € AT N pA, there exists a 0 # a € E such that
%z e Abr,
In fact, put y = 2. Then wy(y) = wi41(2). Choose 0 # « satisfying ve(a) >

s(r), then
wi(a]y) + ks(r) > wi1(2) + (k+1)s(r).

This implies that [a]y € A",
Now, by Fact for any 0 # o € E, [a] is invertible in B, We may assume
x =) solza]p” € At such that zg # 0 for some r > 0. By Corollary there

T

exists an rg > 7 such that ol is a unit in AT, It follows that z is invertible in
BTﬂ'o.
This completes the proof. ([

Now, let V' be a p-adic representation of Galg, then Df(V) := (V @ B)fx is a
vector space of dimension < dim(V') over B}(.
We say V is overconvergent if dimB} (DT(V)) = dim(V). Equivalently, V is

overconvergent if and only if
T T~ t
D (V)®B}<B ~V®B"

Since ¢ acts on Bf, DT(V) is a (p, I'i)-module over BJ}(. A (p,Tx)-module Df

over BL is étale if DT ®gt B is an étale (¢, Tk )-module over Bg.
K

In the rest of this section, we shall show that By is a ring consisting of Laurent
series on some annulus for suitable r.

We fix some notations.

K: a finite extension of Qy;

F': the maximal unramified subfield of K.

kr: the residue field of F.

By previous talks, we have Ep = kp[[7]][7 1] with ring of integers Ef. = kp[[7]].
A} = 0p([n]], Ar = Op[[r]][v—1] and By = Ap[L].

Also, Ex /Ep is totally ramified with index ex = e(Koo/Qp,00) and Ep/Eq, is
unramified of degree fx = f(Koo/Qp,00). Put dx = ex fx, then

dK = [BK : BQP] = [EK . EQP} = [KOO . Qp,oo}
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Let 7x be a uniformizer of Ex and let Pg be the minimal polynomial of 7 g
over EJIS We choose a lifting Px € A;[T] of Pg. By Hensel’s Lemma, there exists
a unique Tx € A with reduction 7x modulo p satisfying Pk (7x) = 0.

Let Dk be the relative differential of Ex over Ep. Then vg(Dgk) = ve(Py (Tk))-
Lemma 1.14. For every k > 1, wi(ng) > —(2k — 1)ve(Dk).

Proof. (See [Col, Lemma 6.4])

If 7 = Y ;50lxilp’, then we need to show that for every k > 1, wy(mx) >
—(2k — 1)vg(Dxk). Put 2z, = Ef:o p'[z;]. Then Py (z) € p"H1Ak.

Firstly, assume k = 1. Because Px € AL[T], if Px([7k]) = p[u] + pv, then

u € ET. Therefore, we have

0= Py (1) = Pic([7x)+pler)) = Prc([mxc))+Pic([7xc))[aalp = [ut Pie (=i )erlp mod p*Ac.

Thus, vg (1) > —vE(P(TK)) as desired.
For general case, we do induction on k. By inductive hypothesis, for every

n > k+ 1, we have

> . _ . L 7/ —

wn (P (1)) = T (25 = Vve(Pk (7))
_ . _ . L _l —
= 193_9,3&.““;” (265 — Dve(Pk(7K))
=— sup (2n — rvg(Py(7k))

1<i; <kyi+tip=n

> —(2n = 2ue(Pk(7k)) (on>k+1.7r>2).
In particular, we get wyy1(Px(zr)) > —2kvg(Pk(TK)). In other words, if we
write P (2x) = p" L yks1] + pF 20, then vg(yry1) > —2kve(Px (T )). Therefore,

we have

0 = Pg(2k11) = P (21 + p"arsa]) = Pr(21) + Phe(2i) [wrga ]p™ !

k+1 k+2

= (Y Ip" T Pl ([T k) [k P = [k + Pk (Fi )Tt ]p mod p

Thus, vg(zp1) > —(2k + 1)ve(Pk (Tr)) as desired. O
Corollary 1.15. For every k > 1, wi (P (1)) > —(2k — Dvg(Py(7k)).

Proof. The proof is similar to the proof of general case in Lemma [1.14
Let Px(T) = agTe + ag 1 TH +---+ag € A;[T] with ag = 1. Then for every

n>1,
d—1 n

Pr(nr) = Z(Z + 1)ai+1(zpj[xj])i mod p"*1.
i=0 =0
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Because aj, € A}, by Lemma we see that

wn (P (TK)) > T L I C 1)ve(Pk (k)
> i —(2n— Pr (7 > —(2n— Pr (T
> lgijgn,illrlf“'+irgn 2n—r)vg(Pk (7)) > —(2n—1)vg(Pk(Tk))
as expected. O
Define

2e@r)e=l) - if By /Eq,ramified

rg —
pp%l, if Ex/Eq, unramified

Lemma 1.16. Forr >rg, i € ATI{. Moreover, we have
(1) 75 is a unit in € Al

P (1K)

@) ol

. . t,r
is a unit in € Ay .

Proof. By Lemma for any k > 1, wy(rg) + ks(rx) > ve(Pj(7k)). Thus,
for any r > rg and k > 1, wi(nx) + ks(r) > ve(Pk(Tk)) + ks(r — rx). Thus,

TK € Akr and by Lemma [;—i] is a unit. The proof of (2) is similar. O

Now, we put f; = w}gl for 1 <i <eg. Then {f;}1<i<e, is a basis of Ax over
Ap. Let {f}}1<i<ex be the dual basis of Ak over Ap with respect to the perfect
pair

(= =) Ax xAg = Ap, (z,y) = Trg, /B, (7Yy).
Lemma 1.17. For1<i<eg, Pi(rk)f; € Aflnk].
Proof. By [Serl I11.§6.Lemma 2], we see that

J 0, 0<j<ex—2
Te(— K ) = =J=ex
1

Pl (k) . j=ex—1

Since for all ¢+ > 0, W}( is a linear combination of ﬁ( for 0 < j <ex — 1, we see

that f is of form g," ((:’; )) for some monic polynomial @Q; € A;[T]. This shows the
K

lemma. O

Corollary 1.18. Forr > rg, B}{ is a free module over B(E): of rank dy. As a

consequence, [B}( : B&p] =dg.

Proof. By Lemmdl.16| (2), f7 € BY for r > rx. (In fact, [P (7x)]f; € Al")
Thus, for any x € B];f7 x can be uniquely written as

exg—1

x = Z Tr(xﬁ()f;-‘.

Jj=0
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Therefore, {f}1<j<e, 18 a basis of B over B
For K = F, this follows from the fact BF = Bg, ®z, OF. O

Recall we have proved following Lemma in previous talks.

Lemma 1.19. For any x € Ak, © can be uniquely written as
T = Zanﬂ?(, an € O
nez

satisfying lim, o a, = 0.

Proof. Recall Ex = kp[[7k]|[75']. We define a section s : Ex — Af of natural
projection A — Ex by
n>>—o00 n>>—oo

:C—S(ftn)
p

x = Z p"s(Tp).

n>0

For x € Ak, put zp := z. Define x,,41 = inductively. Then we have

The uniqueness is trivial by construction. ]

Lemma 1.20. Assume r > rg For & € Eg, then s(Z) € A}(r[ﬁ] In this case,

vy (s(Z)) = vr(Z).

Proof. Because Ei is a free module over Ep of rank ex with a set of basis
{71 Yo<j<en 1, it suffices to check that s(7x) € AL, This follows from Lemma[l.16
fz=5 -, anTg (an € krp) with 0 # an,, then vg(Z) = nove(7k). However,

for n > no, vp([an]7h) = vr([anTE]) = nve(Tk ). Thus, v.(s(Z)) = ve(Z). O

Lemma 1.21. Ifx € Ak and if kK > 0, then
x — s(Z)

. ) > inf(wit1(2), wo(z) — (k + 1)s(rk)).

wk(

Proof. Replacing x by a multiplication of by a power of [Tx], we may assume

z € Ef”; that is vg(z) = 0. Since

x — s(x)
p

it suffices to check that wiy1(s(Z)) > —(k + 1)s(rk).
For n > 0, by Facfl.I] and LemmdI.14]

wp( ) = w1 (z — 5(2)) = inf(wp1(2), weia (s(2))),

wenn(Th) =t G () + e+, ()
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> inf ((221 —I)VE(DK)+"'+(2in— l)l/E(DK))

i i =k+1
> —(2k+2-n)vg(Dk) > —(k+1)2vg(Dk)) = —(k + 1)s(rk).

Because we have assumed z € E 2, wy11(s(Z)) > —(k + 1)s(rx) by definition of
5. g

Ty, —8(Tn

For x € Ak, we define ¢y = x and define x,, 41 = ) inductively.

Corollary 1.22. Ifn >0, then vg(Z,) > info<i<n(wi(z) — (n —9)s(rk)).

Proof. For n = 0, the result is trivial. So we assume n > 1.

We prove that for every k > 0, for n > 1,

wnn) = inf(wen (@), ot (wi(@) = (b +n = )s(ri).

The result is the case for k = 0.
We give the proof by induction on n. For n = 1, this is the result of Lemma]l.21]
By Lemmg(l.21]| again,

Wi (Tnt1) 2 nf (Wi (2n), wo(wn) — (K +1)s(rk)).
By inductive hypothesis (on n), wo(x,) > wy(z) and
wes(22) 2 il e (2), Inf (@) — (k+ 140~ i)s(rx)))

Combining these inequalities, we prove the desired result for n + 1. O

Let A% be the ring of Laurent series f(T) = >
that vp(a,) +nr > 0 and that lim,,_,_ o vp(a,) + nr = +oo. If f € A%, we define

nez T with a, € Op such
wr(f) = inf, (vp(an) + nr). Then it can be checked that w, is a valuation on A%.
The A% can be viewed as the ring of analytic functions on annulus {0 < v,(T) < r}
which are bounded by 1 with coefficients in O . Let B} = A}[%], which is the
ring of bounded analytic functions on annulus {0 < v,(T") < r} whose coefficients

belong to F'. Then we have the following theorem.

Theorem 1.23. Assume r > rg.
(1) The map f — f(rk) induces an isomorphism of topological rings from
1

(.A;—?,S(T)w%) to (A];{wT) such that s(rjw_1_(f) = vr(f(7k)).

(2) The map f — f(7k) induces an isomorphism from BFT‘ to B}T,
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Proof. The (2) is a consequence of (1). So we only need to prove (1).
1

Assume f = 3 _,a,T" € A;T By Lemmadl.16, a,7p = pvr @) [T gy,

for some unit u, € A}r. Therefore, v, (a,m%) = vp(an)s(r) + nvg(Tk). Recall

vE(TK) = i e s(i) It follows that

Vo) = (r)plan) +ns(——) = () wp(an) + ——) = s(rhw_s_(a,T").
CK rex K

1

Therefore, for such an f =37 _, a,T" € A;;TK, we see that f(mg) € Ay and

that v, (f(7x)) > inf, v (anml) = s(r)w_1_(f).
Ter

Conversely, assume x € Akr. By the proof of Lemm =3 ,50P"s(Tn).
Put d, = % By definition of s, there exists a unique f,, € T4 Op[[T]] such
that s(Z,) = fn(7x). Therefore x =" - p" fu(7K).

1 )

We need to show that p" f, € A . Assume f, = Tdn ijo b; 17 with b; € Op.

Then w_1_(b;p"T%*7) > n + dr"e—;j. Recall d,, = “&&n) gy du — YElIa) By
TEK

Ve (TK) reK s(r)
Corollary[1.22]

Then we deduce that
w_1 (bip"Td"H) > g + L inf (w;(x) +is(r) + (n —i)s(r —rg))
e ~ rex  s(r)o<i<n

1
and thus p" f, € A% . Moreover, from above formula, we also see that

s(r)wﬁ(p"fn) > inf(wy () + ns(r), ve(x) + s(r —rg)) > ve(z).

1

Therefore f =3, -, p" fn € Ap® satisfying f(ng) =« and s(r)w_1_(f) > v, ().

TEeK -

These complete the proof. O

2. COLMEZ-TATE-SEN CONDITIONS AND PROOF OF THEOREM [0.]]

2.1. Colmez-Tate-Sen Condition for BY". Recall ([Berl, Section 19]): let

be a Q,-algebra endowed with a map
V,: Q= RU{+o00}

such that

BN
~
3
~
V
o
o
=}
[oW
X
)
—
s
8
~—
\
S
—
S
+
BN
~
8
~—
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We assume that (SNI, vq) is a completed Banach space over Q, and that Galk acts
on 2 as isometries. Then we say Q satisfies Colmez-Sen-Tate conditions if there
exists ¢, co and c3 in R>( such that followong conditions are fulfilled.

(CST 1) For every finite extensions M/L of K, there exists o € QM such that
vo(a) > —cy and that Try, /(o) = 1;

(CST 2) For every finite extension finite L/K, there is an increasing sequence
{Q%L n}n>0 of closed sub-Q,-algebra of Q together with maps Ry, : QL Qpn
satisfying following properties:

(1) ifx € ﬁHL, then v (Rr n(x)) > vo(x) — ¢ and lim, Ry, ,(x) = z;

(#9) if Ly C Lo, then Qr, ,, C Q1,., and the restriction of Ry, », to Qr, n is Rr, n;
(#41) Ry p is Qg p-linear and is the identify on Qp ,;
(iv) if o € Galk, then 0(Qr n) = Qo) and Ry(r), 00 =go Ry p.

(CST 3) For every finite extension L/K, there exists an m(L) > n(L) such
that if v € 'y, and n > sup(n(y),m(L)), then (1 — ~) is invertible on Xy, =

(1= Rpn) Q) and vo((y — 1)1 () > valz) — cs for z € X .
Ezample 2.1. (Cp,vp) satisfies C'ST-conditions.
In this section, we shall give another example.

Proposition 2.2 (CST 1). Let L/K be finite extensions of Q. Fiz anr >0, for
any 6 > 0, there exists an o € ]NBTLT with v, (o) > =6 such that Try__ /. (a) = 1.

Proof. Since EL/EK is separated, there exists some 8 € B, satisfying Tr(5) = 1.
Because vg (o~ "(8)) = p "vg(5), we may assume that vg(8) > sup(—s(r), —d).
Then we see that Tr([8]) =143, [zn]p" with

ve(xg) > ve(B) > —ks(r).

Therefore, Tr([3]) € AL and v,(Tr([5]) — 1) > 0. By Lemm Tr([5]) is a unit

in Al Put a = %, then v,.(a) = vg(B) > —9. O
Define I = Z[%] N1[0,1) and I,, = {x € I | vp(z) > —m} for m > 0.

Define Eg ,,, = ¢~ ™(Egk) for m > 0. Then Eg ,,,/Ek is purely inseparable of
degree p™ and Ex is the completion of Ex o = Un>0Exk m with respect to vg.

The following Lemma is obvious and we omit the proof.

Lemma 2.3. If m >0, then {€'}.c1,, is a basis of E+p7m over Eap,
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Proposition 2.4. Assume cx = vg(Dg) + ve(T).

(1) For every element x € Ex ,, it can be uniquely written as

x = Z ai(r)e’, a;(r) € Ex
i€l
such that ve(x) — cx < infier, vE(a;(2)) < ve(x).

(2) For every element x € Eg, it can be uniquely written as
x = Zai(aﬁ)ei, a;(z € Eg)
such that lim; a;(x) = 0 and that vg(x) — cx < infier ve(a;(z)) < vg(z).

Proof. (1) Since Eq, . /Eq, is purely inseparable and Ex /Eq, is separable, a basis
of Eg, m over Eg, is also a basis of Ex,m/Ef. So the existence and the uniqueness
is clear. It is trivial that inf,c;, vg(ai(2)) < vg(z). By uniqueness, the function
a; is Eg-linear.

In the case where K = F (thus ¢p = vg(7)), up to a multiplication by some
power of 7, we may assume 0 < vg(z) < vg(7). Since {e}cr,, is a basis of E;m
over E}, we see that vg(a;(x)) >0 > vg(x) — cp.

In the general case, we choose {ey,...,eq} to be a basis of E}./E}. with d =
[Ex : Ep] = ex. Let {ef}1<i<q be the dual basis of Ex/Ep under the perfect
pairing (z,y) — Trg, /e, (zy) on Ex. Then {e} }1<;<q is the basis of D' over Ef;
(recall D is the idea of relative differentials). In particular, vg(e}) > —vg(Dk).
Clearly, for every m > 0, {e1,...,eq} is a basis of Ex ,/Er,, and {e} }1<i<q is the

corresponding dual basis under

(LU, y) = TrEK,M/EF,m (.%‘y) = TrEK/EF (my)

Therefore, if x € Ex 1, . = E?Zl Tr(ze;)e;. Since Tr(we;) € Ep and vg(Tr(ze;)) >

vg(x), if we define a;(z) = 2?21 a;(Tr(ze;))e;, then

ve(a;(x)) > ir;f vg(a;(Tr(ze;))) — ve(Pk) > ve(x) — ck.

(2) By the proof of (1), we see that a; is continuous and Eg-linear. Then (2)
follows from (1) and the fact that Ey is the completion of Ex . O

Remark 2.1. From the proof of Proposition2.4, when K is unramified over Q,,
z € Ef; if and only if a;(z) € Ef.
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For m > 0, we define Ak ,,, = ¢~ ™ (Ak), which is a Cohen ring of Ef ,,. Define
Ak oo = Un>0Ax,m. Then AK is the completion of A o, with respect to the
canonical topology on A.

Then it is conceivable that the following proposition is true.

Proposition 2.5. (1) For every x € Ak ,, x can be uniquely written by formula
x = Z ai(z)[e]’, ai(z) € Ak.
i€l

(2) For every x € A, z can be uniquely written by formula
x:Zai(x)[e]i, a;(z) € Ag

such that a;(x) — 0 for the canonical topology on A.
(3) When K/Q, is unramified, © € A} if and only if a;(x) € AL for all i.

Proof. 1t suffices to prove (1).

We define s : Ex m — Agm by s(X ;e ai()e') = Yo, [ai(7)][€]’, which is
a section of the natural projection A ,,, — Eg . Put 2o = x. For n > 0, we
put T,41

deduce that

inductively. If we define a;(z) = 3_, 5, p"[ai(Zn)], then we

T = Z a;(z)[€]".

i€1lm
The uniqueness is clear by the construction and the uniqueness criterion of Propo-

sition2.4]

Clearly, a; is A g-linear and continuous under the canonical topology. (Il

— (zn—5(Tn))
p

Corollary 2.6. Forn >0, put Ricm : Ax — Ak by R m(z) = Dicr, ai(z)[€]".
Then we have

(1) limy, 400 R, (x) = 25

(2) Rg,m =9 ™o Rgooe™;

(3) Rk ,m is an Ak p-linear, continuous section of the inclusion A, — AK;
(4)

4) if o € Galg,, then 0 0 Rk .;m = Ry(K),m ©0-
Proof. The (1) is trivial. For (2), since ag = Rk o is Ag-linear, we deduce that

Rico(¢™ (@) = Y ™ (as(2))[d"".
ieI'VYL
This shows (2) and thus (3) (by applying (2)).
For (4), one can prove Proposition2.5| by replacing € by o(e). Then (4) follows

from the uniqueness criterion. O
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Clearly, we can extend Ry, to Bxk.

For r > 0 and m > 0, we define A];gm = A}g N Ak m. Then we also have
AL’,’:m = gp*m(ATkme). We want to show that for suitable r, if we restrict Rg , to
BI.", then the image of Ry, is contained in B}(Tn Thus, (CSD 2) holds for Bf-"

for suitable r and hence for B.

Lemma 2.7. If « € E and | € 7 satisfying vg(a) > —lvg(T), then [a] can be

uniquely written as

o] = 3 21

n>0

with B, € ET, where a(n) = LP%nJ is the smallest integer > %n.

Proof. Put r = ijl. We note that if =3, o ,[an]p™ € A and b € Z, then

b
ur<[p]<x ~[00])) = IE(5(6) + vp(arsa) + ks(r) = () — 1+ wio).

Now, we construct 3, inductively. Put z¢ = 7'[a], 8, = Z, and
a(n+1)—a(n)

™ 0 aln —a(n

Tn41 = P (zn — [Bn]) = (ﬁ) (nt1)~a(n) D

By examplql.13] Z/T(%) = 0. Therefore, we deduce that

[7_T] a(n+1)—a(n)

(T — [Bnl)-

Vp(Tpt1) > s(a(n+1) —a(n)) — 1+ ve(xy).
By hypothesis, v,(x¢) = v,.([a]r!) > 0. By induction on n, we see that
vr(xy) > s(a(n)) —n >0, VYn >0,

because a(n) = L”lenj. Therefore vg(B,) > vy(x,) > 0. The uniqueness comes

from the construction. O

Proposition 2.8. If r > rg and if x € AJ}{, then a;(z) € A}{T[ﬁ] and for all
iel,

ve(a;(x)) > vp(z) —cx  and 11?1 vp(a;(x)) = +o0.

Proof. We assume x # 0.
Case 1: K =F.
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We assume = = [a] at first. Let [ be the smallest integer such that vg(a) >
lvg (7). Then ! > 0. Applying above Lemm we can write x = ) %[@1}
for 8, € EJ[( (by uniqueness, 3, is H-invariant). For ¢ € I, we put

all)) = 3 a8

n>0

It remains to check that a;([a]) € AJ}{. By Propositio (3), ai([Bn]) € AJ. Put
n = q(n)p+r(n) for 0 <r(n) < p—1and then a(n) = ¢(n)(p—1)+r(n). Therefore,

3 s

V(7 ”<[ ]lp+a(n))

7rl+a(”)) =ns(r) — s(l +a(n)) = s(nr — 1 — a(n)).

In this case, rx = p=1 , we see that

r(n)
p—1

nr—l—a(n) = q(n)(rp—(p—1))+r(n)(r—1)—1 = n(r—rg)—

—l>n(r-rg)—1-1.
Since a;([8n]) € Af, we deduce that a;([o])[7]"+! € AL" and that

vr(ai(la])) = =s(l+1) = v, ([a]) — ve(7T).

Because a;([8,]) € Aj tends to 0 under the weak topology and AL C A*,
lim; v,-(a;([8r])) = +o0 and thus lim; v,.(a;([a])) = +oo.

In general, if z = 3 o p"[an], then we define a;(z) = >, 5o p"ai([an]). Thus,
we are reduced to the above special case.

Case 2: the general case.

Let {f7 }1<j<ex be the basis of By /B described in Lemm Then P (k) f; €
Ajlnk]. Therefore, by Lemm' for r > ri, [Pi(7x)|f; € AT’T. For every
ve Al = = Dlci<er (amrK)f* for Tr = Trg, /g, and [Pg(ig)lz € Al
Furthermore, v, (Tr(z7}.)) > v,(z). Put a;(z) = di<j<ex ai(Tr(xﬁK))f;. Then

vp(ai(x)) > ifjlf vp(ai(Te(zmh))—vi ([P (7)) > vp(2)—vE(7)—vE(DK) = vr(2)—CK.

O
Now, the following corollary is straightforward.

Corollary 2.9 (CST 2). If r > 0 and p"r > rg, then Ri,(z) € A ol

Moreover, we have that lim,, Rg »(x) — x in Al T[ﬁ] and that

vr(Rg n(x)) > vp(x) —p "ek.

5'\~

As a consequence, the condition (CST 2) holds for (BY", 1) for maps { R :

B}{ — B];gm}mzo when r > k.
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Proof. If n > 0, we have seen that Rx, = ¢ "o Rggop™. Ifz € A“[ﬁ],
o"(z) e AT T[[ ]] Thus, by above Proposition2.8 RK,O(QO (z)) € Al T[—[ ]} and
furthermore Ry ,(x) € A}Tn[[ ]] Now, by Lemm (4), we have

vr(Rin (7)) = p~"vpnr(Ric o (0" () Z p™"vpnr (" () —p~"ex = vn(@) —p™"ck

as expected. (I

We define X} = (1 — Rm)(BY), then B =BY, & X} for all m > 0.

Now, we study the action of Tx on A%
Recall we have proved in [Berll Section 9] (or [Coll Section 4]) that there exists
an no(K) > 0 such that for all n > ng(K),
(1) K, 4+1/K, is totally ramified of degree p and 1+ p"Z, C I'k;
(2) F C Ky;
(3) e(Kn/Qp(Gpn)) = ex and f(Kn/Qp(Cpr)) = fk-
(4) Y (Dic) = 1" (Dicy /2, 60)) = P 0 (Pita /0y Gyuin)) S B

Lemma 2.10. If v € ' has infinite order, then
(1) E}Y(:l = E}Y(:l = k}zl and
(2) Al = AT =01

Proof. The (2) follows from (1) by p-adic completeness.

If k1=" # E]7", then there exists # € E)- ' such that vg(z) > 0. Therefore,
k37 ((x)) is a subfield of E)=". Since both of Ex and &k} ((z)) have transcendent
degree 1 (over ), EK/k%:l((x)) is an algebraic extension. In particular, EK/E}(:1
is algebraic. Thus, the Galois closure of E}Y{:l(e) in Ex is a finite extension of Ex.
It follows that there is a k € N such that 4*(¢) € EJ=". This is impossible!

If z € Eg, by Corollar (4), for all n > 0, Rg n(z) € E’}fi Thus,

0" (Rin(x)) € Bl =kp .
It follows that = lim Ry ,(z) € k. 0
Lemma 2.11. Assume v € ' with n(y) > no(K), then

ve(v(7k) — k) = p" Ve () — vE(Dk).
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Proof. Put n = n(y). Because n > no(K), K,11/K, is totally ramified of degree
p and + is the generator of Gal(K,,+1/K,). By [Ser, IV.§1.Proposition 4], if w is a

uniformizer of K1, then v,(Dg, ., /k,) = (p — 1)vp(v(w) — w). Recall
Ef = {(@m)m>0 € ET | 2, € Ok, and N(zpmy1) = 2, mod a for m > 0},

where a = {z € O | vp(z) > %} Then g = (Tk,m)m>0 such that for m >

no(K) + 1, Tk m is a uniformizer of K,,. So

n+1
ve(Y(Tk) —TK) = PnHVp(’Y(WK,nH) — TKntl) = . 1Vp(DKn+1/Kn)
pn+1
= (“p (DK, 11 /Fois) + v(Dryiiyp,) — vp(Dk, F,)
p—1
pn+1 1
== 1L+ 27" ve(Dk) — p"ve(Dk)) = p"ve(T) — ve(DK)
as expected. ([
Lemma 2.12. Ifm >0, u € Z; andr > ijlpm > %, then [e][;];;fl 18 a unit in
T.r
Ag -
Proof. Recall [¢] =14 7. When m = 0, [e][;]:n_l = (H";)u_l [ Because u € Zy,
the element % is a unit in Z,[[x]] = Aap. For r > pp%l, {7 is a unit in A(&;
Therefore, %[;—] is a unit.
For general m, we see [E][;];;_l = (p((1+72“—1 7). Since @™ : A(TQ: — A(B:pm is
an isomorphism, the lemma follows. U

Lemma 2.13. If v € Tk satisfying n(y) > no(K) and if r > sup(rg, pp%lp"(’”),
then

vr(Y(mk) — i) = p"Vvg(7) — ve(DK).

Proof. Since P is an Eisenstein polynomial on Ef[T] (because Ex /Er is totally
ramified), the constant term of Py is a multiplication of 7 by some unit in Aj}.
Therefore, v(Px) — Px = (y(m) — 7)Q for some Q € A}[T] whose constant term
is unit in A}, So Q(y(7k)) is also unit in A;{. We note that
Pr(y(7x)) — Pk (7k)

V(rg) —mk
Define a = PK(V%:;;:TI:I;(”K). Similar to the proof of Corollar for all k > 1,
wi(a) > —(2k — 1)ve(Pk (TK)). Because & = Pj (7 ), similar to Lemmal.16| (2),

__«
[Pk (7x)]

(v(m) = mMQ(y (7)) = —=(v(7k) — 7x)

is also a unit in A}(r Therefore, there is a unit u € A];(T such that

(V(mx) = 7 ) [P (7x)] = (y() = 7).
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Now (y(7) —7) = [e]([e]pnwv — 1) for some v € Z, , by above Lemm
[P (T )]
(v(mx) — WK)W

is a unit in AJ}J Therefore, v, (y(1x ) —7x) = p"Mvg(7) — ve(Dk) as desired. O

Proposition 2.14. Ify € T'k satisfying n(y) > no(K) and if r > sup(rg, pp%lp"m),
then for any x € Ay

ve(1(@) = 2) = vp(a) + p" Vv (T) — ek

1
Proof. By Theorem(1.23] there exists f(T ) =Y ez arTr € AF% (ie. a € Op,
(ar)+ = +00) such that f(7x) = = and that

Vp(ak) ,«eK

s(r )mf(up(ak) + i) = v, (z).

TeER

Because n(y) > ng(K), v acts as identity on F. Thus,

*)
1w) = = Frtme) ) = 3 LT () e

k>0 k>0

-y e o)y

TK

(k) K (k) k
Since Jc(z% =50 (1)an7h, by Theorenfl.23 again, f(;;% € A}g with

FO (ric)mic

X > vp(x).

s

Therefore v, (y(x) — x) > vp(z) + infi>o VT((% — 1)F). By above Lemm
and Lemmall .16

0
VT(’YET:) 1) = pn(v)yE(ﬁ) — vg(Dk) — vg(7K) > pN(W)VE(ﬁ) —cix > 0.
Therefore, we deduce that v,(y(z) — x) > v,.(x) + p" D vg(T) — ck. O

In order to check that (C'ST 3) holds for B, we need to show that (1 —~) is
invertible on X}Tm for suitable r and v € I'. The following proposition plays an

important role in the proof.

Proposition 2.15. If 1 # v € T'x with n(y) > sup(2,no(K) + 1) and if r >
sup(er,pp%lp”(V)), then (1 — ) is invertible on (By)w:O and for every x €
(BR)=",

ve((1=7)"te) 2 () — pexc —p" Vv ().
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Proof. We need to check that for 1 <i <p—1, (1 —+) is invertible on [e]%p(BT’E).
Put m = n(y) and then there is a u € Z,’ such that x(vy) =1 +p u. For any

x € [e]igo(AZ;[[ﬁ]]), we may assume = = [€]'p(y) for some y € A [[W]] In fact,
y=ai(p~t(x)) by ropostlo Because r > prg, we have
ve(y) 2 e (o™ ()) — ex = () — exc
1-[?"

Since [T_r]pm’u is invertible in Ay, we can define a bijection
. o 1 . 1
fy e (AP [—
ol [ ] ( K [[’/T]
by f(['¢(y)) = [ =% Then
ve(fo ([ (1)) = ve ([0 (y)) — p"ve (7).
Now, noticing that ~([¢]*) = [¢]*[¢]?"**, we have

[el'o(y) — F((L=7)([e]e(y))) = —[€]

Because % > sup(rg, pp%lp”(w)), by above Propositimm

(1 —=7)y)

7T

ve(e((1=7)y)) = pvz(y—(y)) = p-(v

Therefore, we deduce that for [e]igo(ATif[

)

ve(x = fo (1 =)z)) = vp(z) + (" = p™ e (x) — 2pek.

3

By our hypothesis on m = n(y), (p"+!

ve(z = f((1 =7)z)) > i (). r
D), if we define g, : [dip(AL” []) = [ (AL [g])

— pMve(x) — 2pckg > 0 and a fortiori

For every z € [e]* @(AL
by
9:(z) =z = [L{(1 = y)z - 2),
T,

then g, is contractible. Thus, there exists a unique fixed point zo € [¢]'0(A [ﬁ])

1R}

of g.. Since f, is bijective, we deduce that (1 —7)(z9) = 2.
Finally, since zp = zo — f((1 — )20 — 2),

vr(20) = e (15(2)) = v (=) — ().

In general, if z € (By)wzo, we may write ¥ = Y ©_ [] o(z;) with x; =
ai(p7z)). Put z; = (1 — )" 1([e)p(x;)) and put zo = Zlel z;. Then zy =
(1 —~)"tx and

ve(wo) > inf vy (2;) = infwr (€] @(x:)) —p" (%) = p-inf vz (as (07 () —p"ve(7)

ai
p

(W) +p"ve(®)—ck) = ve([d'e(y)+p™ " ve(T) —2pcx.
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> prz (¢~ (@) — pexc — p"ve(R) = vi(z) — pex — p"ve(F),
as desired. O

Remark 2.2. Since (1 —7)(1+vy+---++?" 1) = (1 — ") for all m, there exists
an r(K) > rg > 0 such that for every r > r(K), if x(v) € 1+ 2pZ,, then (1 —) is
invertible on (B")¥=0 and there is a ¢(K) > 0 such that for every = € (BL")¥=0

ve((1=7) ") > ve(z) — p"Pe(K)).
Now, for m > 1, we define Ry o = Bxm — Rk ym—1. Then

Ry (2) = Z ai(z)[e]?, for Vo € Ak.

1€Lm—Im—1

Lemma 2.16. If m > 1 and if x € Ak, *m(T) € cp*m(Alf(:O).

Proof. For every i € I, — I,,,, there exists a unique 1 < r(i) < p — 1 such that

p™i =r(i) mod p. Put q(i) = w. Thus

" Rim(@) = Y @@= Y ™ Hai(@)[d7D) .
1€l —Im_1 €1y —Im—1

Therefore ¢ (R}, (7)) € AY=% and we complete the proof. O

Proposition 2.17 (CST 3). Ifr > 0 andn € N satisfying p"r > sup(pr(K), 252p"™),
for vy € Tk withn > n(y), (y—1) is invertible on X}{Tn and there exists a ¢y such
that

vel(y = 1)) 2 vy () = p" 0 el

Proof. By Lemm (v — 1) is injective on X}(Tn If z € X]}gn, we see that
Rgpn(z) =0. Thus, z = Zm2n+1 Ry, (x). Because Ry, = Rim — Rx m-1, by
Corollary2.9]

VT(R}{’m(a:)) > vp(x) — pl ek
Because Ry, (7) = Zielm—lm_l a;(z)[e]?, we see that gom(R}(’m(x)) € (kamr)wzo.
By remar there exists a 2, € (B?" ")¥=0 satisfying

P (Ricn (%)) = (7 = Dzm and vpr(zm) 2> p"vr (Ri (@) = p"Ve(K)).

Thus, v, (0" (2m)) > V(R (7)) — p~"p"Ve(K)). Since Rj,,(x) — 0 in BY',
we deduce that 2 = > -, .1 ¢~ " (2y) converges in E}{. By construction, (y —

1)z =z and

v(2) 2 il v (e () 2 i (0 (Ri (@) =" ()
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—n sup (p17m+nCK _i_pfernpn('y)c(K)).

m>n+1

> Vr(x) -Pp

Thus, if we choose cj > 0 satisfying p™(V) ¢}, > supk21(p1_ch + p~FprMe(K)),
then the proposition follows. ([l

Now, the following theorem is obvious.

Theorem 2.18. There exists an v > 0 such that for any r > rg, (BT’T,I/T)
satisfies conditions of CST.

2.2. Theorem of Cherbonnier-Colmez. Now, we can prove Theorem0.1] at the

beginning of this note.

Lemma 2.19. IfV is a p-adic representation of Galg of dimension d then there is
a finite extension L/K and an s(V) > 0 such that if s > s(V), then (Bh* @ V)Hr
admits a free BTL’s-submodule DTL’S of rank d and stable under the action of Galg
and such that BY* @ V = B ®pts DV* and B, ®pts DI c Bt @V is stable by
®.

Proof. We choose an 7 > 0 such that (B, 1,) satisfies CST conditions. By [Berd]
Theorem 19.1], there exists a finite extension L/K and a finite free BTL’Tn—module

DTLTn C (BT @ V)Hr of rank d which is stable under the action of Galg such that
t,r nt,r _ ptr
Dy, @y BY =B oV,

for some n > 0. Therefore, the B’er ""_module generated by cp”(DTL”Tn), namely
DTL’p nr7 is finite of rank d and is stable under the action of Galyx. Moreover, we also
have Dz,p"r Dpponr B?"" = BHP"" @ V because " (B") = BH»"7,

We remain to study the action of ¢. By [Berll Theorem 19.8], we deduce that

0" _ et f.p e
Dy ~=Dr Ogtenr Bl'%

p"+17”

and that under a basis contained in DTL’p"T, the matrix of ¢ belongs to Md(BTL’,OO )

and furthermore belongs to Md(BTL’ﬁZHT) for some m > 0.
Now, let DTL’pHmrﬂr be the BI2" """ "_module generated by ¢™ (DTL’pnr). Then it

satisfies all conditions we need. Put s(V) = rp"*™*+1. We complete the proof. [

Theorem 2.20. (1) Let V be a p-adic representation of Galx. Then V is overcon-
vergent and DT(V) ®g1 By = D(V) is the étale (¢,I')-module over By associated
K

to V under the equivalence described in [Berll Therorem 18.8].
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(2) The functor V s DY(V) induce an equivalence from the category of p-adic
representations of Galk to the category of étale (¢,T)-modules over BJ}(. (By an
étale (¢,T")-module over B}(, we mean a finite free (p,I')-module which is étale

after base-changing to B .)

Proof. (1) By above Lemma2.19] for a given p-adic representation V' of Galg of
dimension d, we can find a finite Galois extension L/K and an s > s(V') such that
DTL = DTL=S ®pie BTL is a (p,I')-module over BTL together with an action of Galgk.
Define D, = DTL ®pgt Br. Then Dr is a (o, T')-module over By satisfying

L

Dy ®p, B~D] ®y Bl @5 B~VeBios B2V eB.
Thus, Dy, is étale and then there is a p-adic representation W of Galy, such that
Wo®B=D,®s, B=V®B.

By taking -invariant part, we deduce that W = V (as representations of Galy,).
As a consequence, we get DTL C DTL(V) = (BT ® V)H£. Since both of sides are

vector spaces over BE, it follows from
dim D} (V) <dimV = d = dim D},

that DE = DTL(V). For the same reason, DTL ®pi B =Dr(V).
By Corollar BTL / B}( is a Galois extension with Galois group

Gal(B! /Bl.) = Gal(Hg /Hy).

Therefore, by Hilbert’s theorem 90, we see that DT(V) = (D} )#x is of dimension
d and that D (V) ®g, B}, = D}, Hence,

D'(V) @1 B=D} ®g B=D(V)®s, B=V®B.

By taking Hg-invariants, we get DT (V) Dpi Bx =D(V) as desired.
(2) This follows from (1). O
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