Continuous Cohomology of \mathbb{C}_K

彭淏 1700010601@pku.edu.cn

1 Formal Groups

Def. (0.1.1). A formal group law of dimension n over a commutative ring R is a set of n power series $G = (G_1, \ldots, G_n)$ in $K[[X_1, \ldots, X_n, Y_1, \ldots, Y_n]]$ that

$$G(X,0) = G(0,X) = X, \quad G(G(X,Y),Z) = G(X,G(Y,Z)).$$

Note this immediately induce an inverse inv(X) that G(X, inv(X)) = G(inv(X), X) = 0. This can be constructed noticing G(X, Y) = X + Y + o(X, Y).

A morphism of formal groups is a vector of power series $\varphi(X)$ that $\varphi(G(X,Y)) = H(\varphi(X),\varphi(Y))$. A **formal** *R*-module is a formal group *G* over *R* together with a ring homomorphism $R \to \operatorname{End}_R(G)$ that $[a](X) = aX + \ldots$

Prop. (0.1.2) (Automorphisms). If $\alpha \in R^*$ and F_i are power series that the degree 1 term of (F_i) is invertible, then there are unique power series G_i that $G \circ F = \text{id}$ and $F \circ G = \text{id}$.

Proof: Use induction to find G that $F \circ G = id$. Then the degree 1 terms of G is also invertible, thus there are $G \circ H = id$, now F = H and the proof is finished.

Prop. (0.1.3). \mathbb{G}_a is the one-dimensional formal group with $\mathbb{G}_a(X,Y) = X + Y$, \mathbb{G}_m is the one-dimensional formal group with $\mathbb{G}_m(X,Y) = X + Y + XY$. Over a Q-algebra K, there is an isomorphism between \mathbb{G}_a and \mathbb{G}_m giving by $X \to \exp(X) - 1$.

1-dimensional Formal Groups

Def. (0.1.4). For a 1-dimensional formal group \mathcal{F} over R, the **invariant differential** is a differential form $\omega = P(T)dT \in R[[T]]dT$ that $\omega \circ F(T, S) = \omega$. It is called **normalized** if P(0) = 1.

There exists uniquely an invariant differential, it is given by $F_X(0,T)^{-1}dT$.

Proof: We need to check $F_X(0, F(T, S))^{-1}F_X(T, S) = F_X(0, T)^{-1}$, and this is just F(U, F(T, S)) = F(F(U, T), S) differentiated at U and let U = 0.

Conversely, if ω is an invariant differential, then $P(F(T,S))F_X(T,S) = P(T)$, let T = 0, then $P(S) = P(0)F_X(0,S)^{-1}$.

Prop. (0.1.5). For a morphism $f : \mathcal{F} \to \mathcal{G}$ of 1-dimensional formal groups over $R, \omega_{\mathcal{G}} \circ f = f'(0)\omega_{\mathcal{F}}$.

Proof: We only need to show that $\omega_{\mathcal{G}} \circ f$ is an invariant differential for \mathcal{F} and then compare their constant coefficients. For this, notice

$$\omega_{\mathcal{G}} \circ f(F(T,S)) = \omega_{\mathcal{G}}(G(f(T),f(S))) = \omega_{\mathcal{G}}(f(T)) = \omega_{\mathcal{G}} \circ f(T).$$

Def. (0.1.6). When *R* has characteristic 0, the **formal logarithm** $\log_{\mathcal{F}}$ for a 1-dimensional formal group is the integration of invariant differential $\int_{0}^{T} \omega_{\mathcal{F}} = T + c_1/2T^2 + \cdots$.

Then the **formal power exponential** is the unique power series $\exp_{\mathcal{F}}$ that is the inverse of $\log_{\mathcal{F}}$. It exists uniquely by(0.1.2).

Prop. (0.1.7). For R char= 0 and an 1 dimensional formal group \mathcal{F} over R, $\log_{\mathcal{F}} : \mathcal{F} \to \mathbb{G}_a$ is an isomorphism of formal groups over $R \otimes_{\mathbb{Z}} \mathbb{Q}$.

And if \mathcal{F} is a formal *R*-module, then it is an isomorphism of *R*-modules, because from(0.1.5) that $\omega_{\mathcal{F}} \circ [a] = a \omega_{\mathcal{F}}$, thus $\log_{\mathcal{F}} \circ [a] = a \cdot \log_{\mathcal{F}}$.

Proof: From $\omega_{\mathcal{F}}(F(T,S)) = \omega_{\mathcal{F}}(T)$, we get that $\log_{\mathcal{F}}(F(T,S)) = \log_{\mathcal{F}}(S) + \log_{\mathcal{F}}(T)$. So it is a homomorphism. Now the inverse $\exp_{\mathcal{F}}$ is already given, so it is an isomorphism.

Cor. (0.1.8). A 1-dimensional formal group over a ring R that has no torsion nilpotents is commutative.

Proof: We only prove for R torsion free, in this case $F(T, S) = \exp_{\mathcal{F}}(\log_{\mathcal{F}}(T) + \log_{\mathcal{F}}(S))$.

Lubin-Tate Formal Group

Def. (0.1.9). For a *p*-adic number field *K* with a uniformizer π_K with residue field \mathbb{F}_q , a Lubin-Tate power series for π_K is a $\varphi(X) \in \mathcal{O}_K[[X]]$ that $\varphi(X) \equiv \pi_K X \mod X^2$ and $\varphi(X) \equiv X^q \mod \pi_K$.

A Lubin-Tate module G over \mathcal{O}_K is a formal \mathcal{O}_K -module that $[\pi_K](X)$ is a Lubin-Tate power series.

Prop. (0.1.10). Given a *p*-adic number field K with residue field \mathbb{F}_q , we consider the set ξ_{π} of all Lubin-Tate power series for π .

If $f, g \in \xi_{\pi}$ and $L(X) = \sum a_i X_i$ be a linear form, then there exists a unique power series F(X) that $F(X) \equiv L(X)$ mod degree 2 and $f(F(X)) = F(g(X_1), \dots, g(X_n))$.

Proof: Choose F consecutively, if $F_{r+1} = F_r + \Delta_r$, then must

$$\Delta \equiv \frac{f(F_r(X)) - F_r(g(X))}{\pi^{r+1} - \pi} \mod \text{degree} \ (r+2).$$

This has coefficient in \mathcal{O} because $f \equiv g \equiv Z^q \mod \pi$.

Cor. (0.1.11). If we let f = g, L = X + Y to get F_f and f, g, L = aX to get $a_{f,g}$, then

- $F_f(X, Y) = F_f(Y, X).$
- $F_f(F_f(X,Y),Z) = F_f(X,F_f(Y,Z)).$
- $a_{f,g}(F_g(X,Y)) = F_f(a_{f,g}(X), a_{f,g}(Y)).$
- $a_f b_f(Z) = (ab)_f(Z).$
- $(a+b)_f(Z) = F_f(a_f(Z), b_f(Z)).$

•
$$\pi_f(Z) = f(Z).$$

all follow from the unicity of the last proposition.

Cor. (0.1.12) (Existence of Lubin-Tate Module). We get a commutative formal \mathcal{O} -module F_f for every f. And this group can act on \mathfrak{p}_L for an alg.ext L/K. The set of zeros $\Lambda_{f,n}$ of f^n in L, as the elements annihilated by π^n , is a submodule of $\mathfrak{p}_L^{(f)}$.

And $u_{g,f}$ for any unit $u \in \mathcal{O}$ defines an isomorphism between F_f and F_g , thus this formal group only depends on π , called F_{π} . Hence $L_{f,n} = K(\Lambda_{f,n})$ only depends on π , with Galois group $G_{\pi,n}$.

Prop. (0.1.13) (Different Uniformizers). Now consider different π , it is proven that F_{π} and $F_{\pi'}$ are isomorphic, but the coefficient in $\mathcal{O}_{\hat{T}}$ where T is the maximal unramified extension.

Thus $L_{\pi,n}$ and $L_{\pi',n}$ may not be isomorphic, but $T \cdot L_{\pi,n} = T \cdot L_{\pi',n}$ since $\hat{T} \cdot L_{\pi,n} = \hat{T} \cdot L_{\pi',n}$ and both of them is the algebraic closure of K in it.

Proof: Cf.[Neukirch CFT P105].

Lemma (0.1.14). The Newton polygon of $[\pi_K^n]/\pi_K^n$ has vertices $(1,0), (q, -1/e_K), (q^2, -2/e_K), \ldots$

Proof: Notice $[\pi_K^n]$ has no infinite edge of negative slope because all its coefficient are in \mathcal{O}_K . Now look at its roots, it has a root 0, and q-1 roots of valuation $v_p(\pi_K)/(q-1)$, q(q-1) roots of valuation $v_p(\pi_K)/(q-1)$, and so on.

So by factor out these roots, $[\pi_K^n]/\pi_K^n$ is left with a power series whose Newton polygon is a single line with non-negative slope, which shows the desired result.

Prop. (0.1.15). The formal logarithm of the Lubin-Tate formal group F_{π} satisfies:

$$\log_{\mathcal{F}_{\pi}}(T) = \underline{\lim}[\pi_{\mathcal{F}}^n] / \pi_{\mathcal{F}}^n.$$

Proof: By(0.1.7) we have

$$\log_{\mathcal{F}}(T) = \log_{\mathcal{F}}([\pi_{\mathcal{F}}^{n}])/\pi_{\mathcal{F}}^{n} = ([\pi_{K}^{n}] + a_{2}/2[\pi_{K}^{n}]^{2} + \ldots)/\pi_{K}^{n}$$

and for any degree d, the valuation of coefficient of $[\pi_K^{2n}]/\pi_K^{2n}$ is bounded below by a constant c(d) by the above lemma(0.1.14), so $[\pi_K^{2n}]/\pi_K^n$ converges to 0, thus the result.

Cor. (0.1.16). The Newton polygon of $\log_{\mathcal{F}}(T)$ has vertices $(1,0), (q, -1/e_K), (q^2, -2/e_K), \ldots$

Prop. (0.1.17). There is an isomorphism of \mathcal{O} -modules $\Lambda_{f,n} \cong \mathcal{O}/\pi^n \mathcal{O}$, Cf.[Neukirch CFT P101]. Thus the automorphism of $\Lambda_{f,n}$ is all of the form u_f for units, isomorphic to U_K/U_K^n .

So we can define a **Tate module** $TG = \lim_{K \to \infty} \operatorname{Ker}[\pi_K^n]$, it is a free \mathcal{O}_K -module of rank 1.

Def. (0.1.18). As TG is a free \mathcal{O}_G -module of dimension 1, and G_K acts on TG, there can be attached a **Lubin-Tate character** $\chi_K : G_K \to \mathcal{O}_K^*$ by $g(\alpha) = [\chi_K(g)](\alpha)$, this depends on π_K , but its restriction on I_K doesn't depend on π_K , and is just the local CFT isomorphism composed with $x \to x^{-1}$.

Proof: $[\chi_K(g)]$ is, by definition, the morphism that is id on K^{ur} and g on L_{π} . So it equals g on all K^{ab} iff g is id on K^{ur} , that is, $g \in I_K$. So if $g \in I_K$, by local CFT(0.1.20), $(\chi(g))^{-1}$ corresponds to g, uniquely.

Prop. (0.1.19). $G_{\pi,n} \cong \mathcal{O}_K^*/U_K^n$, thus we have $G_\pi \cong \mathcal{O}_K^*$. $L_{\pi,n}/K$ is Abelian totally ramified of degree $p^{n-1}(p-1)$ generated by a Eisenstein polynomial with constant coefficient π so π is in the norm group.

Proof: For this, first note Galois action induce an isomorphism on $\Lambda_{f,n}$, thus correspond to an element of U_K/U_K^n by(0.1.17), this is an injection because $\Lambda_{f,n}$ generate $L_{\pi,n}$. Then we use the canonical polynomial $f(Z) = \pi Z + Z^q$, $f^n = f^{n-1}\varphi(n)$, where $\varphi(n)$ is a Eisenstein polynomial, thus $L_{\pi,n}/K$ is totally ramifies with $|G_{\pi,n}| = q^{n-1}(q-1) = |U_K/U_K^n|$, thus the result. \Box

Prop. (0.1.20) (Explicit Local Norm Residue Symbol). Now we can write the universal residue symbol little bit more explicitly. For $a = u\pi^m$, (a, K) acts by φ^m on T and generated by the action $(u^{-1})_f$ on $\Lambda_{f,n}$ on $L_{\pi,n}$.

Thus the norm group of $L_{\pi,n}$ is just U^n by (0.1.19).

Proof: Cf.[Neukirch CFT P106].

Cor. (0.1.21). The norm groups of the totally ramified Abelian extension is precisely the groups that contains some $U_K^n \times (\pi)$ for some uniformizer π . And every totally ramified Abelian extension L/K is contained in some $L_{\pi,n}$.

Proof: For any totally ramified extension, choose a uniformizer, then its norm is a uniformizer π of K. And $N_{L/K}$ is open (as it contains $(K^*)^m$??.) Thus it contains some U^n . The rest follows from local CFT??.

Cor. (0.1.22) (Maximal Abelian Extension of Local Fields). Let $L_{\pi} = \bigcup L_{\pi,n} = K(\Lambda_f)$, where $\Lambda_f = \bigcup \Lambda_{f,n}$, then $\underline{T} \cdot L_{\pi}$ is the maximal extension of Abelian extension of K. Hence $G_K^{ab} = G_{T,K} \times G_{\pi}$. This follows immediately from??.

Cor. (0.1.23) (Hasse-Arf). We can prove Hasse-Arf?? in the case where K is a local field. This is because we already know the maximal Abelian extension, and $G(K^{ab}/T) \cong G(L_{\pi}/K) \cong \mathbb{O}_{K}^{*}$ for which we know the Galois action well(0.1.17)(0.1.19), so $i(\sigma) = v(\sigma(\alpha_{n}) - \alpha_{n}) = v([\sigma - 1](\alpha))$, which jumps at U_{K}^{n} (the same pattern as $K = \mathbb{Q}_{p}$??), thus the result.

Remark (0.1.24). There is a concrete example. When $K = \mathbb{Q}_p$, we can choose $f(Z) = (1+Z)^p - 1$, thus $L_{\pi,n}$ is just $\mathbb{Q}_p(\xi_{p^n})$. And we have $r_f = (1+Z)^r - 1$, thus we have

$$(a, \mathbb{Q}_p(\xi_{p^n})/\mathbb{Q}_p)\zeta = \zeta^r$$

where $a = up^m$, and $r \equiv u^{-1} \mod p^n$.

2 Cohomology of G_K action on \mathbb{C}_p

K is assumed to be a p-adic number field.

Lemma (0.2.1). Giving an $\sigma \in G(K/\mathbb{Q}_p)$, if $x, y \in \mathfrak{m}_{\mathbb{C}_p}$ that $x \equiv y \mod \pi_K^n$, then $[\pi_K]^{\sigma}(x) \equiv [\pi_K]^{\sigma}(y) \mod \pi_K^{n+1}$, where f^{σ} is given by action of σ on the coefficients.

Proof: This is because the coefficients of $[\pi_K]^{\sigma}$ are divisible by π_K except for degree q, where it is $x^q - y^q = (x - y)(x^{q-1} + x^{q-2}y + \ldots + y^{q-1})$ which is divisible by π_K^{n+1} because the residue field of K is of order q.

Prop. (0.2.2). If we let the action of $\sigma \in G(K/\mathbb{Q}_p)$ on the residue field giving by $\overline{\sigma} : k_K \to \overline{\mathbb{F}}_p : x \mapsto x^{q_\sigma}$, where $q_\sigma = p^{n_\sigma}$ is a *p*-power, given an element $\eta = (\eta_0, \eta_1, \ldots) \in TG$, we have $\eta^{q_\sigma} \equiv [\pi_K]^{\sigma}(\eta_{n+1}^{q_\sigma}) \mod \pi_K$, hence the above lemma(0.2.1) shows that $[\pi_K^n]^{\sigma}\eta_n^{q_\sigma} \equiv [\pi_K^{n+1}]^{\sigma}(\eta_{n+1}^{q_\sigma}) \mod \pi_K^{n+1}$, so $[\pi_K^n]^{\sigma}(\eta_n^{q_\sigma})$ is a Cauchy sequence, converging to an element μ_{σ} (don't care about η).

If $g \in G_K$, then $g(\eta_n) = [\chi_K(g)](\eta_n)$, hence take q_σ -th power, $g(\eta_n^\sigma) \equiv [\chi_K(g)]^\sigma(\eta_n^{q_\sigma}) \mod \pi_K$, then

$$\chi_K(g)]^{\sigma}[\pi_K^n]^{\sigma}(\eta_n^{q_{\sigma}}) \equiv [\pi_K^n]^{\sigma}g(\eta_n^{q_{\sigma}}) = g([\pi_K^n]^{\sigma}\eta_n^{q_{\sigma}}) \mod \pi_K$$

hence by limiting, $g(\mu_{\sigma}) = [\chi_K(g)]^{\sigma}(\mu_{\sigma}).$

Lemma (0.2.3).

$$v_p(\mu_{\sigma}) = \begin{cases} \frac{q_{\sigma}}{e_K(q-1)} + \frac{1}{e_K} & n(\sigma) \neq 0\\ \frac{1}{e_K(q-1)} + v_p(\sigma(\pi_K) - \pi_K) & n(\sigma) = 0 \end{cases}$$

Proof: By(0.1.14), we know the Newton polygon of $[\pi_K^n]^{\sigma}$. When $n(\sigma) \neq 0$, $v(\eta_1^{q\sigma}) = \frac{q_{\sigma}}{e_K(q-1)} > \frac{1}{e_K(q-1)}$, so the valuation of $[\pi_K]^{\sigma}(\eta_1^{q\sigma})$ equals the valuation of its degree 1 term, which is $v(\pi_K \eta_1^{q\sigma}) = \frac{q_{\sigma}}{e_K(q-1)} + \frac{1}{e_K}$. Now we have by(0.2.2), we have $[\pi_K]^{\sigma} \eta^{q_{\sigma}} \equiv [\pi_K^2]^{\sigma}(\eta_2^{q_{\sigma}}) \mod \pi_K^2$, and $\frac{q_{\sigma}}{e_K(q-1)} + \frac{1}{e_K} < 2/e_K$, so valuation already stable at degree 1, and $v(\mu_{\sigma}) = v([\pi_K]^{\sigma}(\eta_1^{q_{\sigma}}))$.

If $q_{\sigma} = 1$, it's more delicate, because degree 1 and degree q term has the same minimal valuation, so they may jump to higher valuations. Notice $[\pi_{K}^{n}](\eta_{n}) = 0$, so $[\pi_{K}^{n}]^{\sigma}(\eta_{n}) = ([\pi_{K}^{n}]^{\sigma} - [\pi_{K}^{n}])(\eta_{n})$. And we have by(0.3.1), for $x \in \mathcal{O}_{K}$, $v(\sigma(x) - x) \geq v(x) + v(\frac{\sigma(\pi_{K})}{\pi_{K}} - 1) + \delta_{v(x),0}v(\pi_{K})$, with equality when $v_{p}(x) = q/e_{K}$. So by the Newton polygon, the minimum valuation of the coefficient of $[\pi_{K}^{n}]^{\sigma} - [\pi_{K}^{n}]$ appear at degree p^{n-1} and possibly p^{n} . The valuation of η_{n} is too small $(\frac{1}{e_{K}p^{n-1}(p-1)})$ that we don't need to consider other degrees but can assure that degree p^{n-1} is of minimum valuation, which is $v(\eta_{n}^{p^{n-1}}) + v(\sigma(\pi_{L}) - \pi_{L}) = \frac{1}{e_{K}(q-1)} + v_{p}(\sigma(\pi_{K}) - \pi_{K})$.

Prop. (0.2.4). For any $\sigma \in G(K/\mathbb{Q}_p) \setminus \{id\}$, there is an element $\alpha_{\sigma} \in \mathbb{C}_p^*$ that $\sigma \circ \chi_K(g) = g(\alpha_{\sigma})/\alpha_{\sigma}$ for all $g \in G_K$, where χ_K is the Lubin-Tate character.

Proof: We let $\alpha_{\sigma} = \log_{\mathcal{F}_{\pi}}^{\sigma}(\mu_{\sigma})$, by(0.2.3), $1/e_K < \mu_{\sigma} < \infty$, so by the Newton polygon analysis of $\log_{F_{\pi}}(0.1.15)$, α_{σ} has the same valuation of μ_{σ} , in particular, $\alpha_{\sigma} \neq 0$. Then

$$g(\alpha_{\sigma}) = \log_{\mathcal{F}_{\pi}}^{\sigma}(g(\mu_{\sigma})) = (\log_{\mathcal{F}} \circ [\chi_{K}(g)])^{\sigma}(\mu_{\sigma}) = (\chi_{K}(g) \cdot \log_{\mathcal{F}_{\pi}})^{\sigma}(\mu_{\sigma}) = \sigma(\chi_{K}(g)) \cdot \alpha_{\sigma}.$$

Cor. (0.2.5). $\log_p(\sigma(\chi_K(g))) = g(\log(\alpha_{\sigma})) - \log_p(\alpha_{\sigma}).$

Def. (0.2.6). Let $\psi : G_K \to \Gamma_K \to \mathbb{Z}_p^*$ be a character factoring through Γ_K . Then we can form a representation $\mathbb{C}_p(\psi)$ of G_K on \mathbb{C}_p that $\rho(\sigma)(x) = \psi(\sigma)\sigma(x)$. This is an action because G_K acts trivial on \mathbb{Z}_p^* .

If $\psi^k = \text{id}$ for some k, then it is trivial on Γ_K^k . Γ_K is an open subgroup of \mathbb{Z}_p , so Γ_K^n is of finite index in Γ_K by??, hence also does its inverse image in G_K . So ψ comes from a finite extension L/K.

Prop. (0.2.7). $H^0(G_K, \mathbb{C}_p(\psi)) = K$ if ψ is of finite order, and vanish if ψ is of infinite order.

Proof: Finite case: ψ factor through some G_L , so ψ corresponds to a continuous cocycle w.r.t the discrete topology of \mathbb{C}_p . So by(0.3.5) there is a $a \in \mathbb{C}_p^*$ that $\psi(\sigma) = \sigma(a)/a$, so $\mathbb{C}_p(\psi) \cong \mathbb{C}_p : x \mapsto ax$. And the result follows from Ax-Sen-Tate, as $K = \hat{K}$.

Infinite case: $H^0(G_K, \mathbb{C}_p(\psi)) \subset H^0(H_K, \mathbb{C}_p(\psi)) = \hat{K}_{\infty}(\psi)$ by Ax-Sen-Tate and the fact ψ is trivial on H_K . Then for the normalized trace R_n , which commutes with G_K , $g(R_n(x)) = \psi^{-1}(g)R_n(x)$. But $G(K_n/K)$ is finite, so $R_n(x) = \psi^{-N}(g)R_n(x)$ for any g. So $R_n(x) = 0$, otherwise ψ is of finite order. Now $R_n(x) \to x$, so x = 0. **Prop.** (0.2.8). Now we compute $H^1(G_K, \mathbb{C}_p(\psi))$. There is a inf-res exact sequence

$$0 \to H^1(\Gamma_K, \hat{K}_{\infty}(\psi)) \to H^1(G_K, \mathbb{C}_p(\psi)) \to H^1(H_K, \mathbb{C}_p(\psi))$$

Then $H^1(H_K, \mathbb{C}_p(\psi)) = 0$. The first two vanish iff ψ is of infinite order, and is a K-vector space of dimension 1 if ψ is of finite order.

Proof: For the first assertion, ψ is trivial on H_K , so $\mathbb{C}_p(\psi) \cong \mathbb{C}_p$ as H_K -representation, so it suffice to show for $\psi = \text{id.}$ Let f be a cocycle, as H_K is compact, $f(H_K) \in p^{-k}\mathcal{O}_{\mathbb{C}_p}$ for some integer k. So the lemma below(0.2.9) shows that we can move f cohomologouly to higher valuation, i.e. $f(g) = \sum x_i - g(\sum x_i)$, so f is a coboundary.

For the second assertion, we assume $\Gamma_K \neq \mathbb{Z}_2^*$, for this case, see remark(0.2.10) below.

let γ be a topological generator of $\Gamma_K = 1 + p^k \mathbb{Z}_p^*$, $k \ge 0$, because \mathbb{Z}_p^* are all topological cyclic groups except for $\mathbb{Z}_2^* \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}_2$, and γ_n be a topological generator of Γ_{F_n} which is also a power of γ . By(0.3.8) we know $H^1(\Gamma_K, \hat{K}_\infty(\psi)) = \hat{K}_\infty(\psi)/1 - \gamma$.

For *n* large, we have a decomposition $\hat{K}_{\infty}(\psi) = K_n(\psi) \oplus X_n(\psi)$ by(0.3.11), and $1-\gamma_n$ is invertible on $X_n(\psi)$. Now $1 - \gamma_n = (1 - \gamma)(1 + \gamma + \ldots + \gamma^{k-1})$, so $1 - \gamma$ is also invertible in $X_n(\psi)$. And on $K_n(\psi)$, if ψ is of infinite order, then $1 - \gamma$ is injective, otherwise $x = \psi(\gamma)^N \gamma^N(x) = \psi(\gamma)^N x$. So it is also surjective because it is a *K*-linear mapping of K_n . So $\hat{K}_{\infty}(\psi)/1 - \gamma = 0$. If ψ is of finite order then $K_n(\psi) \cong K_n$ as Γ_K -module when *n* is large enough that γ factors through Γ_{K_n} , by(0.3.6). So $K_n/1 - \gamma = K_n/\operatorname{Ker}(\operatorname{tr}_{K_n/K}) = K$.

Lemma (0.2.9). If $f: H_K \to p^n \mathcal{O}_{\mathbb{C}_p}$ is a continuous cocycle, then there exists a $x \in p^{n-1} \mathcal{O}_{\mathbb{C}_p}$ that the cohomologous cocycle $g \mapsto f(g) - (x - g(x))$ has values in $p^{n+1} \mathcal{O}_{\mathbb{C}_p}$.

Proof: $p^{n+2}\mathcal{O}_{\mathbb{C}_p}$ is open in $p^n\mathcal{O}_{\mathbb{C}_p}$, so there is a finite extension L/K that $f(H_L) \in p^{n+2}\mathcal{O}_{\mathbb{C}_p}$. By(0.3.10), there is a z that $\operatorname{tr}_{L_{\infty}/K_{\infty}}(z) = p$, so there is a $y \in p^{-1}\mathcal{O}_{L_{\infty}}$ that $\operatorname{tr}_{L_{\infty}/K_{\infty}}(y) = 1$.

Now for a set of representatives Q of H_K/H_L , denote $x_Q = \sum_{h \in Q} h(y)f(h)$, then for $g \in H_K$, g(Q) is also a set of representative, and $g(x_Q) = \sum_{h \in Q} gh(y)gf(h) = \sum_{h \in Q} gh(y)(f(gh) - f(g)) = x_{g(Q)} - f(g)$, as $\operatorname{tr}(y) = 1$. So $f(g) - (x_Q - g(x_Q)) = x_{g(Q)} - x_Q$. The RHS is in $p^{n+1}\mathcal{O}_{\mathbb{C}_p}$, because: if we let $gh_i = h_{g(i)}a_i$, where $a_i \in H_L$, then $x_{g(Q)} - x_Q = \sum h_{g(i)}(y)f(h_{g(i)}a_i) - \sum h_{g(i)}(y)f(h_{g(i)}) = \sum h_{g(i)}(y)h_{g(i)}(f(a_i))$, which is in p^{n+1} because $h_{g(i)}(y) \in p^{-1}\mathcal{O}_{\mathbb{C}_p}$ and $f(a_i) \in p^{n+2}\mathcal{O}_{\mathbb{C}_p}$ by the choice of L.

Remark (0.2.10). In case $\Gamma_K = \mathbb{Z}_2^*$,

$$0 \to H^1(\{\pm 1\}, K(\psi)) \to H^1(\mathbb{Z}_2^*, \hat{K}_\infty(\psi)) \to H^1(1 + 2\mathbb{Z}_2^*, \mathbb{C}_p(\psi))$$

 $H^1(\{\pm 1\}, K(\psi)) = 0$ whether $\psi(-1) = 1$ or -1. And by the same proof as above, possibly replace X_n with X_{n+1} , to remedy the singularity of p = 2, $H^1(1 + 2\mathbb{Z}_2^*, \mathbb{C}_p(\psi)) = K$, with generator $[g \mapsto \frac{\chi(g)-1}{\gamma-1}(a)]$ for some a. This cocycle extends to a cocycle of \mathbb{Z}_2^* , so the map is surjective.

Prop. (0.2.11). The 1-dimensional K-vector space $H^1(G_K, \mathbb{C}_p)$ is generated by the cocycle $[g \mapsto \log_p \chi(g)]$.

Proof: By the proof of(0.2.8), we know that $K = K/1 - \gamma \subset K_n/1 - \gamma \xrightarrow{f} H^1(G_K, \mathbb{C}_p)$ is an isomorphism. for $\alpha \in K$, if $\chi(g) = \gamma^k$, then $f(\alpha)(g) = (1 + \gamma + \ldots + \gamma^{k-1})(\alpha) = k\alpha = \alpha \cdot \log_p(\chi(g))/\log_p(\gamma)$. So by continuity, f is a multiple of $[g \mapsto \log_p(\chi(g))]$. **Lemma (0.2.12).** Any $f \in \text{Hom}(I_K^{ab}, \mathbb{Q}_p)$ is of the form $f(g) = \text{tr}_{K/\mathbb{Q}_p}(\beta_f \log_p \chi_K(g))$ for some $\beta_f \in K$.

Proof: By(0.1.18), χ_K is a canonical isomorphism $I_K^{ab} \cong \mathcal{O}_K^*$. Any $f \in \text{Hom}(\mathcal{O}_K^*, \mathbb{Q}_p)$ is of the form $f(y) = \text{tr}_{K/\mathbb{Q}_p}(\beta_f \log_p(y))$ for some $\beta_f \in K$, because: by??, when n is large, \log_p is a bijection between U_K^n and $\pi_K^n \mathcal{O}_K$.

 $\pi_K^n \mathcal{O}_K \to \mathbb{Q}_p$ can be extended to a map $K \to \mathbb{Q}_p$ as \mathbb{Q}_p is divisible. Now trace is a invertible bilinear form on K, so the assertion is true on U_K^n for some n, and because U_K^n is of finite index in \mathcal{O}_K^* and \mathbb{Q}_p is of char 0, this is true for all \mathcal{O}_K^* .

Prop. (0.2.13). The map $H^1(G_K, \mathbb{Q}_p) \to H^1(G_K, \mathbb{C}_p)$ is given as follows: as $f \in H^1(G_K, \mathbb{Q}_p)$ must factor through G_K^{ab} , if the restriction of f to I_K^{ab} corresponds to β_f , then f maps to $\beta_f[g \mapsto \log_p \chi(g)]$.

Proof: $f(g) = \operatorname{tr}_{K/\mathbb{Q}_p}(\beta_f \log_p \chi_K(g))$ on I_K , but this map extends to map on G_K . So $f(g) = \operatorname{tr}_{K/\mathbb{Q}_p}(\beta_f \log_p \chi_K(g)) + c(g)$ for a unramified map c on G_K .

Now by(0.3.7), $H^1(G, \hat{\mathbb{Q}}_p^{ur}/\mathbb{Q}_p)$ vanish because $H^1(G, \overline{\mathbb{F}}_p)$ vanish(0.3.6), so there is a $z \in \hat{\mathbb{Q}}_p^{ur}$ that c(g) = g(z) - z. And

$$\operatorname{tr}_{K/\mathbb{Q}_p}(\beta_f \log_p \chi_K(g)) = \sum_{\sigma} \sigma(\beta_f \log_p \chi_K(g)) = \beta_f \operatorname{tr}_{K/\mathbb{Q}_p}(\log_p \chi_K(g)) + \sum_{\sigma} (\sigma(\beta_f) - \beta_f) \sigma(\log_p \chi_K(g))$$

Notice (0.2.4) gives a β_{σ} that $\sigma(\log_p \chi_K(g)) = g(\beta_{\sigma}) - \beta_{\sigma}$, and $\operatorname{tr}_{K/\mathbb{Q}_p}(\log_p \chi_K(g)) = \log_p \chi(g)$ because $(N_{K/\mathbb{Q}_p}\chi_K(g))^{-1} = (\chi(g))^{-1}$, as they both correspond via local CFT to the element in G_K^{ab} which acts by g on L_{π} and id on K^{ur} . Thus the result.

Cor. (0.2.14). If $\eta : G_K \to \mathbb{Z}_p^*$ is a character and there is $y \in \mathbb{C}_p^*$ that $\eta(g) = g(y)/y$, then there exists a finite extension L of K that $\eta|_{G_L}$ is unramified, i.e. η is **potentially unramified**.

Proof: Apply \log_p , then the image of $f = \log_p \eta$ in $H^1(G_K, \mathbb{C}_p)$ is trivial, so the above proposition shows $\beta_f = 0$, so $\log_p \eta$ is trivial on I_K , so I_K is mapped by η into the μ_p , so $\eta((I_K^{ab})^{p-1}) = 1$.

 $I_K^{ab} \cong \mathcal{O}_K^*$, so $(I^{ab})^{p-1}$ is of finite index in I_K^{ab} , so correspond to a finite Abelian extension E/K^{ur} that η is trivial on G_E . Now choose a primitive element β of E/K^{ur} , then $E \subset K(\beta) \cdot K^{ur} = (K(\beta))^{ur}$, so $\eta|_{G_{K(\beta)}}$ is unramified.

Prop. (0.2.15). If $G_K \to GL_d(\mathbb{Q}_p)$ is such $\rho(g) = g(M)M^{-1}$ for $M \in GL_d(\mathbb{C}_p)$, then ρ is potentially unramified.

Proof: Cf.[Sen Continuous Cohomology and *p*-adic Galois representations].

3 Auxiliaries

Higher Ramification Groups

Prop. (0.3.1). For local fields L/K, if σ is in the inertia group, then

$$v_L(\frac{\sigma(x)}{x} - 1) \ge v_L(\frac{\sigma(\pi_L)}{\pi_L} - 1) + \delta_{v_L(x),0}$$

for any $x \in \mathcal{O}_L$ and a uniformizer π_L . Equality holds when $v_L(x) = 1$.

Proof: if *L* has residue field \mathbb{F}_q , then any element of \mathcal{L} can be written as $\sum \xi_n \pi_L^n$, where ξ_n are all q – 1-th roots of unity. And because σ is inertia group, all q – 1-th roots of unity are preserved, so $\sigma(\xi_n \pi_L^n) - \xi_n \pi_L^n = \xi_n \pi_L(\frac{\sigma(\pi_L)}{\pi_L} - 1)(\sigma(\pi_L)^{n-1} + \sigma(\pi_L)^{n-2}\pi_L + \ldots + \pi_L^{n-1})$ has valuation $\geq v(\frac{\sigma(\pi_L)}{\pi_L} - 1) + n$. Thus the result.

Different and Discriminant

Prop. (0.3.2). If L/K is a finite extension and if I is an ideal of \mathcal{O}_L , then $v_K(\operatorname{tr}_{L/K}(I)) = \lfloor v_K(I \cdot \mathcal{D}_{L/K}) \rfloor$.

Proof: By definition, $\operatorname{tr}_{L/K}(x\mathcal{O}_L) \subset \mathcal{O}_K$ iff $x \in \mathcal{D}_{L/K}^{-1}$, thus $\operatorname{tr}_{L/K}(I) \subset J$ iff $I \subset \mathcal{D}_{L/K}^{-1}J$, i.e. $\operatorname{tr}_{L/K}(I)$ is the smallest ideal J of \mathcal{O}_K that contains $I \cdot \mathcal{D}_{L/K}$, thus the result.

Galois Cohomology

Prop. (0.3.3). There is an exact sequence of pointed sets:

$$0 \to H^1(G/H, M^H) \xrightarrow{inf} H^1(G, M) \xrightarrow{res} H^1(H, M)^{G/H}.$$

Proof: First $\operatorname{res}(H^1(G, M)) \subset H^1(H, M)^{G/H}$ because $g(c)(h) = c(g)^{-1}c(h)h(c(g))$ is checked so g(c) is cohomologous to c.

res $\circ inf = 0$ is easy, if res(c) = 0, then c is trivial on H, hence c(gh) = c(g) and $h(c(g)) = c(hg) = c(g \cdot g^{-1}hg) = c(g)$, so c is inflated from $H^1(G/H, M^H)$.

For the injectivity of inf. If $c(\overline{g}) = g^{-1}g(a)$, then $a \in M^H$, so it is a coboundary in $H^1(G/H, M^H)$.

Prop. (0.3.4). For L/K a Galois extension, $H^1(G(L/K), GL_n(L)) = 1$, where L is equipped with the discrete topology.

Proof: We prove any cocycle is a coboundary, for this, notice any cocycle factor through a finite quotient, and the images of it is contained in a finite extension of K, hence it reduce to the case of L/K finite.

For some $a \in H^1(G, GL_n(L))$, for a vector $x \in L^n$, let $P(x) = \sum a(\sigma)\sigma(x)$, then $\{P(x)\}$ generate L^n , because if f is a linear functional that vanish on it, then

$$0 = f(P(\lambda x)) = \sum f(a(\sigma)\sigma x)\sigma\lambda.$$

But automorphisms are linearly independent over L, hence $f(a(\sigma)\sigma(x)) = 0$ for all σ , so f = 0 as $a(\sigma) \in GL_n(L)$

Now let $\{P(x_i)\}$ generate L^n , then let T be the matrix with x_i as rows, then $P = \sum a(\sigma)\sigma(T)$ is invertible. Now $a(\sigma) = P \cdot \sigma(P)^{-1}$ is a cocycle.

Cor. (0.3.5) (Hilbert's Multiplicative Satz 90). $H^1(G_{L/K}, L^*) = 0$ for Galois extension L/K, where L is equipped with the discrete topology

Prop. (0.3.6) (Hilbert's Additive Satz 90). For L/K a Galois extension, $H^1(G(L/K), L) = 1$, where L is equipped with the discrete topology.

Proof: Form the normal basis theorem??, for finite Galois extension L/K, L is an induced module over K, thus $H^*(G, L) = H_*(G, L) = 0$ for $* \neq 0$ and $H^*_T(G, L) = 0$ by??.

Hence the same is true, for arbitrary Galois extension, when L is equipped with the discrete topology, the same as in the proof of (0.3.4).

Prop. (0.3.7). Let π be a topologically nilpotent element of A which is complete in the π -adic topology and π is not a zero-divisor, let $R = A/\pi A$ equipped with discrete topology. Let G be a group which acts continuously on A and fix π , then if $H^1(G, R)$ is trivial, then $H^1(G, A)$ is trivial, and if moreover $H^1(G, GL_n(R))$ is trivial, then $H^1(G, GL_n(A))$ is trivial.

Proof: Cf.[Galois Representations Berger P15].

Prop. (0.3.8) (Cyclic Case). if G is a topological cyclic group $\langle g \rangle$, then the map $H^1(G, M) \rightarrow M/(1-g)$ is well-defined and injective. And when M is profinite, p-adically complete, then the map is also surjective.

Proof: The surjection: there is only one choice: $c(g^i) = (1 + g + \ldots + g^{i-1})(m)$. And we need to verify that it is continuous. The case of *p*-adic can be deduced from profinite case, because $c(\gamma) \in p^{-k}M$ for some *k*, and $p^{-k}M$ is then profinite. For any finite quotient *N* of *M*, there is a *k* that kM = 0, and a *n* that $g^n = id$ on *N*, so $c(g^{rkn}) = 0$ on *N*, which shows *c* is continuous. \Box

Ramification of Cyclotomic Fields

Prop. (0.3.9). $p^n v_p(\mathcal{D}_{K_n/F_n})$ is bounded and eventually constant. In particular $v_p(\mathcal{D}_{K_n/F_n})$ converges to 0.

Proof: Cf.[Galois representation Berger P20].

Cor. (0.3.10). If L/K is a finite extension, then $\operatorname{tr}_{L_{\infty}/K_{\infty}}(\mathfrak{m}_{L_{\infty}}) = \mathfrak{m}_{K_{\infty}}$.

Proof: By(0.3.2) and the fact $G(L_{\infty}/K_{\infty}) \cong G(L_n/K_n)$ for n large by??, we have $\operatorname{tr}_{L_{\infty}/K_{\infty}}(\mathfrak{m}_{L_n}) = \mathfrak{m}_{K_n}^{c_n}$, where $c_n = \lfloor v_{K_n}(\mathfrak{m}_{L_n}\mathcal{D}_{L_n/K_n}) \rfloor$. By the above proposition, c_n is bounded by a c. But if $x \in \mathfrak{m}_{K_{\infty}}, x \in \mathfrak{m}_{K_n}^c$ for n large, so $x \in \operatorname{tr}_{L_{\infty}/K_{\infty}}(\mathfrak{m}_{L_{\infty}})$.

Prop. (0.3.11). There is a decomposition of $K_{\infty} = X_n \oplus X_n$, where $X_n = \text{Ker } R_n$. If $\delta > 0$, then for *n* large, $\alpha \in \mathbb{Z}_p^*$ and γ_n that $\chi(\gamma_n)$ is a topological generator Γ_{F_n} , $1 - \alpha \gamma_n : X_n \to X_n$ (because γ commutes with R_n) is invertible and $v_p((1 - \alpha \gamma_n)^{-1}x) \ge v_p(x) - 1/(p-1) - \delta$, unless $\alpha = -1$ and p = 2, in which case it is only invertible on X_{n+1} .

Proof: As usual, x_i is a basis of \mathcal{O}_{K_n/F_n} , then $x = \sum x_i e_i^*$, $x_i = \operatorname{tr}_{K_\infty/F_\infty}(xe_i) \in \hat{F}_\infty$, and $R_n(x) = 0$. Then $(1 - \alpha \gamma_n)$ acts on x_i , so it reduce to the case $K = \mathbb{Q}_p$, if one notices?? and (0.3.9). Injectivity: If $\alpha = 1$, this is Ax-Sen-Tate. In other situations, $(1 - \alpha \gamma_n)(R_{n+k}(x)) = 0$ for all $k \ge 0$, so $R_{n+k}(x) = \alpha^{p^k} \gamma_n^{p^k}(R_{n+k}(X)) = \alpha^{p^k} R_{n+k}(X)$, so $R_{n+k}(x) = 0$, hence x = 0.

Surjectivity: Cf.[Galois representation Berger P23].