Continuous Cohomology of \mathbb{C}_{K}

彭淏1700010601@pku.edu.cn

1 Formal Groups

Def. (0.1.1). A formal group law of dimension n over a commutative ring R is a set of n power series $G=\left(G_{1}, \ldots, G_{n}\right)$ in $K\left[\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right]\right]$ that

$$
G(X, 0)=G(0, X)=X, \quad G(G(X, Y), Z)=G(X, G(Y, Z)) .
$$

Note this immediately induce an inverse $\operatorname{inv}(X)$ that $G(X, \operatorname{inv}(X))=G(\operatorname{inv}(X), X)=0$. This can be constructed noticing $G(X, Y)=X+Y+o(X, Y)$.

A morphism of formal groups is a vector of power series $\varphi(X)$ that $\varphi(G(X, Y))=H(\varphi(X), \varphi(Y))$.
A formal R-module is a formal group G over R together with a ring homomorphism $R \rightarrow$ $\operatorname{End}_{R}(G)$ that $[a](X)=a X+\ldots$.

Prop. (0.1.2) (Automorphisms). If $\alpha \in R^{*}$ and F_{i} are power series that the degree 1 term of $\left(F_{i}\right)$ is invertible, then there are unique power series G_{i} that $G \circ F=\operatorname{id}$ and $F \circ G=\mathrm{id}$.

Proof: Use induction to find G that $F \circ G=i d$. Then the degree 1 terms of G is also invertible, thus there are $G \circ H=\mathrm{id}$, now $F=H$ and the proof is finished.

Prop. (0.1.3). \mathbb{G}_{a} is the one-dimensional formal group with $\mathbb{G}_{a}(X, Y)=X+Y, \mathbb{G}_{m}$ is the one-dimensional formal group with $\mathbb{G}_{m}(X, Y)=X+Y+X Y$. Over a \mathbb{Q}-algebra K, there is an isomorphism between \mathbb{G}_{a} and \mathbb{G}_{m} giving by $X \rightarrow \exp (X)-1$.

1-dimensional Formal Groups

Def. (0.1.4). For a 1-dimensional formal group \mathcal{F} over R, the invariant differential is a differential form $\omega=P(T) d T \in R[[T]] d T$ that $\omega \circ F(T, S)=\omega$. It is called normalized if $P(0)=1$.

There exists uniquely an invariant differential, it is given by $F_{X}(0, T)^{-1} d T$.
Proof: We need to check $F_{X}(0, F(T, S))^{-1} F_{X}(T, S)=F_{X}(0, T)^{-1}$, and this is just $F(U, F(T, S))=$ $F(F(U, T), S)$ differentiated at U and let $U=0$.

Conversely, if ω is an invariant differential, then $P(F(T, S)) F_{X}(T, S)=P(T)$, let $T=0$, then $P(S)=P(0) F_{X}(0, S)^{-1}$.

Prop. (0.1.5). For a morphism $f: \mathcal{F} \rightarrow \mathcal{G}$ of 1-dimensional formal groups over $R, \omega_{\mathcal{G}} \circ f=f^{\prime}(0) \omega_{\mathcal{F}}$.
Proof: We only need to show that $\omega_{\mathcal{G}} \circ f$ is an invariant differential for \mathcal{F} and then compare their constant coefficients. For this, notice

$$
\omega_{\mathcal{G}} \circ f(F(T, S))=\omega_{\mathcal{G}}(G(f(T), f(S)))=\omega_{\mathcal{G}}(f(T))=\omega_{\mathcal{G}} \circ f(T) .
$$

Def. (0.1.6). When R has characteristic 0 , the formal $\operatorname{logarithm}^{\log } \mathcal{F}_{\mathcal{F}}$ for a 1-dimensional formal group is the integration of invariant differential $\int_{0}^{T} \omega_{\mathcal{F}}=T+c_{1} / 2 T^{2}+\cdots$.

Then the formal power exponential is the the unique power series $\exp _{\mathcal{F}}$ that is the inverse of $\log _{\mathcal{F}}$. It exists uniquely by (0.1.2).

Prop. (0.1.7). For R char $=0$ and an 1 dimensional formal group \mathcal{F} over $R, \log _{\mathcal{F}}: \mathcal{F} \rightarrow \mathbb{G}_{a}$ is an isomorphism of formal groups over $R \otimes_{\mathbb{Z}} \mathbb{Q}$.

And if \mathcal{F} is a formal R-module, then it is an isomorphism of R-modules, because from(0.1.5) that $\omega_{\mathcal{F}} \circ[a]=a \omega_{\mathcal{F}}$, thus $\log _{\mathcal{F}} \circ[a]=a \cdot \log _{\mathcal{F}}$.

Proof: \quad From $\omega_{\mathcal{F}}(F(T, S))=\omega_{\mathcal{F}}(T)$, we get that $\log _{\mathcal{F}}(F(T, S))=\log _{\mathcal{F}}(S)+\log _{\mathcal{F}}(T)$. So it is a homomorphism. Now the inverse $\exp _{\mathcal{F}}$ is already given, so it is an isomorphism.

Cor. (0.1.8). A 1-dimensional formal group over a ring R that has no torsion nilpotents is commutative.

Proof: We only prove for R torsion free, in this case $F(T, S)=\exp _{\mathcal{F}}\left(\log _{\mathcal{F}}(T)+\log _{\mathcal{F}}(S)\right)$.

Lubin-Tate Formal Group

Def. (0.1.9). For a p-adic number field K with a uniformizer π_{K} with residue field \mathbb{F}_{q}, a LubinTate power series for π_{K} is a $\varphi(X) \in \mathcal{O}_{K}[[X]]$ that $\varphi(X) \equiv \pi_{K} X \bmod X^{2}$ and $\varphi(X) \equiv$ $X^{q} \bmod \pi_{K}$.

A Lubin-Tate module G over \mathcal{O}_{K} is a formal \mathcal{O}_{K}-module that $\left[\pi_{K}\right](X)$ is a Lubin-Tate power series.

Prop. (0.1.10). Given a p-adic number field K with residue field \mathbb{F}_{q}, we consider the set ξ_{π} of all Lubin-Tate power series for π.

If $f, g \in \xi_{\pi}$ and $L(X)=\sum a_{i} X_{i}$ be a linear form, then there exists a unique power series $F(X)$ that $F(X) \equiv L(X) \bmod$ degree 2 and $f(F(X))=F\left(g\left(X_{1}\right), \ldots, g\left(X_{n}\right)\right)$.

Proof: Choose F consecutively, if $F_{r+1}=F_{r}+\Delta_{r}$, then must

$$
\Delta \equiv \frac{f\left(F_{r}(X)\right)-F_{r}(g(X))}{\pi^{r+1}-\pi} \bmod \text { degree }(r+2) .
$$

This has coefficient in \mathcal{O} because $f \equiv g \equiv Z^{q} \bmod \pi$.
Cor. (0.1.11). If we let $f=g, L=X+Y$ to get F_{f} and $f, g, L=a X$ to get $a_{f, g}$, then

- $F_{f}(X, Y)=F_{f}(Y, X)$.
- $F_{f}\left(F_{f}(X, Y), Z\right)=F_{f}\left(X, F_{f}(Y, Z)\right)$.
- $a_{f, g}\left(F_{g}(X, Y)\right)=F_{f}\left(a_{f, g}(X), a_{f, g}(Y)\right)$.
- $a_{f} b_{f}(Z)=(a b)_{f}(Z)$.
- $(a+b)_{f}(Z)=F_{f}\left(a_{f}(Z), b_{f}(Z)\right)$.
- $\pi_{f}(Z)=f(Z)$.
all follow from the unicity of the last proposition.

Cor. (0.1.12) (Existence of Lubin-Tate Module). We get a commutative formal \mathcal{O}-module F_{f} for every f. And this group can act on \mathfrak{p}_{L} for an alg.ext L / K. The set of zeros $\Lambda_{f, n}$ of f^{n} in L, as the elements annihilated by π^{n}, is a submodule of $\mathfrak{p}_{L}^{(f)}$.

And $u_{g, f}$ for any unit $u \in \mathcal{O}$ defines an isomorphism between F_{f} and F_{g}, thus this formal group only depends on π, called F_{π}. Hence $L_{f, n}=K\left(\Lambda_{f, n}\right)$ only depends on π, with Galois group $G_{\pi, n}$.

Prop. (0.1.13) (Different Uniformizers). Now consider different π, it is proven that F_{π} and $F_{\pi^{\prime}}$ are isomorphic, but the coefficient in $\mathcal{O}_{\hat{T}}$ where T is the maximal unramified extension.

Thus $L_{\pi, n}$ and $L_{\pi^{\prime}, n}$ may not be isomorphic, but $T \cdot L_{\pi, n}=T \cdot L_{\pi^{\prime}, n}$ since $\hat{T} \cdot L_{\pi, n}=\hat{T} \cdot L_{\pi^{\prime}, n}$ and both of them is the algebraic closure of K in it.

Proof: Cf.[Neukirch CFT P105].

Lemma (0.1.14). The Newton polygon of $\left[\pi_{K}^{n}\right] / \pi_{K}^{n}$ has vertices $(1,0),\left(q,-1 / e_{K}\right),\left(q^{2},-2 / e_{K}\right), \ldots$.
Proof: Notice $\left[\pi_{K}^{n}\right]$ has no infinite edge of negative slope because all its coefficient are in \mathcal{O}_{K}. Now look at its roots, it has a root 0 , and $q-1$ roots of valuation $v_{p}\left(\pi_{K}\right) /(q-1), q(q-1)$ roots of valuation $v_{p}\left(\pi_{K}\right) / q(q-1)$, and so on.

So by factor out these roots, $\left[\pi_{K}^{n}\right] / \pi_{K}^{n}$ is left with a power series whose Newton polygon is a single line with non-negative slope, which shows the desired result.

Prop. (0.1.15). The formal logarithm of the Lubin-Tate formal group F_{π} satisfies:

$$
\log _{\mathcal{F}_{\pi}}(T)=\underset{\longrightarrow}{\lim }\left[\pi_{\mathcal{F}}^{n}\right] / \pi_{\mathcal{F}}^{n} .
$$

Proof: $\quad \mathrm{By}(0.1 .7)$ we have

$$
\log _{\mathcal{F}}(T)=\log _{\mathcal{F}}\left(\left[\pi_{\mathcal{F}}^{n}\right]\right) / \pi_{\mathcal{F}}^{n}=\left(\left[\pi_{K}^{n}\right]+a_{2} / 2\left[\pi_{K}^{n}\right]^{2}+\ldots\right) / \pi_{K}^{n}
$$

and for any degree d, the valuation of coefficient of $\left[\pi_{K}^{2 n}\right] / \pi_{K}^{2 n}$ is bounded below by a constant $c(d)$ by the above lemma(0.1.14), so $\left[\pi_{K}^{2 n}\right] / \pi_{K}^{n}$ converges to 0 , thus the result.

Cor. (0.1.16). The Newton polygon of $\log _{\mathcal{F}}(T)$ has vertices $(1,0),\left(q,-1 / e_{K}\right),\left(q^{2},-2 / e_{K}\right), \ldots$..
Prop. (0.1.17). There is an isomorphism of \mathcal{O}-modules $\Lambda_{f, n} \cong \mathcal{O} / \pi^{n} \mathcal{O}$, Cf.[Neukirch CFT P101]. Thus the automorphism of $\Lambda_{f, n}$ is all of the form u_{f} for units, isomorphic to U_{K} / U_{K}^{n}.

So we can define a Tate module $T G=\varliminf \varliminf_{¿} \operatorname{Ker}\left[\pi_{K}^{n}\right]$, it is a free \mathcal{O}_{K}-module of rank 1 .
Def. (0.1.18). As $T G$ is a free \mathcal{O}_{G}-module of dimension 1 , and G_{K} acts on $T G$, there can be attached a Lubin-Tate character $\chi_{K}: G_{K} \rightarrow \mathcal{O}_{K}^{*}$ by $g(\alpha)=\left[\chi_{K}(g)\right](\alpha)$, this depends on π_{K}, but its restriction on I_{K} doesn't depend on π_{K}, and is just the local CFT isomorphism composed with $x \rightarrow x^{-1}$.

Proof: $\quad\left[\chi_{K}(g)\right]$ is, by definition, the morphism that is id on $K^{u r}$ and g on L_{π}. So it equals g on all $K^{a b}$ iff g is id on $K^{u r}$, that is, $g \in I_{K}$. So if $g \in I_{K}$, by local CFT $(0.1 .20),(\chi(g))^{-1}$ corresponds to g, uniquely.

Prop. (0.1.19). $G_{\pi, n} \cong \mathcal{O}_{K}^{*} / U_{K}^{n}$, thus we have $G_{\pi} \cong \mathcal{O}_{K}^{*} . L_{\pi, n} / K$ is Abelian totally ramified of degree $p^{n-1}(p-1)$ generated by a Eisenstein polynomial with constant coefficient π so π is in the norm group.

Proof: For this, first note Galois action induce an isomorphism on $\Lambda_{f, n}$, thus correspond to an element of U_{K} / U_{K}^{n} by (0.1.17), this is an injection because $\Lambda_{f, n}$ generate $L_{\pi, n}$. Then we use the canonical polynomial $f(Z)=\pi Z+Z^{q}, f^{n}=f^{n-1} \varphi(n)$, where $\varphi(n)$ is a Eisenstein polynomial, thus $L_{\pi, n} / K$ is totally ramifies with $\left|G_{\pi, n}\right|=q^{n-1}(q-1)=\left|U_{K} / U_{K}^{n}\right|$, thus the result.

Prop. (0.1.20) (Explicit Local Norm Residue Symbol). Now we can write the universal residue symbol little bit more explicitly. For $a=u \pi^{m},(a, K)$ acts by φ^{m} on T and generated by the action $\left(u^{-1}\right)_{f}$ on $\Lambda_{f, n}$ on $L_{\pi, n}$.

Thus the norm group of $L_{\pi, n}$ is just U^{n} by(0.1.19).
Proof: Cf.[Neukirch CFT P106].
Cor. (0.1.21). The norm groups of the totally ramified Abelian extension is precisely the groups that contains some $U_{K}^{n} \times(\pi)$ for some uniformizer π. And every totally ramified Abelian extension L / K is contained in some $L_{\pi, n}$.

Proof: For any totally ramified extension, choose a uniformizer, then its norm is a uniformizer π of K. And $N_{L / K}$ is open (as it contains $\left(K^{*}\right)^{m}$??.) Thus it contains some U^{n}. The rest follows from local CFT??.

Cor. (0.1.22) (Maximal Abelian Extension of Local Fields). Let $L_{\pi}=\cup L_{\pi, n}=K\left(\Lambda_{f}\right)$, where $\Lambda_{f}=\cup \Lambda_{f, n}$, then $\underline{T \cdot} L_{\pi}$ is the maximal extension of Abelian extension of K. Hence $G_{K}^{a b}=$ $G_{T, K} \times G_{\pi}$. This follows immediately from??.

Cor. (0.1.23) (Hasse-Arf). We can prove Hasse-Arf?? in the case where K is a local field. This is because we already know the maximal Abelian extension, and $G\left(K^{a b} / T\right) \cong G\left(L_{\pi} / K\right) \cong \mathbb{O}_{K}^{*}$ for which we know the Galois action well(0.1.17)(0.1.19), so $i(\sigma)=v\left(\sigma\left(\alpha_{n}\right)-\alpha_{n}\right)=v([\sigma-1](\alpha))$, which jumps at U_{K}^{n} (the same pattern as $K=\mathbb{Q}_{p}$??), thus the result.

Remark (0.1.24). There is a concrete example. When $K=\mathbb{Q}_{p}$, we can choose $f(Z)=(1+Z)^{p}-1$, thus $L_{\pi, n}$ is just $\mathbb{Q}_{p}\left(\xi_{p^{n}}\right)$. And we have $r_{f}=(1+Z)^{r}-1$, thus we have

$$
\left(a, \mathbb{Q}_{p}\left(\xi_{p^{n}}\right) / \mathbb{Q}_{p}\right) \zeta=\zeta^{r}
$$

where $a=u p^{m}$, and $r \equiv u^{-1} \bmod p^{n}$.

2 Cohomology of G_{K} action on \mathbb{C}_{p}

K is assumed to be a p-adic number field.
Lemma (0.2.1). Giving an $\sigma \in G\left(K / \mathbb{Q}_{p}\right)$, if $x, y \in \mathfrak{m}_{\mathbb{C}_{p}}$ that $x \equiv y \bmod \pi_{K}^{n}$, then $\left[\pi_{K}\right]^{\sigma}(x) \equiv$ $\left[\pi_{K}\right]^{\sigma}(y) \bmod \pi_{K}^{n+1}$, where f^{σ} is given by action of σ on the coefficients.

Proof: This is because the coefficients of $\left[\pi_{K}\right]^{\sigma}$ are divisible by π_{K} except for degree q, where it is $x^{q}-y^{q}=(x-y)\left(x^{q-1}+x^{q-2} y+\ldots+y^{q-1}\right)$ which is divisible by π_{K}^{n+1} because the residue field of K is of order q.

Prop. (0.2.2). If we let the action of $\sigma \in G\left(K / \mathbb{Q}_{p}\right)$ on the residue field giving by $\bar{\sigma}: k_{K} \rightarrow \overline{\mathbb{F}}_{p}$: $x \mapsto x^{q_{\sigma}}$, where $q_{\sigma}=p^{n_{\sigma}}$ is a p-power, given an element $\eta=\left(\eta_{0}, \eta_{1}, \ldots\right) \in T G$, we have $\eta^{q_{\sigma}} \equiv$ $\left[\pi_{K}\right]^{\sigma}\left(\eta_{n+1}^{q_{\sigma}}\right) \bmod \pi_{K}$, hence the above lemma(0.2.1) shows that $\left[\pi_{K}^{n}\right]^{\sigma} \eta_{n}^{q_{\sigma}} \equiv\left[\pi_{K}^{n+1}\right]^{\sigma}\left(\eta_{n+1}^{q_{\sigma}}\right) \bmod \pi_{K}^{n+1}$, so $\left[\pi_{K}^{n}\right]^{\sigma}\left(\eta_{n}^{q_{\sigma}}\right)$ is a Cauchy sequence, converging to an element μ_{σ} (don't care about η).

If $g \in G_{K}$, then $g\left(\eta_{n}\right)=\left[\chi_{K}(g)\right]\left(\eta_{n}\right)$, hence take q_{σ}-th power, $g\left(\eta_{n}^{\sigma}\right) \equiv\left[\chi_{K}(g)\right]^{\sigma}\left(\eta_{n}^{q_{\sigma}}\right) \bmod \pi_{K}$, then

$$
\left[\chi_{K}(g)\right]^{\sigma}\left[\pi_{K}^{n}\right]^{\sigma}\left(\eta_{n}^{q_{\sigma}}\right) \equiv\left[\pi_{K}^{n}\right]^{\sigma} g\left(\eta_{n}^{q_{\sigma}}\right)=g\left(\left[\pi_{K}^{n}\right]^{\sigma} \eta_{n}^{q_{\sigma}}\right) \bmod \pi_{K} .
$$

hence by limiting, $g\left(\mu_{\sigma}\right)=\left[\chi_{K}(g)\right]^{\sigma}\left(\mu_{\sigma}\right)$.

Lemma (0.2.3).

$$
v_{p}\left(\mu_{\sigma}\right)= \begin{cases}\frac{q_{\sigma}}{e_{K}(q-1)}+\frac{1}{e_{K}} & n(\sigma) \neq 0 \\ \frac{1}{e_{K}(q-1)}+v_{p}\left(\sigma\left(\pi_{K}\right)-\pi_{K}\right) & n(\sigma)=0\end{cases}
$$

Proof: $\operatorname{By}(0.1 .14)$, we know the Newton polygon of $\left[\pi_{K}^{n}\right]^{\sigma}$. When $n(\sigma) \neq 0, v\left(\eta_{1}^{q_{\sigma}}\right)=\frac{q_{\sigma}}{e_{K}(q-1)}>$ $\frac{1}{e_{K}(q-1)}$, so the valuation of $\left[\pi_{K}\right]^{\sigma}\left(\eta_{1}^{q_{\sigma}}\right)$ equals the valuation of its degree 1 term, which is $v\left(\pi_{K} \eta_{1}^{q_{\sigma}}\right)=$ $\frac{q_{\sigma}}{e_{K}(q-1)}+\frac{1}{e_{K}}$. Now we have by $(0.2 .2)$, we have $\left[\pi_{K}\right]^{\sigma} \eta^{q_{\sigma}} \equiv\left[\pi_{K}^{2}\right]^{\sigma}\left(\eta_{2}^{q_{\sigma}}\right) \bmod \pi_{K}^{2}$, and $\frac{q_{\sigma}}{e_{K}(q-1)}+\frac{1}{e_{K}}<$ $2 / e_{K}$, so valuation already stable at degree 1 , and $v\left(\mu_{\sigma}\right)=v\left(\left[\pi_{K}\right]^{\sigma}\left(\eta_{1}^{q_{\sigma}}\right)\right)$.

If $q_{\sigma}=1$, it's more delicate, because degree 1 and degree q term has the same minimal valuation, so they may jump to higher valuations. Notice $\left[\pi_{K}^{n}\right]\left(\eta_{n}\right)=0$, so $\left[\pi_{K}^{n}\right]^{\sigma}\left(\eta_{n}\right)=\left(\left[\pi_{K}^{n}\right]^{\sigma}-\left[\pi_{K}^{n}\right]\right)\left(\eta_{n}\right)$. And we have by (0.3.1), for $x \in \mathcal{O}_{K}, v(\sigma(x)-x) \geq v(x)+v\left(\frac{\sigma\left(\pi_{K}\right)}{\pi_{K}}-1\right)+\delta_{v(x), 0} v\left(\pi_{K}\right)$, with equality when $v_{p}(x)=q / e_{K}$. So by the Newton polygon, the minimum valuation of the coefficient of $\left[\pi_{K}^{n}\right]^{\sigma}-\left[\pi_{K}^{n}\right]$ appear at degree p^{n-1} and possibly p^{n}. The valuation of η_{n} is too small $\left(\frac{1}{e_{K} p^{n-1}(p-1)}\right)$ that we don't need to consider other degrees but can assure that degree p^{n-1} is of minimum valuation, which is $v\left(\eta_{n}^{p^{n-1}}\right)+v\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right)=\frac{1}{e_{K}(q-1)}+v_{p}\left(\sigma\left(\pi_{K}\right)-\pi_{K}\right)$.
Prop. (0.2.4). For any $\sigma \in G\left(K / \mathbb{Q}_{p}\right) \backslash\{\mathrm{id}\}$, there is an element $\alpha_{\sigma} \in \mathbb{C}_{p}^{*}$ that $\sigma \circ \chi_{K}(g)=g\left(\alpha_{\sigma}\right) / \alpha_{\sigma}$ for all $g \in G_{K}$, where χ_{K} is the Lubin-Tate character.

Proof: We let $\alpha_{\sigma}=\log _{\mathcal{F}_{\pi}}^{\sigma}\left(\mu_{\sigma}\right)$, by $(0.2 .3), 1 / e_{K}<\mu_{\sigma}<\infty$, so by the Newton polygon analysis of $\log _{F_{\pi}}(0.1 .15), \alpha_{\sigma}$ has the same valuation of μ_{σ}, in particular, $\alpha_{\sigma} \neq 0$. Then

$$
g\left(\alpha_{\sigma}\right)=\log _{\mathcal{F}_{\pi}}^{\sigma}\left(g\left(\mu_{\sigma}\right)\right)=\left(\log _{\mathcal{F}} \circ\left[\chi_{K}(g)\right]\right)^{\sigma}\left(\mu_{\sigma}\right)=\left(\chi_{K}(g) \cdot \log _{\mathcal{F}_{\pi}}\right)^{\sigma}\left(\mu_{\sigma}\right)=\sigma\left(\chi_{K}(g)\right) \cdot \alpha_{\sigma} .
$$

Cor. (0.2.5). $\log _{p}\left(\sigma\left(\chi_{K}(g)\right)\right)=g\left(\log \left(\alpha_{\sigma}\right)\right)-\log _{p}\left(\alpha_{\sigma}\right)$.
Def. (0.2.6). Let $\psi: G_{K} \rightarrow \Gamma_{K} \rightarrow \mathbb{Z}_{p}^{*}$ be a character factoring through Γ_{K}. Then we can form a representation $\mathbb{C}_{p}(\psi)$ of G_{K} on \mathbb{C}_{p} that $\rho(\sigma)(x)=\psi(\sigma) \sigma(x)$. This is an action because G_{K} acts trivial on \mathbb{Z}_{p}^{*}.

If $\psi^{k}=\mathrm{id}$ for some k, then it is trivial on $\Gamma_{K}^{k} . \Gamma_{K}$ is an open subgroup of \mathbb{Z}_{p}, so Γ_{K}^{n} is of finite index in Γ_{K} by??, hence also does its inverse image in G_{K}. So ψ comes from a finite extension L / K.

Prop. (0.2.7). $H^{0}\left(G_{K}, \mathbb{C}_{p}(\psi)\right)=K$ if ψ is of finite order, and vanish if ψ is of infinite order.
Proof: Finite case: ψ factor through some G_{L}, so ψ corresponds to a continuous cocycle w.r.t the discrete topology of \mathbb{C}_{p}. So by $(0.3 .5)$ there is a $a \in \mathbb{C}_{p}^{*}$ that $\psi(\sigma)=\sigma(a) / a$, so $\mathbb{C}_{p}(\psi) \cong \mathbb{C}_{p}: x \mapsto a x$. And the result follows from Ax-Sen-Tate, as $K=\hat{K}$.

Infinite case: $H^{0}\left(G_{K}, \mathbb{C}_{p}(\psi)\right) \subset H^{0}\left(H_{K}, \mathbb{C}_{p}(\psi)\right)=\hat{K}_{\infty}(\psi)$ by Ax-Sen-Tate and the fact ψ is trivial on H_{K}. Then for the normalized trace R_{n}, which commutes with $G_{K}, g\left(R_{n}(x)\right)=\psi^{-1}(g) R_{n}(x)$. But $G\left(K_{n} / K\right)$ is finite, so $R_{n}(x)=\psi^{-N}(g) R_{n}(x)$ for any g. So $R_{n}(x)=0$, otherwise ψ is of finite order. Now $R_{n}(x) \rightarrow x$, so $x=0$.

Prop. (0.2.8). Now we compute $H^{1}\left(G_{K}, \mathbb{C}_{p}(\psi)\right)$. There is a inf-res exact sequence

$$
0 \rightarrow H^{1}\left(\Gamma_{K}, \hat{K}_{\infty}(\psi)\right) \rightarrow H^{1}\left(G_{K}, \mathbb{C}_{p}(\psi)\right) \rightarrow H^{1}\left(H_{K}, \mathbb{C}_{p}(\psi)\right)
$$

Then $H^{1}\left(H_{K}, \mathbb{C}_{p}(\psi)\right)=0$. The first two vanish iff ψ is of infinite order, and is a K-vector space of dimension 1 if ψ is of finite order.

Proof: For the first assertion, ψ is trivial on H_{K}, so $\mathbb{C}_{p}(\psi) \cong \mathbb{C}_{p}$ as H_{K}-representation, so it suffice to show for $\psi=$ id. Let f be a cocycle, as H_{K} is compact, $f\left(H_{K}\right) \in p^{-k} \mathcal{O}_{\mathbb{C}_{p}}$ for some integer k. So the lemma below(0.2.9) shows that we can move f cohomologouly to higher valuation, i.e. $f(g)=\sum x_{i}-g\left(\sum x_{i}\right)$, so f is a coboundary.

For the second assertion, we assume $\Gamma_{K} \neq \mathbb{Z}_{2}^{*}$, for this case, see remark(0.2.10) below.
let γ be a topological generator of $\Gamma_{K}=1+p^{k} \mathbb{Z}_{p}^{*}, k \geq 0$, because \mathbb{Z}_{p}^{*} are all topological cyclic groups except for $\mathbb{Z}_{2}^{*} \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z}_{2}$, and γ_{n} be a topological generator of $\Gamma_{F_{n}}$ which is also a power of γ. $\operatorname{By}(0.3 .8)$ we know $H^{1}\left(\Gamma_{K}, \hat{K}_{\infty}(\psi)\right)=\hat{K}_{\infty}(\psi) / 1-\gamma$.

For n large, we have a decomposition $\hat{K}_{\infty}(\psi)=K_{n}(\psi) \oplus X_{n}(\psi)$ by (0.3.11), and $1-\gamma_{n}$ is invertible on $X_{n}(\psi)$. Now $1-\gamma_{n}=(1-\gamma)\left(1+\gamma+\ldots+\gamma^{k-1}\right)$, so $1-\gamma$ is also invertible in $X_{n}(\psi)$. And on $K_{n}(\psi)$, if ψ is of infinite order, then $1-\gamma$ is injective, otherwise $x=\psi(\gamma)^{N} \gamma^{N}(x)=\psi(\gamma)^{N} x$. So it is also surjective because it is a K-linear mapping of K_{n}. So $\hat{K}_{\infty}(\psi) / 1-\gamma=0$. If ψ is of finite order then $K_{n}(\psi) \cong K_{n}$ as Γ_{K}-module when n is large enough that γ factors through $\Gamma_{K_{n}}$, $\operatorname{by}(0.3 .6)$. So $K_{n} / 1-\gamma=K_{n} / \operatorname{Ker}\left(\operatorname{tr}_{K_{n} / K}\right)=K$.

Lemma (0.2.9). If $f: H_{K} \rightarrow p^{n} \mathcal{O}_{\mathbb{C}_{p}}$ is a continuous cocycle, then there exists a $x \in p^{n-1} \mathcal{O}_{\mathbb{C}_{p}}$ that the cohomologous cocycle $g \mapsto f(g)-(x-g(x))$ has values in $p^{n+1} \mathcal{O}_{\mathbb{C}_{p}}$.

Proof: $\quad p^{n+2} \mathcal{O}_{\mathbb{C}_{p}}$ is open in $p^{n} \mathcal{O}_{\mathbb{C}_{p}}$, so there is a finite extension L / K that $f\left(H_{L}\right) \in p^{n+2} \mathcal{O}_{\mathbb{C}_{p}}$. $\operatorname{By}(0.3 .10)$, there is a z that $\operatorname{tr}_{L_{\infty} / K_{\infty}}(z)=p$, so there is a $y \in p^{-1} \mathcal{O}_{L_{\infty}}$ that $\operatorname{tr}_{L_{\infty} / K_{\infty}}(y)=1$.

Now for a set of representatives Q of H_{K} / H_{L}, denote $x_{Q}=\sum_{h \in Q} h(y) f(h)$, then for $g \in H_{K}$, $g(Q)$ is also a set of representative, and $g\left(x_{Q}\right)=\sum_{h \in Q} g h(y) g f(h)=\sum_{h \in Q} g h(y)(f(g h)-f(g))=$ $x_{g(Q)}-f(g)$, as $\operatorname{tr}(y)=1$. So $f(g)-\left(x_{Q}-g\left(x_{Q}\right)\right)=x_{g(Q)}-x_{Q}$. The RHS is in $p^{n+1} \mathcal{O}_{\mathbb{C}_{p}}$, because: if we let $g h_{i}=h_{g(i)} a_{i}$, where $a_{i} \in H_{L}$, then $x_{g(Q)}-x_{Q}=\sum h_{g(i)}(y) f\left(h_{g(i)} a_{i}\right)-\sum h_{g(i)}(y) f\left(h_{g(i)}\right)=$ $\sum h_{g(i)}(y) h_{g(i)}\left(f\left(a_{i}\right)\right)$, which is in p^{n+1} because $h_{g(i)}(y) \in p^{-1} \mathcal{O}_{\mathbb{C}_{p}}$ and $f\left(a_{i}\right) \in p^{n+2} \mathcal{O}_{\mathbb{C}_{p}}$ by the choice of L.

Remark (0.2.10). In case $\Gamma_{K}=\mathbb{Z}_{2}^{*}$,

$$
0 \rightarrow H^{1}(\{ \pm 1\}, K(\psi)) \rightarrow H^{1}\left(\mathbb{Z}_{2}^{*}, \hat{K}_{\infty}(\psi)\right) \rightarrow H^{1}\left(1+2 \mathbb{Z}_{2}^{*}, \mathbb{C}_{p}(\psi)\right)
$$

$H^{1}(\{ \pm 1\}, K(\psi))=0$ whether $\psi(-1)=1$ or -1 . And by the same proof as above, possibly replace X_{n} with X_{n+1}, to remedy the singularity of $p=2, H^{1}\left(1+2 \mathbb{Z}_{2}^{*}, \mathbb{C}_{p}(\psi)\right)=K$, with generator $\left[g \mapsto \frac{\chi(g)-1}{\gamma-1}(a)\right]$ for some a. This cocycle extends to a cocycle of \mathbb{Z}_{2}^{*}, so the map is surjective.

Prop. (0.2.11). The 1 -dimensional K-vector space $H^{1}\left(G_{K}, \mathbb{C}_{p}\right)$ is generated by the cocycle $[g \mapsto$ $\left.\log _{p} \chi(g)\right]$.

Proof: By the proof of(0.2.8), we know that $K=K / 1-\gamma \subset K_{n} / 1-\gamma \xrightarrow{f} H^{1}\left(G_{K}, \mathbb{C}_{p}\right)$ is an isomorphism. for $\alpha \in K$, if $\chi(g)=\gamma^{k}$, then $f(\alpha)(g)=\left(1+\gamma+\ldots+\gamma^{k-1}\right)(\alpha)=k \alpha=$ $\alpha \cdot \log _{p}(\chi(g)) / \log _{p}(\gamma)$. So by continuity, f is a multiple of $\left[g \mapsto \log _{p}(\chi(g))\right]$.

Lemma (0.2.12). Any $f \in \operatorname{Hom}\left(I_{K}^{a b}, \mathbb{Q}_{p}\right)$ is of the form $f(g)=\operatorname{tr}_{K / \mathbb{Q}_{p}}\left(\beta_{f} \log _{p} \chi_{K}(g)\right)$ for some $\beta_{f} \in K$.
Proof: $\quad \operatorname{By}(0.1 .18), \chi_{K}$ is a canonical isomorphism $I_{K}^{a b} \cong \mathcal{O}_{K}^{*}$. Any $f \in \operatorname{Hom}\left(\mathcal{O}_{K}^{*}, \mathbb{Q}_{p}\right)$ is of the form $f(y)=\operatorname{tr}_{K / \mathbb{Q}_{p}}\left(\beta_{f} \log _{p}(y)\right)$ for some $\beta_{f} \in K$, because: by??, when n is $\operatorname{large} \log _{p}$ is a bijection between U_{K}^{n} and $\pi_{K}^{n} \mathcal{O}_{K}$.
$\pi_{K}^{n} \mathcal{O}_{K} \rightarrow \mathbb{Q}_{p}$ can be extended to a map $K \rightarrow \mathbb{Q}_{p}$ as \mathbb{Q}_{p} is divisible. Now trace is a invertible bilinear form on K, so the assertion is true on U_{K}^{n} for some n, and because U_{K}^{n} is of finite index in \mathcal{O}_{K}^{*} and \mathbb{Q}_{p} is of char 0 , this is true for all \mathcal{O}_{K}^{*}.
Prop. (0.2.13). The map $H^{1}\left(G_{K}, \mathbb{Q}_{p}\right) \rightarrow H^{1}\left(G_{K}, \mathbb{C}_{p}\right)$ is given as follows: as $f \in H^{1}\left(G_{K}, \mathbb{Q}_{p}\right)$ must factor through $G_{K}^{a b}$, if the restriction of f to $I_{K}^{a b}$ corresponds to β_{f}, then f maps to $\beta_{f}\left[g \mapsto \log _{p} \chi(g)\right]$.
Proof: $\quad f(g)=\operatorname{tr}_{K / \mathbb{Q}_{p}}\left(\beta_{f} \log _{p} \chi_{K}(g)\right)$ on I_{K}, but this map extends to map on G_{K}. So $f(g)=$ $\operatorname{tr}_{K / \mathbb{Q}_{p}}\left(\beta_{f} \log _{p} \chi_{K}(g)\right)+c(g)$ for a unramified map c on G_{K}.

Now by $(0.3 .7), H^{1}\left(G, \widehat{\mathbb{Q}}_{p}^{u r} / \mathbb{Q}_{p}\right)$ vanish because $H^{1}\left(G, \overline{\mathbb{F}}_{p}\right)$ vanish $(0.3 .6)$, so there is a $z \in \widehat{\mathbb{Q}}_{p}^{u r}$ that $c(g)=g(z)-z$. And
$\operatorname{tr}_{K / \mathbb{Q}_{p}}\left(\beta_{f} \log _{p} \chi_{K}(g)\right)=\sum_{\sigma} \sigma\left(\beta_{f} \log _{p} \chi_{K}(g)\right)=\beta_{f} \operatorname{tr}_{K / \mathbb{Q}_{p}}\left(\log _{p} \chi_{K}(g)\right)+\sum_{\sigma}\left(\sigma\left(\beta_{f}\right)-\beta_{f}\right) \sigma\left(\log _{p} \chi_{K}(g)\right)$.
Notice(0.2.4) gives a β_{σ} that $\sigma\left(\log _{p} \chi_{K}(g)\right)=g\left(\beta_{\sigma}\right)-\beta_{\sigma}$, and $\operatorname{tr}_{K / \mathbb{Q}_{p}}\left(\log _{p} \chi_{K}(g)\right)=\log _{p} \chi(g)$ because $\left(N_{K / \mathbb{Q}_{p}} \chi_{K}(g)\right)^{-1}=(\chi(g))^{-1}$, as they both correspond via local CFT to the element in $G_{K}^{a b}$ which acts by g on L_{π} and id on $K^{u r}$. Thus the result.
Cor. (0.2.14). If $\eta: G_{K} \rightarrow \mathbb{Z}_{p}^{*}$ is a character and there is $y \in \mathbb{C}_{p}^{*}$ that $\eta(g)=g(y) / y$, then there exists a finite extension L of K that $\left.\eta\right|_{G_{L}}$ is unramified, i.e. η is potentially unramified.
Proof: Apply $\log _{p}$, then the image of $f=\log _{p} \eta$ in $H^{1}\left(G_{K}, \mathbb{C}_{p}\right)$ is trivial, so the above proposition shows $\beta_{f}=0$, so $\log _{p} \eta$ is trivial on I_{K}, so I_{K} is mapped by η into the μ_{p}, so $\eta\left(\left(I_{K}^{a b}\right)^{p-1}\right)=1$.
$I_{K}^{a b} \cong \mathcal{O}_{K}^{*}$, so $\left(I^{a b}\right)^{p-1}$ is of finite index in $I_{K}^{a b}$, so correspond to a finite Abelian extension $E / K^{u r}$ that η is trivial on G_{E}. Now choose a primitive element β of $E / K^{u r}$, then $E \subset K(\beta) \cdot K^{u r}=$ $(K(\beta))^{u r}$, so $\left.\eta\right|_{G_{K(\beta)}}$ is unramified.
Prop. (0.2.15). If $G_{K} \rightarrow G L_{d}\left(\mathbb{Q}_{p}\right)$ is such $\rho(g)=g(M) M^{-1}$ for $M \in G L_{d}\left(\mathbb{C}_{p}\right)$, then ρ is potentially unramified.
Proof: Cf.[Sen Continuous Cohomology and p-adic Galois representations].

3 Auxiliaries

Higher Ramification Groups

Prop. (0.3.1). For local fields L / K, if σ is in the inertia group, then

$$
v_{L}\left(\frac{\sigma(x)}{x}-1\right) \geq v_{L}\left(\frac{\sigma\left(\pi_{L}\right)}{\pi_{L}}-1\right)+\delta_{v_{L}(x), 0}
$$

for any $x \in \mathcal{O}_{L}$ and a uniformizer π_{L}. Equality holds when $v_{L}(x)=1$.
Proof: if L has residue field \mathbb{F}_{q}, then any element of \mathcal{L} can be written as $\sum \xi_{n} \pi_{L}^{n}$, where ξ_{n} are all $q-1$-th roots of unity. And because σ is inertia group, all q - 1-th roots of unity are preserved, so $\sigma\left(\xi_{n} \pi_{L}^{n}\right)-\xi_{n} \pi_{L}^{n}=\xi_{n} \pi_{L}\left(\frac{\sigma\left(\pi_{L}\right)}{\pi_{L}}-1\right)\left(\sigma\left(\pi_{L}\right)^{n-1}+\sigma\left(\pi_{L}\right)^{n-2} \pi_{L}+\ldots+\pi_{L}^{n-1}\right)$ has valuation \geq $v\left(\frac{\sigma\left(\pi_{L}\right)}{\pi_{L}}-1\right)+n$. Thus the result.

Different and Discriminant

Prop. (0.3.2). If L / K is a finite extension and if I is an ideal of \mathcal{O}_{L}, then $v_{K}\left(\operatorname{tr}_{L / K}(I)\right)=$ $\left\lfloor v_{K}\left(I \cdot \mathcal{D}_{L / K}\right)\right\rfloor$.
Proof: By definition, $\operatorname{tr}_{L / K}\left(x \mathcal{O}_{L}\right) \subset \mathcal{O}_{K}$ iff $x \in \mathcal{D}_{L / K}^{-1}$, thus $\operatorname{tr}_{L / K}(I) \subset J$ iff $I \subset \mathcal{D}_{L / K}^{-1} J$, i.e. $\operatorname{tr}_{L / K}(I)$ is the smallest ideal J of \mathcal{O}_{K} that contains $I \cdot \mathcal{D}_{L / K}$, thus the result.

Galois Cohomology

Prop. (0.3.3). There is an exact sequence of pointed sets:

$$
0 \rightarrow H^{1}\left(G / H, M^{H}\right) \xrightarrow{\text { inf }} H^{1}(G, M) \xrightarrow{\text { res }} H^{1}(H, M)^{G / H}
$$

Proof: First $\operatorname{res}\left(H^{1}(G, M)\right) \subset H^{1}(H, M)^{G / H}$ because $g(c)(h)=c(g)^{-1} c(h) h(c(g))$ is checked so $g(c)$ is cohomologous to c.
res oinf $=0$ is easy, if $\operatorname{res}(c)=0$, then c is trivial on H, hence $c(g h)=c(g)$ and $h(c(g))=$ $c(h g)=c\left(g \cdot g^{-1} h g\right)=c(g)$, so c is inflated from $H^{1}\left(G / H, M^{H}\right)$.

For the injectivity of inf. If $c(\bar{g})=g^{-1} g(a)$, then $a \in M^{H}$, so it is a coboundary in $H^{1}\left(G / H, M^{H}\right)$.

Prop. (0.3.4). For L / K a Galois extension, $H^{1}\left(G(L / K), G L_{n}(L)\right)=1$, where L is equipped with the discrete topology.
Proof: We prove any cocycle is a coboundary, for this, notice any cocycle factor through a finite quotient, and the images of it is contained in a finite extension of K, hence it reduce to the case of L / K finite.

For some $a \in H^{1}\left(G, G L_{n}(L)\right)$, for a vector $x \in L^{n}$, let $P(x)=\sum a(\sigma) \sigma(x)$, then $\{P(x)\}$ generate L^{n}, because if f is a linear functional that vanish on it, then

$$
0=f(P(\lambda x))=\sum f(a(\sigma) \sigma x) \sigma \lambda
$$

But automorphisms are linearly independent over L, hence $f(a(\sigma) \sigma(x))=0$ for all σ, so $f=0$ as $a(\sigma) \in G L_{n}(L)$

Now let $\left\{P\left(x_{i}\right)\right\}$ generate L^{n}, then let T be the matrix with x_{i} as rows, then $P=\sum a(\sigma) \sigma(T)$ is invertible. Now $a(\sigma)=P \cdot \sigma(P)^{-1}$ is a cocycle.
Cor. (0.3.5) (Hilbert's Multiplicative Satz 90). $H^{1}\left(G_{L / K}, L^{*}\right)=0$ for Galois extension L / K, where L is equipped with the discrete topology
Prop. (0.3.6) (Hilbert's Additive Satz 90). For L / K a Galois extension, $H^{1}(G(L / K), L)=1$, where L is equipped with the discrete topology.
Proof: Form the normal basis theorem??, for finite Galois extension $L / K, L$ is an induced module over K, thus $H^{*}(G, L)=H_{*}(G, L)=0$ for $* \neq 0$ and $H_{T}^{*}(G, L)=0$ by??.

Hence the same is true, for arbitrary Galois extension, when L is equipped with the discrete topology, the same as in the proof of(0.3.4).
Prop. (0.3.7). Let π be a topologically nilpotent element of A which is complete in the π-adic topology and π is not a zero-divisor, let $R=A / \pi A$ equipped with discrete topology. Let G be a group which acts continuously on A and fix π, then if $H^{1}(G, R)$ is trivial, then $H^{1}(G, A)$ is trivial, and if moreover $H^{1}\left(G, G L_{n}(R)\right)$ is trivial, then $H^{1}\left(G, G L_{n}(A)\right)$ is trivial.

Proof: Cf.[Galois Representations Berger P15].
Prop. (0.3.8) (Cyclic Case). if G is a topological cyclic group $\overline{\langle g\rangle}$, then the map $H^{1}(G, M) \rightarrow$ $M /(1-g)$ is well-defined and injective. And when M is profinite, p-adically complete, then the map is also surjective.

Proof: The surjection: there is only one choice: $c\left(g^{i}\right)=\left(1+g+\ldots+g^{i-1}\right)(m)$. And we need to verify that it is continuous. The case of p-adic can be deduced from profinite case, because $c(\gamma) \in p^{-k} M$ for some k, and $p^{-k} M$ is then profinite. For any finite quotient N of M, there is a k that $k M=0$, and a n that $g^{n}=\mathrm{id}$ on N, so $c\left(g^{r k n}\right)=0$ on N, which shows c is continuous.

Ramification of Cyclotomic Fields

Prop. (0.3.9). $p^{n} v_{p}\left(\mathcal{D}_{K_{n} / F_{n}}\right)$ is bounded and eventually constant. In particular $v_{p}\left(\mathcal{D}_{K_{n} / F_{n}}\right)$ converges to 0 .

Proof: Cf.[Galois representation Berger P20].
Cor. (0.3.10). If L / K is a finite extension, then $\operatorname{tr}_{L_{\infty} / K_{\infty}}\left(\mathfrak{m}_{L_{\infty}}\right)=\mathfrak{m}_{K_{\infty}}$.
Proof: $\quad \operatorname{By}(0.3 .2)$ and the fact $G\left(L_{\infty} / K_{\infty}\right) \cong G\left(L_{n} / K_{n}\right)$ for n large by??, we have $\operatorname{tr}_{L_{\infty} / K_{\infty}}\left(\mathfrak{m}_{L_{n}}\right)=$ $\mathfrak{m}_{K_{n}}^{c_{n}}$, where $c_{n}=\left\lfloor v_{K_{n}}\left(\mathfrak{m}_{L_{n}} \mathcal{D}_{L_{n} / K_{n}}\right)\right\rfloor$. By the above proposition, c_{n} is bounded by a c. But if $x \in \mathfrak{m}_{K_{\infty}}, x \in \mathfrak{m}_{K_{n}}^{c}$ for n large, so $x \in \operatorname{tr}_{L_{\infty} / K_{\infty}}\left(\mathfrak{m}_{L_{\infty}}\right)$.

Prop. (0.3.11). There is a decomposition of $\hat{K}_{\infty}=X_{n} \oplus X_{n}$, where $X_{n}=\operatorname{Ker} R_{n}$. If $\delta>0$, then for n large, $\alpha \in \mathbb{Z}_{p}^{*}$ and γ_{n} that $\chi\left(\gamma_{n}\right)$ is a topological generator $\Gamma_{F_{n}}, 1-\alpha \gamma_{n}: X_{n} \rightarrow X_{n}$ (because γ commutes with $\left.R_{n}\right)$ is invertible and $v_{p}\left(\left(1-\alpha \gamma_{n}\right)^{-1} x\right) \geq v_{p}(x)-1 /(p-1)-\delta$, unless $\alpha=-1$ and $p=2$, in which case it is only invertible on X_{n+1}.

Proof: As usual, x_{i} is a basis of $\mathcal{O}_{K_{n} / F_{n}}$, then $x=\sum x_{i} e_{i}^{*}, x_{i}=\operatorname{tr}_{K_{\infty} / F_{\infty}}\left(x e_{i}\right) \in \hat{F}_{\infty}$, and $R_{n}(x)=0$. Then $\left(1-\alpha \gamma_{n}\right)$ acts on x_{i}, so it reduce to the case $K=\mathbb{Q}_{p}$, if one notices?? and(0.3.9).

Injectivity: If $\alpha=1$, this is Ax-Sen-Tate. In other situations, $\left(1-\alpha \gamma_{n}\right)\left(R_{n+k}(x)\right)=0$ for all $k \geq 0$, so $R_{n+k}(x)=\alpha^{p^{k}} \gamma_{n}^{p^{k}}\left(R_{n+k}(X)\right)=\alpha^{p^{k}} R_{n+k}(X)$, so $R_{n+k}(x)=0$, hence $x=0$.

Surjectivity: Cf.[Galois representation Berger P23].

