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1 Formal Groups

Def. (0.1.1). A formal group law of dimension n over a commutative ring R is a set of n power
series G = (Gy,...,Gy) in K[[X1,...,Xp, Y1,...,Y,]] that

G(X,0)=G(0,X) = X, G(G(X,Y),Z)=G(X,G(Y,Z)).

Note this immediately induce an inverse inv(X) that G(X,inv(X)) = G(inv(X), X) = 0. This can
be constructed noticing G(X,Y) =X +Y 4+ o(X,Y).
A morphism of formal groups is a vector of power series ¢(X) that p(G(X,Y)) = H(p(X), ¢(Y)).

A formal R-module is a formal group G over R together with a ring homomorphism R —
Endg(G) that [a](X) =aX +....

Prop. (0.1.2) (Automorphisms). If &« € R* and F; are power series that the degree 1 term of
(F;) is invertible, then there are unique power series G; that Go F = id and F o G = id.

Proof:  Use induction to find G that F'o G = id. Then the degree 1 terms of G is also invertible,
thus there are G o H = id, now F = H and the proof is finished. O

Prop. (0.1.3). G, is the one-dimensional formal group with G,(X,Y) = X + Y, G, is the
one-dimensional formal group with G,,(X,Y) = X +Y + XY. Over a Q-algebra K, there is an
isomorphism between G, and G,, giving by X — exp(X) — 1.

1-dimensional Formal Groups

Def. (0.1.4). For a 1-dimensional formal group F over R, the invariant differential is a differ-
ential form w = P(T)dT € R|[T]]dT that wo F(T,S) = w. It is called normalized if P(0) = 1.
There exists uniquely an invariant differential, it is given by Fx (0,T)dT.

Proof: ~ Weneed to check Fx (0, F(T,S)) 1 Fx(T,S) = Fx(0,T)~!, and this is just F(U, F(T, S)) =
F(F(U,T),S) differentiated at U and let U = 0.

Conversely, if w is an invariant differential, then P(F(T,S5))Fx(T,S) = P(T), let T = 0, then
P(S) = P(0)Fx(0,5)~L. O

Prop. (0.1.5). For a morphism f : 7 — G of 1-dimensional formal groups over R, wgof = f'(0)wr.

Proof: ~ We only need to show that wg o f is an invariant differential for F and then compare their
constant coefficients. For this, notice

wg o f(F(T,5)) = wg(G(f(T), f(5))) = wg(f(T)) = wg o f(T).



Def. (0.1.6). When R has characteristic 0, the formal logarithm log » for a 1-dimensional formal
group is the integration of invariant differential fOT wr=T4+c1/2T? + ---.

Then the formal power exponential is the the unique power series expr that is the inverse
of logr. It exists uniquely by(0.1.2).

Prop. (0.1.7). For R char= 0 and an 1 dimensional formal group F over R, logr : F — G, is an
isomorphism of formal groups over R ®z Q.

And if F is a formal R-module, then it is an isomorphism of R-modules, because from(0.1.5)
that wr o [a] = awr, thus logzola] = a - logr.

Proof:  From wr(F(T,S)) = wr(T), we get that logz(F(T,S)) = logz(S) + logz(T). So it is a
homomorphism. Now the inverse expr is already given, so it is an isomorphism. O

Cor. (0.1.8). A I1-dimensional formal group over a ring R that has no torsion nilpotents is
commutative.

Proof: ~ We only prove for R torsion free, in this case F(T,S) = expr(log#(T') + logz(.5)). O

Lubin-Tate Formal Group

Def. (0.1.9). For a p-adic number field K with a uniformizer 7 with residue field F,, a Lubin-
Tate power series for 7x is a ¢(X) € Og|[[X]] that ¢(X) = 7xX mod X? and ¢(X) =
X7 mod mg.

A Lubin-Tate module G over Ok is a formal Ox-module that [rx](X) is a Lubin-Tate power
series.

Prop. (0.1.10). Given a p-adic number field K with residue field Fy, we consider the set &, of all
Lubin-Tate power series for .

If f,g € & and L(X) = Y a;X; be a linear form, then there exists a unique power series F'(X)
that F/(X) = L(X) mod degree 2 and f(F(X)) = F(g(X1),...,9(Xpn)).

Proof:  Choose F' consecutively, if F,.,1 = F. + A, then must

f(Fr(X)) — Fr(g(X))

ar+l

A

mod degree (r + 2).

This has coefficient in O because f = g = Z7 mod . O
Cor. (0.1.11). If welet f = g,L = X +Y to get Fy and f,g,L = aX to get ay 4, then

. Fp(X,Y)=Fy(Y,X).

« Fp(Fp(X,Y), Z) = Fy(X, Fy(Y, Z)).

o apg(Fy(X,Y)) = Frlay,y(X),ar4(Y)).

o asby(Z) = (ab)s(Z).

« (a+0)§(2) = F(as(2),05(2)).

« mp(2) = f(2).
all follow from the unicity of the last proposition.



Cor. (0.1.12) (Existence of Lubin-Tate Module). We get a commutative formal O-module

Fy for every f. And this group can act on py, for an alg.ext L/K. The set of zeros A¢,, of f in L,

as the elements annihilated by 7", is a submodule of p(Lf ),

And ug ¢ for any unit u € O defines an isomorphism between Fy and F}, thus this formal group
only depends on 7, called F;. Hence L¢,, = K(Ay,) only depends on m, with Galois group Gr .

Prop. (0.1.13) (Different Uniformizers). Now consider different 7, it is proven that F; and
F are isomorphic, but the coefficient in O where T' is the maximal unramified extension.

Thus Ly, and L, may not be isomorphic, but T"- L, ;, = T'- L ,, since T-Lmn = T-wavn and
both of them is the algebraic closure of K in it.

Proof:  Cf.[Neukirch CFT P105]. O

Lemma (0.1.14). The Newton polygon of [ /7" has vertices (1,0), (¢, —1/ex), (¢%, —2/ek), - - ..

Proof: ~ Notice [r}] has no infinite edge of negative slope because all its coefficient are in Og-.
Now look at its roots, it has a root 0, and ¢ — 1 roots of valuation v,(7x)/(¢ — 1), ¢(¢ — 1) roots of
valuation v,(7mg)/q(q — 1), and so on.

So by factor out these roots, [7}]/7} is left with a power series whose Newton polygon is a
single line with non-negative slope, which shows the desired result. O

Prop. (0.1.15). The formal logarithm of the Lubin-Tate formal group F; satisfies:

logz, (T) = lim[3] /%
Proof:  By(0.1.7) we have

log#(T) = log p([mx]) /7% = ([wi] + az/2[mi])* + ...) /7

and for any degree d, the valuation of coefficient of [73?] /%" is bounded below by a constant c(d)
by the above lemma(0.1.14), so [727] /7% converges to 0, thus the result. O

Cor. (0.1.16). The Newton polygon of logz(T) has vertices (1,0), (g, —1/ex), (¢*, —2/ek), - . ..

Prop. (0.1.17). There is an isomorphism of O-modules Ay, = O /"0, Cf.[Neukirch CFT P101].
Thus the automorphism of Ay, is all of the form uy for units, isomorphic to U /U
So we can define a Tate module TG = @Ker[ﬂ?{], it is a free Og-module of rank 1.

Def. (0.1.18). As TG is a free Og-module of dimension 1, and Gk acts on TG, there can be
attached a Lubin-Tate character xyx : Gk — O% by g(o) = [xk(9)](a), this depends on 7k,
but its restriction on Ix doesn’t depend on 7, and is just the local CFT isomorphism composed
with 2 — 271,

Proof:  [xk(g)] is, by definition, the morphism that is id on K*" and g on L,. So it equals g on
all K% iff g is id on K%, that is, g € I. So if g € Ix, by local CFT(0.1.20), (x(g))~! corresponds
to g, uniquely. O

Prop. (0.1.19). G, = O3 /U, thus we have G = Oj. Lr,/K is Abelian totally ramified of
degree p"~1(p — 1) generated by a Eisenstein polynomial with constant coefficient 7 so 7 is in the
norm group.



Proof:  For this, first note Galois action induce an isomorphism on Ay, thus correspond to an
element of Uy /Uf- by(0.1.17), this is an injection because Ay, generate L;,. Then we use the
canonical polynomial f(Z) = 72+ Z%, f* = f"“1p(n), where ¢(n) is a Eisenstein polynomial, thus
Lz /K is totally ramifies with |Gy | = ¢"1(q¢ — 1) = |Uk /UR|, thus the result. O

Prop. (0.1.20) (Explicit Local Norm Residue Symbol). Now we can write the universal
residue symbol little bit more explicitly. For a = un™, (a, K) acts by ¢™ on T and generated by
the action (u™1); on As, on Ly .

Thus the norm group of Ly ,, is just U™ by(0.1.19).

Proof:  Cf.[Neukirch CFT P106]. O

Cor. (0.1.21). The norm groups of the totally ramified Abelian extension is precisely the groups
that contains some Uj x () for some uniformizer 7. And every totally ramified Abelian extension
L/K is contained in some Ly .

Proof:  For any totally ramified extension, choose a uniformizer, then its norm is a uniformizer m
of K. And Ny i is open (as it contains (K*)™?7.) Thus it contains some U". The rest follows
from local CFT?7?. O

Cor. (0.1.22) (Maximal Abelian Extension of Local Fields). Let L, = UL, , = K(Ay),
where Ay = UAy,,, then T - L is the maximal extension of Abelian extension of K. Hence G =
Gt K X Gr. This follows immediately from??.

Cor. (0.1.23) (Hasse-Arf). We can prove Hasse-Arf?? in the case where K is a local field. This
is because we already know the maximal Abelian extension, and G(K®/T) = G(L,/K) = Q3% for
which we know the Galois action well(0.1.17)(0.1.19), so i(0) = v(o(an) — an) = v(jo — 1](a)),
which jumps at Uj (the same pattern as K = Q,77), thus the result.

Remark (0.1.24). There is a concrete example. When K = @Q,, we can choose f(Z) = (1+2)P -1,
thus Ly, is just Qp(&yn). And we have 7y = (1 + Z)" — 1, thus we have

(a, Qp(fp")/@p)( ="

where a = up™, and r» = ! mod p".

2 Cohomology of G'x action on C,
K is assumed to be a p-adic number field.

Lemma (0.2.1). Giving an 0 € G(K/Q,), if z,y € mc, that z = y mod 7%, then [rk]7(x) =
[7x]7 (y) mod 7t where f7 is given by action of o on the coefficients.

Proof:  This is because the coefficients of [rx|? are divisible by mx except for degree ¢, where it
is 29 —y? = (x — y) (@9 + 2972y + ...+ y? ') which is divisible by 7:" because the residue field
of K is of order q. O

Prop. (0.2.2). If we let the action of o € G(K/Q)) on the residue field giving by 7 : kx — F, :
x — z9, where g, = p" is a p-power, given an element n = (79, 71,...) € TG, we have n¥ =
[7k]% (i) mod 7k, hence the above lemma(0.2.1) shows that [r}]7nd" =[x (nd, ;) mod w7

so [1%]7(nde) is a Cauchy sequence, converging to an element p,(don’t care about 7).

I



If g € Gk, then g(n,) = [xx(9)](nn), hence take g,-th power, g(n7) = [xx(9)]°(nd) mod mg,
then

n

X (DI [mi]” (i) = (w79 (ni) = g([mi]niy7) mod 7ge.
hence by limiting, g(us) = [Xx(9)]7 (ko).
Lemma (0.2.3).

o 1
_ eK(qq—l) ek n(c) #0
vp(lu’o') - 1 -0
ene=n T oplo(mx) —7K) n(o) =
Proof:  By(0.1.14), we know the Newton polygon of [77%]7. When n(c) # 0, v(ni") = % >
ﬁ, so the valuation of [mx]7 (n{”) equals the valuation of its degree 1 term, which is v(7xni") =
wet i Now we have by(0.2.2), we have [rx]7n% = [1%]°(n4") mod 7%, and P CE % <

2/ek, so valuation already stable at degree 1, and v(uy) = v([rx]7(ni7)).

If ¢, = 1, it’s more delicate, because degree 1 and degree ¢ term has the same minimal valuation,
so they may jump to higher valuations. Notice [1%](n,) = 0, so [1%]7 () = ([7%]7—[7%])(1,). And
we have by(0.3.1), for z € Ok, v(o(z) —x) > v(z) +v($}f) — 1)+ 0y(2),0v(7K ), With equality when
vp(x) = q/ek. So by the Newton polygon, the minimum valuation of the coefficient of [7}]7 — [7}]
appear at degree p"~! and possibly p™. The valuation of 1, is too small(m) that we don’t
need to consider other degrees but can assure that degree p is of minimum valuation, which is
o) 4 (o (rL) = 1) = by + vplo (i) — 7). O

ek (q—1
Prop. (0.2.4). For any o € G(K/Q,)\{id}, there is an element a, € C; that coxk(g) = g(as)/as
for all g € Gk, where xx is the Lubin-Tate character.

n—1

Proof:  We let ay = log%_ (i), by(0.2.3), 1/ex < pio < 00, so by the Newton polygon analysis of
logy (0.1.15), oy has the same valuation of p,, in particular, o, # 0. Then

g(ao) = log% (9(1s)) = (logz o[xx (9)])7 (ko) = (XK (9) - logz, ) (o) = o(xK(9)) - o

Cor. (0.2.5). log,(o(xx (9))) = gllog(s)) — log,(c).

Def. (0.2.6). Let ¢ : Gx — 'k — Z,, be a character factoring through I'c. Then we can form
a representation Cp(¢) of Gx on C, that p(o)(z) = ¢(o)o(z). This is an action because G acts
trivial on Z,.

If ¥ = id for some k, then it is trivial on F’}(. ' is an open subgroup of Z,, so I'; is of finite

index in ' by??, hence also does its inverse image in Gg. So ¥ comes from a finite extension
L/K.

Prop. (0.2.7). H°(Gk,Cp,()) = K if 9 is of finite order, and vanish if ¢ is of infinite order.

Proof:  Finite case: ¢ factor through some G, so ¥ corresponds to a continuous cocycle w.r.t the
discrete topology of Cp. So by(0.3.5) there is a a € C;, that ¢(0) = o(a)/a, so Cy(¢) = C) : x +— ax.
And the result follows from Ax-Sen-Tate, as K = K.

Infinite case: HO(Gy, Cp(v)) € HO(Hy,Cp(1))) = Koo(t)) by Ax-Sen-Tate and the fact ¢ is triv-
ial on Hy. Then for the normalized trace R,,, which commutes with G, g(Rn(z)) = ¥~ (g) Rn(2).
But G(K,/K) is finite, so R,(x) = ¢ N(g)R,(x) for any g. So R,(x) = 0, otherwise 1 is of finite
order. Now R, (x) — z, so x = 0. O



Prop. (0.2.8). Now we compute H!(Gk, Cp(1)). There is a inf-res exact sequence
0= H' (T, Koo() = H'(Gi, Cp()) — H' (Hi, Cp(v))

Then H'(Hf,Cp(¢))) = 0. The first two vanish iff ¢ is of infinite order, and is a K-vector space of
dimension 1 if 1 is of finite order.

Proof: ~ For the first assertion, v is trivial on Hg, so C,(¢) = C, as Hp-representation, so it
suffice to show for ¢ = id. Let f be a cocycle, as Hg is compact, f(Hg) € p_k(’)(cp for some integer
k. So the lemma below(0.2.9) shows that we can move f cohomologouly to higher valuation, i.e.
flg) =>z; —g(>x;), so f is a coboundary.

For the second assertion, we assume ' # Z3, for this case, see remark(0.2.10) below.

let v be a topological generator of 'y = 1 + ka;;, k > 0, because Z;, are all topological cyclic
groups except for Z5 = 7Z/27 & Zs, and -y, be a topological generator of I'r,, which is also a power
of 7. By(0.3.8) we know H'(T'x, Koo(¥)) = Koo (¥)/1 — 7.

For n large, we have a decomposition Koo (1) = K, (1)@ X, (¥) by(0.3.11), and 17, is invertible
on X,(1). Now 1 —v, = (1 = y)(1 +~+4... +~4%1), so 1 — v is also invertible in X,,(¢). And
on K, (1), if 1 is of infinite order, then 1 — v is injective, otherwise = ¥(v)NyN(x) = ¥(y)Va.
So it is also surjective because it is a K-linear mapping of K,. So f(oo(w)/l —v=0. If ¢ is of
finite order then K, (¢) = K, as I'k-module when n is large enough that v factors through I'k, ,
by(0.3.6). So K,,/1 — v = K,/ Ker(trg, /i) = K. O

Lemma (0.2.9). If f : Hx — p"Oc, is a continuous cocycle, then there exists a z € p”_IO@p that
the cohomologous cocycle g — f(g) — (z — g(x)) has values in p"*Oc, .

Proof:  p"*t2Og, is open in p"Og,, so there is a finite extension L/K that f(Hp) € p"™Ok,.
By(0.3.10), there is a 2 that try_ /. (2) = p, so thereis a y € p 1O that trr k. (y) = 1.
Now for a set of representatives @ of Hy /Hy, denote zg = > ,c h(y)f(h), then for g € H,

9(Q) is also a set of representative, and g(zq) = Y peq 9h(y)9f(h) = Zheq 9h(y)(f(gh) — f(9)) =
zgq) — f(9), as tr(y) = 1. So f(g) — (xq — g(xq)) = z4@) — z@- The RHS is in p" ™ Oc,, because:

if we let gh; = hy(;ya;, where a; € Hp, then z4q) —xqQ = >3- hg) () f (hgyai) — 22 by (y) f(hgs)) =
>~ hyy () hg@) (f (i), which is in p™™ because hy)(y) € p~'Oc¢, and f(a;) € p"*?Oc, by the
choice of L. g

Remark (0.2.10). In case 'y = Z3,
0 — H'({£1}, K(v)) = H'(Z3, Koo (¥))) = H'(1 + 225, Cy (1))

H'({£1}, K(¥))) = 0 whether 1)(—1) = 1 or —1. And by the same proof as above, possibly replace
X, with X,11, to remedy the singularity of p = 2, H*(1 + 2Z3,C,(¢0)) = K, with generator
[g — %(a)] for some a. This cocycle extends to a cocycle of Z3, so the map is surjective.

Prop. (0.2.11). The 1-dimensional K-vector space H!(Gk, C,) is generated by the cocycle [g —
log, x(9)]-

Proof: ~ By the proof of(0.2.8), we know that K = K/1 —~v C K,/1 —~ EN HY(Gg,C,) is
)

an isomorphism. for a € K, if x(g) = ~%, then f(a)(g) = (1 +~v + ... ++F! =
a - log,(x(9))/ log, (7). So by continuity, f is a multiple of [g — log,(x(g))]- O

B
I
=
Q



Lemma (0.2.12). Any f € Hom(I#,Q,) is of the form f(g) = tri /g, (Brlog, xxk(g)) for some
Br € K.

Proof:  By(0.1.18), X is a canonical isomorphism I¥ = O0%. Any f € Hom(O%,Q,) is of the
form f(y) = trg q, (Bylog,(y)) for some By € K, because: by??, when n is large, log,, is a bijection
between Up and 77Ok .

T Or — Q, can be extended to a map K — Q, as Q, is divisible. Now trace is a invertible

bilinear form on K, so the assertion is true on Uj for some n, and because Uy} is of finite index in
O% and Q, is of char 0, this is true for all O}. O

Prop. (0.2.13). The map H'(Gg,Q,) - HY(Gk, C,) is given as follows: as f € H*(Gk, Q,) must
factor through G4, if the restriction of f to I# corresponds to By, then f maps to Bf[g — log,, x(9)]-

Proof:  f(g) = trgq,(8rlog, xx(g)) on Ik, but this map extends to map on Gk. So f(g) =
tri /0, (8r log, xk(9)) + c(g) for a unramified map ¢ on Gk.

Now by(0.3.7), HI(G,@;T/QP) vanish because H'(G,F,) vanish(0.3.6), so there is a z € @;"
that ¢(g) = g(z) — z. And

tr/q, (Br log, Xk (9) = D _ o(Bylog, xx(9)) = By triq, (log, Xk (g Z o (log, Xk (9))-
Notice(0.2.4) gives a B, that o(log, xk (9)) = 9(Bs)—Bs, and tr /g, (log, Xk (9)) = log, x(g) because
(NK/QPXK(Q))_I = (x(g))7?, as they both correspond via local CFT to the element in G4 which
acts by g on L, and id on K“". Thus the result. ]

or. (0.2.14). If n : Gk — Z; is a character and there is y € C;; that n(g) = g(y)/y, then there
exists a finite extension L of K that 7|g, is unramified, i.e. n is potentially unramified.

Proof:  Apply log,, then the image of f =log,n in H 1(Gk,Cp) is trivial, so the above proposition
shows 3y = 0, so log, 7 is trivial on Ik, so Ik is mapped by 7 into the i, so n((I&)P~1) = 1.

I8 = 0%, so (I%°)P~1 is of finite index in 1%, so correspond to a finite Abelian extension E/K%"
that n is trivial on Gg. Now choose a primitive element § of E/K"", then E C K(5) - K" =
(K(B))"", 80 MGy (s, s unramified. O

Prop. (0.2.15). If Gx — GL4(Qp) is such p(g) = g(M)M~! for M € GL4(Cp), then p is
potentially unramified.

Proof:  Cf.[Sen Continuous Cohomology and p-adic Galois representations]. O

3 Auxiliaries

Higher Ramification Groups

Prop. (0.3.1). For local fields L/K, if o is in the inertia group, then
ofz) 1) > UL(M _

1
= = I ) + 5UL(x),0

for any x € Op and a uniformizer 77. Equality holds when vy (z) = 1.

Proof:  if L has residue field F,, then any element of £ can be written as ) &,7n}, where &,
are all ¢ — 1-th roots of unity. And because o is inertia group, all ¢ — 1-th roots of unity are

preserved, so o (§, 7)) =&y = anL(%LL) — D) (o(rp)"  +o(rL)"2rp+. .. 477 1) has valuation>

v(m — 1) + n. Thus the result. O

L



Different and Discriminant

Prop. (0.3.2). If L/K is a finite extension and if I is an ideal of Op, then vk (try g (I)) =
v (I - Dryk)].

Proof: By definition, tr x(z0L) C O iff z € DZ}K, thus trp k(1) C Jiff I C DZ/IKJ, ie.
trr i (I) is the smallest ideal J of Ok that contains I - Dy g, thus the result. O

Galois Cohomology

Prop. (0.3.3). There is an exact sequence of pointed sets:
0 — HYG/H, M"Y ™5 526, M) =< B (H, M)C/H.

Proof:  First res(H (G, M)) ¢ H'(H, M)%/H because g(c)(h) = c¢(g)"e(h)h(c(g)) is checked so
g(c) is cohomologous to c.

resoinf = 0 is easy, if res(c) = 0, then c is trivial on H, hence c¢(gh) = ¢(g) and h(c(g)) =
c(hg) = c(g- g thg) = c(g), so c is inflated from H'(G/H, M*).

For the injectivity of inf. If ¢(g) = g~ 'g(a), then a € M¥  soit is a coboundary in H'(G/H, M ™).
g

Prop. (0.3.4). For L/K a Galois extension, H'(G(L/K),GL,(L)) = 1, where L is equipped with
the discrete topology.

Proof: ~ We prove any cocycle is a coboundary, for this, notice any cocycle factor through a finite
quotient, and the images of it is contained in a finite extension of K, hence it reduce to the case of
L/K finite.

For some a € HY(G,GL,(L)), for a vector x € L™, let P(z) = 3 a(c)o(x), then {P(z)} generate
L™ because if f is a linear functional that vanish on it, then

0= f(P(A2)) = 3 fla(o)ox)o.

But automorphisms are linearly independent over L, hence f(a(o)o(x)) =0 for all o, so f =0 as
a(o) € GLy(L)

Now let {P(z;)} generate L", then let 7" be the matrix with z; as rows, then P = > a(o)o(T)
is invertible. Now a(o) = P - o(P)~!is a cocycle. O

Cor. (0.3.5) (Hilbert’s Multiplicative Satz 90). H' (G, L*) = 0 for Galois extension L/K,
where L is equipped with the discrete topology

Prop. (0.3.6) (Hilbert’s Additive Satz 90). For L/K a Galois extension, H'(G(L/K),L) = 1,
where L is equipped with the discrete topology.

Proof: ~ Form the normal basis theorem??, for finite Galois extension L/K, L is an induced module
over K, thus H*(G,L) = H,(G,L) =0 for * # 0 and H;(G,L) =0 by??.

Hence the same is true, for arbitrary Galois extension, when L is equipped with the discrete
topology, the same as in the proof of(0.3.4). O

Prop. (0.3.7). Let m be a topologically nilpotent element of A which is complete in the m-adic
topology and 7 is not a zero-divisor, let R = A/mA equipped with discrete topology. Let G be a
group which acts continuously on A and fix 7, then if H(G, R) is trivial, then H'(G, A) is trivial,
and if moreover H!(G, GL,(R)) is trivial, then H'(G,GL,(A)) is trivial.



Proof:  Cf.[Galois Representations Berger P15]. O

Prop. (0.3.8) (Cyclic Case). if G is a topological cyclic group (g), then the map H'(G, M) —
M/(1 — g) is well-defined and injective. And when M is profinite, p-adically complete, then the
map is also surjective.

Proof:  The surjection: there is only one choice: ¢(g’) = (1 4+ g+ ...+ ¢ ')(m). And we need
to verify that it is continuous. The case of p-adic can be deduced from profinite case, because
c(vy) € p~*M for some k, and p~*M is then profinite. For any finite quotient N of M, there is a k
that kM = 0, and a n that g" =id on NV, so c(g’"k”) =0 on N, which shows ¢ is continuous. ]

Ramification of Cyclotomic Fields

Prop. (0.3.9). p"v,(Dk, /r,) is bounded and eventually constant. In particular vy(D, /r,) con-
verges to 0.

Proof: ~ Cf.[Galois representation Berger P20]. O
Cor. (0.3.10). If L/K is a finite extension, then try,__ /x. (ML, ) = Mk, .

Proof:  By(0.3.2) and the fact G(Loo/Koo) = G(Ly/Ky,) for nlarge by??, we have try,__ /. (mr,) =
my , where ¢, = |vk,(m,Dr,/Kk,)]- By the above proposition, ¢, is bounded by a c. But if
r€mg,, x€my for nlarge, sox € trp k(ML) O

Prop. (0.3.11). There is a decomposition of Ky =X, ® X, where X,, = Ker R,,. If § > 0, then
for n large, a € Z;, and v, that X(7n) is a topological generator I'p,, 1 — ay, : X, — X, (because
v commutes with R,,) is invertible and v,((1 — ay,) " 12) > vy(z) —1/(p—1) — §, unless @ = —1 and
p = 2, in which case it is only invertible on X, ;1.

Proof:  As usual, z; is a basis of Ok, /p,, then z = Y xief, ©; = trg /(7€) € F, and
R, (z) =0. Then (1 — ay,) acts on z;, so it reduce to the case K = Q,, if one notices?? and(0.3.9).
Injectivity: If @ = 1, this is Ax-Sen-Tate. In other situations, (1 — ayy,)(Ry4+x(x)) = 0 for all
k>0,s0 Rypix(x) = ozpkygk (Rpuir(X)) = o Ry 1 (X), 50 Ryix(z) = 0, hence z = 0.
Surjectivity: Cf.[Galois representation Berger P23]. O
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