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Continuous Cohomology of CK

彭淏 1700010601@pku.edu.cn

1 Formal Groups

Def. (0.1.1). A formal group law of dimension n over a commutative ring R is a set of n power
series G = (G1, . . . , Gn) in K[[X1, . . . , Xn, Y1, . . . , Yn]] that

G(X, 0) = G(0, X) = X, G(G(X,Y ), Z) = G(X,G(Y, Z)).

Note this immediately induce an inverse inv(X) that G(X, inv(X)) = G(inv(X), X) = 0. This can
be constructed noticing G(X,Y ) = X + Y + o(X,Y ).

A morphism of formal groups is a vector of power series φ(X) that φ(G(X,Y )) = H(φ(X), φ(Y )).
A formal R-module is a formal group G over R together with a ring homomorphism R →

EndR(G) that [a](X) = aX + . . ..

Prop. (0.1.2) (Automorphisms). If α ∈ R∗ and Fi are power series that the degree 1 term of
(Fi) is invertible, then there are unique power series Gi that G ◦ F = id and F ◦G = id.

Proof: Use induction to find G that F ◦G = id. Then the degree 1 terms of G is also invertible,
thus there are G ◦H = id, now F = H and the proof is finished. □

Prop. (0.1.3). Ga is the one-dimensional formal group with Ga(X,Y ) = X + Y , Gm is the
one-dimensional formal group with Gm(X,Y ) = X + Y + XY . Over a Q-algebra K, there is an
isomorphism between Ga and Gm giving by X → exp(X)− 1.

1-dimensional Formal Groups

Def. (0.1.4). For a 1-dimensional formal group F over R, the invariant differential is a differ-
ential form ω = P (T )dT ∈ R[[T ]]dT that ω ◦ F (T, S) = ω. It is called normalized if P (0) = 1.

There exists uniquely an invariant differential, it is given by FX(0, T )−1dT .

Proof: We need to check FX(0, F (T, S))−1FX(T, S) = FX(0, T )−1, and this is just F (U,F (T, S)) =
F (F (U, T ), S) differentiated at U and let U = 0.

Conversely, if ω is an invariant differential, then P (F (T, S))FX(T, S) = P (T ), let T = 0, then
P (S) = P (0)FX(0, S)−1. □

Prop. (0.1.5). For a morphism f : F → G of 1-dimensional formal groups over R, ωG◦f = f ′(0)ωF .

Proof: We only need to show that ωG ◦ f is an invariant differential for F and then compare their
constant coefficients. For this, notice

ωG ◦ f(F (T, S)) = ωG(G(f(T ), f(S))) = ωG(f(T )) = ωG ◦ f(T ).

□
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Def. (0.1.6). When R has characteristic 0, the formal logarithm logF for a 1-dimensional formal
group is the integration of invariant differential

∫ T
0 ωF = T + c1/2T 2 + · · · .

Then the formal power exponential is the the unique power series expF that is the inverse
of logF . It exists uniquely by(0.1.2).

Prop. (0.1.7). For R char= 0 and an 1 dimensional formal group F over R, logF : F → Ga is an
isomorphism of formal groups over R⊗Z Q.

And if F is a formal R-module, then it is an isomorphism of R-modules, because from(0.1.5)
that ωF ◦ [a] = aωF , thus logF ◦[a] = a · logF .

Proof: From ωF (F (T, S)) = ωF (T ), we get that logF (F (T, S)) = logF (S) + logF (T ). So it is a
homomorphism. Now the inverse expF is already given, so it is an isomorphism. □

Cor. (0.1.8). A 1-dimensional formal group over a ring R that has no torsion nilpotents is
commutative.

Proof: We only prove for R torsion free, in this case F (T, S) = expF (logF (T ) + logF (S)). □

Lubin-Tate Formal Group

Def. (0.1.9). For a p-adic number field K with a uniformizer πK with residue field Fq, a Lubin-
Tate power series for πK is a φ(X) ∈ OK [[X]] that φ(X) ≡ πKX mod X2 and φ(X) ≡
Xq mod πK .

A Lubin-Tate module G over OK is a formal OK-module that [πK ](X) is a Lubin-Tate power
series.

Prop. (0.1.10). Given a p-adic number field K with residue field Fq, we consider the set ξπ of all
Lubin-Tate power series for π.

If f, g ∈ ξπ and L(X) =
∑
aiXi be a linear form, then there exists a unique power series F (X)

that F (X) ≡ L(X) mod degree 2 and f(F (X)) = F (g(X1), . . . , g(Xn)).

Proof: Choose F consecutively, if Fr+1 = Fr + ∆r, then must

∆ ≡ f(Fr(X))− Fr(g(X))
πr+1 − π

mod degree (r + 2).

This has coefficient in O because f ≡ g ≡ Zq mod π. □

Cor. (0.1.11). If we let f = g, L = X + Y to get Ff and f, g, L = aX to get af,g, then
• Ff (X,Y ) = Ff (Y,X).
• Ff (Ff (X,Y ), Z) = Ff (X,Ff (Y, Z)).
• af,g(Fg(X,Y )) = Ff (af,g(X), af,g(Y )).
• afbf (Z) = (ab)f (Z).
• (a+ b)f (Z) = Ff (af (Z), bf (Z)).
• πf (Z) = f(Z).

all follow from the unicity of the last proposition.
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Cor. (0.1.12) (Existence of Lubin-Tate Module). We get a commutative formal O-module
Ff for every f . And this group can act on pL for an alg.ext L/K. The set of zeros Λf,n of fn in L,
as the elements annihilated by πn, is a submodule of p(f)

L .
And ug,f for any unit u ∈ O defines an isomorphism between Ff and Fg, thus this formal group

only depends on π, called Fπ. Hence Lf,n = K(Λf,n) only depends on π, with Galois group Gπ,n.

Prop. (0.1.13) (Different Uniformizers). Now consider different π, it is proven that Fπ and
Fπ′ are isomorphic, but the coefficient in OT̂ where T is the maximal unramified extension.

Thus Lπ,n and Lπ′,n may not be isomorphic, but T ·Lπ,n = T ·Lπ′,n since T̂ ·Lπ,n = T̂ ·Lπ′,n and
both of them is the algebraic closure of K in it.

Proof: Cf.[Neukirch CFT P105]. □

Lemma (0.1.14). The Newton polygon of [πn
K ]/πn

K has vertices (1, 0), (q,−1/eK), (q2,−2/eK), . . ..

Proof: Notice [πn
K ] has no infinite edge of negative slope because all its coefficient are in OK .

Now look at its roots, it has a root 0, and q− 1 roots of valuation vp(πK)/(q− 1), q(q− 1) roots of
valuation vp(πK)/q(q − 1), and so on.

So by factor out these roots, [πn
K ]/πn

K is left with a power series whose Newton polygon is a
single line with non-negative slope, which shows the desired result. □

Prop. (0.1.15). The formal logarithm of the Lubin-Tate formal group Fπ satisfies:

logFπ
(T ) = lim−→[πn

F ]/πn
F .

Proof: By(0.1.7) we have

logF (T ) = logF ([πn
F ])/πn

F = ([πn
K ] + a2/2[πn

K ]2 + . . .)/πn
K

and for any degree d, the valuation of coefficient of [π2n
K ]/π2n

K is bounded below by a constant c(d)
by the above lemma(0.1.14), so [π2n

K ]/πn
K converges to 0, thus the result. □

Cor. (0.1.16). The Newton polygon of logF (T ) has vertices (1, 0), (q,−1/eK), (q2,−2/eK), . . ..

Prop. (0.1.17). There is an isomorphism of O-modules Λf,n
∼= O/πnO, Cf.[Neukirch CFT P101].

Thus the automorphism of Λf,n is all of the form uf for units, isomorphic to UK/U
n
K .

So we can define a Tate module TG = lim←−Ker[πn
K ], it is a free OK-module of rank 1.

Def. (0.1.18). As TG is a free OG-module of dimension 1, and GK acts on TG, there can be
attached a Lubin-Tate character χK : GK → O∗

K by g(α) = [χK(g)](α), this depends on πK ,
but its restriction on IK doesn’t depend on πK , and is just the local CFT isomorphism composed
with x→ x−1.

Proof: [χK(g)] is, by definition, the morphism that is id on Kur and g on Lπ. So it equals g on
all Kab iff g is id on Kur, that is, g ∈ IK . So if g ∈ IK , by local CFT(0.1.20), (χ(g))−1 corresponds
to g, uniquely. □

Prop. (0.1.19). Gπ,n
∼= O∗

K/U
n
K , thus we have Gπ

∼= O∗
K . Lπ,n/K is Abelian totally ramified of

degree pn−1(p − 1) generated by a Eisenstein polynomial with constant coefficient π so π is in the
norm group.
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Proof: For this, first note Galois action induce an isomorphism on Λf,n, thus correspond to an
element of UK/U

n
K by(0.1.17), this is an injection because Λf,n generate Lπ,n. Then we use the

canonical polynomial f(Z) = πZ+Zq, fn = fn−1φ(n), where φ(n) is a Eisenstein polynomial, thus
Lπ,n/K is totally ramifies with |Gπ,n| = qn−1(q − 1) = |UK/U

n
K |, thus the result. □

Prop. (0.1.20) (Explicit Local Norm Residue Symbol). Now we can write the universal
residue symbol little bit more explicitly. For a = uπm, (a,K) acts by φm on T and generated by
the action (u−1)f on Λf,n on Lπ,n.

Thus the norm group of Lπ,n is just Un by(0.1.19).

Proof: Cf.[Neukirch CFT P106]. □

Cor. (0.1.21). The norm groups of the totally ramified Abelian extension is precisely the groups
that contains some Un

K × (π) for some uniformizer π. And every totally ramified Abelian extension
L/K is contained in some Lπ,n.

Proof: For any totally ramified extension, choose a uniformizer, then its norm is a uniformizer π
of K. And NL/K is open (as it contains (K∗)m??.) Thus it contains some Un. The rest follows
from local CFT??. □

Cor. (0.1.22) (Maximal Abelian Extension of Local Fields). Let Lπ = ∪Lπ,n = K(Λf ),
where Λf = ∪Λf,n, then T · Lπ is the maximal extension of Abelian extension of K. Hence Gab

K =
GT,K ×Gπ. This follows immediately from??.

Cor. (0.1.23) (Hasse-Arf). We can prove Hasse-Arf?? in the case where K is a local field. This
is because we already know the maximal Abelian extension, and G(Kab/T ) ∼= G(Lπ/K) ∼= O∗

K for
which we know the Galois action well(0.1.17)(0.1.19), so i(σ) = v(σ(αn) − αn) = v([σ − 1](α)),
which jumps at Un

K(the same pattern as K = Qp??), thus the result.

Remark (0.1.24). There is a concrete example. When K = Qp, we can choose f(Z) = (1+Z)p−1,
thus Lπ,n is just Qp(ξpn). And we have rf = (1 + Z)r − 1, thus we have

(a,Qp(ξpn)/Qp)ζ = ζr

where a = upm, and r ≡ u−1 mod pn.

2 Cohomology of GK action on Cp

K is assumed to be a p-adic number field.

Lemma (0.2.1). Giving an σ ∈ G(K/Qp), if x, y ∈ mCp that x ≡ y mod πn
K , then [πK ]σ(x) ≡

[πK ]σ(y) mod πn+1
K , where fσ is given by action of σ on the coefficients.

Proof: This is because the coefficients of [πK ]σ are divisible by πK except for degree q, where it
is xq − yq = (x− y)(xq−1 + xq−2y + . . .+ yq−1) which is divisible by πn+1

K because the residue field
of K is of order q. □

Prop. (0.2.2). If we let the action of σ ∈ G(K/Qp) on the residue field giving by σ : kK → Fp :
x 7→ xqσ , where qσ = pnσ is a p-power, given an element η = (η0, η1, . . .) ∈ TG, we have ηqσ ≡
[πK ]σ(ηqσ

n+1) mod πK , hence the above lemma(0.2.1) shows that [πn
K ]σηqσ

n ≡ [πn+1
K ]σ(ηqσ

n+1) mod πn+1
K ,

so [πn
K ]σ(ηqσ

n ) is a Cauchy sequence, converging to an element µσ(don’t care about η).
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If g ∈ GK , then g(ηn) = [χK(g)](ηn), hence take qσ-th power, g(ησ
n) ≡ [χK(g)]σ(ηqσ

n ) mod πK ,
then

[χK(g)]σ[πn
K ]σ(ηqσ

n ) ≡ [πn
K ]σg(ηqσ

n ) = g([πn
K ]σηqσ

n ) mod πK .

hence by limiting, g(µσ) = [χK(g)]σ(µσ).

Lemma (0.2.3).

vp(µσ) =


qσ

eK(q−1) + 1
eK

n(σ) ̸= 0
1

eK(q−1) + vp(σ(πK)− πK) n(σ) = 0

Proof: By(0.1.14), we know the Newton polygon of [πn
K ]σ. When n(σ) ̸= 0, v(ηqσ

1 ) = qσ

eK(q−1) >
1

eK(q−1) , so the valuation of [πK ]σ(ηqσ
1 ) equals the valuation of its degree 1 term, which is v(πKη

qσ
1 ) =

qσ

eK(q−1) + 1
eK

. Now we have by(0.2.2), we have [πK ]σηqσ ≡ [π2
K ]σ(ηqσ

2 ) mod π2
K , and qσ

eK(q−1) + 1
eK

<

2/eK , so valuation already stable at degree 1, and v(µσ) = v([πK ]σ(ηqσ
1 )).

If qσ = 1, it’s more delicate, because degree 1 and degree q term has the same minimal valuation,
so they may jump to higher valuations. Notice [πn

K ](ηn) = 0, so [πn
K ]σ(ηn) = ([πn

K ]σ−[πn
K ])(ηn). And

we have by(0.3.1), for x ∈ OK , v(σ(x)−x) ≥ v(x) + v(σ(πK)
πK
−1) + δv(x),0v(πK), with equality when

vp(x) = q/eK . So by the Newton polygon, the minimum valuation of the coefficient of [πn
K ]σ − [πn

K ]
appear at degree pn−1 and possibly pn. The valuation of ηn is too small( 1

eKpn−1(p−1)) that we don’t
need to consider other degrees but can assure that degree pn−1 is of minimum valuation, which is
v(ηpn−1

n ) + v(σ(πL)− πL) = 1
eK(q−1) + vp(σ(πK)− πK). □

Prop. (0.2.4). For any σ ∈ G(K/Qp)\{id}, there is an element ασ ∈ C∗
p that σ◦χK(g) = g(ασ)/ασ

for all g ∈ GK , where χK is the Lubin-Tate character.

Proof: We let ασ = logσ
Fπ

(µσ), by(0.2.3), 1/eK < µσ <∞, so by the Newton polygon analysis of
logFπ

(0.1.15), ασ has the same valuation of µσ, in particular, ασ ̸= 0. Then

g(ασ) = logσ
Fπ

(g(µσ)) = (logF ◦[χK(g)])σ(µσ) = (χK(g) · logFπ
)σ(µσ) = σ(χK(g)) · ασ.

□

Cor. (0.2.5). logp(σ(χK(g))) = g(log(ασ))− logp(ασ).

Def. (0.2.6). Let ψ : GK → ΓK → Z∗
p be a character factoring through ΓK . Then we can form

a representation Cp(ψ) of GK on Cp that ρ(σ)(x) = ψ(σ)σ(x). This is an action because GK acts
trivial on Z∗

p.
If ψk = id for some k, then it is trivial on Γk

K . ΓK is an open subgroup of Zp, so Γn
K is of finite

index in ΓK by??, hence also does its inverse image in GK . So ψ comes from a finite extension
L/K.

Prop. (0.2.7). H0(GK ,Cp(ψ)) = K if ψ is of finite order, and vanish if ψ is of infinite order.

Proof: Finite case: ψ factor through some GL, so ψ corresponds to a continuous cocycle w.r.t the
discrete topology of Cp. So by(0.3.5) there is a a ∈ C∗

p that ψ(σ) = σ(a)/a, so Cp(ψ) ∼= Cp : x 7→ ax.
And the result follows from Ax-Sen-Tate, as K = K̂.

Infinite case: H0(GK ,Cp(ψ)) ⊂ H0(HK ,Cp(ψ)) = K̂∞(ψ) by Ax-Sen-Tate and the fact ψ is triv-
ial on HK . Then for the normalized trace Rn, which commutes with GK , g(Rn(x)) = ψ−1(g)Rn(x).
But G(Kn/K) is finite, so Rn(x) = ψ−N (g)Rn(x) for any g. So Rn(x) = 0, otherwise ψ is of finite
order. Now Rn(x)→ x, so x = 0. □
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Prop. (0.2.8). Now we compute H1(GK ,Cp(ψ)). There is a inf-res exact sequence

0→ H1(ΓK , K̂∞(ψ))→ H1(GK ,Cp(ψ))→ H1(HK ,Cp(ψ))

Then H1(HK ,Cp(ψ)) = 0. The first two vanish iff ψ is of infinite order, and is a K-vector space of
dimension 1 if ψ is of finite order.

Proof: For the first assertion, ψ is trivial on HK , so Cp(ψ) ∼= Cp as HK-representation, so it
suffice to show for ψ = id. Let f be a cocycle, as HK is compact, f(HK) ∈ p−kOCp for some integer
k. So the lemma below(0.2.9) shows that we can move f cohomologouly to higher valuation, i.e.
f(g) =

∑
xi − g(

∑
xi), so f is a coboundary.

For the second assertion, we assume ΓK ̸= Z∗
2, for this case, see remark(0.2.10) below.

let γ be a topological generator of ΓK = 1 + pkZ∗
p, k ≥ 0, because Z∗

p are all topological cyclic
groups except for Z∗

2
∼= Z/2Z⊕ Z2, and γn be a topological generator of ΓFn which is also a power

of γ. By(0.3.8) we know H1(ΓK , K̂∞(ψ)) = K̂∞(ψ)/1− γ.
For n large, we have a decomposition K̂∞(ψ) = Kn(ψ)⊕Xn(ψ) by(0.3.11), and 1−γn is invertible

on Xn(ψ). Now 1 − γn = (1 − γ)(1 + γ + . . . + γk−1), so 1 − γ is also invertible in Xn(ψ). And
on Kn(ψ), if ψ is of infinite order, then 1 − γ is injective, otherwise x = ψ(γ)NγN (x) = ψ(γ)Nx.
So it is also surjective because it is a K-linear mapping of Kn. So K̂∞(ψ)/1 − γ = 0. If ψ is of
finite order then Kn(ψ) ∼= Kn as ΓK-module when n is large enough that γ factors through ΓKn ,
by(0.3.6). So Kn/1− γ = Kn/Ker(trKn/K) = K. □

Lemma (0.2.9). If f : HK → pnOCp is a continuous cocycle, then there exists a x ∈ pn−1OCp that
the cohomologous cocycle g 7→ f(g)− (x− g(x)) has values in pn+1OCp .

Proof: pn+2OCp is open in pnOCp , so there is a finite extension L/K that f(HL) ∈ pn+2OCp .
By(0.3.10), there is a z that trL∞/K∞(z) = p, so there is a y ∈ p−1OL∞ that trL∞/K∞(y) = 1.

Now for a set of representatives Q of HK/HL, denote xQ =
∑

h∈Q h(y)f(h), then for g ∈ HK ,
g(Q) is also a set of representative, and g(xQ) =

∑
h∈Q gh(y)gf(h) =

∑
h∈Q gh(y)(f(gh)− f(g)) =

xg(Q) − f(g), as tr(y) = 1. So f(g)− (xQ − g(xQ)) = xg(Q) − xQ. The RHS is in pn+1OCp , because:
if we let ghi = hg(i)ai, where ai ∈ HL, then xg(Q)− xQ =

∑
hg(i)(y)f(hg(i)ai)−

∑
hg(i)(y)f(hg(i)) =∑

hg(i)(y)hg(i)(f(ai)), which is in pn+1 because hg(i)(y) ∈ p−1OCp and f(ai) ∈ pn+2OCp by the
choice of L. □

Remark (0.2.10). In case ΓK = Z∗
2,

0→ H1({±1},K(ψ))→ H1(Z∗
2, K̂∞(ψ))→ H1(1 + 2Z∗

2,Cp(ψ))

H1({±1},K(ψ)) = 0 whether ψ(−1) = 1 or −1. And by the same proof as above, possibly replace
Xn with Xn+1, to remedy the singularity of p = 2, H1(1 + 2Z∗

2,Cp(ψ)) = K, with generator
[g 7→ χ(g)−1

γ−1 (a)] for some a. This cocycle extends to a cocycle of Z∗
2, so the map is surjective.

Prop. (0.2.11). The 1-dimensional K-vector space H1(GK ,Cp) is generated by the cocycle [g 7→
logp χ(g)].

Proof: By the proof of(0.2.8), we know that K = K/1 − γ ⊂ Kn/1 − γ
f−→ H1(GK ,Cp) is

an isomorphism. for α ∈ K, if χ(g) = γk, then f(α)(g) = (1 + γ + . . . + γk−1)(α) = kα =
α · logp(χ(g))/ logp(γ). So by continuity, f is a multiple of [g 7→ logp(χ(g))]. □
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Lemma (0.2.12). Any f ∈ Hom(Iab
K ,Qp) is of the form f(g) = trK/Qp

(βf logp χK(g)) for some
βf ∈ K.
Proof: By(0.1.18), χK is a canonical isomorphism Iab

K
∼= O∗

K . Any f ∈ Hom(O∗
K ,Qp) is of the

form f(y) = trK/Qp
(βf logp(y)) for some βf ∈ K, because: by??, when n is large, logp is a bijection

between Un
K and πn

KOK .
πn

KOK → Qp can be extended to a map K → Qp as Qp is divisible. Now trace is a invertible
bilinear form on K, so the assertion is true on Un

K for some n, and because Un
K is of finite index in

O∗
K and Qp is of char 0, this is true for all O∗

K . □
Prop. (0.2.13). The map H1(GK ,Qp)→ H1(GK ,Cp) is given as follows: as f ∈ H1(GK ,Qp) must
factor through Gab

K , if the restriction of f to Iab
K corresponds to βf , then f maps to βf [g 7→ logp χ(g)].

Proof: f(g) = trK/Qp
(βf logp χK(g)) on IK , but this map extends to map on GK . So f(g) =

trK/Qp
(βf logp χK(g)) + c(g) for a unramified map c on GK .

Now by(0.3.7), H1(G, Q̂ur
p /Qp) vanish because H1(G,Fp) vanish(0.3.6), so there is a z ∈ Q̂ur

p

that c(g) = g(z)− z. And

trK/Qp
(βf logp χK(g)) =

∑
σ

σ(βf logp χK(g)) = βf trK/Qp
(logp χK(g))+

∑
σ

(σ(βf )−βf )σ(logp χK(g)).

Notice(0.2.4) gives a βσ that σ(logp χK(g)) = g(βσ)−βσ, and trK/Qp
(logp χK(g)) = logp χ(g) because

(NK/Qp
χK(g))−1 = (χ(g))−1, as they both correspond via local CFT to the element in Gab

K which
acts by g on Lπ and id on Kur. Thus the result. □
Cor. (0.2.14). If η : GK → Z∗

p is a character and there is y ∈ C∗
p that η(g) = g(y)/y, then there

exists a finite extension L of K that η|GL
is unramified, i.e. η is potentially unramified.

Proof: Apply logp, then the image of f = logp η in H1(GK ,Cp) is trivial, so the above proposition
shows βf = 0, so logp η is trivial on IK , so IK is mapped by η into the µp, so η((Iab

K )p−1) = 1.
Iab

K
∼= O∗

K , so (Iab)p−1 is of finite index in Iab
K , so correspond to a finite Abelian extension E/Kur

that η is trivial on GE . Now choose a primitive element β of E/Kur, then E ⊂ K(β) · Kur =
(K(β))ur, so η|GK(β) is unramified. □

Prop. (0.2.15). If GK → GLd(Qp) is such ρ(g) = g(M)M−1 for M ∈ GLd(Cp), then ρ is
potentially unramified.
Proof: Cf.[Sen Continuous Cohomology and p-adic Galois representations]. □

3 Auxiliaries

Higher Ramification Groups

Prop. (0.3.1). For local fields L/K, if σ is in the inertia group, then

vL(σ(x)
x
− 1) ≥ vL(σ(πL)

πL
− 1) + δvL(x),0

for any x ∈ OL and a uniformizer πL. Equality holds when vL(x) = 1.
Proof: if L has residue field Fq, then any element of L can be written as ∑

ξnπ
n
L, where ξn

are all q − 1-th roots of unity. And because σ is inertia group, all q − 1-th roots of unity are
preserved, so σ(ξnπ

n
L)−ξnπ

n
L = ξnπL(σ(πL)

πL
−1)(σ(πL)n−1 +σ(πL)n−2πL +. . .+πn−1

L ) has valuation≥
v(σ(πL)

πL
− 1) + n. Thus the result. □
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Different and Discriminant

Prop. (0.3.2). If L/K is a finite extension and if I is an ideal of OL, then vK(trL/K(I)) =
⌊vK(I · DL/K)⌋.

Proof: By definition, trL/K(xOL) ⊂ OK iff x ∈ D−1
L/K , thus trL/K(I) ⊂ J iff I ⊂ D−1

L/KJ , i.e.
trL/K(I) is the smallest ideal J of OK that contains I · DL/K , thus the result. □

Galois Cohomology

Prop. (0.3.3). There is an exact sequence of pointed sets:

0→ H1(G/H,MH) inf−−→ H1(G,M) res−−→ H1(H,M)G/H .

Proof: First res(H1(G,M)) ⊂ H1(H,M)G/H because g(c)(h) = c(g)−1c(h)h(c(g)) is checked so
g(c) is cohomologous to c.

res ◦inf = 0 is easy, if res(c) = 0, then c is trivial on H, hence c(gh) = c(g) and h(c(g)) =
c(hg) = c(g · g−1hg) = c(g), so c is inflated from H1(G/H,MH).

For the injectivity of inf. If c(g) = g−1g(a), then a ∈MH , so it is a coboundary inH1(G/H,MH).
□

Prop. (0.3.4). For L/K a Galois extension, H1(G(L/K), GLn(L)) = 1, where L is equipped with
the discrete topology.

Proof: We prove any cocycle is a coboundary, for this, notice any cocycle factor through a finite
quotient, and the images of it is contained in a finite extension of K, hence it reduce to the case of
L/K finite.

For some a ∈ H1(G,GLn(L)), for a vector x ∈ Ln, let P (x) =
∑
a(σ)σ(x), then {P (x)} generate

Ln, because if f is a linear functional that vanish on it, then

0 = f(P (λx)) =
∑

f(a(σ)σx)σλ.

But automorphisms are linearly independent over L, hence f(a(σ)σ(x)) = 0 for all σ, so f = 0 as
a(σ) ∈ GLn(L)

Now let {P (xi)} generate Ln, then let T be the matrix with xi as rows, then P =
∑
a(σ)σ(T )

is invertible. Now a(σ) = P · σ(P )−1 is a cocycle. □

Cor. (0.3.5) (Hilbert’s Multiplicative Satz 90). H1(GL/K , L
∗) = 0 for Galois extension L/K,

where L is equipped with the discrete topology

Prop. (0.3.6) (Hilbert’s Additive Satz 90). For L/K a Galois extension, H1(G(L/K), L) = 1,
where L is equipped with the discrete topology.

Proof: Form the normal basis theorem??, for finite Galois extension L/K, L is an induced module
over K, thus H∗(G,L) = H∗(G,L) = 0 for ∗ ̸= 0 and H∗

T (G,L) = 0 by??.
Hence the same is true, for arbitrary Galois extension, when L is equipped with the discrete

topology, the same as in the proof of(0.3.4). □

Prop. (0.3.7). Let π be a topologically nilpotent element of A which is complete in the π-adic
topology and π is not a zero-divisor, let R = A/πA equipped with discrete topology. Let G be a
group which acts continuously on A and fix π, then if H1(G,R) is trivial, then H1(G,A) is trivial,
and if moreover H1(G,GLn(R)) is trivial, then H1(G,GLn(A)) is trivial.
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Proof: Cf.[Galois Representations Berger P15]. □

Prop. (0.3.8) (Cyclic Case). if G is a topological cyclic group ⟨g⟩, then the map H1(G,M) →
M/(1 − g) is well-defined and injective. And when M is profinite, p-adically complete, then the
map is also surjective.

Proof: The surjection: there is only one choice: c(gi) = (1 + g + . . . + gi−1)(m). And we need
to verify that it is continuous. The case of p-adic can be deduced from profinite case, because
c(γ) ∈ p−kM for some k, and p−kM is then profinite. For any finite quotient N of M , there is a k
that kM = 0, and a n that gn = id on N , so c(grkn) = 0 on N , which shows c is continuous. □

Ramification of Cyclotomic Fields

Prop. (0.3.9). pnvp(DKn/Fn
) is bounded and eventually constant. In particular vp(DKn/Fn

) con-
verges to 0.

Proof: Cf.[Galois representation Berger P20]. □

Cor. (0.3.10). If L/K is a finite extension, then trL∞/K∞(mL∞) = mK∞ .

Proof: By(0.3.2) and the factG(L∞/K∞) ∼= G(Ln/Kn) for n large by??, we have trL∞/K∞(mLn) =
mcn

Kn
, where cn = ⌊vKn(mLnDLn/Kn

)⌋. By the above proposition, cn is bounded by a c. But if
x ∈ mK∞ , x ∈ mc

Kn
for n large, so x ∈ trL∞/K∞(mL∞). □

Prop. (0.3.11). There is a decomposition of K̂∞ = Xn ⊕Xn, where Xn = KerRn. If δ > 0, then
for n large, α ∈ Z∗

p and γn that χ(γn) is a topological generator ΓFn , 1− αγn : Xn → Xn (because
γ commutes with Rn) is invertible and vp((1−αγn)−1x) ≥ vp(x)− 1/(p− 1)− δ, unless α = −1 and
p = 2, in which case it is only invertible on Xn+1.

Proof: As usual, xi is a basis of OKn/Fn
, then x =

∑
xie

∗
i , xi = trK∞/F∞(xei) ∈ F̂∞, and

Rn(x) = 0. Then (1−αγn) acts on xi, so it reduce to the case K = Qp, if one notices?? and(0.3.9).
Injectivity: If α = 1, this is Ax-Sen-Tate. In other situations, (1 − αγn)(Rn+k(x)) = 0 for all

k ≥ 0, so Rn+k(x) = αpk
γpk

n (Rn+k(X)) = αpk
Rn+k(X), so Rn+k(x) = 0, hence x = 0.

Surjectivity: Cf.[Galois representation Berger P23]. □
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