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1. Introduction

Recall that we defined p-adic rings of periods Bcris and Bst and defined the corre-
sponding admissible representations, which are respectively crystalline and semi-stable
representations. The goal of this lecture is to explain how one can recover the invariants
Dcris(V ) and Dst(V ) attached to a p-adic representation V of GK in terms of its (ϕ,Γ)-
module D(V ). Indeed, as the data of D(V ) is equivalent to that of V , one should be able
to compute these invariants directly from D(V ). In order to do so, we need a ring which
contains both B̃+

rig[1/t] and B†.
We actually already defined such a ring: this is exactly B̃†rig[1/t]. Of course, this does

not contain Bst and we will introduce an other ring B̃†log, which is to B̃†rig what Bst is to
Bcris, so that B̃†log[1/t] will contain both Bst and B†.

Using these rings, we will show that

Dcris(V ) = (D†rig(V )[1/t])ΓK ,

where D†rig(V ) is the overconvergent (ϕ,Γ)-module D†(V ) tensored over B†K by B†rig,K
(we will also show that the corresponding statement relatively to Dst(V ) holds).

Before expanding a bit more on the ideas of the proofs, we give the following interpre-
tation of some of the rings we have constructed (this is developped in [Ber04]):

1.1. Rings of periods and limits of algebraic functions. — One should think of
most rings of periods as rings of “limits of algebraic functions” on certain subsets of Cp.
For example, the formula B = B̂unr

F tells us that B is the ring of limits of (separable)
algebraic functions on the boundary of the open unit disk. The ring B̃ is then the ring
of all limits of algebraic functions on the boundary of the open unit disk.

Heuristically, one should view other rings in the same fashion: the ring B+
cris “is” the

ring of limits of algebraic functions on the disk D(0, |ε(1) − 1|p), and B+
max “is” the ring

of limits of algebraic functions on a slightly smaller disk D(0, r). One should therefore
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think of ϕn(B+
cris) as the ring of limits of algebraic functions on the disk D(0, |ε(n)− 1|p),

and finally B̃+
rig “is” the ring of limits of algebraic functions on the open unit disk D(0, 1).

Similarly, B̃†,rrig “is” the ring of limits of algebraic functions on an annulus C[s, 1[, where
s depends on r, and ϕ−n(B̃†,rrig) “is” the ring of limits of algebraic functions on an annulus
C[sn, 1[, where sn → 0, so that ∩+∞

n=0ϕ
−n(B̃†,rrig) “is” the ring of limits of algebraic functions

on the open unit disk D(0, 1) minus the origin; furthermore, if an element of that ring
satisfies some simple growth properties near the origin, then it “extends” to the origin
(remember that in complex analysis, a holomorphic function on D(0, 1−)− {0} which is
bounded near 0 extends to a holomorphic function on D(0, 1−)).

As for the ring B+
dR, it behaves like a ring of local functions around a circle (in partic-

ular, there is no Frobenius map defined on it). Via the map ϕ−n : B†,rn
rig → B+

dR, we have
for n ≥ 1 a filtration on B†,rn

rig , which corresponds to the order of vanishing at ε(n) − 1.

1.2. Heuristic of the proof. — Using the point of view from above, we now explain
how to prove that Dcris(V ) = (D†rig(V )[1/t])ΓK . We have seen that the periods of p-
adic representations live inside B̃+

rig[1/t] and up to twisting by a power of the cyclotomic
character, we can actually assume that the crystalline periods of V live inside B̃+

rig so
that Dcris(V ) = (B̃+

rig ⊗Qp V )GK .
Now the elements of (B̃†rig ⊗Qp V )GK form a finite dimensional F -vector space, so that

there is an r such that (B̃†rig ⊗Qp V )GK = (B̃†,rrig ⊗Qp V )GK , and furthermore this F -vector
space is stable by Frobenius, so that the periods of V (in this setting) not only live in
B̃†,rrig but actually in ∩+∞

n=0ϕ
−n(B̃†,rrig) and they also satisfy some simple growth conditions

(depending, say, on the size of det(ϕ)), which ensure that they too can be seen as limits of
algebraic functions on the open unit diskD(0, 1), that is as elements of B̃+

rig. In particular,
we have (B̃†rig ⊗Qp V )GK = (B̃+

rig ⊗Qp V )GK . This is what we get by regularization (of the
periods).

It’s easy to show that (B̃†rig ⊗Qp V )HK = B̃†rig,K ⊗B†rig,K
D†rig(V ), and the last step is

to show that (B̃†rig,K ⊗B†rig,K
D†rig(V ))GK = D†rig(V )GK . This is a decompletion process,

very similar to the one used in order to prove the Colmez-Sen-Tate conditions for Ã†K ,
which will take us from B̃†rig,K to B†rig,K . Similarly to the Ã†K-case, the main idea is
that the ring extension B̃†rig,K/B

†
rig,K looks very much like K̂∞/K, and we will define

“decompletion maps” (which are an analogue of Tate’s trace maps). This will show that
in fact, Dcris(V ) = (B†rig,K ⊗B†K

D†(V ))GK . In particular, V is crystalline if and only if
(B†rig,K ⊗B†K

D†(V ))GK is a d-dimensional F -vector space.
We will now explain how this works exactly, following [Ber02].
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2. The ring B̃†log and the maps Rk

We let B̃†,rlog = B̃†,rrig[log[p̃]] endowed with the actions of GF and ϕ given by g(log[p̃]) =
log[p̃]+c(g)t and ϕ(log[p̃]) = p · log[p̃]. This allows us to extend the maps ιn : B̃†,rrig → B+

dR
for n big enough to B̃†,rlog by setting ιn(log[p̃]) = p−n log[p̃].

Proposition 2.1. — The map ιn : B̃†,rn
rig [log[p̃]] → B+

dR that extends ιn by ιn(log[p̃]) =
p−n log[p̃] is injective, commutes with the Galois action and its restriction to B̃+

log is ϕ−n.

Proof. — Everything follows from the previous lectures.

Recall that we actually have B̃†,rlog = B̃†,rrig[log[x]] for any x 6= 0 ∈ Ẽ which does not
belong to (Ẽ+)×. Since the series defining log([π]/π) converges in Ã†,r0 , we actually have
that B̃†,rlog = B̃†,rrig[log[π]]. We endow B̃†log of the monodromy operator N defined by

N

(
d∑

k=0
ak log(π)k

)
= −

d∑
k=0

kak log(π)k−1

which means that N = −d/d log(π). One can check that N commutes with the Galois
action.

Recall that if r > 0 and pkr > rK then there exists a map Rk : Ã†,rK [1/[π]] →
ϕ−k(A†,p

kr
K [1/[π]]) which is a continuous, ϕ−k(A†,p

kr
K [1/[π]])-linear section of the inclusion

ϕ−k(A†,p
kr

K [1/[π]]) ⊂ Ã†,rK [1/[π]] which commutes with the Galois action (i.e. γ ◦ Rk =
Rk ◦ γ for γ ∈ ΓK) and such that Rk(x)→ x for all x ∈ Ã†,rK [1/[π]].

Proposition 2.2. — If r > 0 and pkr > rK then by Qp-linearity and continuity the
above map Rk extends to a map Rk : B̃†,rrig,K → ϕ−k(B†,p

kr
rig,K), such that:

1. Rk is a continuous section of the inclusion ϕ−k(B†,p
kr

rig,K) ⊂ B̃†,rrig,K;

2. Rk is ϕ−k(B†,p
kr

rig,K)-linear;

3. if x ∈ B̃†,rrig,K, then limk→+∞Rk(x) = x;

4. if x ∈ B̃†,rrig,K, and γ ∈ ΓK, then γ ◦Rk(x) = Rk ◦ γ(x).

Proof. — Once again this follows from statements made in the previous lectures, where it
was shown that the maps Rk were continuous for the topology induced by the valuations
V[r,s] for all s ≥ r and satisfied an inequality of the form V[r,s](Rk(x)) ≥ V[r,s](x) − cK(r)
where cK(r) only depends on K and r. Since B̃†,rrig is the completion of B̃†,r for the
topology induced by the valuations V[r,s], s ≥ r, this already shows that the maps Rk

extend by Qp-linearity and continuity to maps Rk : B̃†,rrig,K → ϕ−k(B†,p
kr

rig,K). It remains to
see that if x ∈ B̃†,rrig,K , then limk→+∞Rk(x) = x.

Let x ∈ B̃†,rrig,K , let s ≥ r and let M ≥ 0. We have to show that there exists k0 ∈ N
such that V[r,s](x − Rk(x)) ≥ M for k ≥ k0. By density, there exists y ∈ B̃†,r such that
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V[r,s](x − y) ≥ M + cK(r). Let n ∈ N be such that z = pny ∈ Ã†,r[1/[π]]. Then there
exists k0 ≥ 0 such that vr(z −Rk(z)) ≥M + ns if k ≥ k0. We then have

vr(y −Rk(y)) = vr(z −Rk(z))− nr ≥M,

and
vs(y −Rk(y)) = vs(z −Rk(z))− ns ≥ vr(z −Rk(z))− ns ≥M.

Thus we have V[r,s](y −Rk(y)) ≥M if k ≥ k0. To conclude it suffices to write x−Rk(x)
as (x− y)−Rk(x− y) + (y −Rk(y)).

We also define B†log,K = B†rig,K [log(π)], which is a ring stable by the actions of ϕ
and ΓK since ϕ(log(π)) = log(ϕ(π)) = p log(π) + log(ϕ(π)/πp) and γ(log(π)) = log(π) +
log(γ(π)/π) and that the series defining log(ϕ(π)/πp) and log(γ(π)/π) converge in B†rig,K .

Definition 2.3. — We extend the maps Rk to a ϕ−k(B†,p
kr

rig,K)-linear section of the in-
clusion ϕ−k(B†,p

kr
log,K [1/t]) in B̃†,rlog,K [1/t]: those maps still commute with ΓK , and satisfy

limk→+∞Rk(x) = x si x ∈ B̃†,rlog,K [1/t].

3. Regularization

We now prove the result of regularization by the Frobenius on which the rest of the
proofs will rely on. Recall that the Frobenius ϕ is a bijection from B̃I to B̃pI and thus
induces a bijection from B̃†,rrig to B̃†,prrig and from B̃†,rlog to B̃†,prlog since ϕ(log[π]) = p · log[π].

Lemma 3.1. — We have Ã[r;s]/(p) = Ẽ+[X, πs−rX−1]/(πs, πrX). In particular if r = s,
then Ã[r;r]/(p) = Ẽ+/(πr)[X,X−1].

Proof. — Let A = Ã+{X, Y } and I = (XY − [π]s−r, p−X[π]r, [π]s − pY ) so that Ã[r;s]

can be identified with A/I and so that Ã[r;s]/(p) = (A/I)/(p). We have an exact sequence
0→ I → A→ A/I → 0 and the multiplication by p induces the following diagram:

0 −−−→ I −−−→ A −−−→ A/I −−−→ 0
p

y p

y p

y
0 −−−→ I −−−→ A −−−→ A/I −−−→ 0y y y

I/p −−−→ A/p −−−→ (A/I)/p −−−→ 0
and since A/I has no p-torsion, the snake’s lemma shows that (A/I)/p is identified with
the quotient of A/p by the image of I inside it. In our setting we have A/p = Ẽ+[X, Y ]
and the image of I is (XY − πs−r,−Xπr, πs), hence the lemma.

Lemma 3.2. — The natural inclusions Ã[0,r0] ⊂ Ã[r0,r0] and Ã†,r0 ⊂ Ã[r0,r0] induce the
following exact sequence:

0→ Ã+ → Ã[0,r0] ⊕ Ã†,r0 → Ã[r0,r0] → 0.
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Proof. — The fact that the arrow Ã[0,r0] ⊕ Ã†,r0 → Ã[r0,r0] is surjective follows from
the decomposition of an element of Ã[r0,r0] in two parts (recall that Ã[r0,r0] is the p-adic
completion of Ã+[ p[π] ,

[π]
p

]). We also know that Ã+ is contained in the intersection of
Ã[0,r0] and Ã†,r0 and thus it remains to prove that the map

Ã+ → Ã†,r0 ∩ Ã[0,r0]

is also surjective. First we prove that it is true modulo pÃ[r0,r0] (note that the arrow is
no longer injective mod p). Recall that the rings Ã[0,r0] et Ã†,r0 can be identified with
Ã+{X}/(pX − [p̃]) and Ã+{Y }/([p̃]Y − p) and that Ã[r0,r0]/(p) = Ẽ+/(p̃)[X,X−1]. The
image of Ã†,r0 inside this ring is then Ẽ+/(p̃)[1/X] and the one of Ã[0,r0] is Ẽ+/(p̃)[X]
so that the image of their intersection is a subring of Ẽ+/(p̃) and thus the arrow Ã+ →
Ã†,r0 ∩ Ã[0,r0] is surjective modulo pÃ[r0,r0]. If we let x in Ã†,r0 ∩ Ã[0,r0] it therefore exists
y ∈ Ã+ such that x−y ∈ pÃ[r0,r0]. This means that x−y ∈ pÃ[0,r0] and ∈ pÃ†,r0 +[p̃]Ã+

(it suffices to apply lemma 3.1 to these rings). Since p divides [p̃] in Ã[0,r0] there exists
z ∈ [p̃]Ã+ such that x − y − z ∈ p(Ã†,r0 ∩ Ã[0,r0]). Since Ã+ is complete for the p-adic
topology, it suffices to iterate this to prove the lemma.

Lemma 3.3. — Let h be a positive integer. Then

∩+∞
s=0p

−hsÃ†,p−sr = Ã+ and ∩+∞
s=0 p

−hsÃ†,p
−sr

rig ⊂ B̃+
rig

where Ã†,rrig denotes the ring of integers of B̃†,rrig for the valuation V[r;r].

Proof. — Let us start with the first point: since x ∈ Ã†,r it can be uniquely written as∑
k≥0 p

k[xk] and we also have phsx = ∑
pk+hs[xk]. Since phsx ∈ Ã†,p−sr this means that

vE(xk) + rp1−s

p− 1(k + hs) ≥ 0

so that
vE(xk) ≥ −

(k + hs)r
ps−1(p− 1)

and thus (when s→ +∞) that vE(xk) ≥ 0 so that x ∈ Ã+.
For the second point, note that for all s one can write x = as+bs with as ∈ p−hsÃ†,p

−sr

and bs ∈ B̃+
rig. By the lemma 3.2 we have as − as+1 ∈ B̃+ and we also know that

as − as+1 ∈ p−h(s+1)Ã†,p−sr so that as − as+1 ∈ p−h(s+1)Ã+ and so that up to changing
as+1 we can assume that as = as+1 = a. We then have a ∈ ∩+∞

s=0p
−hsÃ†,p−sr = Ã+ and

thus x ∈ B̃+
rig.

Proposition 3.4. — Let r and u be two positive integers and let A ∈ Mu×r(B̃†log).
Assume that there exists P ∈ GLu(F ) such that A = Pϕ−1(A). Then A ∈ Mu×r(B̃+

log).

Proof. — Let A = (aij) and aij = ∑d
n=0 aij,n log[π]n. Let h0 ∈ Z such that ph0P ∈

Mu(OF ) and h = h0 + d. The assumption on A and P can be written as:

pi1ϕ
−1(a1j) + · · ·+ piuϕ

−1(auj) = aij ∀i ≤ u, j ≤ r
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and since ϕ−1(log[π]n) = p−n log[π]n, this implies that if aij,n ∈ p−cÃ†,rrig, then since
ph0pik ∈ OF and ϕ−1(aik,n) ∈ p−cÃ†,r/prig , we have aij,n ∈ p−h−cÃ†,r/prig . By iterating this we
get that aij,n ∈ ∩+∞

s=0p
−hs−cÃ†,rp

−s

rig . This allows us to apply the above lemma to pcaij,n
and this finishes the proof.

4. Applications for semi-stable periods

Let B†,rlog,K = B†,rrig,K [log(π)] and let

D†rig(V ) = B†rig,K ⊗B†K
D†(V ) et D†log(V ) = B†log,K ⊗B†K

D†(V )

The fact that p-adic representations are overconvergent shows that both D†rig(V ) and
D†log(V ) are B†rig,K- and B†log,K- free modules of rank d = dimQp(V ).

If V is a p-adic representation, or more generally, a B-representation where B is a
Qp-algebra endowed with an action of GK , we let V (i) denote the twist of V by χi, so
that the action of g ∈ GK on V (i) is the action of g on V multiplied by χ(g)i.

Proposition 4.1. — One has

{x ∈ B̃†log, g(x) = χi(g)x, ∀g ∈ GK} =

Ft
i if i ≥ 0;

0 if i < 0.

Proof. — Let V n
i = (B̃†,rn

log (−i))GK . This is a finite dimensional F -vector space sta-
ble by Frobenius and the previous proposition implies that V n

i = (B̃+
log(−i))GK . But

(B̃+
log[1/t](i))GK is the (ϕ,N)-module attached to the crystalline representation χi, so

that it is of dimension 1 and thus any non zero element of (B̃+
log[1/t](i))GK generates this

F -vector space. Since ti works, this means that

V n
i =

Ft
i if i ≥ 0;

0 if i < 0.

Since Vi = ∪+∞
n=0V

n
i this proves the result.

We let D+
st(V ) = (B+

st ⊗Qp V )GK . Recall that D+
st(V ) = (B̃+

log ⊗Qp V )GK . A quick
computation shows that Dst(V ) = t−dDst(V (−d)) and thus for d � 0, we have that
Dst(V ) = t−dD+

st(V (−d)).

Proposition 4.2. — If V is a p-adic representation then (B̃†log ⊗Qp V )GK is a finite
dimensional F -vector space and the morphism

D+
st(V )→ (B̃†log ⊗Qp V )GK

induced by the inclusion B̃+
log ⊂ B̃†log is an isomorphism of (ϕ,N)-modules.
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Proof. — If n ∈ N, then Dn = (B̃†,rn

log ⊗Qp V )GK is a F -vector space whose dimension is
≤ [K : F ]d, since ιn induces an injection of Dn in DdR(V ), which is a finite dimensional
K-vector space of dimension ≤ d. If we take [K : F ]d+1 elements of (B̃†log⊗QpV )GK , they
live insideDn for n� 0, and thus are linearly dependent. This means that (B̃†log⊗QpV )GK

is a F -vector space of dimension ≤ [K : F ]d.
For the second point, let v1, · · · , vr and d1, · · · , du be respectively Qp- and F - basis of

V and (B̃†log⊗Qp V )GK . There exists a matrix A ∈ Mr×u(B̃†log) such that (di) = A(vi). Let
P ∈ GLu(F ) be the matrix of ϕ in the basis (di) (which is invertible since ϕ : B̃†log → B̃†log
is bijective). We then have ϕ(A) = PA and thus A = ϕ−1(P )ϕ−1(A); proposition 3.4
shows that A ∈ Mr×u(B̃+

log) and thus that (B̃†log ⊗Qp V )GK ⊂ (B̃+
log ⊗Qp V )GK = D+

st(V ),
which is what we wanted.

Up to twisting V , this implies that V is semi-stable if and only if it is B̃†log[1/t]-
admissible, and that it is crystalline if and only if it is B̃†rig[1/t]-admissible.

Proposition 4.3. — If V is semi-stable we have the following comparison isomorphism:

B̃†log[1/t]⊗F Dst(V ) = B̃†log[1/t]⊗Qp V

Proof. — This comes from the fact that in this case we already have:

B̃+
log[1/t]⊗F Dst(V ) = B̃+

log[1/t]⊗Qp V

and thus it suffices to tensor this equality by B̃†log[1/t] over B̃+
log[1/t].

Theorem 4.4. — If V is a p-adic representation of GK then

Dst(V ) = (D†log(V )[1/t])ΓK and Dcris(V ) = (D†rig(V )[1/t])ΓK

In particular V is semi-stable (resp. crystalline) if and only if (D†log(V )[1/t])ΓK (resp.
(D†rig(V )[1/t])ΓK) is a F -vector space of dimension d = dimQp(V ).

Proof. — The second point follows from the first one by taking the invariants under N =
0. Since D†log(V )[1/t] ⊂ (B̃†log[1/t] ⊗Qp V ) (and since D†rig(V )[1/t] ⊂ (B̃†rig[1/t] ⊗Qp V ))
the previous results show that (D†log(V )[1/t])ΓK (resp. (D†rig(V )[1/t])ΓK ) is contained in
Dst(V ) (resp. in Dcris(V )).

Let us now show that Dst(V ) ⊂ (D†log(V )[1/t])ΓK , and that Dcris(V ) ⊂ (D†rig(V )[1/t])ΓK .
It suffices to show the semi-stable case because the crystalline one will follow by taking the
invariants under N = 0. Let r = dimF (Dst(V )). Up to twisting V , we can assume that
Dst(V ) = (B̃†log⊗Qp V )GK and we know that we have (B̃†log⊗Qp V )HK = B̃†log,K⊗B†K

D†(V )
since D†(V ) has the right dimension. This implies that if we chose a basis {ei} of D†(V )
and {di} a basis of Dst(V ), then the matrix M ∈ Mr×d(B̃†log,K) defined by (di) = M(ei)
is of rank r et and satisfies γK(M)G −M = 0 where G ∈ GLd(B†K) is the matrix of γK
in the basis {ei}.

The trace maps Rm defined previously are B†log,K-linear and commute with ΓK so that
γK(Rm(M))G − Rm(M) = 0. Moreover Rm(M) → M and if M ∈ Mr×d(B̃†,rn

log,K), then
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Rm(M) ∈ Mr×d(B̃†,rn

log,K). Let N = ϕm(Rm(M)). We then have γK(N)ϕm(G) = N and
since the actions of ϕ and ΓK commute on D†rig(V ) we have ϕ(G) = γK(P )GP−1 (P is
the matrix of ϕ and is invertible since ϕ is overconvergent and B†K is a field) so that
if Q = ϕm−1(P ) · · ·ϕ(P )P , then ϕm(G) = γK(Q)GQ−1 and thus γK(NQ)G = (NQ).
The matrix NQ determines r elements of D†log(V ) which are fixed by γK . It remains to
show that these elements are linearly independent over F for m big enough. But since
Rm(M)→M , the matrix NQ is of rank r = rank(M) for m� 0 and thus will determine
a free sub-module of rank r of D†log(V ). The F -vector space generated by the elements
determined by NQ is thus of dimension r and thus equal to Dst(V ).

Proposition 4.5. — We have the following comparison isomorphisms:
1. if V is a semi-stable representation then

D†(V )⊗B†K
B†log,K [1/t] = Dst(V )⊗F B†log,K [1/t]

2. if V is a crystalline representation then

D†(V )⊗B†K
B†rig,K [1/t] = Dcris(V )⊗F B†rig,K [1/t]

Proof. — Once again it suffices to prove the semi-stable case as the crystalline case will
follow by taking the invariants under N = 0. Up to twisting V , we are reduced to the
case where V is B̃+

log-admissible and we then know that Dst(V ) ⊂ B̃†log,K ⊗B†K
D†(V ) and

that
B̃†log,K [1/t]⊗B†K

D†(V ) = B̃†log,K [1/t]⊗F Dst(V )
so that if we chose basis {di} of Dst(V ) and {ei} of D†(V ), then (ei) = B(di) with
B ∈ Md(B̃†log,K [1/t]); proposition 4.4 implies that (di) = A(ei) with A ∈ Md(B†log,K [1/t]);
and moreover we have that AB = Id. We can apply the operator R0 which is B†log,K [1/t]-
linear and we obtain that AR0(B) = Id so that B = R0(B) and thus B has its coefficients
in B†log,K [1/t] and A ∈ GLd(B†log,K [1/t]). This finishes the proof.

Proposition 4.6. — Let V be a semi-stable representation of GK and let M be the
transfer matrix from a basis of Dst(V ) to a basis of D†(V ). It then exists r ∈ Z and
λ ∈ B†K such that det(M) = λtr.

Proof. — The determinant of the transfer matrix is equal to the coefficient of the transfer
matrix for det(V ) and thus it suffices to prove the result in dimension 1. But semi-stable
characters are of the form ωχr where ω is an unramified character and its period is an
element β ∈ W (k), so that Dst(V ) = F · βt−r and D†(V ) = B†K · β .

References
[Ber02] Laurent Berger, Représentations p-adiques et équations différentielles, Inventiones

mathematicae 148 (2002), no. 2, 219–284.
[Ber04] , An introduction to the theory of p-adic representations, Geometric aspects of

Dwork theory 1 (2004), 255–292.



CRYSTALLINE AND SEMI-STABLE REPRESENTATIONS AND (ϕ, Γ)-MODULES 9

Léo Poyeton


