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1. Introduction

Recall that we defined p-adic rings of periods B and By and defined the corre-
sponding admissible representations, which are respectively crystalline and semi-stable
representations. The goal of this lecture is to explain how one can recover the invariants
D.is(V) and Dy (V) attached to a p-adic representation V' of G in terms of its (¢, I')-
module D(V). Indeed, as the data of D(V') is equivalent to that of V', one should be able
to compute these invariants directly from D(V'). In order to do so, we need a ring which
contains both B:g[l/t] and Bf.

We actually already defined such a ring: this is exactly Brlg[l /t]. Of course, this does
not contain By and we will introduce an other ring Blog, which is to Bl,, what By is to

rig
B, so that Bfog[l/t] will contain both By and Bf.

Using these rings, we will show that

Deis(V) = (Dl(V)[L/1])"x,

rig

where D:[lg(V) is the overconvergent (p,T')-module DT(V) tensored over Bl by Brlg K
(we will also show that the corresponding statement relatively to D (V') holds).
Before expanding a bit more on the ideas of the proofs, we give the following interpre-

tation of some of the rings we have constructed (this is developped in [Ber04)):

1.1. Rings of periods and limits of algebraic functions. — One should think of
most rings of periods as rings of “limits of algebraic functions” on certain subsets of C,.
For example, the formula B = B tells us that B is the ring of limits of (separable)
algebraic functions on the boundary of the open unit disk. The ring B is then the ring
of all limits of algebraic functions on the boundary of the open unit disk.

Heuristically, one should view other rings in the same fashion: the ring B, “is” the
ring of limits of algebraic functions on the disk D(0,|e™™ — 1|,), and B, “is” the ring

of limits of algebraic functions on a slightly smaller disk D(0,7). One should therefore
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think of ¢"(B,;) as the ring of limits of algebraic functions on the disk D(0, |¢™ —1],),

and finally BIg “is” the ring of limits of algebraic functions on the open unit disk D(0, 1).
T,T‘ «
rig .
s depends on r, and go_”(BL’g) “is” the ring of limits of algebraic functions on an annulus

C[sn, 1[, where s, — 0, so that ﬂi{i‘é(p‘"(ﬁli’g) “is” the ring of limits of algebraic functions

on the open unit disk D(0,1) minus the origin; furthermore, if an element of that ring

Similarly, BY;" “is” the ring of limits of algebraic functions on an annulus C(s, 1[, where

satisfies some simple growth properties near the origin, then it “extends” to the origin
(remember that in complex analysis, a holomorphic function on D(0,17) — {0} which is
bounded near 0 extends to a holomorphic function on D(0,17)).

As for the ring B, it behaves like a ring of local functions around a circle (in partic-
L’g" — B, we have

for n > 1 a filtration on Blgg", which corresponds to the order of vanishing at ¢™ — 1.

ular, there is no Frobenius map defined on it). Via the map ¢ : B

1.2. Heuristic of the proof. — Using the point of view from above, we now explain
how to prove that D¢ (V) = (DIig(V)[l/t])FK. We have seen that the periods of p-
adic representations live inside E;qg[l /t] and up to twisting by a power of the cyclotomic
character, we can actually assume that the crystalline periods of V live inside Eﬁg SO
that Deis(V) = (B, ®q, V)9%.

Now the elements of (]NBLg ®q, V)9 form a finite dimensional F-vector space, so that
there is an r such that (Biig Rq, V)K= (BL’Q ®q, V)9, and furthermore this F-vector

space is stable by Frobenius, so that the periods of V' (in this setting) not only live in
]NBL’; but actually in HZ§)¢*”(]§I{Q) and they also satisfy some simple growth conditions
(depending, say, on the size of det(y)), which ensure that they too can be seen as limits of
algebraic functions on the open unit disk D(0, 1), that is as elements of ]~3;§g. In particular,
we have (]~3Lg ®q, V)% = (]:j»;'i'g ®q, V)9%. This is what we get by regularization (of the
periods).

It’s easy to show that (ELg ®q, V)7 = EL&K ®BIigK DLg(V), and the last step is
to show that (BLgvK ®BIig,K DLg(V))gK = DLg(V)gK. This is a decompletion process,
very similar to the one used in order to prove the Colmez-Sen-Tate conditions for K}(,

which will take us from ]~3Lg7 x to BL& . Similarly to the Al-case, the main idea is
that the ring extension P’Lg, w/ Biig « looks very much like K./K, and we will define
“decompletion maps” (which are an analogue of Tate’s trace maps). This will show that
in fact, Deus(V) = (BLgK D1 D(V))9%. In particular, V is crystalline if and only if
(Biig’K ®pi D(V))9% is a d-dimensional F-vector space.

We will now explain how this works exactly, following [Ber02].
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2. The ring Bfog and the maps Ry
We let B = Bli"[log[p]] endowed with the actions of Gp and ¢ given by g(log[ﬁ])

log = “rig

log[p] +¢(g)t and <p(log[~]) = p-log[p]. This allows us to extend the maps ¢, : Brlg — Blg

for n big enough to Blog by setting ¢, (log[p]) = p~" log[p].

Proposition 2.1. — The map t,, : Bilg" [log[p]] — Big that extends v, by Ln(log[N]) =

p~"log[p] is injective, commutes with the Galois action and its restriction to Blog S @

—n

Proof. — Everything follows from the previous lectures. O]

Recall that we actually have BITO; = Bilg[log[x]] for any = # 0 € E which does not

belong to (E*)*. Since the series deﬁmng log([7]/7) converges in A", we actually have
that B]"" = Bl [log[7]]. We endow Blog of the monodromy operator N defined by

log — “rig
d d
N (Z ag log(ﬂ)k> = —" kaylog(m)*!
k=0

k=0
which means that N = —d/dlog(m). One can check that N commutes with the Galois
action.

Recall that if > 0 and p*r > rg then there exists a map Ry, : A [1/[r]] —
—k AT,pkr . . . —k T,ka RE . . .
@ (AP "[1/[n]]) which is a continuous, ¢~ "(A}P "[1/[r]])-linear section of the inclusion
gofk(A}’(pkr[l/[ﬁ]]) c Al7[1/[x]] which commutes with the Galois action (i.e. 7o Ry =

Ry 0 for v € T'x) and such that Ry(z) — z for all z € A} [1/[x]].

Proposition 2.2. — If r > 0 and p*r > ryx then by Q,-linearity and continuity the

above map Ry, extends to a map Ry, : Bing — w"“(BI{ﬁf}}); such that:

k
1. Ry is a continuous section of the inclusion gp‘k(BL’g}) BL;K;
k
2. Ry is cp*k(BL’g;;)—linear;

3. ifx e Brlg i, then limy_, o Ri(x) = z;

4. ifx € BngK, and v € ', then vy o Ri(x) = Ry, o y(x).

Proof. — Once again this follows from statements made in the previous lectures, where it
was shown that the maps Ry were continuous for the topology induced by the valuations
Virg for all s > r and satisfied an inequality of the form V. g(Ri(x)) > Vi q(x) — cx(r)
where cg(r) only depends on K and 7. Since BLg is the completion of Bi" for the
topology induced by the valuations V|.,,s > r, this already shows that the maps R;

extend by Q,-linearity and continuity to maps Ry, : EL’; K= go_k(BL’g?;). It remains to
see that if x € BL; 5, then limy_,, o Rp(x) = x.

Let x € Brng, let s > r and let M > 0. We have to show that there exists kg € N
such that Vi, g(z — Ri(z)) > M for k > ky. By density, there exists y € B such that
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Virs)(x —y) > M + cg(r). Let n € N be such that z = p"y € A'7[1/[r]]. Then there
exists ko > 0 such that v,.(z — Rg(2)) > M + ns if k > ko. We then have

vr(y — Ri(y)) = vr(z — Ri(2)) —nr 2 M,
and
vs(y — Re(y)) = vs(z — Rk(2)) —ns > v.(z — Ri(z)) —ns > M.
Thus we have V}, o(y — Ri(y)) > M if k > ko. To conclude it suffices to write x — Ry (x)
as (¢ —y) — Ri(x —y) + (y — Bi(y)). O
We also define BlTOgK = BL&K[lOg(ﬂ')], which is a ring stable by the actions of ¢

and I'x since p(log(m)) = log(yp(m)) = plog(m) + log(¢(m)/7?) and v(log(m)) = log(r) +
log(y(m)/m) and that the series defining log(y(7)/7P) and log(y(m)/7) converge in BLgK.

Definition 2.3. — We extend the maps Ry to a gp‘k(BIfg’;’;)—linear section of the in-
clusion gp‘k(BlT(g[Q[l/t]) in EI&;K[l/t]: those maps still commute with 'y, and satisfy
limy o0 Ri(z) =z iz € BL;;Ku/t].

3. Regularization

We now prove the result of regularization by the Frobenius on which the rest of the
proofs will rely on. Recall that the Frobenius ¢ is a bijection from B; to B,; and thus

induces a bijection from BI{; to ]?SL’gT and from Ef&g to ]~31T(;§r since p(log[7]) = p - log[7].

Lemma 3.1. — We have AU/ (p) = BY (X, 7" XY /(75,7 X). In particular if r = s,
then Al /(p) = B+/(7")[X, X ).
Proof — Let A= A™{X,Y} and I = (XY — []*",p — X[7]", [7]* — pY') so that Al
can be identified with A/ and so that A" /(p) = (A/I)/(p). We have an exact sequence
0—1—A— A/l — 0 and the multiplication by p induces the following diagram:
0O — I — A — A/l — 0
SO

0O —— I — A —— A/l — 0

| l

Ilp —— A/p — (A/I)/p — 0

and since A/I has no p-torsion, the snake’s lemma shows that (A/I)/p is identified with
the quotient of A/p by the image of I inside it. In our setting we have A/p = ET[X Y]
and the image of [ is (XY — 7" —X7" 7°), hence the lemma. O

Lemma 3.2. — The natural inclusions A0l c Alrorol gnd ATro c Alrorol induce the
following exact sequence:

0— At — Al g Aoy Alrorol _y
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Proof. — The fact that the arrow A0 @ Atro — Alorl ig surjective follows from
the decomposition of an element of A"l in two parts (recall that Alorol is the p-adic
completion of A*[ & w]). We also know that A™ is contained in the intersection of

A0l and AT and thus it remains to prove that the map
A+ At Al

is also surjective. First we prove that it is true modulo ]DA[’"O”"0 (note that the arrow is
no longer injective mod p). Recall that the rings ALl ot AT can be identified with
A"(X) /(X — [7) and A (Y)Y — ) and that A7) = B/ ()X, X The
image of AT inside this ring is then E*/(p)[1/X] and the one of ALl jg E*/( p)[X]
so that the image of their intersection is a subring of Et /() and thus the arrow At —
Aty A0l g surjective modulo pAloml. If we let 2 in Atro N Al070) it therefore exists
y € At such that 2 —y € pAlo7ol This means that 2 —y € pAl®7) and € pATro 4+ [p]A*
(1t suffices to apply lemma 3.1 to these rings). Since p divides [p] in A% there exists
z € [pJAT such that z —y — z € p(Afo N All). Since AT is complete for the p-adic
topology, it suffices to iterate this to prove the lemma. O

Lemma 3.3. — Let h be a positive integer. Then

NSp " ATPT T — AT and NI _hSALg T C B;tg

where Ai;g denotes the ring of integers of Brlg for the valuation V..

Proof. — Let us start with the first point: since x € AT it can be uniquely written as
S k=0 P"[zi] and we also have p"*z = Y pF*"[x;]. Since p"*z € AT this means that

1—s
ve(Tk) + P (k+hs) >0
p—1
so that (h+ hs)
—+ hs)r
vplxry) > ——mm——
m{s) 2 ptp—1)

and thus (when s — +o0) that vg(zy,) > 0 so that z € AT
For the second point, note that for all s one can write z = a,+ b, with a; € p~ " AT
and b, € B}

rig* S S
Us — Ugyq € pMEFDATPTT 50 that ay — asq € p "D AT and so that up to changing
as41 we can assume that a; = a,4; = a. We then have a € NI Sp~rA»™*" = A+ and

thus x € B;tg O

—sp

By the lemma 3.2 we have a; — as1q € BT and we also know that

Proposition 3.4. — Let r and u be two positive integers and let A € MUXT(Blog)
Assume that there exists P € GL,(F) such that A= Po~'(A). Then A € MUXT(Blog).

Proof. — Let A = (a;;) and ay; = S%_;aij.log[@]". Let hy € Z such that p™P €
M, (OF) and h = hg + d. The assumption on A and P can be written as:

pﬂ@_l(alj) + e +piu<,0_1(auj) = a;j Vi<u, j<r
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1—7r

and since o !(log[7]") = p~"log[7|", this implies that if a;;, € p—CKﬂg, then since

p"pa € O and p Y ay,) € p*CKL’;/” *h*CKL’Q/p

get that a;;, € ﬂjﬁSp‘hS_CKI{gp . This allows us to apply the above lemma to pas;,

and this finishes the proof. O

, we have a;;,, € p . By iterating this we

4. Applications for semi-stable periods

Let BI. = Bf? ; [log(m)] and let
DIig(v) = Biig,K ®B}( D'(V) et Dfog(V) = BlTog’K @B}( D (V)

The fact that p-adic representations are overconvergent shows that both DLg(V) and
DlTOg(V) are BL& - and Bfog x- free modules of rank d = dimq, (V).

If V is a p-adic representation, or more generally, a B-representation where B is a
Q,-algebra endowed with an action of Gx, we let V(i) denote the twist of V' by x*, so

that the action of g € Gx on V(i) is the action of g on V multiplied by x(g)".

Proposition 4.1. — One has

Fti ifi > 0;

{zreBl, 9(z) =x(9)x, Vg € G} = {o i <0,

Proof. — Let V* = (EIT(;;”(—Z'))QK. This is a finite dimensional F-vector space sta-
(—i))9%. But
[1/t](i))9% is the (¢, N)-module attached to the crystalline representation x?, so

ble by Frobenius and the previous proposition implies that V" = (Bfgg
(Biog -
that it is of dimension 1 and thus any non zero element of (Bjf,[1/t](i))9% generates this

F-vector space. Since t' works, this means that

i

W JFtifi>0;
0ifi <O0.
Since V; = U2 Vi" this proves the result. O

We let D (V) = (B ®q, V). Recall that DI (V) = (B}, ®q, V)9%. A quick
computation shows that Dy (V) = t 9Dy (V(—d)) and thus for d > 0, we have that
D (V) = t7ID{(V(=d)).

Proposition 4.2. — If V is a p-adic representation then (Efog ®q, V)% is a finite
dimensional F'-vector space and the morphism

D(V) = (B, ®q, V)

induced by the inclusion ng C Bfog is an isomorphism of (¢, N')-modules.
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Proof. — If n € N, then D,, = (BL;" ®q, V)¢ is a F-vector space whose dimension is
< [K : F|d, since ¢, induces an injection of D,, in Dgg(V'), which is a finite dimensional

K-vector space of dimension < d. If we take [K : F|d+1 elements of (ﬁfog ®q, V)%, they
live inside D,, for n > 0, and thus are linearly dependent. This means that (Bfog@)qp V)Gx
is a F-vector space of dimension < [K : F]d.

For the second point, let vy,--- ,v, and dy, - -+ ,d, be respectively Q,- and F- basis of
V and (B, ®q, V))9%. There exists a matrix A € M,,,(Bf,,) such that (d;) = A( ;). Let

log

P € GL,(F) be the matrix of ¢ in the basis (d;) (which is invertible since ¢ : Blog — BITog
is bijective). We then have p(A) = PA and thus A = ¢~ '(P)p !(A); proposition 3.4
shows that A € M,,(Bf,) and thus that (Bf,, ®q, V)9 C (B}, ®q, V)9 = D(V),
which is what we wanted. O

Up to twisting V/, this implies that V is semi-stable if and only if it is Efog[l/t]—

admissible, and that it is crystalline if and only if it is ng[l /t]-admissible.

Proposition 4.3. — If V is semi-stable we have the following comparison isomorphism:

log[l/t] ®F Dst(v) log[l/t] ®Q 4

Proof. — This comes from the fact that in this case we already have:
log[l/t] ®F DSt(V) log[l/t] ®Q 4
and thus it suffices to tensor this equality by Blog[l /t] over Blog[l /t]. O

Theorem 4.4. — IfV is a p-adic representation of Gk then
Dy (V) = (D}, (V)[1/1)" and Dess(V) = (DL, (V)[1/1])"%

log rig
In particular V' is semi-stable (resp. crystalline) if and only if (D 1Og( Y1/t (resp.

(Dilg( )[1/t]))'% ) is a F-vector space of dimension d = dimq, (V).

Proof. — The second point follows from the first one by taking the invariants under N =
0. Since Di,(V)[1/1] C (Bl,[1/] ®q, V) (and since D}, (V)[1/1] C (Bl,[1/1] ©q, V)
(V)[1/t])F% (resp. (DL, (V)[1/t])F*) is contained in

the previous results show that (DT rig

lo

Dy (V) (resp. in Deis(V)). )

Let us now show that Dy (V) C (DLg( )[1/t])7%, and that Deis(V) € (D, (V)[1/8])T%.
It suffices to show the semi-stable case because the crystalline one will follow by taking the
invariants under N = 0. Let r = dimp(Dg(V)). Up to twisting V', we can assume that
Dy (V) = (BfLOg ®q, V)% and we know that we have (Blog ®q, V)K= Bfog K Ol D(V)
since DT(V) has the right dimension. This implies that if we chose a basis {e;} of D(V)
and {d;} a basis of Dg(V'), then the matrix M € erd(BL&K) defined by (d;) = M(e;)
is of rank r et and satisfies v (M)G — M = 0 where G € GLy(Bl,) is the matrix of v
in the basis {e;}.

The trace maps R, defined previously are BL& r-linear and commute with I'x so that
Yk (R (M))G — R,,,(M) = 0. Moreover R, (M) — M and if M € erd(ﬁf(;gK), then
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R,(M) € erd(]t%f(;g‘K). Let N = ¢™(R,,(M)). We then have v (N)p™(G) = N and
since the actions of ¢ and I'x commute on Diig(V) we have p(G) = v (P)GP~! (P is
the matrix of ¢ and is invertible since ¢ is overconvergent and B}{ is a field) so that
i Q = " (P) - p(P)P, then ¢™(G) = 1(Q)GQ " and thus 1x(NQ)G = (NQ).
The matrix N() determines r elements of Dfog(V) which are fixed by k. It remains to
show that these elements are linearly independent over F' for m big enough. But since
R, (M) — M, the matrix NQ is of rank r = rank (M) for m > 0 and thus will determine
a free sub-module of rank r of DlTog(V). The F-vector space generated by the elements

determined by N(@ is thus of dimension r and thus equal to Dg (V). O

Proposition 4.5. — We have the following comparison isomorphisms:

1. if V is a semi-stable representation then

D'(V) ®g1 Bl x[1/t] = Du(V) ©r B, k[1/1]
2. if V is a crystalline representation then

D'(V) gt BIig,K[l/t] = Deis(V) ®p BLg,K[l/t]

Proof. — Once again it suffices to prove the semi-stable case as the crystalline case will
follow by taking the invariants under N = 0. Up to twisting V', we are reduced to the
case where V' is B -admissible and we then know that Dy (V) C Efog’ K ®pt_ Df(V) and
that
Bl x[1/t] ©51 DI(V) =Bl «[1/t] @ Dy (V)

so that if we chose basis {d;} of D (V) and {e;} of D'(V), then (e;) = B(d;) with
B e Md(ﬁfog,K[l/t]); proposition 4.4 implies that (d;) = A(e;) with A € Md(BLgK[l/t]);
and moreover we have that AB = Id. We can apply the operator Ry which is BIT% xl1/t]-
linear and we obtain that ARy(B) = Id so that B = Ry(B) and thus B has its coefficients
in BL&K[l/t] and A € GLd(BfogvK[l/t]). This finishes the proof. O

Proposition 4.6. — Let V' be a semi-stable representation of Gk and let M be the
transfer matriz from a basis of D (V) to a basis of DT(V). It then exists r € Z and
A € Bl such that det(M) = Xt".

Proof. — The determinant of the transfer matrix is equal to the coefficient of the transfer
matrix for det(V) and thus it suffices to prove the result in dimension 1. But semi-stable
characters are of the form wy” where w is an unramified character and its period is an
element 3 € W (k), so that Dy (V) = F - ft~" and D'(V) = Bl - 3 . O
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