CRYSTALLINE AND SEMI-STABLE REPRESENTATIONS AND (φ, Γ) -MODULES

by

Léo Poyeton

1. Introduction

Recall that we defined *p*-adic rings of periods \mathbf{B}_{cris} and \mathbf{B}_{st} and defined the corresponding admissible representations, which are respectively crystalline and semi-stable representations. The goal of this lecture is to explain how one can recover the invariants $\mathbf{D}_{cris}(V)$ and $\mathbf{D}_{st}(V)$ attached to a *p*-adic representation *V* of \mathcal{G}_K in terms of its (φ, Γ) -module D(V). Indeed, as the data of D(V) is equivalent to that of *V*, one should be able to compute these invariants directly from D(V). In order to do so, we need a ring which contains both $\tilde{\mathbf{B}}^+_{rig}[1/t]$ and \mathbf{B}^{\dagger} .

We actually already defined such a ring: this is exactly $\tilde{\mathbf{B}}_{rig}^{\dagger}[1/t]$. Of course, this does not contain \mathbf{B}_{st} and we will introduce an other ring $\tilde{\mathbf{B}}_{log}^{\dagger}$, which is to $\tilde{\mathbf{B}}_{rig}^{\dagger}$ what \mathbf{B}_{st} is to \mathbf{B}_{cris} , so that $\tilde{\mathbf{B}}_{log}^{\dagger}[1/t]$ will contain both \mathbf{B}_{st} and \mathbf{B}^{\dagger} .

Using these rings, we will show that

$$\mathbf{D}_{\mathrm{cris}}(V) = (\mathbf{D}_{\mathrm{rig}}^{\dagger}(V)[1/t])^{\Gamma_{K}},$$

where $\mathbf{D}_{\mathrm{rig}}^{\dagger}(V)$ is the overconvergent (φ, Γ) -module $D^{\dagger}(V)$ tensored over \mathbf{B}_{K}^{\dagger} by $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$ (we will also show that the corresponding statement relatively to $\mathbf{D}_{\mathrm{st}}(V)$ holds).

Before expanding a bit more on the ideas of the proofs, we give the following interpretation of some of the rings we have constructed (this is developped in [Ber04]):

1.1. Rings of periods and limits of algebraic functions. — One should think of most rings of periods as rings of "limits of algebraic functions" on certain subsets of \mathbf{C}_p . For example, the formula $\mathbf{B} = \hat{\mathbf{B}}_F^{\text{unr}}$ tells us that \mathbf{B} is the ring of limits of (separable) algebraic functions on the boundary of the open unit disk. The ring $\tilde{\mathbf{B}}$ is then the ring of all limits of algebraic functions on the boundary of the open unit disk.

Heuristically, one should view other rings in the same fashion: the ring $\mathbf{B}^+_{\text{cris}}$ "is" the ring of limits of algebraic functions on the disk $D(0, |\varepsilon^{(1)} - 1|_p)$, and $\mathbf{B}^+_{\text{max}}$ "is" the ring of limits of algebraic functions on a slightly smaller disk D(0, r). One should therefore

think of $\varphi^n(\mathbf{B}_{\text{cris}}^+)$ as the ring of limits of algebraic functions on the disk $D(0, |\varepsilon^{(n)} - 1|_p)$, and finally $\widetilde{\mathbf{B}}_{\text{rig}}^+$ "is" the ring of limits of algebraic functions on the open unit disk D(0, 1).

Similarly, $\tilde{\mathbf{B}}_{rig}^{\dagger,r}$ "is" the ring of limits of algebraic functions on an annulus C[s, 1[, where s depends on r, and $\varphi^{-n}(\tilde{\mathbf{B}}_{rig}^{\dagger,r})$ "is" the ring of limits of algebraic functions on an annulus $C[s_n, 1[$, where $s_n \to 0$, so that $\bigcap_{n=0}^{+\infty} \varphi^{-n}(\tilde{\mathbf{B}}_{rig}^{\dagger,r})$ "is" the ring of limits of algebraic functions on the open unit disk D(0, 1) minus the origin; furthermore, if an element of that ring satisfies some simple growth properties near the origin, then it "extends" to the origin (remember that in complex analysis, a holomorphic function on $D(0, 1^-) - \{0\}$ which is bounded near 0 extends to a holomorphic function on $D(0, 1^-)$.

As for the ring $\mathbf{B}_{\mathrm{dR}}^+$, it behaves like a ring of local functions around a circle (in particular, there is no Frobenius map defined on it). Via the map $\varphi^{-n}: \mathbf{B}_{\mathrm{rig}}^{\dagger,r_n} \to \mathbf{B}_{\mathrm{dR}}^+$, we have for $n \geq 1$ a filtration on $\mathbf{B}_{\mathrm{rig}}^{\dagger,r_n}$, which corresponds to the order of vanishing at $\varepsilon^{(n)} - 1$.

1.2. Heuristic of the proof. — Using the point of view from above, we now explain how to prove that $\mathbf{D}_{\mathrm{cris}}(V) = (\mathbf{D}_{\mathrm{rig}}^{\dagger}(V)[1/t])^{\Gamma_{K}}$. We have seen that the periods of *p*adic representations live inside $\mathbf{\tilde{B}}_{\mathrm{rig}}^{+}[1/t]$ and up to twisting by a power of the cyclotomic character, we can actually assume that the crystalline periods of *V* live inside $\mathbf{\tilde{B}}_{\mathrm{rig}}^{+}$ so that $\mathbf{D}_{\mathrm{cris}}(V) = (\mathbf{\tilde{B}}_{\mathrm{rig}}^{+} \otimes_{\mathbf{Q}_{p}} V)^{\mathcal{G}_{K}}$.

Now the elements of $(\tilde{\mathbf{B}}_{rig}^{\dagger} \otimes_{\mathbf{Q}_{p}} V)^{\mathcal{G}_{K}}$ form a finite dimensional *F*-vector space, so that there is an *r* such that $(\tilde{\mathbf{B}}_{rig}^{\dagger} \otimes_{\mathbf{Q}_{p}} V)^{\mathcal{G}_{K}} = (\tilde{\mathbf{B}}_{rig}^{\dagger,r} \otimes_{\mathbf{Q}_{p}} V)^{\mathcal{G}_{K}}$, and furthermore this *F*-vector space is stable by Frobenius, so that the periods of *V* (in this setting) not only live in $\tilde{\mathbf{B}}_{rig}^{\dagger,r}$ but actually in $\bigcap_{n=0}^{+\infty} \varphi^{-n}(\tilde{\mathbf{B}}_{rig}^{\dagger,r})$ and they also satisfy some simple growth conditions (depending, say, on the size of det(φ)), which ensure that they too can be seen as limits of algebraic functions on the open unit disk D(0, 1), that is as elements of $\tilde{\mathbf{B}}_{rig}^{+}$. In particular, we have $(\tilde{\mathbf{B}}_{rig}^{\dagger} \otimes_{\mathbf{Q}_{p}} V)^{\mathcal{G}_{K}} = (\tilde{\mathbf{B}}_{rig}^{+} \otimes_{\mathbf{Q}_{p}} V)^{\mathcal{G}_{K}}$. This is what we get by *regularization* (of the periods).

It's easy to show that $(\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger} \otimes_{\mathbf{Q}_{p}} V)^{H_{K}} = \widetilde{\mathbf{B}}_{\mathrm{rig},K}^{\dagger} \otimes_{\mathbf{B}_{\mathrm{rig},K}^{\dagger}} \mathbf{D}_{\mathrm{rig}}^{\dagger}(V)$, and the last step is to show that $(\widetilde{\mathbf{B}}_{\mathrm{rig},K}^{\dagger} \otimes_{\mathbf{B}_{\mathrm{rig},K}^{\dagger}} \mathbf{D}_{\mathrm{rig}}^{\dagger}(V))^{\mathcal{G}_{K}} = \mathbf{D}_{\mathrm{rig}}^{\dagger}(V)^{\mathcal{G}_{K}}$. This is a decompletion process, very similar to the one used in order to prove the Colmez-Sen-Tate conditions for $\widetilde{\mathbf{A}}_{K}^{\dagger}$, which will take us from $\widetilde{\mathbf{B}}_{\mathrm{rig},K}^{\dagger}$ to $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$. Similarly to the $\widetilde{\mathbf{A}}_{K}^{\dagger}$ -case, the main idea is that the ring extension $\widetilde{\mathbf{B}}_{\mathrm{rig},K}^{\dagger}/\mathbf{B}_{\mathrm{rig},K}^{\dagger}$ looks very much like \widehat{K}_{∞}/K , and we will define "decompletion maps" (which are an analogue of Tate's trace maps). This will show that in fact, $\mathbf{D}_{\mathrm{cris}}(V) = (\mathbf{B}_{\mathrm{rig},K}^{\dagger} \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{D}^{\dagger}(V))^{\mathcal{G}_{K}}$. In particular, V is crystalline if and only if $(\mathbf{B}_{\mathrm{rig},K}^{\dagger} \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{D}^{\dagger}(V))^{\mathcal{G}_{K}}$ is a d-dimensional F-vector space.

We will now explain how this works exactly, following [Ber02].

2. The ring $\widetilde{\mathbf{B}}_{\log}^{\dagger}$ and the maps R_k

We let $\widetilde{\mathbf{B}}_{\log}^{\dagger,r} = \widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r}[\log[\widetilde{p}]]$ endowed with the actions of \mathcal{G}_F and φ given by $g(\log[\widetilde{p}]) = \log[\widetilde{p}] + c(g)t$ and $\varphi(\log[\widetilde{p}]) = p \cdot \log[\widetilde{p}]$. This allows us to extend the maps $\iota_n : \widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r} \to \mathbf{B}_{\mathrm{dR}}^+$ for *n* big enough to $\widetilde{\mathbf{B}}_{\mathrm{log}}^{\dagger,r}$ by setting $\iota_n(\log[\widetilde{p}]) = p^{-n}\log[\widetilde{p}]$.

Proposition 2.1. — The map $\iota_n : \widetilde{\mathbf{B}}_{rig}^{\dagger,r_n}[\log[\tilde{p}]] \to \mathbf{B}_{dR}^+$ that extends ι_n by $\iota_n(\log[\tilde{p}]) = p^{-n}\log[\tilde{p}]$ is injective, commutes with the Galois action and its restriction to $\widetilde{\mathbf{B}}_{\log}^+$ is φ^{-n} .

Proof. — Everything follows from the previous lectures.

Recall that we actually have $\widetilde{\mathbf{B}}_{\log}^{\dagger,r} = \widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r}[\log[x]]$ for any $x \neq 0 \in \widetilde{\mathbf{E}}$ which does not belong to $(\widetilde{\mathbf{E}}^+)^{\times}$. Since the series defining $\log([\overline{\pi}]/\pi)$ converges in $\widetilde{\mathbf{A}}^{\dagger,r_0}$, we actually have that $\widetilde{\mathbf{B}}_{\log}^{\dagger,r} = \widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r}[\log[\overline{\pi}]]$. We endow $\widetilde{\mathbf{B}}_{\log}^{\dagger}$ of the monodromy operator N defined by

$$N\left(\sum_{k=0}^{d} a_k \log(\pi)^k\right) = -\sum_{k=0}^{d} k a_k \log(\pi)^{k-1}$$

which means that $N = -d/d\log(\pi)$. One can check that N commutes with the Galois action.

Recall that if r > 0 and $p^k r > r_K$ then there exists a map $R_k : \widetilde{\mathbf{A}}_K^{\dagger,r}[1/[\pi]] \to \varphi^{-k}(\mathbf{A}_K^{\dagger,p^kr}[1/[\pi]])$ which is a continuous, $\varphi^{-k}(\mathbf{A}_K^{\dagger,p^kr}[1/[\pi]])$ -linear section of the inclusion $\varphi^{-k}(\mathbf{A}_K^{\dagger,p^kr}[1/[\pi]]) \subset \widetilde{\mathbf{A}}_K^{\dagger,r}[1/[\pi]]$ which commutes with the Galois action (i.e. $\gamma \circ R_k = R_k \circ \gamma$ for $\gamma \in \Gamma_K$) and such that $R_k(x) \to x$ for all $x \in \widetilde{\mathbf{A}}_K^{\dagger,r}[1/[\pi]]$.

Proposition 2.2. — If r > 0 and $p^k r > r_K$ then by \mathbf{Q}_p -linearity and continuity the above map R_k extends to a map $R_k : \widetilde{\mathbf{B}}_{\mathrm{rig},K}^{\dagger,r} \to \varphi^{-k}(\mathbf{B}_{\mathrm{rig},K}^{\dagger,p^k r})$, such that:

- 1. R_k is a continuous section of the inclusion $\varphi^{-k}(\mathbf{B}_{\mathrm{rig},K}^{\dagger,p^k_r}) \subset \widetilde{\mathbf{B}}_{\mathrm{rig},K}^{\dagger,r};$
- 2. R_k is $\varphi^{-k}(\mathbf{B}_{\mathrm{rig},K}^{\dagger,p^kr})$ -linear;
- 3. if $x \in \widetilde{\mathbf{B}}_{\operatorname{rig} K}^{\dagger, r}$, then $\lim_{k \to +\infty} R_k(x) = x$;

4. if
$$x \in \widetilde{\mathbf{B}}_{\mathrm{rig}\ K}^{\dagger,r}$$
, and $\gamma \in \Gamma_K$, then $\gamma \circ R_k(x) = R_k \circ \gamma(x)$.

Proof. — Once again this follows from statements made in the previous lectures, where it was shown that the maps R_k were continuous for the topology induced by the valuations $V_{[r,s]}$ for all $s \ge r$ and satisfied an inequality of the form $V_{[r,s]}(R_k(x)) \ge V_{[r,s]}(x) - c_K(r)$ where $c_K(r)$ only depends on K and r. Since $\tilde{\mathbf{B}}_{rig}^{\dagger,r}$ is the completion of $\tilde{\mathbf{B}}^{\dagger,r}$ for the topology induced by the valuations $V_{[r,s]}, s \ge r$, this already shows that the maps R_k extend by \mathbf{Q}_p -linearity and continuity to maps $R_k : \tilde{\mathbf{B}}_{rig,K}^{\dagger,r} \to \varphi^{-k}(\mathbf{B}_{rig,K}^{\dagger,p^k r})$. It remains to see that if $x \in \tilde{\mathbf{B}}_{rig,K}^{\dagger,r}$, then $\lim_{k\to+\infty} R_k(x) = x$.

Let $x \in \widetilde{\mathbf{B}}_{\mathrm{rig},K}^{\dagger,r}$, let $s \geq r$ and let $M \geq 0$. We have to show that there exists $k_0 \in \mathbf{N}$ such that $V_{[r,s]}(x - R_k(x)) \geq M$ for $k \geq k_0$. By density, there exists $y \in \widetilde{\mathbf{B}}^{\dagger,r}$ such that

 $V_{[r,s]}(x-y) \ge M + c_K(r)$. Let $n \in \mathbf{N}$ be such that $z = p^n y \in \widetilde{\mathbf{A}}^{\dagger,r}[1/[\pi]]$. Then there exists $k_0 \ge 0$ such that $v_r(z - R_k(z)) \ge M + ns$ if $k \ge k_0$. We then have

$$v_r(y - R_k(y)) = v_r(z - R_k(z)) - nr \ge M,$$

and

$$v_s(y - R_k(y)) = v_s(z - R_k(z)) - ns \ge v_r(z - R_k(z)) - ns \ge M$$

Thus we have $V_{[r,s]}(y - R_k(y)) \ge M$ if $k \ge k_0$. To conclude it suffices to write $x - R_k(x)$ as $(x - y) - R_k(x - y) + (y - R_k(y))$.

We also define $\mathbf{B}_{\log,K}^{\dagger} = \mathbf{B}_{\mathrm{rig},K}^{\dagger}[\log(\pi)]$, which is a ring stable by the actions of φ and Γ_K since $\varphi(\log(\pi)) = \log(\varphi(\pi)) = p\log(\pi) + \log(\varphi(\pi)/\pi^p)$ and $\gamma(\log(\pi)) = \log(\pi) + \log(\gamma(\pi)/\pi)$ and that the series defining $\log(\varphi(\pi)/\pi^p)$ and $\log(\gamma(\pi)/\pi)$ converge in $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$.

Definition 2.3. — We extend the maps R_k to a $\varphi^{-k}(\mathbf{B}_{\mathrm{rig},K}^{\dagger,p^k_r})$ -linear section of the inclusion $\varphi^{-k}(\mathbf{B}_{\mathrm{log},K}^{\dagger,p^k_r}[1/t])$ in $\widetilde{\mathbf{B}}_{\mathrm{log},K}^{\dagger,r}[1/t]$: those maps still commute with Γ_K , and satisfy $\lim_{k\to+\infty} R_k(x) = x$ si $x \in \widetilde{\mathbf{B}}_{\mathrm{log},K}^{\dagger,r}[1/t]$.

3. Regularization

We now prove the result of regularization by the Frobenius on which the rest of the proofs will rely on. Recall that the Frobenius φ is a bijection from $\tilde{\mathbf{B}}_I$ to $\tilde{\mathbf{B}}_{pI}$ and thus induces a bijection from $\tilde{\mathbf{B}}_{rig}^{\dagger,r}$ to $\tilde{\mathbf{B}}_{rig}^{\dagger,pr}$ and from $\tilde{\mathbf{B}}_{log}^{\dagger,pr}$ since $\varphi(\log[\overline{\pi}]) = p \cdot \log[\overline{\pi}]$.

Lemma 3.1. We have $\widetilde{\mathbf{A}}^{[r;s]}/(p) = \widetilde{\mathbf{E}}^+[X, \overline{\pi}^{s-r}X^{-1}]/(\overline{\pi}^s, \overline{\pi}^rX)$. In particular if r = s, then $\widetilde{\mathbf{A}}^{[r;r]}/(p) = \widetilde{\mathbf{E}}^+/(\overline{\pi}^r)[X, X^{-1}]$.

Proof. — Let $A = \widetilde{\mathbf{A}}^+ \{X, Y\}$ and $I = (XY - [\overline{\pi}]^{s-r}, p - X[\overline{\pi}]^r, [\overline{\pi}]^s - pY)$ so that $\widetilde{\mathbf{A}}^{[r;s]}$ can be identified with A/I and so that $\widetilde{\mathbf{A}}^{[r;s]}/(p) = (A/I)/(p)$. We have an exact sequence $0 \to I \to A \to A/I \to 0$ and the multiplication by p induces the following diagram:

and since A/I has no *p*-torsion, the snake's lemma shows that (A/I)/p is identified with the quotient of A/p by the image of I inside it. In our setting we have $A/p = \tilde{\mathbf{E}}^+[X, Y]$ and the image of I is $(XY - \overline{\pi}^{s-r}, -X\overline{\pi}^r, \overline{\pi}^s)$, hence the lemma. \Box

Lemma 3.2. — The natural inclusions $\widetilde{\mathbf{A}}^{[0,r_0]} \subset \widetilde{\mathbf{A}}^{[r_0,r_0]}$ and $\widetilde{\mathbf{A}}^{\dagger,r_0} \subset \widetilde{\mathbf{A}}^{[r_0,r_0]}$ induce the following exact sequence:

$$0 \to \widetilde{\mathbf{A}}^+ \to \widetilde{\mathbf{A}}^{[0,r_0]} \oplus \widetilde{\mathbf{A}}^{\dagger,r_0} \to \widetilde{\mathbf{A}}^{[r_0,r_0]} \to 0.$$

Proof. — The fact that the arrow $\widetilde{\mathbf{A}}^{[0,r_0]} \oplus \widetilde{\mathbf{A}}^{\dagger,r_0} \to \widetilde{\mathbf{A}}^{[r_0,r_0]}$ is surjective follows from the decomposition of an element of $\widetilde{\mathbf{A}}^{[r_0,r_0]}$ in two parts (recall that $\widetilde{\mathbf{A}}^{[r_0,r_0]}$ is the *p*-adic completion of $\widetilde{\mathbf{A}}^+[\frac{p}{[\overline{\pi}]},\frac{[\overline{\pi}]}{p}]$). We also know that $\widetilde{\mathbf{A}}^+$ is contained in the intersection of $\widetilde{\mathbf{A}}^{[0,r_0]}$ and $\widetilde{\mathbf{A}}^{\dagger,r_0}$ and thus it remains to prove that the map

$$\widetilde{\mathbf{A}}^+ o \widetilde{\mathbf{A}}^{\dagger,r_0} \cap \widetilde{\mathbf{A}}^{[0,r_0]}$$

is also surjective. First we prove that it is true modulo $p\widetilde{\mathbf{A}}^{[r_0,r_0]}$ (note that the arrow is no longer injective mod p). Recall that the rings $\widetilde{\mathbf{A}}^{[0,r_0]}$ et $\widetilde{\mathbf{A}}^{\dagger,r_0}$ can be identified with $\widetilde{\mathbf{A}}^+\{X\}/(pX-[\widetilde{p}])$ and $\widetilde{\mathbf{A}}^+\{Y\}/([\widetilde{p}]Y-p)$ and that $\widetilde{\mathbf{A}}^{[r_0,r_0]}/(p) = \widetilde{\mathbf{E}}^+/(\widetilde{p})[X,X^{-1}]$. The image of $\widetilde{\mathbf{A}}^{\dagger,r_0}$ inside this ring is then $\widetilde{\mathbf{E}}^+/(\widetilde{p})[1/X]$ and the one of $\widetilde{\mathbf{A}}^{[0,r_0]}$ is $\widetilde{\mathbf{E}}^+/(\widetilde{p})[X]$ so that the image of their intersection is a subring of $\widetilde{\mathbf{E}}^+/(\widetilde{p})$ and thus the arrow $\widetilde{\mathbf{A}}^+ \to$ $\widetilde{\mathbf{A}}^{\dagger,r_0} \cap \widetilde{\mathbf{A}}^{[0,r_0]}$ is surjective modulo $p\widetilde{\mathbf{A}}^{[r_0,r_0]}$. If we let x in $\widetilde{\mathbf{A}}^{\dagger,r_0} \cap \widetilde{\mathbf{A}}^{[0,r_0]}$ it therefore exists $y \in \widetilde{\mathbf{A}}^+$ such that $x - y \in p\widetilde{\mathbf{A}}^{[r_0,r_0]}$. This means that $x - y \in p\widetilde{\mathbf{A}}^{[0,r_0]}$ and $\in p\widetilde{\mathbf{A}}^{\dagger,r_0} + [\widetilde{p}]\widetilde{\mathbf{A}}^+$ (it suffices to apply lemma 3.1 to these rings). Since p divides $[\widetilde{p}]$ in $\widetilde{\mathbf{A}}^{[0,r_0]}$ there exists $z \in [\widetilde{p}]\widetilde{\mathbf{A}}^+$ such that $x - y - z \in p(\widetilde{\mathbf{A}}^{\dagger,r_0} \cap \widetilde{\mathbf{A}}^{[0,r_0]})$. Since $\widetilde{\mathbf{A}}^+$ is complete for the p-adic topology, it suffices to iterate this to prove the lemma.

Lemma 3.3. — Let h be a positive integer. Then

$$\cap_{s=0}^{+\infty} p^{-hs} \widetilde{\mathbf{A}}^{\dagger, p^{-s}r} = \widetilde{\mathbf{A}}^+ \text{ and } \cap_{s=0}^{+\infty} p^{-hs} \widetilde{\mathbf{A}}_{\mathrm{rig}}^{\dagger, p^{-s}r} \subset \widetilde{\mathbf{B}}_{\mathrm{rig}}^+$$

where $\widetilde{\mathbf{A}}_{\mathrm{rig}}^{\dagger,r}$ denotes the ring of integers of $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r}$ for the valuation $V_{[r;r]}$.

Proof. — Let us start with the first point: since $x \in \widetilde{\mathbf{A}}^{\dagger,r}$ it can be uniquely written as $\sum_{k\geq 0} p^k[x_k]$ and we also have $p^{hs}x = \sum p^{k+hs}[x_k]$. Since $p^{hs}x \in \widetilde{\mathbf{A}}^{\dagger,p^{-s}r}$ this means that

$$v_{\mathbf{E}}(x_k) + \frac{rp^{1-s}}{p-1}(k+hs) \ge 0$$

so that

$$v_{\mathbf{E}}(x_k) \ge -\frac{(k+hs)r}{p^{s-1}(p-1)}$$

and thus (when $s \to +\infty$) that $v_{\mathbf{E}}(x_k) \ge 0$ so that $x \in \mathbf{A}^+$.

For the second point, note that for all s one can write $x = a_s + b_s$ with $a_s \in p^{-hs} \widetilde{\mathbf{A}}^{\dagger, p^{-s}r}$ and $b_s \in \widetilde{\mathbf{B}}^+_{\text{rig}}$. By the lemma 3.2 we have $a_s - a_{s+1} \in \widetilde{\mathbf{B}}^+$ and we also know that $a_s - a_{s+1} \in p^{-h(s+1)} \widetilde{\mathbf{A}}^{\dagger, p^{-s}r}$ so that $a_s - a_{s+1} \in p^{-h(s+1)} \widetilde{\mathbf{A}}^+$ and so that up to changing a_{s+1} we can assume that $a_s = a_{s+1} = a$. We then have $a \in \bigcap_{s=0}^{+\infty} p^{-hs} \widetilde{\mathbf{A}}^{\dagger, p^{-s}r} = \widetilde{\mathbf{A}}^+$ and thus $x \in \widetilde{\mathbf{B}}^+_{\text{rig}}$.

Proposition 3.4. — Let r and u be two positive integers and let $A \in M_{u \times r}(\widetilde{\mathbf{B}}_{\log}^{\dagger})$. Assume that there exists $P \in \operatorname{GL}_u(F)$ such that $A = P\varphi^{-1}(A)$. Then $A \in M_{u \times r}(\widetilde{\mathbf{B}}_{\log}^+)$.

Proof. — Let $A = (a_{ij})$ and $a_{ij} = \sum_{n=0}^{d} a_{ij,n} \log[\overline{\pi}]^n$. Let $h_0 \in \mathbb{Z}$ such that $p^{h_0}P \in M_u(\mathcal{O}_F)$ and $h = h_0 + d$. The assumption on A and P can be written as:

$$p_{i1}\varphi^{-1}(a_{1j}) + \dots + p_{iu}\varphi^{-1}(a_{uj}) = a_{ij} \qquad \forall i \le u, \ j \le r$$

and since $\varphi^{-1}(\log[\overline{\pi}]^n) = p^{-n}\log[\overline{\pi}]^n$, this implies that if $a_{ij,n} \in p^{-c}\widetilde{\mathbf{A}}_{\mathrm{rig}}^{\dagger,r}$, then since $p^{h_0}p_{ik} \in \mathcal{O}_F$ and $\varphi^{-1}(a_{ik,n}) \in p^{-c}\widetilde{\mathbf{A}}_{\mathrm{rig}}^{\dagger,r/p}$, we have $a_{ij,n} \in p^{-h-c}\widetilde{\mathbf{A}}_{\mathrm{rig}}^{\dagger,r/p}$. By iterating this we get that $a_{ij,n} \in \bigcap_{s=0}^{+\infty} p^{-hs-c}\widetilde{\mathbf{A}}_{\mathrm{rig}}^{\dagger,rp^{-s}}$. This allows us to apply the above lemma to $p^c a_{ij,n}$ and this finishes the proof.

4. Applications for semi-stable periods

Let $\mathbf{B}_{\log,K}^{\dagger,r} = \mathbf{B}_{\mathrm{rig},K}^{\dagger,r}[\log(\pi)]$ and let

$$\mathbf{D}_{\mathrm{rig}}^{\dagger}(V) = \mathbf{B}_{\mathrm{rig},K}^{\dagger} \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{D}^{\dagger}(V) \quad \text{et} \quad \mathbf{D}_{\mathrm{log}}^{\dagger}(V) = \mathbf{B}_{\mathrm{log},K}^{\dagger} \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{D}^{\dagger}(V)$$

The fact that *p*-adic representations are overconvergent shows that both $\mathbf{D}_{\mathrm{rig}}^{\dagger}(V)$ and $\mathbf{D}_{\mathrm{log}}^{\dagger}(V)$ are $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$ - and $\mathbf{B}_{\mathrm{log},K}^{\dagger}$ - free modules of rank $d = \dim_{\mathbf{Q}_{p}}(V)$.

If V is a p-adic representation, or more generally, a B-representation where B is a \mathbf{Q}_p -algebra endowed with an action of \mathcal{G}_K , we let V(i) denote the twist of V by χ^i , so that the action of $g \in \mathcal{G}_K$ on V(i) is the action of g on V multiplied by $\chi(g)^i$.

Proposition 4.1. — One has

$$\{x \in \widetilde{\mathbf{B}}_{\log}^{\dagger}, g(x) = \chi^{i}(g)x, \forall g \in \mathcal{G}_{K}\} = \begin{cases} Ft^{i} & \text{if } i \geq 0; \\ 0 & \text{if } i < 0. \end{cases}$$

Proof. — Let $V_i^n = (\tilde{\mathbf{B}}_{\log}^{\dagger,r_n}(-i))^{\mathcal{G}_K}$. This is a finite dimensional *F*-vector space stable by Frobenius and the previous proposition implies that $V_i^n = (\tilde{\mathbf{B}}_{\log}^+(-i))^{\mathcal{G}_K}$. But $(\tilde{\mathbf{B}}_{\log}^+[1/t](i))^{\mathcal{G}_K}$ is the (φ, N) -module attached to the crystalline representation χ^i , so that it is of dimension 1 and thus any non zero element of $(\tilde{\mathbf{B}}_{\log}^+[1/t](i))^{\mathcal{G}_K}$ generates this *F*-vector space. Since t^i works, this means that

$$V_i^n = \begin{cases} Ft^i \text{ if } i \ge 0;\\ 0 \text{ if } i < 0. \end{cases}$$

Since $V_i = \bigcup_{n=0}^{+\infty} V_i^n$ this proves the result.

We let $\mathbf{D}_{\mathrm{st}}^+(V) = (\mathbf{B}_{\mathrm{st}}^+ \otimes_{\mathbf{Q}_p} V)^{\mathcal{G}_K}$. Recall that $\mathbf{D}_{\mathrm{st}}^+(V) = (\widetilde{\mathbf{B}}_{\mathrm{log}}^+ \otimes_{\mathbf{Q}_p} V)^{\mathcal{G}_K}$. A quick computation shows that $\mathbf{D}_{\mathrm{st}}(V) = t^{-d}\mathbf{D}_{\mathrm{st}}(V(-d))$ and thus for $d \gg 0$, we have that $\mathbf{D}_{\mathrm{st}}(V) = t^{-d}\mathbf{D}_{\mathrm{st}}^+(V(-d))$.

Proposition 4.2. — If V is a p-adic representation then $(\widetilde{\mathbf{B}}_{\log}^{\dagger} \otimes_{\mathbf{Q}_{p}} V)^{\mathcal{G}_{K}}$ is a finite dimensional F-vector space and the morphism

$$\mathbf{D}_{\mathrm{st}}^+(V) \to (\widetilde{\mathbf{B}}_{\mathrm{log}}^\dagger \otimes_{\mathbf{Q}_p} V)^{\mathcal{G}_K}$$

induced by the inclusion $\widetilde{\mathbf{B}}_{\log}^+ \subset \widetilde{\mathbf{B}}_{\log}^\dagger$ is an isomorphism of (φ, N) -modules.

Proof. — If $n \in \mathbf{N}$, then $D_n = (\mathbf{\tilde{B}}_{\log}^{\dagger, r_n} \otimes_{\mathbf{Q}_p} V)^{\mathcal{G}_K}$ is a *F*-vector space whose dimension is $\leq [K:F]d$, since ι_n induces an injection of D_n in $\mathbf{D}_{dR}(V)$, which is a finite dimensional *K*-vector space of dimension $\leq d$. If we take [K:F]d+1 elements of $(\mathbf{\tilde{B}}_{\log}^{\dagger} \otimes_{\mathbf{Q}_p} V)^{\mathcal{G}_K}$, they live inside D_n for $n \gg 0$, and thus are linearly dependent. This means that $(\mathbf{\tilde{B}}_{\log}^{\dagger} \otimes_{\mathbf{Q}_p} V)^{\mathcal{G}_K}$ is a *F*-vector space of dimension $\leq [K:F]d$.

For the second point, let v_1, \dots, v_r and d_1, \dots, d_u be respectively \mathbf{Q}_p - and F- basis of V and $(\mathbf{\tilde{B}}_{\log}^{\dagger} \otimes_{\mathbf{Q}_p} V)^{\mathcal{G}_K}$. There exists a matrix $A \in M_{r \times u}(\mathbf{\tilde{B}}_{\log}^{\dagger})$ such that $(d_i) = A(v_i)$. Let $P \in \mathrm{GL}_u(F)$ be the matrix of φ in the basis (d_i) (which is invertible since $\varphi : \mathbf{\tilde{B}}_{\log}^{\dagger} \to \mathbf{\tilde{B}}_{\log}^{\dagger}$ is bijective). We then have $\varphi(A) = PA$ and thus $A = \varphi^{-1}(P)\varphi^{-1}(A)$; proposition 3.4 shows that $A \in M_{r \times u}(\mathbf{\tilde{B}}_{\log}^{+})$ and thus that $(\mathbf{\tilde{B}}_{\log}^{\dagger} \otimes_{\mathbf{Q}_p} V)^{\mathcal{G}_K} \subset (\mathbf{\tilde{B}}_{\log}^{+} \otimes_{\mathbf{Q}_p} V)^{\mathcal{G}_K} = \mathbf{D}_{\mathrm{st}}^{+}(V)$, which is what we wanted.

Up to twisting V, this implies that V is semi-stable if and only if it is $\tilde{\mathbf{B}}^{\dagger}_{\log}[1/t]$ -admissible, and that it is crystalline if and only if it is $\tilde{\mathbf{B}}^{\dagger}_{\mathrm{rig}}[1/t]$ -admissible.

Proposition 4.3. — If V is semi-stable we have the following comparison isomorphism:

$$\widetilde{\mathbf{B}}_{\log}^{\dagger}[1/t] \otimes_{F} \mathbf{D}_{\mathrm{st}}(V) = \widetilde{\mathbf{B}}_{\log}^{\dagger}[1/t] \otimes_{\mathbf{Q}_{p}} V$$

Proof. — This comes from the fact that in this case we already have:

$$\widetilde{\mathbf{B}}_{\log}^{+}[1/t] \otimes_{F} \mathbf{D}_{\mathrm{st}}(V) = \widetilde{\mathbf{B}}_{\log}^{+}[1/t] \otimes_{\mathbf{Q}_{p}} V$$

and thus it suffices to tensor this equality by $\tilde{\mathbf{B}}^{\dagger}_{\log}[1/t]$ over $\tilde{\mathbf{B}}^{+}_{\log}[1/t]$.

Theorem 4.4. — If V is a p-adic representation of \mathcal{G}_K then

$$\mathbf{D}_{\rm st}(V) = (\mathbf{D}_{\rm log}^{\dagger}(V)[1/t])^{\Gamma_{K}} \quad and \quad \mathbf{D}_{\rm cris}(V) = (\mathbf{D}_{\rm rig}^{\dagger}(V)[1/t])^{\Gamma_{K}}$$

In particular V is semi-stable (resp. crystalline) if and only if $(\mathbf{D}_{\log}^{\dagger}(V)[1/t])^{\Gamma_{K}}$ (resp. $(\mathbf{D}_{rig}^{\dagger}(V)[1/t])^{\Gamma_{K}}$) is a F-vector space of dimension $d = \dim_{\mathbf{Q}_{p}}(V)$.

Proof. — The second point follows from the first one by taking the invariants under N = 0. Since $\mathbf{D}_{\log}^{\dagger}(V)[1/t] \subset (\widetilde{\mathbf{B}}_{\log}^{\dagger}[1/t] \otimes_{\mathbf{Q}_{p}} V)$ (and since $\mathbf{D}_{\operatorname{rig}}^{\dagger}(V)[1/t] \subset (\widetilde{\mathbf{B}}_{\operatorname{rig}}^{\dagger}[1/t] \otimes_{\mathbf{Q}_{p}} V)$) the previous results show that $(\mathbf{D}_{\log}^{\dagger}(V)[1/t])^{\Gamma_{\kappa}}$ (resp. $(\mathbf{D}_{\operatorname{rig}}^{\dagger}(V)[1/t])^{\Gamma_{\kappa}}$) is contained in $\mathbf{D}_{\operatorname{st}}(V)$ (resp. in $\mathbf{D}_{\operatorname{cris}}(V)$).

Let us now show that $\mathbf{D}_{\mathrm{st}}(V) \subset (\mathbf{D}_{\mathrm{log}}^{\dagger}(V)[1/t])^{\Gamma_{K}}$, and that $\mathbf{D}_{\mathrm{cris}}(V) \subset (\mathbf{D}_{\mathrm{rig}}^{\dagger}(V)[1/t])^{\Gamma_{K}}$. It suffices to show the semi-stable case because the crystalline one will follow by taking the invariants under N = 0. Let $r = \dim_{F}(\mathbf{D}_{\mathrm{st}}(V))$. Up to twisting V, we can assume that $\mathbf{D}_{\mathrm{st}}(V) = (\mathbf{\tilde{B}}_{\mathrm{log}}^{\dagger} \otimes_{\mathbf{Q}_{p}} V)^{\mathcal{G}_{K}}$ and we know that we have $(\mathbf{\tilde{B}}_{\mathrm{log}}^{\dagger} \otimes_{\mathbf{Q}_{p}} V)^{H_{K}} = \mathbf{\tilde{B}}_{\mathrm{log},K}^{\dagger} \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{D}^{\dagger}(V)$ since $\mathbf{D}^{\dagger}(V)$ has the right dimension. This implies that if we chose a basis $\{e_{i}\}$ of $\mathbf{D}^{\dagger}(V)$ and $\{d_{i}\}$ a basis of $\mathbf{D}_{\mathrm{st}}(V)$, then the matrix $M \in \mathrm{M}_{r \times d}(\mathbf{\tilde{B}}_{\mathrm{log},K}^{\dagger})$ defined by $(d_{i}) = M(e_{i})$ is of rank r et and satisfies $\gamma_{K}(M)G - M = 0$ where $G \in \mathrm{GL}_{d}(\mathbf{B}_{K}^{\dagger})$ is the matrix of γ_{K} in the basis $\{e_{i}\}$.

The trace maps R_m defined previously are $\mathbf{B}^{\dagger}_{\log,K}$ -linear and commute with Γ_K so that $\gamma_K(R_m(M))G - R_m(M) = 0$. Moreover $R_m(M) \to M$ and if $M \in \mathcal{M}_{r \times d}(\widetilde{\mathbf{B}}^{\dagger,r_n}_{\log,K})$, then

 $R_m(M) \in \mathcal{M}_{r \times d}(\tilde{\mathbf{B}}_{\log,K}^{\dagger,r_n})$. Let $N = \varphi^m(R_m(M))$. We then have $\gamma_K(N)\varphi^m(G) = N$ and since the actions of φ and Γ_K commute on $\mathbf{D}_{rig}^{\dagger}(V)$ we have $\varphi(G) = \gamma_K(P)GP^{-1}$ (*P* is the matrix of φ and is invertible since φ is overconvergent and \mathbf{B}_K^{\dagger} is a field) so that if $Q = \varphi^{m-1}(P) \cdots \varphi(P)P$, then $\varphi^m(G) = \gamma_K(Q)GQ^{-1}$ and thus $\gamma_K(NQ)G = (NQ)$. The matrix NQ determines r elements of $\mathbf{D}_{\log}^{\dagger}(V)$ which are fixed by γ_K . It remains to show that these elements are linearly independent over F for m big enough. But since $R_m(M) \to M$, the matrix NQ is of rank $r = \operatorname{rank}(M)$ for $m \gg 0$ and thus will determine a free sub-module of rank r of $\mathbf{D}_{\log}^{\dagger}(V)$. The F-vector space generated by the elements determined by NQ is thus of dimension r and thus equal to $\mathbf{D}_{st}(V)$.

Proposition 4.5. — We have the following comparison isomorphisms:

1. if V is a semi-stable representation then

$$\mathbf{D}^{\dagger}(V) \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{B}_{\log,K}^{\dagger}[1/t] = \mathbf{D}_{\mathrm{st}}(V) \otimes_{F} \mathbf{B}_{\log,K}^{\dagger}[1/t]$$

2. if V is a crystalline representation then

$$\mathbf{D}^{\dagger}(V) \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{B}_{\mathrm{rig},K}^{\dagger}[1/t] = \mathbf{D}_{\mathrm{cris}}(V) \otimes_{F} \mathbf{B}_{\mathrm{rig},K}^{\dagger}[1/t]$$

Proof. — Once again it suffices to prove the semi-stable case as the crystalline case will follow by taking the invariants under N = 0. Up to twisting V, we are reduced to the case where V is $\tilde{\mathbf{B}}^+_{\log}$ -admissible and we then know that $\mathbf{D}_{\mathrm{st}}(V) \subset \tilde{\mathbf{B}}^{\dagger}_{\log,K} \otimes_{\mathbf{B}^{\dagger}_{K}} \mathbf{D}^{\dagger}(V)$ and that

$$\mathbf{B}_{\log,K}^{\dagger}[1/t] \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{D}^{\dagger}(V) = \mathbf{B}_{\log,K}^{\dagger}[1/t] \otimes_{F} \mathbf{D}_{\mathrm{st}}(V)$$

so that if we chose basis $\{d_i\}$ of $\mathbf{D}_{\mathrm{st}}(V)$ and $\{e_i\}$ of $\mathbf{D}^{\dagger}(V)$, then $(e_i) = B(d_i)$ with $B \in \mathrm{M}_d(\widetilde{\mathbf{B}}_{\log,K}^{\dagger}[1/t])$; proposition 4.4 implies that $(d_i) = A(e_i)$ with $A \in \mathrm{M}_d(\mathbf{B}_{\log,K}^{\dagger}[1/t])$; and moreover we have that $AB = \mathrm{Id}$. We can apply the operator R_0 which is $\mathbf{B}_{\log,K}^{\dagger}[1/t]$ -linear and we obtain that $AR_0(B) = \mathrm{Id}$ so that $B = R_0(B)$ and thus B has its coefficients in $\mathbf{B}_{\log,K}^{\dagger}[1/t]$ and $A \in \mathrm{GL}_d(\mathbf{B}_{\log,K}^{\dagger}[1/t])$. This finishes the proof. \Box

Proposition 4.6. — Let V be a semi-stable representation of \mathcal{G}_K and let M be the transfer matrix from a basis of $\mathbf{D}_{st}(V)$ to a basis of $\mathbf{D}^{\dagger}(V)$. It then exists $r \in \mathbf{Z}$ and $\lambda \in \mathbf{B}_K^{\dagger}$ such that $\det(M) = \lambda t^r$.

Proof. — The determinant of the transfer matrix is equal to the coefficient of the transfer matrix for det(V) and thus it suffices to prove the result in dimension 1. But semi-stable characters are of the form $\omega \chi^r$ where ω is an unramified character and its period is an element $\beta \in W(\overline{k})$, so that $\mathbf{D}_{\mathrm{st}}(V) = F \cdot \beta t^{-r}$ and $\mathbf{D}^{\dagger}(V) = \mathbf{B}_{K}^{\dagger} \cdot \beta$.

References

- [Ber02] Laurent Berger, Représentations p-adiques et équations différentielles, Inventiones mathematicae 148 (2002), no. 2, 219–284.
- [Ber04] _____, An introduction to the theory of p-adic representations, Geometric aspects of Dwork theory 1 (2004), 255–292.

Léo Poyeton