CRYSTALLINE AND SEMI-STABLE REPRESENTATIONS AND (φ, Γ)-MODULES

by

Léo Poyeton

1. Introduction

Recall that we defined p-adic rings of periods $\mathbf{B}_{\text {cris }}$ and $\mathbf{B}_{\text {st }}$ and defined the corresponding admissible representations, which are respectively crystalline and semi-stable representations. The goal of this lecture is to explain how one can recover the invariants $\mathbf{D}_{\text {cris }}(V)$ and $\mathbf{D}_{\text {st }}(V)$ attached to a p-adic representation V of \mathcal{G}_{K} in terms of its (φ, Γ) module $D(V)$. Indeed, as the data of $D(V)$ is equivalent to that of V, one should be able to compute these invariants directly from $D(V)$. In order to do so, we need a ring which contains both $\widetilde{\mathbf{B}}_{\text {rig }}^{+}[1 / t]$ and \mathbf{B}^{\dagger}.

We actually already defined such a ring: this is exactly $\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger}[1 / t]$. Of course, this does not contain $\mathbf{B}_{\text {st }}$ and we will introduce an other ring $\widetilde{\mathbf{B}}_{\mathrm{log}}^{\dagger}$, which is to $\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger}$ what $\mathbf{B}_{\text {st }}$ is to $\mathbf{B}_{\text {cris }}$, so that $\widetilde{\mathbf{B}}_{\text {log }}^{\dagger}[1 / t]$ will contain both $\mathbf{B}_{\text {st }}$ and \mathbf{B}^{\dagger}.

Using these rings, we will show that

$$
\mathbf{D}_{\text {cris }}(V)=\left(\mathbf{D}_{\text {rig }}^{\dagger}(V)[1 / t]\right)^{\Gamma_{K}},
$$

where $\mathbf{D}_{\mathrm{rig}}^{\dagger}(V)$ is the overconvergent (φ, Γ)-module $D^{\dagger}(V)$ tensored over \mathbf{B}_{K}^{\dagger} by $\mathbf{B}_{\mathrm{rig}, K}^{\dagger}$ (we will also show that the corresponding statement relatively to $\mathbf{D}_{\text {st }}(V)$ holds).

Before expanding a bit more on the ideas of the proofs, we give the following interpretation of some of the rings we have constructed (this is developped in [Ber04]):
1.1. Rings of periods and limits of algebraic functions. - One should think of most rings of periods as rings of "limits of algebraic functions" on certain subsets of \mathbf{C}_{p}. For example, the formula $\mathbf{B}=\widehat{\mathbf{B}}_{F}^{\text {unr }}$ tells us that \mathbf{B} is the ring of limits of (separable) algebraic functions on the boundary of the open unit disk. The ring $\widetilde{\mathbf{B}}$ is then the ring of all limits of algebraic functions on the boundary of the open unit disk.

Heuristically, one should view other rings in the same fashion: the ring $\mathbf{B}_{\text {cris }}^{+}$"is" the ring of limits of algebraic functions on the disk $D\left(0,\left|\varepsilon^{(1)}-1\right|_{p}\right)$, and $\mathbf{B}_{\text {max }}^{+}$"is" the ring of limits of algebraic functions on a slightly smaller disk $D(0, r)$. One should therefore
think of $\varphi^{n}\left(\mathbf{B}_{\text {cris }}^{+}\right)$as the ring of limits of algebraic functions on the disk $D\left(0,\left|\varepsilon^{(n)}-1\right|_{p}\right)$, and finally $\widetilde{\mathbf{B}}_{\text {rig }}^{+}$"is" the ring of limits of algebraic functions on the open unit disk $D(0,1)$.

Similarly, $\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger}, r$ "is" the ring of limits of algebraic functions on an annulus $C[s, 1[$, where s depends on r, and $\varphi^{-n}\left(\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger, r}\right)$ "is" the ring of limits of algebraic functions on an annulus $C\left[s_{n}, 1\left[\right.\right.$, where $s_{n} \rightarrow 0$, so that $\cap_{n=0}^{+\infty} \varphi^{-n}\left(\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger, r}\right)$ "is" the ring of limits of algebraic functions on the open unit disk $D(0,1)$ minus the origin; furthermore, if an element of that ring satisfies some simple growth properties near the origin, then it "extends" to the origin (remember that in complex analysis, a holomorphic function on $D\left(0,1^{-}\right)-\{0\}$ which is bounded near 0 extends to a holomorphic function on $D\left(0,1^{-}\right)$).

As for the ring $\mathbf{B}_{\mathrm{dR}}^{+}$, it behaves like a ring of local functions around a circle (in particular, there is no Frobenius map defined on it). Via the map $\varphi^{-n}: \mathbf{B}_{\mathrm{rig}}^{\dagger, r_{n}} \rightarrow \mathbf{B}_{\mathrm{dR}}^{+}$, we have for $n \geq 1$ a filtration on $\mathbf{B}_{\mathrm{rig}}^{\dagger, r_{n}}$, which corresponds to the order of vanishing at $\varepsilon^{(n)}-1$.
1.2. Heuristic of the proof. - Using the point of view from above, we now explain how to prove that $\mathbf{D}_{\text {cris }}(V)=\left(\mathbf{D}_{\text {rig }}^{\dagger}(V)[1 / t]\right)^{\Gamma_{K}}$. We have seen that the periods of p adic representations live inside $\widetilde{\mathbf{B}}_{\text {rig }}^{+}[1 / t]$ and up to twisting by a power of the cyclotomic character, we can actually assume that the crystalline periods of V live inside $\widetilde{\mathbf{B}}_{\text {rig }}^{+}$so that $\mathbf{D}_{\text {cris }}(V)=\left(\widetilde{\mathbf{B}}_{\text {rig }}^{+} \otimes_{\mathbf{Q}_{p}} V\right)^{\mathcal{G}_{K}}$.
Now the elements of $\left(\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger} \otimes \mathbf{Q}_{p} V\right)^{\mathcal{G}_{K}}$ form a finite dimensional F-vector space, so that there is an r such that $\left(\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger} \otimes_{\mathbf{Q}_{p}} V\right)^{\mathcal{G}_{K}}=\left(\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger, r} \otimes_{\mathbf{Q}_{p}} V\right)^{\mathcal{G}_{K}}$, and furthermore this F-vector space is stable by Frobenius, so that the periods of V (in this setting) not only live in $\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger, r}$ but actually in $\cap_{n=0}^{+\infty} \varphi^{-n}\left(\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger, r}\right)$ and they also satisfy some simple growth conditions (depending, say, on the size of $\operatorname{det}(\varphi)$), which ensure that they too can be seen as limits of algebraic functions on the open unit disk $D(0,1)$, that is as elements of $\widetilde{\mathbf{B}}_{\text {rig. }}^{+}$. In particular, we have $\left(\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger} \otimes_{\mathbf{Q}_{p}} V\right)^{\mathcal{G}_{K}}=\left(\widetilde{\mathbf{B}}_{\text {rig }}^{+} \otimes_{\mathbf{Q}_{p}} V\right)^{\mathcal{G}_{K}}$. This is what we get by regularization (of the periods).
It's easy to show that $\left(\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger} \otimes_{\mathbf{Q}_{p}} V\right)^{H_{K}}=\widetilde{\mathbf{B}}_{\text {rig }, K}^{\dagger} \otimes_{\mathbf{B}_{\mathrm{rig}, K}}^{\dagger} \mathbf{D}_{\mathrm{rig}}^{\dagger}(V)$, and the last step is to show that $\left(\widetilde{\mathbf{B}}_{\text {rig }, K}^{\dagger} \otimes_{\mathbf{B}_{\mathrm{rig}, K}^{\dagger}} \mathbf{D}_{\text {rig }}^{\dagger}(V)\right)^{\mathcal{G}_{K}}=\mathbf{D}_{\text {rig }}^{\dagger}(V)^{\mathcal{G}_{K}}$. This is a decompletion process, very similar to the one used in order to prove the Colmez-Sen-Tate conditions for $\widetilde{\mathbf{A}}_{K}^{\dagger}$, which will take us from $\widetilde{\mathbf{B}}_{\mathrm{rig}, K}^{\dagger}$ to $\mathbf{B}_{\mathrm{rig}, K}^{\dagger}$. Similarly to the $\widetilde{\mathbf{A}}_{K}^{\dagger}$-case, the main idea is that the ring extension $\widetilde{\mathbf{B}}_{\text {rig }, K}^{\dagger} / \mathbf{B}_{\text {rig }, K}^{\dagger}$ looks very much like \widehat{K}_{∞} / K, and we will define "decompletion maps" (which are an analogue of Tate's trace maps). This will show that in fact, $\mathbf{D}_{\text {cris }}(V)=\left(\mathbf{B}_{\text {rig, } K}^{\dagger} \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{D}^{\dagger}(V)\right)^{\mathcal{G}_{K}}$. In particular, V is crystalline if and only if $\left(\mathbf{B}_{\text {rig }, K}^{\dagger} \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{D}^{\dagger}(V)\right)^{\mathcal{G}_{K}}$ is a d-dimensional F-vector space.

We will now explain how this works exactly, following [Ber02].

2. The ring $\widetilde{\mathbf{B}}_{\log }^{\dagger}$ and the maps R_{k}

We let $\widetilde{\mathbf{B}}_{\log }^{\dagger, r}=\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger, r}[\log [\widetilde{p}]]$ endowed with the actions of \mathcal{G}_{F} and φ given by $g(\log [\tilde{p}])=$ $\log [\tilde{p}]+c(g) t$ and $\varphi(\log [\widetilde{p}])=p \cdot \log [\tilde{p}]$. This allows us to extend the maps $\iota_{n}: \widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger, r} \rightarrow \mathbf{B}_{\mathrm{dR}}^{+}$ for n big enough to $\widetilde{\mathbf{B}}_{\log }^{\dagger, r}$ by setting $\iota_{n}(\log [\tilde{p}])=p^{-n} \log [\widetilde{p}]$.

Proposition 2.1.- The map $\iota_{n}: \widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger} r_{n}[\log [\tilde{p}]] \rightarrow \mathbf{B}_{\mathrm{dR}}^{+}$that extends ι_{n} by $\iota_{n}(\log [\tilde{p}])=$ $p^{-n} \log [\tilde{p}]$ is injective, commutes with the Galois action and its restriction to $\widetilde{\mathbf{B}}_{\log }^{+}$is φ^{-n}.

Proof. - Everything follows from the previous lectures.
Recall that we actually have $\widetilde{\mathbf{B}}_{\text {log }}^{\dagger, r}=\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger, r}[\log [x]]$ for any $x \neq 0 \in \widetilde{\mathbf{E}}$ which does not belong to $\left(\widetilde{\mathbf{E}}^{+}\right)^{\times}$. Since the series defining $\log ([\widetilde{\pi}] / \pi)$ converges in $\widetilde{\mathbf{A}}^{\dagger, r_{0}}$, we actually have that $\widetilde{\mathbf{B}}_{\log }^{\dagger, r}=\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger}, r[\log [\bar{\pi}]]$. We endow $\widetilde{\mathbf{B}}_{\log }^{\dagger}$ of the monodromy operator N defined by

$$
N\left(\sum_{k=0}^{d} a_{k} \log (\pi)^{k}\right)=-\sum_{k=0}^{d} k a_{k} \log (\pi)^{k-1}
$$

which means that $N=-d / d \log (\pi)$. One can check that N commutes with the Galois action.
Recall that if $r>0$ and $p^{k} r>r_{K}$ then there exists a map $R_{k}: \widetilde{\mathbf{A}}_{K}^{\dagger, r}[1 /[\pi]] \rightarrow$ $\varphi^{-k}\left(\mathbf{A}_{K}^{\dagger, p^{k} r}[1 /[\pi]]\right)$ which is a continuous, $\varphi^{-k}\left(\mathbf{A}_{K}^{\dagger, p^{k} r}[1 /[\pi]]\right)$-linear section of the inclusion $\varphi^{-k}\left(\mathbf{A}_{K}^{\dagger, p^{k} r}[1 /[\pi]]\right) \subset \widetilde{\mathbf{A}}_{K}^{\dagger, r}[1 /[\pi]]$ which commutes with the Galois action (i.e. $\gamma \circ R_{k}=$ $R_{k} \circ \gamma$ for $\left.\gamma \in \Gamma_{K}\right)$ and such that $R_{k}(x) \rightarrow x$ for all $x \in \widetilde{\mathbf{A}}_{K}^{\dagger, r}[1 /[\pi]]$.

Proposition 2.2. - If $r>0$ and $p^{k} r>r_{K}$ then by \mathbf{Q}_{p}-linearity and continuity the above map R_{k} extends to a map $R_{k}: \widetilde{\mathbf{B}}_{\mathrm{rig}, K}^{\dagger, r} \rightarrow \varphi^{-k}\left(\mathbf{B}_{\mathrm{rig}, K}^{\dagger, p}\right)$, such that:

1. R_{k} is a continuous section of the inclusion $\varphi^{-k}\left(\mathbf{B}_{\mathrm{ri}, K}^{\dagger, p},{ }^{k} r\right) \subset \widetilde{\mathbf{B}}_{\mathrm{rig}, K}^{\dagger, r}$;
2. R_{k} is $\varphi^{-k}\left(\mathbf{B}_{\mathrm{rig}, K}^{\dagger, p}\right)$-linear;
3. if $x \in \widetilde{\mathbf{B}}_{\mathrm{rig}, K}^{\dagger, r}$, then $\lim _{k \rightarrow+\infty} R_{k}(x)=x$;
4. if $x \in \widetilde{\mathbf{B}}_{\mathrm{rig}, K}^{\dagger, r}$, and $\gamma \in \Gamma_{K}$, then $\gamma \circ R_{k}(x)=R_{k} \circ \gamma(x)$.

Proof. - Once again this follows from statements made in the previous lectures, where it was shown that the maps R_{k} were continuous for the topology induced by the valuations $V_{[r, s]}$ for all $s \geq r$ and satisfied an inequality of the form $V_{[r, s]}\left(R_{k}(x)\right) \geq V_{[r, s]}(x)-c_{K}(r)$ where $c_{K}(r)$ only depends on K and r. Since $\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger, r}$ is the completion of $\widetilde{\mathbf{B}}^{\dagger, r}$ for the topology induced by the valuations $V_{[r, s]}, s \geq r$, this already shows that the maps R_{k} extend by \mathbf{Q}_{p}-linearity and continuity to maps $R_{k}: \widetilde{\mathbf{B}}_{\mathrm{rig}, K}^{\dagger, r} \rightarrow \varphi^{-k}\left(\mathbf{B}_{\mathrm{rig}, K}^{\dagger, p^{k} r}\right)$. It remains to see that if $x \in \widetilde{\mathbf{B}}_{\mathrm{rig}, K}^{\dagger, r}$, then $\lim _{k \rightarrow+\infty} R_{k}(x)=x$.
Let $x \in \widetilde{\mathbf{B}}_{\mathrm{rig}, K}^{\dagger, r}$, let $s \geq r$ and let $M \geq 0$. We have to show that there exists $k_{0} \in \mathbf{N}$ such that $V_{[r, s]}\left(x-R_{k}(x)\right) \geq M$ for $k \geq k_{0}$. By density, there exists $y \in \widetilde{\mathbf{B}}^{\dagger}, r$ such that
$V_{[r, s]}(x-y) \geq M+c_{K}(r)$. Let $n \in \mathbf{N}$ be such that $z=p^{n} y \in \widetilde{\mathbf{A}}^{\dagger}, r[1 /[\pi]]$. Then there exists $k_{0} \geq 0$ such that $v_{r}\left(z-R_{k}(z)\right) \geq M+n s$ if $k \geq k_{0}$. We then have

$$
v_{r}\left(y-R_{k}(y)\right)=v_{r}\left(z-R_{k}(z)\right)-n r \geq M,
$$

and

$$
v_{s}\left(y-R_{k}(y)\right)=v_{s}\left(z-R_{k}(z)\right)-n s \geq v_{r}\left(z-R_{k}(z)\right)-n s \geq M .
$$

Thus we have $V_{[r, s]}\left(y-R_{k}(y)\right) \geq M$ if $k \geq k_{0}$. To conclude it suffices to write $x-R_{k}(x)$ as $(x-y)-R_{k}(x-y)+\left(y-R_{k}(y)\right)$.

We also define $\mathbf{B}_{\log , K}^{\dagger}=\mathbf{B}_{\mathrm{rig}, K}^{\dagger}[\log (\pi)]$, which is a ring stable by the actions of φ and Γ_{K} since $\varphi(\log (\pi))=\log (\varphi(\pi))=p \log (\pi)+\log \left(\varphi(\pi) / \pi^{p}\right)$ and $\gamma(\log (\pi))=\log (\pi)+$ $\log (\gamma(\pi) / \pi)$ and that the series defining $\log \left(\varphi(\pi) / \pi^{p}\right)$ and $\log (\gamma(\pi) / \pi)$ converge in $\mathbf{B}_{\mathrm{rig}, K}^{\dagger}$.
Definition 2.3. - We extend the maps R_{k} to a $\varphi^{-k}\left(\mathbf{B}_{\mathrm{rij}, K}^{\dagger, p^{k} r}\right)$-linear section of the inclusion $\varphi^{-k}\left(\mathbf{B}_{\log , K}^{\dagger, p^{k} r}[1 / t]\right)$ in $\widetilde{\mathbf{B}}_{\log , K}^{\dagger, r}[1 / t]$: those maps still commute with Γ_{K}, and satisfy $\lim _{k \rightarrow+\infty} R_{k}(x)=x$ si $x \in \widetilde{\mathbf{B}}_{\log , K}^{\dagger, r}[1 / t]$.

3. Regularization

We now prove the result of regularization by the Frobenius on which the rest of the proofs will rely on. Recall that the Frobenius φ is a bijection from $\widetilde{\mathbf{B}}_{I}$ to $\widetilde{\mathbf{B}}_{p I}$ and thus induces a bijection from $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger, r}$ to $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger, p r}$ and from $\widetilde{\mathbf{B}}_{\mathrm{log}}^{\dagger, r}$ to $\widetilde{\mathbf{B}}_{\mathrm{log}}^{\dagger, p r}$ since $\varphi(\log [\bar{\pi}])=p \cdot \log [\bar{\pi}]$.
Lemma 3.1. - We have $\widetilde{\mathbf{A}}{ }^{[r ; s]} /(p)=\widetilde{\mathbf{E}}^{+}\left[X, \bar{\pi}^{s-r} X^{-1}\right] /\left(\bar{\pi}^{s}, \bar{\pi}^{r} X\right)$. In particular if $r=s$, then $\widetilde{\mathbf{A}}^{[r ; r]} /(p)=\widetilde{\mathbf{E}}^{+} /\left(\bar{\pi}^{r}\right)\left[X, X^{-1}\right]$.
Proof. - Let $A=\widetilde{\mathbf{A}}^{+}\{X, Y\}$ and $I=\left(X Y-[\bar{\pi}]^{s-r}, p-X[\bar{\pi}]^{r},[\bar{\pi}]^{s}-p Y\right)$ so that $\widetilde{\mathbf{A}}^{[r ; s]}$ can be identified with A / I and so that $\widetilde{\mathbf{A}}^{[r ; s]} /(p)=(A / I) /(p)$. We have an exact sequence $0 \rightarrow I \rightarrow A \rightarrow A / I \rightarrow 0$ and the multiplication by p induces the following diagram:

and since A / I has no p-torsion, the snake's lemma shows that $(A / I) / p$ is identified with the quotient of A / p by the image of I inside it. In our setting we have $A / p=\widetilde{\mathbf{E}}^{+}[X, Y]$ and the image of I is $\left(X Y-\bar{\pi}^{s-r},-X \bar{\pi}^{r}, \bar{\pi}^{s}\right)$, hence the lemma.

Lemma 3.2. - The natural inclusions $\widetilde{\mathbf{A}}^{\left[0, r_{0}\right]} \subset \widetilde{\mathbf{A}}^{\left[r_{0}, r_{0}\right]}$ and $\widetilde{\mathbf{A}}^{\dagger, r_{0}} \subset \widetilde{\mathbf{A}}^{\left[r_{0}, r_{0}\right]}$ induce the following exact sequence:

$$
0 \rightarrow \widetilde{\mathbf{A}}^{+} \rightarrow \widetilde{\mathbf{A}}^{\left[0, r_{0}\right]} \oplus \widetilde{\mathbf{A}}^{\dagger, r_{0}} \rightarrow \widetilde{\mathbf{A}}^{\left[r_{0}, r_{0}\right]} \rightarrow 0
$$

Proof. - The fact that the arrow $\widetilde{\mathbf{A}}^{\left[0, r_{0}\right]} \oplus \widetilde{\mathbf{A}}^{\dagger, r_{0}} \rightarrow \widetilde{\mathbf{A}}^{\left[r_{0}, r_{0}\right]}$ is surjective follows from the decomposition of an element of $\widetilde{\mathbf{A}}{ }^{\left[r_{0}, r_{0}\right]}$ in two parts (recall that $\widetilde{\mathbf{A}}^{\left[r_{0}, r_{0}\right]}$ is the p-adic completion of $\widetilde{\mathbf{A}}^{+}\left[\frac{p}{[\bar{\pi}]}, \frac{[\pi \bar{j}]}{p}\right]$). We also know that $\widetilde{\mathbf{A}}^{+}$is contained in the intersection of $\widetilde{\mathbf{A}}^{\left[0, r_{0}\right]}$ and $\widetilde{\mathbf{A}}^{\dagger, r_{0}}$ and thus it remains to prove that the map

$$
\widetilde{\mathbf{A}}^{+} \rightarrow \widetilde{\mathbf{A}}^{\dagger, r_{0}} \cap \widetilde{\mathbf{A}}^{\left[0, r_{0}\right]}
$$

is also surjective. First we prove that it is true modulo $p \widetilde{\mathbf{A}}^{\left[r_{0}, r_{0}\right]}$ (note that the arrow is no longer injective mod $\underset{\sim}{p}$). Recall that the rings $\widetilde{\mathbf{A}}^{\left[0, r_{0}\right]}$ et $\widetilde{\mathbf{A}}^{\dagger, r_{0}}$ can be identified with $\widetilde{\mathbf{A}}^{+}\{X\} /(p X-[\widetilde{p}])$ and $\widetilde{\mathbf{A}}^{+}\{Y\} /([\widetilde{p}] Y-p)$ and that $\widetilde{\mathbf{A}}^{\left[r_{0}, r_{0}\right]} /(p)=\widetilde{\mathbf{E}}^{+} /(\widetilde{p})\left[X, X^{-1}\right]$. The image of $\widetilde{\mathbf{A}}^{\dagger, r_{0}}$ inside this ring is then $\widetilde{\mathbf{E}}^{+} /(\widetilde{p})[1 / X]$ and the one of $\widetilde{\mathbf{A}}^{\left[0, r_{0}\right]}$ is $\widetilde{\mathbf{E}}^{+} /(\widetilde{p})[X]$ so that the image of their intersection is a subring of $\widetilde{\mathbf{E}}^{+} /(\widetilde{p})$ and thus the arrow $\widetilde{\mathbf{A}}^{+} \rightarrow$ $\widetilde{\mathbf{A}}^{\dagger, r_{0}} \cap \widetilde{\mathbf{A}}^{\left[0, r_{0}\right]}$ is surjective modulo $p \widetilde{\mathbf{A}}^{\left[r_{0}, r_{0}\right]}$. If we let x in $\widetilde{\mathbf{A}}^{\dagger, r_{0}} \cap \widetilde{\mathbf{A}}^{\left[0, r_{0}\right]}$ it therefore exists
 (it suffices to apply lemma 3.1 to these rings). Since p divides $[\widetilde{p}]$ in $\widetilde{\mathbf{A}}^{\left[0, r_{0}\right]}$ there exists $z \in[\widetilde{p}] \widetilde{\mathbf{A}}^{+}$such that $x-y-z \in p\left(\widetilde{\mathbf{A}}^{\dagger, r_{0}} \cap \widetilde{\mathbf{A}}^{\left[0, r_{0}\right]}\right)$. Since $\widetilde{\mathbf{A}}^{+}$is complete for the p-adic topology, it suffices to iterate this to prove the lemma.

Lemma 3.3. - Let h be a positive integer. Then

$$
\cap_{s=0}^{+\infty} p^{-h s} \widetilde{\mathbf{A}}^{\dagger, p^{-s} r}=\widetilde{\mathbf{A}}^{+} \text {and } \cap_{s=0}^{+\infty} p^{-h s} \widetilde{\mathbf{A}}_{\mathrm{rig}}^{\dagger, p^{-s} r} \subset \widetilde{\mathbf{B}}_{\mathrm{rig}}^{+}
$$

where $\widetilde{\mathbf{A}}_{\mathrm{rig}}^{\dagger, r}$ denotes the ring of integers of $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger, r}$ for the valuation $V_{[r ; r]}$.
Proof. - Let us start with the first point: since $x \in \widetilde{\mathbf{A}}^{\dagger, r}$ it can be uniquely written as $\sum_{k \geq 0} p^{k}\left[x_{k}\right]$ and we also have $p^{h s} x=\sum p^{k+h s}\left[x_{k}\right]$. Since $p^{h s} x \in \widetilde{\mathbf{A}}^{\dagger, p^{-s} r}$ this means that

$$
v_{\mathbf{E}}\left(x_{k}\right)+\frac{r p^{1-s}}{p-1}(k+h s) \geq 0
$$

so that

$$
v_{\mathbf{E}}\left(x_{k}\right) \geq-\frac{(k+h s) r}{p^{s-1}(p-1)}
$$

and thus (when $s \rightarrow+\infty$) that $v_{\mathbf{E}}\left(x_{k}\right) \geq 0$ so that $x \in \widetilde{\mathbf{A}}^{+}$.
For the second point, note that for all s one can write $x=a_{s}+b_{s}$ with $a_{s} \in p^{-h s} \widetilde{\mathbf{A}}^{\dagger}, p^{-s_{r}}$ and $b_{s} \in \widetilde{\mathbf{B}}_{\text {rig }}^{+}$. By the lemma 3.2 we have $a_{s}-a_{s+1} \in \widetilde{\mathbf{B}}^{+}$and we also know that $a_{s}-a_{s+1} \in p^{-h(s+1)} \widetilde{\mathbf{A}}^{\dagger, p^{-s} r}$ so that $a_{s}-a_{s+1} \in p^{-h(s+1)} \widetilde{\mathbf{A}}^{+}$and so that up to changing a_{s+1} we can assume that $a_{s}=a_{s+1}=a$. We then have $a \in \cap_{s=0}^{+\infty} p^{-h s} \widetilde{\mathbf{A}}^{\dagger, p^{-s} r}=\widetilde{\mathbf{A}}^{+}$and thus $x \in \widetilde{\mathbf{B}}_{\text {rig }}^{+}$.

Proposition 3.4. - Let r and u be two positive integers and let $A \in \mathrm{M}_{u \times r}\left(\widetilde{\mathbf{B}}_{\mathrm{log}}^{\dagger}\right)$. Assume that there exists $P \in \mathrm{GL}_{u}(F)$ such that $A=P \varphi^{-1}(A)$. Then $A \in \mathrm{M}_{u \times r}\left(\widetilde{\mathbf{B}}_{\log }^{+}\right)$.

Proof. - Let $A=\left(a_{i j}\right)$ and $a_{i j}=\sum_{n=0}^{d} a_{i j, n} \log [\bar{\pi}]^{n}$. Let $h_{0} \in \mathbf{Z}$ such that $p^{h_{0}} P \in$ $\mathrm{M}_{u}\left(\mathcal{O}_{F}\right)$ and $h=h_{0}+d$. The assumption on A and P can be written as:

$$
p_{i 1} \varphi^{-1}\left(a_{1 j}\right)+\cdots+p_{i u} \varphi^{-1}\left(a_{u j}\right)=a_{i j} \quad \forall i \leq u, j \leq r
$$

and since $\varphi^{-1}\left(\log [\bar{\pi}]^{n}\right)=p^{-n} \log [\bar{\pi}]^{n}$, this implies that if $a_{i j, n} \in p^{-c} \widetilde{\mathbf{A}}_{\text {rig }}^{\dagger, r}$, then since $p^{h_{0}} p_{i k} \in \mathcal{O}_{F}$ and $\varphi^{-1}\left(a_{i k, n}\right) \in p^{-c} \widetilde{\mathbf{A}}_{\text {rig }}^{\dagger, r / p}$, we have $a_{i j, n} \in p^{-h-c} \widetilde{\mathbf{A}}_{\mathrm{rig}}^{\dagger, r / p}$. By iterating this we get that $a_{i j, n} \in \cap_{s=0}^{+\infty} p^{-h s-c} \widetilde{\mathbf{A}}_{\mathrm{rig}}{ }^{\dagger r p^{-s}}$. This allows us to apply the above lemma to $p^{c} a_{i j, n}$ and this finishes the proof.

4. Applications for semi-stable periods

Let $\mathbf{B}_{\log , K}^{\dagger, r}=\mathbf{B}_{\mathrm{rig}, K}^{\dagger, r}[\log (\pi)]$ and let

$$
\mathbf{D}_{\mathrm{rig}}^{\dagger}(V)=\mathbf{B}_{\mathrm{rig}, K}^{\dagger} \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{D}^{\dagger}(V) \text { et } \mathbf{D}_{\mathrm{log}}^{\dagger}(V)=\mathbf{B}_{\log , K}^{\dagger} \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{D}^{\dagger}(V)
$$

The fact that p-adic representations are overconvergent shows that both $\mathbf{D}_{\text {rig }}^{\dagger}(V)$ and $\mathbf{D}_{\mathrm{log}}^{\dagger}(V)$ are $\mathbf{B}_{\mathrm{rig}, K^{-}}^{\dagger}$ and $\mathbf{B}_{\log , K^{-}}^{\dagger}$ free modules of rank $d=\operatorname{dim}_{\mathbf{Q}_{p}}(V)$.

If V is a p-adic representation, or more generally, a B-representation where B is a \mathbf{Q}_{p}-algebra endowed with an action of \mathcal{G}_{K}, we let $V(i)$ denote the twist of V by χ^{i}, so that the action of $g \in \mathcal{G}_{K}$ on $V(i)$ is the action of g on V multiplied by $\chi(g)^{i}$.

Proposition 4.1. - One has

$$
\left\{x \in \widetilde{\mathbf{B}}_{\log }^{\dagger}, g(x)=\chi^{i}(g) x, \forall g \in \mathcal{G}_{K}\right\}=\left\{\begin{array}{l}
\text { Ft if } i \geq 0 \\
0 \text { if } i<0
\end{array}\right.
$$

Proof. - Let $V_{i}^{n}=\left(\widetilde{\mathbf{B}}_{\log }^{\dagger} r_{n}(-i)\right)^{\mathcal{G}_{K}}$. This is a finite dimensional F-vector space stable by Frobenius and the previous proposition implies that $V_{i}^{n}=\left(\widetilde{\mathbf{B}}_{\log }^{+}(-i)\right)^{\mathcal{G}_{K}}$. But $\left(\widetilde{\mathbf{B}}_{\log }^{+}[1 / t](i)\right)^{\mathcal{G}_{K}}$ is the (φ, N)-module attached to the crystalline representation χ^{i}, so that it is of dimension 1 and thus any non zero element of $\left(\widetilde{\mathbf{B}}_{\log }^{+}[1 / t](i)\right)^{\mathcal{G}_{K}}$ generates this F-vector space. Since t^{i} works, this means that

$$
V_{i}^{n}=\left\{\begin{array}{l}
F t^{i} \text { if } i \geq 0 \\
0 \text { if } i<0
\end{array}\right.
$$

Since $V_{i}=\cup_{n=0}^{+\infty} V_{i}^{n}$ this proves the result.
We let $\mathbf{D}_{\mathrm{st}}^{+}(V)=\left(\mathbf{B}_{\mathrm{st}}^{+} \otimes_{\mathbf{Q}_{p}} V\right)^{\mathcal{G}_{K}}$. Recall that $\mathbf{D}_{\mathrm{st}}^{+}(V)=\left(\widetilde{\mathbf{B}}_{\mathrm{log}}^{+} \otimes_{\mathbf{Q}_{p}} V\right)^{\mathcal{G}_{K}}$. A quick computation shows that $\mathbf{D}_{\text {st }}(V)=t^{-d} \mathbf{D}_{\text {st }}(V(-d))$ and thus for $d \gg 0$, we have that $\mathbf{D}_{\mathrm{st}}(V)=t^{-d} \mathbf{D}_{\mathrm{st}}^{+}(V(-d))$.

Proposition 4.2. - If V is a p-adic representation then $\left(\widetilde{\mathbf{B}}_{\log }^{\dagger} \otimes_{\mathbf{Q}_{p}} V\right)^{\mathcal{G}_{K}}$ is a finite dimensional F-vector space and the morphism

$$
\mathbf{D}_{\mathrm{st}}^{+}(V) \rightarrow\left(\widetilde{\mathbf{B}}_{\log }^{\dagger} \otimes_{\mathbf{Q}_{p}} V\right)^{\mathcal{G}_{K}}
$$

induced by the inclusion $\widetilde{\mathbf{B}}_{\log }^{+} \subset \widetilde{\mathbf{B}}_{\log }^{\dagger}$ is an isomorphism of (φ, N)-modules.

Proof. - If $n \in \mathbf{N}$, then $D_{n}=\left(\widetilde{\mathbf{B}}_{\log }^{\dagger, r_{n}} \otimes_{\mathbf{Q}_{p}} V\right)^{\mathcal{G}_{K}}$ is a F-vector space whose dimension is $\leq[K: F] d$, since ι_{n} induces an injection of D_{n} in $\mathbf{D}_{\mathrm{dR}}(V)$, which is a finite dimensional K-vector space of dimension $\leq d$. If we take $[K: F] d+1$ elements of $\left(\widetilde{\mathbf{B}}_{\log }^{\dagger} \otimes \mathbf{Q}_{p} V\right)^{\mathcal{G}_{K}}$, they live inside D_{n} for $n \gg 0$, and thus are linearly dependent. This means that $\left(\widetilde{\mathbf{B}}_{\log }^{\dagger} \otimes_{\mathbf{Q}_{p}} V\right)^{G_{K}}$ is a F-vector space of dimension $\leq[K: F] d$.

For the second point, let v_{1}, \cdots, v_{r} and d_{1}, \cdots, d_{u} be respectively $\mathbf{Q}_{p^{-}}$and F - basis of V and $\left(\widetilde{\mathbf{B}}_{\log }^{\dagger} \otimes_{\mathbf{Q}_{p}} V\right)^{\mathcal{G}_{K}}$. There exists a matrix $A \in \mathrm{M}_{r \times u}\left(\widetilde{\mathbf{B}}_{\log }^{\dagger}\right)$ such that $\left(d_{i}\right)=A\left(v_{i}\right)$. Let $P \in \mathrm{GL}_{u}(F)$ be the matrix of φ in the basis $\left(d_{i}\right)$ (which is invertible since $\varphi: \widetilde{\mathbf{B}}_{\mathrm{log}}^{\dagger} \rightarrow \widetilde{\mathbf{B}}_{\mathrm{log}}^{\dagger}$ is bijective). We then have $\varphi(A)=P A$ and thus $A=\varphi^{-1}(P) \varphi^{-1}(A)$; proposition 3.4 shows that $A \in \mathrm{M}_{r \times u}\left(\widetilde{\mathbf{B}}_{\log }^{+}\right)$and thus that $\left(\widetilde{\mathbf{B}}_{\log }^{\dagger} \otimes_{\mathbf{Q}_{p}} V\right)^{\mathcal{G}_{K}} \subset\left(\widetilde{\mathbf{B}}_{\log }^{+} \otimes_{\mathbf{Q}_{p}} V\right)^{\mathcal{G}_{K}}=\mathbf{D}_{\text {st }}^{+}(V)$, which is what we wanted.

Up to twisting V, this implies that V is semi-stable if and only if it is $\widetilde{\mathbf{B}}_{\log }^{\dagger}[1 / t]-$ admissible, and that it is crystalline if and only if it is $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger}[1 / t]$-admissible.
Proposition 4.3. - If V is semi-stable we have the following comparison isomorphism:

$$
\widetilde{\mathbf{B}}_{\log }^{\dagger}[1 / t] \otimes_{F} \mathbf{D}_{\mathrm{st}}(V)=\widetilde{\mathbf{B}}_{\log }^{\dagger}[1 / t] \otimes_{\mathbf{Q}_{p}} V
$$

Proof. - This comes from the fact that in this case we already have:

$$
\widetilde{\mathbf{B}}_{\log }^{+}[1 / t] \otimes_{F} \mathbf{D}_{\mathrm{st}}(V)=\widetilde{\mathbf{B}}_{\log }^{+}[1 / t] \otimes_{\mathbf{Q}_{p}} V
$$

and thus it suffices to tensor this equality by $\widetilde{\mathbf{B}}_{\log }^{\dagger}[1 / t]$ over $\widetilde{\mathbf{B}}_{\log }^{+}[1 / t]$.
Theorem 4.4. - If V is a p-adic representation of \mathcal{G}_{K} then

$$
\mathbf{D}_{\text {st }}(V)=\left(\mathbf{D}_{\mathrm{log}}^{\dagger}(V)[1 / t]\right)^{\Gamma_{K}} \quad \text { and } \quad \mathbf{D}_{\text {cris }}(V)=\left(\mathbf{D}_{\text {rig }}^{\dagger}(V)[1 / t]\right)^{\Gamma_{K}}
$$

In particular V is semi-stable (resp. crystalline) if and only if $\left(\mathbf{D}_{\log }^{\dagger}(V)[1 / t]\right)^{\Gamma_{K}}$ (resp. $\left.\left(\mathbf{D}_{\mathrm{rig}}^{\dagger}(V)[1 / t]\right)^{\Gamma_{K}}\right)$ is a F-vector space of dimension $d=\operatorname{dim}_{\mathbf{Q}_{p}}(V)$.
Proof. - The second point follows from the first one by taking the invariants under $N=$ 0 . Since $\mathbf{D}_{\log }^{\dagger}(V)[1 / t] \subset\left(\widetilde{\mathbf{B}}_{\log }^{\dagger}[1 / t] \otimes_{\mathbf{Q}_{p}} V\right)\left(\right.$ and since $\left.\mathbf{D}_{\text {rig }}^{\dagger}(V)[1 / t] \subset\left(\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger}[1 / t] \otimes_{\mathbf{Q}_{p}} V\right)\right)$ the previous results show that $\left(\mathbf{D}_{\log }^{\dagger}(V)[1 / t]\right)^{\Gamma_{K}}\left(\right.$ resp. $\left.\left(\mathbf{D}_{\text {rig }}^{\dagger}(V)[1 / t]\right)^{\Gamma_{K}}\right)$ is contained in $\mathbf{D}_{\text {st }}(V)$ (resp. in $\mathbf{D}_{\text {cris }}(V)$).

Let us now show that $\mathbf{D}_{\text {st }}(V) \subset\left(\mathbf{D}_{\text {log }}^{\dagger}(V)[1 / t]\right)^{\Gamma_{K}}$, and that $\mathbf{D}_{\text {cris }}(V) \subset\left(\mathbf{D}_{\text {rig }}^{\dagger}(V)[1 / t]\right)^{\Gamma_{K}}$. It suffices to show the semi-stable case because the crystalline one will follow by taking the invariants under $N=0$. Let $r=\operatorname{dim}_{F}\left(\mathbf{D}_{\text {st }}(V)\right)$. Up to twisting V, we can assume that $\mathbf{D}_{\text {st }}(V)=\left(\widetilde{\mathbf{B}}_{\log }^{\dagger} \otimes_{\mathbf{Q}_{p}} V\right)^{\mathcal{G}_{K}}$ and we know that we have $\left(\widetilde{\mathbf{B}}_{\mathrm{log}}^{\dagger} \otimes_{\mathbf{Q}_{p}} V\right)^{H_{K}}=\widetilde{\mathbf{B}}_{\log , K}^{\dagger} \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{D}^{\dagger}(V)$ since $\mathbf{D}^{\dagger}(V)$ has the right dimension. This implies that if we chose a basis $\left\{e_{i}\right\}$ of $\mathbf{D}^{\dagger}(V)$ and $\left\{d_{i}\right\}$ a basis of $\mathbf{D}_{\text {st }}(V)$, then the matrix $M \in \mathrm{M}_{r \times d}\left(\widetilde{\mathbf{B}}_{\log , K}^{\dagger}\right)$ defined by $\left(d_{i}\right)=M\left(e_{i}\right)$ is of rank r et and satisfies $\gamma_{K}(M) G-M=0$ where $G \in \mathrm{GL}_{d}\left(\mathbf{B}_{K}^{\dagger}\right)$ is the matrix of γ_{K} in the basis $\left\{e_{i}\right\}$.

The trace maps R_{m} defined previously are $\mathbf{B}_{\log , K}^{\dagger}$-linear and commute with Γ_{K} so that $\gamma_{K}\left(R_{m}(M)\right) G-R_{m}(M)=0$. Moreover $R_{m}(M) \rightarrow M$ and if $M \in \mathrm{M}_{r \times d}\left(\widetilde{\mathbf{B}}_{\log , K}^{\dagger, r_{n}}\right)$, then
$R_{m}(M) \in \mathrm{M}_{r \times d}\left(\widetilde{\mathbf{B}}_{\text {log }, K}^{\dagger, r_{n}}\right)$. Let $N=\varphi^{m}\left(R_{m}(M)\right)$. We then have $\gamma_{K}(N) \varphi^{m}(G)=N$ and since the actions of φ and Γ_{K} commute on $\mathbf{D}_{\mathrm{rig}}^{\dagger}(V)$ we have $\varphi(G)=\gamma_{K}(P) G P^{-1}(P$ is the matrix of φ and is invertible since φ is overconvergent and \mathbf{B}_{K}^{\dagger} is a field) so that if $Q=\varphi^{m-1}(P) \cdots \varphi(P) P$, then $\varphi^{m}(G)=\gamma_{K}(Q) G Q^{-1}$ and thus $\gamma_{K}(N Q) G=(N Q)$. The matrix $N Q$ determines r elements of $\mathbf{D}_{\log }^{\dagger}(V)$ which are fixed by γ_{K}. It remains to show that these elements are linearly independent over F for m big enough. But since $R_{m}(M) \rightarrow M$, the matrix $N Q$ is of $\operatorname{rank} r=\operatorname{rank}(M)$ for $m \gg 0$ and thus will determine a free sub-module of rank r of $\mathbf{D}_{\log }^{\dagger}(V)$. The F-vector space generated by the elements determined by $N Q$ is thus of dimension r and thus equal to $\mathbf{D}_{\text {st }}(V)$.

Proposition 4.5. - We have the following comparison isomorphisms:

1. if V is a semi-stable representation then

$$
\mathbf{D}^{\dagger}(V) \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{B}_{\log , K}^{\dagger}[1 / t]=\mathbf{D}_{\text {st }}(V) \otimes_{F} \mathbf{B}_{\log , K}^{\dagger}[1 / t]
$$

2. if V is a crystalline representation then

$$
\mathbf{D}^{\dagger}(V) \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{B}_{\mathrm{rig}, K}^{\dagger}[1 / t]=\mathbf{D}_{\text {cris }}(V) \otimes_{F} \mathbf{B}_{\mathrm{rig}, K}^{\dagger}[1 / t]
$$

Proof. - Once again it suffices to prove the semi-stable case as the crystalline case will follow by taking the invariants under $N=0$. Up to twisting V, we are reduced to the case where V is $\widetilde{\mathbf{B}}_{\log }^{+}$-admissible and we then know that $\mathbf{D}_{\text {st }}(V) \subset \widetilde{\mathbf{B}}_{\mathrm{log}, K}^{\dagger} \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{D}^{\dagger}(V)$ and that

$$
\widetilde{\mathbf{B}}_{\log , K}^{\dagger}[1 / t] \otimes_{\mathbf{B}_{K}^{\dagger}} \mathbf{D}^{\dagger}(V)=\widetilde{\mathbf{B}}_{\log , K}^{\dagger}[1 / t] \otimes_{F} \mathbf{D}_{\mathrm{st}}(V)
$$

so that if we chose basis $\left\{d_{i}\right\}$ of $\mathbf{D}_{\text {st }}(V)$ and $\left\{e_{i}\right\}$ of $\mathbf{D}^{\dagger}(V)$, then $\left(e_{i}\right)=B\left(d_{i}\right)$ with $B \in \mathrm{M}_{d}\left(\widetilde{\mathbf{B}}_{\log , K}^{\dagger}[1 / t]\right)$; proposition 4.4 implies that $\left(d_{i}\right)=A\left(e_{i}\right)$ with $A \in \mathrm{M}_{d}\left(\mathbf{B}_{\log , K}^{\dagger}[1 / t]\right)$; and moreover we have that $A B=\mathrm{Id}$. We can apply the operator R_{0} which is $\mathbf{B}_{\log , K}^{\dagger}[1 / t]$ linear and we obtain that $A R_{0}(B)=\mathrm{Id}$ so that $B=R_{0}(B)$ and thus B has its coefficients in $\mathbf{B}_{\log , K}^{\dagger}[1 / t]$ and $A \in \mathrm{GL}_{d}\left(\mathbf{B}_{\log , K}^{\dagger}[1 / t]\right)$. This finishes the proof.
Proposition 4.6. - Let V be a semi-stable representation of \mathcal{G}_{K} and let M be the transfer matrix from a basis of $\mathbf{D}_{\mathrm{st}}(V)$ to a basis of $\mathbf{D}^{\dagger}(V)$. It then exists $r \in \mathbf{Z}$ and $\lambda \in \mathbf{B}_{K}^{\dagger}$ such that $\operatorname{det}(M)=\lambda t^{r}$.

Proof. - The determinant of the transfer matrix is equal to the coefficient of the transfer matrix for $\operatorname{det}(V)$ and thus it suffices to prove the result in dimension 1. But semi-stable characters are of the form $\omega \chi^{r}$ where ω is an unramified character and its period is an element $\beta \in W(\bar{k})$, so that $\mathbf{D}_{\text {st }}(V)=F \cdot \beta t^{-r}$ and $\mathbf{D}^{\dagger}(V)=\mathbf{B}_{K}^{\dagger} \cdot \beta$.

References

[Ber02] Laurent Berger, Représentations p-adiques et équations différentielles, Inventiones mathematicae 148 (2002), no. 2, 219-284.
[Ber04] , An introduction to the theory of p-adic representations, Geometric aspects of Dwork theory 1 (2004), 255-292.

Léo Poyeton

