
CRYSTALLINE AND SEMI-STABLE REPRESENTATIONS

by

The goal of this lecture is to define crystalline and semi-stable representations, to
explain the attached notions and to explain the links with (ϕ,Γ)-modules. In what
follows, we keep the notations defined and used in the previous lectures. In particular,
recall that K is a finite extension of Qp and that we note F = Qp

unr ∩K.
Fontaine’s strategy to study p-adic representations of GK is to construct some “p-adic

rings of periods”, which are topological Qp-algebras B endowed with an action of GK
and with additional structures (like a Frobenius, a filtration, . . . ) and to attach to V
the BGK -module DB(V ) = (B⊗Qp V )GK , so that DB inherits the structures coming from
those on B. When V is such that B ⊗Qp V ' BdimQp V as B[GK ]-modules, we say that
V is B-admissible. If the structures on B are “nice enough”, one can recover V from
DB(V ) when V is B-admissible. Of course, we would also like to define rings of periods
that will be large enough so that representations arising from geometric situations, like
the Tate modules of elliptic curves are admissible for these rings.

In the last lecture we defined B+
dR as the completion of B̃+ for the ker θ-adic tolopogy,

and we have denoted by t the element of B+
dR defined by the power series log[ε]. We have

seen that BdR = B+
dR[1/t] is a field, and we defined the notion of de Rham representations,

which are p-adic representations of GK that are BdR-admissible.
However, note that we can’t recover V from DdR(V ), even when V is de Rham, because

the functor V 7→ DdR(V ), from the category of de Rham representations to the category
of filtered K-vector spaces, is not fully faithful. The rings Bcris and Bst we will introduce
are meant to answer this problem while still taking into account (some) representations
arising from geometric situations.

In this lecture, we will mainly follow [Ber04] and [Ber10].

1. The rings Bcris and Bst

1.1. The ring Bcris. — One problem with B+
dR is that completing B̃+ for the ker θ-adic

topology is too coarse: there is no natural extension of the Frobenius ϕ : B̃+ → B̃+ to
B+

dR. One way to see this is that since BdR
GL = L for every finite extension L/K, the
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existence of a canonical Frobenius map ϕ : BdR → BdR would imply the existence of a
Frobenius map ϕ : K → K, and such a map does not exist.

An other way to see it and which will explain a bit more the construction of Bcris is that
there are elements x ∈ B̃+ that are killed by θ but such that θ(ϕ(x)) 6= 0. For example,
θ([p̃1/p]−p) 6= 0, so that [p̃1/p]−p is invertible in B+

dR, and so 1/([p̃1/p]−p) ∈ B+
dR. But if ϕ

is a natural extension of ϕ : B̃+ → B̃+, then one should have ϕ(1/([p̃1/p]−p)) = 1/([p̃]−p),
and since θ([p̃]− p) = 0, 1/([p̃]− p) /∈ B+

dR.
In particular, we want to complete B̃+ in a more subtle way, so that t = log[ε] still lies

in this completion, but such that we avoid to invert elements like [p̃1/p]− p. The way to
do this is to impose some growth condition. Recall that π = [ε]− 1 and that

ω = π

ϕ−1(π) = 1 + [ε1/p] + · · ·+ [ε1/p]p−1.

Definition 1.1. — We define

Acris :=


x ∈ BdR such that x can be written as x =

+∞∑
n=0

xn
ωn

n!
where xn ∈ Ã+ and the xn → 0 in Ã+ for the p-adic topology

 ,
and

B+
cris = A+

cris[1/p] =


x ∈ BdR such that x can be written as x =

+∞∑
n=0

xn
ωn

n!
where xn ∈ Ã+ and the xn → 0 in B̃+ for the p-adic topology

 .
Remark 1.2. — Note that, since ker(θ|Ã+) is a principal ideal of Ã+, one can replace
ω in the definition by any generator of ker(θ). Also note that if one can write x =∑+∞
n=0 xn

ωn

n! ∈ Acris with xn → 0, such a sequence is not unique.

Proposition 1.3. — The Frobenius and the action of GK on Ã+ and B̃+ extend natu-
rally to actions on Acris and B+

cris.

Proof. — The fact that Acris is stable under the action of GK comes from the fact that
g(ω) = xω with x ∈ Ã+ and from the definition of Acris.

For the Frobenius, we will use the fact that if x ∈ Ã+, then ϕ(x) ≡ xp mod p. In
particular, we have

ϕ(ω) = ωp + px = p

(
x+ (p− 1)!ω

p

p!

)
with x ∈ Ã+, and thus

ϕ(ωm) = pm
(
x+ (p− 1)!ω

p

p!

)m
which gives

ϕ
(
ωm

m!

)
= pm

m!

(
x+ (p− 1)!ω

p

p!

)m
∈ Ã+

[
ωp

p!

]
⊂ Acris.
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This allows us to define ϕ on Acris et B+
cris.

Proposition 1.4. — We have t ∈ Acris.

Proof. — Write [ε]− 1 = xω with x ∈ Ã+. Then
([ε]− 1)n

n
= (n− 1)!xnω

n

n!
and since (n− 1)!→ 0 p-adically, we deduce that t ∈ Acris.

We now define Bcris by Bcris = B+
cris[1/t] and we extend the actions of GK and of the

Frobenius to Bcris by setting ϕ(1/t) = 1
pt

and g(1/t) = χ(γ)−11/t. Note that Bcris is a
domain but not a field because for example ω − p belongs to Bcris but not its inverse.

We now recall a useful lemma. Let N be a torsion free Zp-module which is separated
and complete for the p-adictopology and let M ⊂ N . If M̂ denotes the completion of
M for the p-adic topology, then the inclusion map M → N extends to a map M̂ → N

whose image is the closure of M in N .

Lemma 1.5. — If there exists i > 1 such that piN ∩M ⊂ pM , then the map above is
injective.

Proof. — Every element of M̂ can be written as m = ∑
n≥0 p

inmn with mn ∈ M and if
m ∈ ker(M̂ → N) then m0 ∈ piN ∩M ⊂ pM so that ker(M̂ → N) ⊂ p ker(M̂ → N).
By iterating this, we get that ker(M̂ → N) ⊂ ∩k≥0p

kM̂ = 0.

Proposition 1.6. — The natural map K ⊗F B+
cris → B+

dR is injective.

Proof. — We will prove that the natural map K ⊗F B̃+ → B+
dR is injective. Actually

it suffices to prove that the natural map OK ⊗OF
Ã+ → B+

dR is injective. This map is
obtained by gluing together the maps OK⊗OF

Ã+ → Bh = B̃+/(ker θ)h, so that its kernel
is ∩h≥1([π̃K ]− πK)h · OK ⊗OF

Ã+ = {0}.
By definition of B+

cris and with the previous lemma, this finishes the proof.

Proposition 1.7. — We have Frac(B+
cris)GK = F .

Proof. — We already know that F ⊂ Frac(B+
cris)GK ⊂ BdR

GK = K. Let a/b ∈ B+
cris such

that a/b = x ∈ K. Then 1⊗ a− x⊗ b is in the kernel of the map K ⊗F B+
cris → B+

dR and
thus 1⊗ a = x⊗ b and therefore x ∈ F .

Definition 1.8. — Let V be a p-adic representation of GK . We let Dcris(V ) = (Bcris⊗Qp

V )GK .
We say that V is crystalline if it is Bcris-admissible, that is if Dcris(V ) is an F -vector

space whose dimension is the same as dimQp V .

Since K ⊗F B+
cris ⊂ B+

dR, we get that K ⊗F Dcris(V ) ⊂ DdR(V ) and thus is endowed
with a filtration induced by the one on DdR(V ). Moreover, since Bcris is endowed with a
Frobenius ϕ, so is Dcris(V ).
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Definition 1.9. — We define the category of filtered ϕ-modules as follow: A filtered
ϕ-module over K is a F -vector space D equipped with a bijective map ϕ : D → D

which is semilinear relatively to σF , the absolute Frobenius on F , and with a decreasing,
separated and exhaustive filtration indexed by Z on K ⊗F D.

One can associate to a filtered ϕ-module D two polygons: its Hodge polygon PH(D),
coming from the filtration, and its Newton polygon PN(D), coming from the slopes of ϕ.

Remark 1.10. — The topology on Bcris is actually quite bad. Let us see why by
following an example given by Colmez [Col98, III.2]. The sequence xn = ωpn−1

(pn−1)! does
not tend to 0 in B+

cris by construction, but the sequence ωxn = pn ωpn

(pn)! tends to 0, so that
txn tends to 0 in B+

cris and so xn tends to 0 in Bcris. This is one of the reasons why we
usually prefer to work with the ring B+

max instead of B+
cris, which has been defined in the

last talk. Just recall that we can define B+
max by B+

max := Amax[1/p] and where Amax is
defined as follows:

Amax =


x ∈ B+

dR such that x can be written as x =
∑
n≥0

anω
n/pn

where an ∈ Ã+ tends to 0 for the p-adic topology

 .
Remark 1.11. — One can check that we have

ϕ(Bmax) ⊂ Bcris ⊂ Bmax.

Thus, since the periods of crystalline representations live inside finite dimensional F -
vector spaces that are stable by ϕ, they also live inside Bmax and thus crystalline rep-
resentations are the same as Bmax-admissible representations, and the same as B̃+

rig[1/t]-
admissible representations (recall that B̃+

rig = ∩∞n=0B+
max = ∩∞n=0B+

cris).

1.2. Example: elliptic curves. — The following examples come from [Ber04]. If
V = Qp⊗Zp TpE, where E is an elliptic curve over F with good ordinary reduction, then
Dcris(V ) is a 2-dimensional F -vector space with a basis x, y, and there exists λ ∈ F and
α0, β0 ∈ O∗F depending on E such that:

ϕ(x) = α0p
−1x

ϕ(y) = β0y
and FiliDcris(V ) =


Dcris(V ) if i ≤ −1
(y + λx)F if i = 0
{0} if i ≥ 1

The Newton and Hodge polygons of Dcris(V ) are then as follows:
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If on the other hand, an elliptic curve E has good supersingular reduction, then the
operator ϕ : Dcris(V )→ Dcris(V ) is irreducible and the Newton and Hodge polygons are
as follows:
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1.3. The case of bad semi-stable reduction. — In what follows we consider the
case where K = F for simplicity. Let q be a formal parameter and define

sk(q) =
+∞∑
n=1

nkqn

1− qn a4(q) = −s3(q) a6(q) = −5s3(q) + 7s5(q)
12

x(q, v) =
+∞∑

n=−∞

qnv

(1− qnv)2 − 2s1(q) y(q, v) =
+∞∑

n=−∞

(qnv)2

(1− qnv)3 + s1(q).

All those series are convergent if q ∈ pOF and v /∈ qZ = 〈q〉 (the multiplicative subgroup
of F× generated by q). For such q 6= 0, let Eq be the elliptic curve defined by the
equation y2 + xy = x3 + a4(q)x + a6(q). The theorem of Tate is then: the elliptic curve
Eq is defined over F , it has bad semi-stable reduction, and Eq is uniformized by F×, that
is, there exists a map α : F× → Eq(F ), given by

v 7→

(x(q, v), y(q, v)) if v /∈ qZ

0 if v ∈ qZ

which induces an isomorphism of groups with GF -action F
×
/〈q〉 → Eq(F ).

Furthermore, if E is an elliptic curve over F with bad semi-stable reduction, then there
exists q such that E is isomorphic to Eq over F .

1.3.1. The p-adic representation attached to Eq. — Using Tate’s theorem, we can give
an explicit description of Tp(Eq). Let q̃ ∈ Ẽ+ be such that q(0) = q. Then α induces
isomorphisms

F
×
/〈q〉 −−−→ Eq(F )

{x ∈ F×/〈q〉, xpn ∈ 〈q〉} −−−→ Eq(F )[pn]

and one sees that {x ∈ F
×
/〈q〉, xpn ∈ 〈q〉} = {(ε(n))i(q(n))j, 0 ≤ i, j < pn − 1}. The

elements ε(n) and q(n) therefore form a basis of Eq(F )[pn], so that a basis of Tp(Eq) is
given by e = lim←−n ε

(n) and f = lim←−n q
(n). This makes it possible to compute explicitly the

Galois action on Tp(Eq). We have g(e) = lim←−n g(ε(n)) = χ(g)e and g(f) = lim←−n g(q(n)) =
lim←−n q

(n)(ε(n))c(g) = f + c(g)e where c(g) is some p-adic integer, determined by the fact
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that g(q(n)) = q(n)(ε(n))c(g). Note that [g 7→ c(g)] ∈ H1(F,Zp(1)). The matrix of g in the
basis (e, f) is therefore given by (

χ(g) c(g)
0 1

)
1.3.2. p-adic periods of Eq. — We are looking for p-adic periods of V = Qp ⊗Zp Tp(Eq)
which live in BdR, that is for elements of (BdR⊗Qp V )GF . An obvious candidate is t−1⊗ e
since g(t) = χ(g)t and g(e) = χ(g)e. Let us look for a second element of (BdR ⊗Qp V )GF ,
of the form a ⊗ e + 1 ⊗ f . We see that this element will be fixed by GF if and only if
g(a)χ(g) + c(g) = a.

Let q̃ be the element of Ẽ+ defined by q̃ = (q(0), q(1), · · · ). Observe that we have
g(q̃) = (g(q(0)), g(q(1)), · · · ) = q̃εc(g), and that θ([q̃]/q(0) − 1) = 0, so that [q̃]/q(0) − 1 is
small in the ker(θ)-adic topology. The series

logp(q(0))−
+∞∑
n=1

(1− [q̃]/q(0))n
n

therefore converges in B+
dR to an element which we call u. One should think of u as being

u = log([q̃]). In particular, g(u) = g(log([q̃])) = log([g(q̃)]) = log([q̃]) + c(g) log([ε]) =
u + c(g)t, and we see that a = −u/t satisfies the equation g(a)χ(g) + c(g) = a. A basis
of DdR(V ) = (BdR ⊗Qp V )GF is therefore given byx = t−1 ⊗ e

y = −ut−1 ⊗ e+ 1⊗ f

and this shows that Tp(Eq) is BdR-admissible. Furthermore, one sees that θ(u −
logp(q(0))) = 0, so that u− logp(q(0)) is divisible by t and

FiliDdR(V ) =


DdR(V ) if i ≤ −1
(y + logp(q(0))x)F if i = 0
{0} if i ≥ 1

We will now see why Bcris is not sufficient in order to take into account the represen-
tations arising from elliptic curves with bad semi-stable reduction. First, we will define
a log map : x ∈ Ẽ× 7→ log[x] ∈ B+

dR.

Proposition 1.12. — There exists a unique map log : x 7→ log[x] from Ẽ× to B+
dR

satisfying log[xy] = log[x] + log[y], log[x] = 0 if x ∈ Fp,

log[x] =
∑
n>0

(−1)n+1 ([x]− 1)n
n

if vp(x(0) − 1) ≥ 1 and such that

log[p̃] =
+∞∑
i=1

(−1)n+1 ( [p̃]
p
− 1)n

n
.
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Proof. — If x ∈ Ẽ with vE(x− 1) ≥ 1, then we set

log[x] =
∑
n>0

(−1)n+1 ([x]− 1)n
n

.

The series converges in Acris since then θ([x]− 1) = x(0)− 1, and thus ([x]−1)n

n! ∈ Acris and

log[x] =
∑
n>0

(−1)n+1(n− 1)!([x]− 1)n
n!

which converges in Acris since (n− 1)!→ 0 when n→ +∞.
This map extends uniquely to a map from 1 + mẼ to B+

cris by setting

log[x] := 1
pm

log[xpm ]

for m such that vE(xpm − 1) ≥ 1, this value being independant of the choice of such m,
and we check that if x ∈ F×p , then log[x] = 0.

If x ∈ (Ẽ+)×, one can write x = x0y with x0 ∈ F×p and y ∈ 1 + mẼ, and we put

log[x] := log[y].

If x ∈ Ẽ× with vE(x) = r
s
, r, s ∈ Z and s ≥ 1, then xs

p̃r = y ∈ (Ẽ+)×, so that the
relation

log
(

[xs]
[p̃]r

)
= log[y] = s log[x]− r log[p̃]

gives us
log[x] = 1

s
(r log[p̃] + log[y])

and thus it suffices in order to define log[x] to define log[p̃]. It thus suffices to check that

log[p̃] =
+∞∑
i=0

(−1)n+1 ( [p̃]
p
− 1)n

n

converges in B+
dR, which is indeed the case since θ( [p̃]

p
− 1) = 0.

Remark 1.13. — In the above proof, we actually showed that if x ∈ (Ẽ+)×, then
log[x] ∈ B+

cris.

Proposition 1.14. — The element log[p̃] is transcendental over Frac(Bcris).

Proof. — The hardest part is to show that log[p̃] /∈ Frac(Bcris). We assume for now that
log[p̃] /∈ Frac(Bcris).

Let Xd + ud−1X
d−1 + . . . + u0 be the minimal polynomial of log[p̃] over Frac(Bcris).

By applying g and comparing the coefficients we obtain g(ud−1) = ud−1 + dc(g)t so
that ud−1 − d log[p̃] can be seen as an element of BdR stable by GF and thus log[p̃] =
d−1(ud−1 − c) for some c ∈ F , which is impossible.

Let us now see why log[p̃] /∈ Frac(Bcris). Here we follow Fontaine’s original proof
[Fon94, 4.3.2]. Let ξ = p − [p̃] and let β = ξ/p. Then both β and ξ are in Fil1BdR but
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not in Fil2BdR. Let S = Ã+[[β]] ⊂ B+
dR. For every i ∈ N, let FiliS = S ∩ FiliBdR. Then

FiliS is the principal ideal of S generated by βi. Let

θi : FiliS → OCp

be the map sending βiα to θ(α). We then have θiFiliS = OCp . By construction, we have
Acris ⊂ S and thus Frac(Bcris) = Frac(Acris) ⊂ Frac(S). We will now show that if α ∈ S
is not zero, then α log[p̃] /∈ S which will conclude the proof.

Since S is separated for the p-adic topology, it suffices to show that if r ∈ N and
α ∈ S \ pS then prα log[p̃] /∈ S. If a ∈ Ã+ satisfies θ(a) ∈ pOCp then a ∈ (p, ξ)Ã+ and
hence a ∈ pS. Therefore one can find i ≥ 0 and a sequence (bn) of elements of Ã+ such
that the θ(bi) /∈ pOCp and

α = p(
∑

0≤n<i
bnβ

n) +
∑
n≥i

bnβ
n.

Recall that we have log[p̃] = −∑n≥1 β
n/n. Suppose j > r is an integer such that pj > i. If

prα log[p̃] ∈ S, then we have α·∑n>0 p
j−1βn/n ∈ S. Note also that α·∑0<n<pj pj−1βn/n ∈

S so that α · βpj
/p ∈ S + Fil2pj BdR.

Thus we get that biβi+p
j
/p ∈ S + Fili+pj+1BdR ∩Fili+pj BdR = Fili+pj

S + Fili+pj+1BdR.
But we have θi+pj (Fili+pj

S+Fili+pj+1BdR) = OCp and θi+p
j (biβi+p

j
/p) = θ(bi)/p /∈ OCp

and thus we get a contradiction.

In particular, when E is an elliptic curve with bad semi-stable reduction, then the
representation coming from its Tate module is not crystalline. This makes us define a
new ring of periods:

Definition 1.15. — We define Bst := Bcris[log[p̃]] as the sub-Bcris-algebra of BdR gen-
erated by log[p̃], and B+

st := B+
cris[log[p̃]] as the sub-B+

cris-algebra of B+
dR generated by

log[p̃].
The Frobenius naturally extends to Bst by ϕ(log[p̃]) = p · log[p̃].
Note that there exists an element log(π) ∈ Bst and that Bst = Bcris[log(π)]. We endow

Bst with a monodromy operator N defined by

N

(
d∑

k=0
ak log(π)k

)
= −

d∑
k=1

kak log(π)k−1.

Proposition 1.16. — One has:

1. the natural map K ⊗F B+
st → B+

dR is injective;

2. BGK
st = F ;

3. the operator N commutes with GF and satisfies Nϕ = pϕN ;

4. BN=0
st = Bcris.
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Proof. — The last two items are just straightforward computations. For the first point,
note that Frac(K ⊗F Bcris) is a finite extension of Frac(Bcris) and thus log[p̃] is transcen-
dental over Frac(K ⊗F Bcris). Therefore we have

K ⊗F Bst = (K ⊗F Bcris)[log[p̃]]

and this proves the first point.
For the second point, we already know that F ⊂ (Bst)GK ⊂ Frac(Bst)GK ⊂ BdR

GK = K

and the result now follows from the first point.

Definition 1.17. — Let V be a p-adic representation of GK . We let Dst(V ) = (Bst⊗Qp

V )GK .
We say that V is semi-stable if it is Bst-admissible, that is if Dst(V ) is an F -vector

space whose dimension is the same as dimQp V .

Remark 1.18. — Since we have the GK-equivariant inclusions Bcris ⊂ Bst ⊂ BdR, it fol-
lows that crystalline representations are semi-stable, and that semi-stable representations
are de Rham.

As in the crystalline case, since K ⊗F B+
st ⊂ B+

dR, we get that K ⊗F Dst(V ) ⊂ DdR(V )
and thus is endowed with a filtration induced by the one on DdR(V ). Moreover, since
Bst is endowed with a Frobenius ϕ and a monodromy map N , so is Dst(V ).

Definition 1.19. — We define the category of filtered (ϕ,N)-modules overK as follow:
A filtered (ϕ,N)-module over K is a finite dimensional F -vector space D equipped with
two maps ϕ,N : D → D satsfying the following properties:

1. ϕ is bijective and semilinear with respect to σF ;
2. N is a F -linear map;
3. Nϕ = pϕN ;

and also equipped with a decreasing, separated and exhaustive filtration indexed by Z
on K ⊗F D.

Remark 1.20. — The relation between N and ϕ in the definition implies that N is
nilpotent.

Similarly to the crystalline case, one can also associate to a filtered (ϕ,N)-module D
two polygons: its Hodge polygon PH(D), coming from the filtration, and its Newton
polygon PN(D), coming from the slopes of ϕ.

It follows from the definition of Dst(V ) that Dst(V ) is a filtered (ϕ,N)-module over
K. We now go back to the example of Tate’s elliptic curve. The computatons we made
showed that a basis of DdR(V ) was given byx = t−1 ⊗ e

y = − log[p̃]t−1 ⊗ e+ 1⊗ f
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and since both t−1 and log[p̃] belong to Bst, this shows that (x, y) is also a basis of
Dst(V ). We already computed the filtration on DdR(V ) above, so it remains to compute
ϕ and N on Dst(V ). A direct computation gives N(x) = 0 and N(y) = x. Note that
since ϕ(log[p̃]) = p · log[p̃], we have ϕ(x) = p−1x and ϕ(y) = y. Thus the Newton and
Hodge polygons of Dst(V ) are as follow:
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Proposition 1.21. — If y ∈ B̃+
rig is such that ϕn(y) ∈ tB+

dR for all n ∈ Z then y ∈ tB̃+
rig.

Proof. — If y ∈ Ã[0,r0] = Amax, recall that one can write y = ∑
j≥0 aj([p̃]/p)j with

aj ∈ Ã+ and aj → 0. Recall that ω = π/ϕ−1(π) is a generator of ker(θ : Ã+ → OCp).
Thus ω/([p̃] − p) is a unit of Ã+ and we can write y as y = ∑

j≥0 yj(ω/p − 1)j (to see
this, note that Ã[0,r0] is the p-adic completion of Ã+[[p̃]/p] = Ã+[[p̃]/p− 1] = Ã+[ω/p] =
Ã+[ω/p− 1]). If Q(π) = ((1 + π)p − 1)/π = ϕ(ω), then ϕ(y) = ∑

j≥0 ϕ(yj)(Q(π)/p− 1)j
in Ã[0,r1]. Since Q(π)/p− 1 is a multiple of π, this means that we have ϕ(y) = ϕ(y0) +πz

in B̃[0,r1] with y0 ∈ Ã+.
By assumption, we have θ ◦ ϕn(y) = 0 for all n ≥ 1. Since θ ◦ ϕ−k(ω) 6= 0 for all

k 6= 0, we get that y ∈ π/ϕ−k(π)Ã+ for all k ≥ 1 (because it is then divisible by
ω, ϕ−1(ω), . . . , ϕ−k(ω) and thus by their product). Let I be the ideal of elements of
Ã+ such that θ ◦ ϕn(x) = 0 for all n ≥ 0 so that I = ∩k≥0π/ϕ

−k(π)Ã+. In Ẽ+ we have
I = πẼ+ so that I = πÃ+ +p(Ã+∩I) and thus I = πÃ+. This implies that ϕ(y0) ∈ πÃ+

and hence that ϕ(y) ∈ πB̃[0,r1] so that y ∈ ϕ−1(π)B̃[0,r0]. Since in addition θ(y) = 0, we
have y ∈ πB̃[0,r0]. Since t/π is a unit of B̃[0,r0], we have y ∈ tB̃[0,r0].

Since ϕk : B̃[0,r0] → B̃[0,rk] is a bijection for k ≥ 0, we see that if y ∈ B̃+
rig and

θ ◦ ϕn(y) = 0 for all n ≥ −k, then y = t · zk with zk ∈ B̃[0,rk]. By construction the
sequence {zk} defines an element z of B̃+

rig that satisfies y = tz and thus this proves the
proposition.

Proposition 1.22. — We have Bϕ=1
cris ∩ Fil0BdR = Qp.

Proof. — If y ∈ Bϕ=1
cris then a direct computation shows that y ∈ (B̃+

rig[1/t])ϕ=1. Let
y ∈ Bϕ=1

cris ∩Fil0BdR and let k ≥ 1 be such that y ∈ t−kB̃+
rig. We have ϕn(tky) = p−kntky ∈

tB+
dR so that by the proposition above we have tky ∈ tB̃+

rig so that by induction we get
y ∈ B̃+

rig. The result then follows from the fact that (B̃+
rig)ϕ=1 = Qp.

We have Q̂p
unr = W (Fp)[1/p] ⊂ B̃+ ⊂ B̃+

rig. If λ0 ∈ W (Fp)× then there exists
µ ∈ W (Fp)× such that λ0 = µ/ϕ(µ) (to see this recall that if V is a ϕ-module then
1 − ϕ : V → V is surjective). Every λ ∈ Q̂p

unr can then be written as λ = pnµ/ϕ(µ).
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The map Bϕ=λ
cris → Bϕ=pn

cris given by y 7→ µy is then a bijection which respects the filtration
induced by BdR.

Proposition 1.23. — If λ ∈ Q̂p
unr and n = vp(λ) then Bϕ=λ

cris ∩ Filn+1BdR = {0}.

Proof. — If y ∈ Bϕ=λ
cris ∩ Filn+1BdR and if µ is as above, then t−nµy ∈ Bϕ=1

cris ∩ Fil1BdR so
that it is equal to 0.

Proposition 1.24. — The functors V 7→ Dcris(V ) and V 7→ Dst(V ) are fully faithful
from the categories of crystalline and semistable representations of GK to the categories
of filtered ϕ-modules over K and filtered (ϕ,N)-modules over K.

Proof. — The proposition above shows that Bϕ=1
cris ∩ Fil0BdR = Qp, so that if V is crys-

talline then V = Fil0(BdR ⊗K DdR(V )) ∩ (Bcris ⊗F Dcris(V ))ϕ=1. When V is semi-stable,
we have V = Fil0(BdR ⊗K DdR(V )) ∩ (Bst ⊗F Dst(V ))ϕ=1,N=0. In both cases, we can
recover V from either Dcris(V ) or Dst(V ).

If η : GK → Z×p is a character, then we say that it is crystalline (resp. semi-stable,
resp. de Rham) if the associated representation is. Note that this is the case if and only
if there exists y ∈ Bcris (resp. ∈ Bst, resp. ∈ BdR) such that η(g) = y/g(y).

Theorem 1.25. — If η : GK → Z×p is a character, then it is de Rham if and only if
η = µ · χh where µ is potentially unramified and h ∈ Z.

Proof. — The character η is de Rham if and only if there exists y ∈ B×dR such that
η(g) = y/g(y). Let h be such that y = y0t

−h with y0 ∈ (B+
dR)×. The character µ = χ−hη

then satisfies µ(g) = θ(y0)/g(θ(y0)) and is then potentially unramified by Sen theory (it
is Cp-admissible).

Theorem 1.26. — If η : GK → Z×p is a character, then it is crystalline if and only if it
is semi-stable, and this occurs if and only if η = µ · χh where µ is unramified and h ∈ Z.

Proof. — The first part follows from the fact that N is nilpotent on a vector space of
dimension 1 and thus N = 0 and Dcris(V ) = Dst(V ).

If η is of the form η = µ · χh where µ is unramified and h ∈ Z then there exists
y0 ∈ W (Fp)× such that y0/ϕ(y0) = µ(Frobp) and thus we have η(g) = y/g(y) with
y = y0t

−h ∈ Bcris.
Assume now that η : GK → Z×p is crystalline. Then it is de Rham and thus of

the form η = µ · χh where µ is potentially unramified and h ∈ Z. Let L be a finite
extension of K such that µ|L is unramified, so that there exists λ0 ∈ W (Fp)× such that
λ0/ϕ(λ0) = µ(Frobp) for g ∈ GL. Since µ is crystalline, there exists y0 ∈ Bcris such that
µ(g) = y0/g(y0) if g ∈ GK and thus y0/λ0 ∈ BGL

cris = L∩Qunr
p and thus µ is unramified.

We say that a filtered (ϕ,N)-module D is weakly admissible if for every subobject D′ of
D, the Hodge polygon ofD′ lies below the Newton polygon ofD′, and the endpoints of the
Hodge and Newton polygons of D are the same. Note that, in the cases of representations
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arising from elliptic curves, this was always the case. If D is of dimension 1, then there
exists a well defined h ∈ Z such that FilhD = D and Filh+1D = {0} and we set tH(D) = h,
and if ϕ(d) = λ · d with d ∈ D then vp(λ) does not depend of the choice of d 6= 0 and we
let tN(D) = vp(λ). If dim(D) > 1, we set tH(D) = tH(detD) and tN(D) = tN(detD).
Note that the terminal point of the Hodge polygon of D is (dimD, tH(D)) and the
terminal point of the Newton polygon of D is (dimD, tN(D)). One can check that weakly
admissibility is the same as asking that tH(D) = tN(D) and for every subobject D′ of D
one has tN(D′) ≥ tH(D′).

Proposition 1.27. — If V is a semi-stable representation, then Dst(V ) is weakly ad-
missible.

Proof. — Let D = Dst(V ). The fact that tH(D) = tN(D) comes from the theorem above
on semi-stable characters applied to det(V ).

If D′ is a sub-object of rank r of D then we can replace V by ΛrV so that D′ is
of dimension 1. In this case, N = 0 on D′ and D′ ⊂ Dcris(V ) is a line so that D′ ⊂
(Bcris ⊗Qp V )ϕ=λ where tN(D) = vp(λ) and the proposition follows from the fact that
Bϕ=λ

cris ∩ Filn+1BdR = {0}.

We say that a filtered (ϕ,N)-module D is admissible if there exists a p-adic representa-
tion V such that D = Dst(V ). We should see in one of the following lectures that weakly
admissible filtered (ϕ,N)-modules are actually admissible.
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