CRYSTALLINE AND SEMI-STABLE REPRESENTATIONS

by

The goal of this lecture is to define crystalline and semi-stable representations, to
explain the attached notions and to explain the links with (¢, I')-modules. In what
follows, we keep the notations defined and used in the previous lectures. In particular,
recall that K is a finite extension of Q, and that we note F' = Q,"" N K.

Fontaine’s strategy to study p-adic representations of Gy is to construct some “p-adic
rings of periods”, which are topological Q,-algebras B endowed with an action of Gg
and with additional structures (like a Frobenius, a filtration, ...) and to attach to V
the B9%-module Dp(V) = (B ®q, V)%, so that Dp inherits the structures coming from
those on B. When V is such that B ®q, V =~ Bimay V' as B[Gr]-modules, we say that
V' is B-admissible. If the structures on B are “nice enough”, one can recover V from
Dp(V) when V is B-admissible. Of course, we would also like to define rings of periods
that will be large enough so that representations arising from geometric situations, like
the Tate modules of elliptic curves are admissible for these rings.

In the last lecture we defined B as the completion of BT for the ker 6-adic tolopogy,
and we have denoted by ¢ the element of Bl defined by the power series log[g]. We have
seen that Bqr = B [1/t] is a field, and we defined the notion of de Rham representations,
which are p-adic representations of Gx that are Byr-admissible.

However, note that we can’t recover V' from Dgg (V'), even when V' is de Rham, because
the functor V +— Dggr(V'), from the category of de Rham representations to the category
of filtered K-vector spaces, is not fully faithful. The rings B.,;s and By we will introduce
are meant to answer this problem while still taking into account (some) representations
arising from geometric situations.

In this lecture, we will mainly follow [Ber04] and [Ber10].

1. The rings B, and By

1.1. The ring B.;. — One problem with BJy is that completing B™ for the ker -adic
topology is too coarse: there is no natural extension of the Frobenius ¢ : Bt — B* to
B:{R. One way to see this is that since Bar% = L for every finite extension L/K, the
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existence of a canonical Frobenius map ¢ : Bqr — Bgr would imply the existence of a
Frobenius map ¢ : K — K, and such a map does not exist.

An other way to see it and which will explain a bit more the construction of B, is that
there are elements = € B* that are killed by 6 but such that (p(z)) # 0. For example,
0([p*/?]—p) # 0, so that [p'/?]—p is invertible in B, and so 1/([p"/?]—p) € Bjy. But if o
is a natural extension of ¢ : BT — B, then one should have ¢(1/([p/?]—p)) = 1/([p]—p),
and since 0((7] — p) = 0, 1/([7] - p) ¢ Blz.

In particular, we want to complete B in a more subtle way, so that t = log[e] still lies
in this completion, but such that we avoid to invert elements like [p'/?] — p. The way to
do this is to impose some growth condition. Recall that 7 = [¢] — 1 and that

s
w = =1+ [51/1’] 44 [51/17]1)—1'
@~!(m)
Definition 1.1. — We define
+o00 wh
A x € Bggr such that z can be written as = = Z Tn—
cris += n=0 n: )

where 2, € AT and the 2, — 0 in A™ for the p-adic topology

and
+oo wh
x € Byggr such that z can be written as x = Z Tn—
B;rris = Aé;ls[l/p] = n=0 n:

where z, € A" and the z,, — 0 in B* for the p-adic topology

Remark 1.2. — Note that, since ker(@ui . ) is a principal ideal of Kﬂ one can replace
w in the definition by any generator of ker(f). Also note that if one can write x =

n . . .
Z:{i‘a xn‘;—! € A with z,, — 0, such a sequence is not unique.

Proposition 1.3. — The Frobenius and the action of Gk on AT and BT extend natu-

rally to actions on A and B,

Proof. — The fact that A, is stable under the action of G comes from the fact that
g(w) = 2w with x € A" and from the definition of A .

For the Frobenius, we will use the fact that if 2 € A*, then p(z) = 2? mod p. In
particular, we have

pw) =wl +pr=p <9:+ (p— 1)!;;?)

with € AT, and thus

which gives



CRYSTALLINE AND SEMI-STABLE REPRESENTATIONS 3

This allows us to define ¢ on A et B1... m
Proposition 1.4. — We have t € A .
Proof. — Write [¢] — 1 = 2w with 2 € A™. Then
(] =1)" w"
=T = )
n (n )@ n!
and since (n — 1)! — 0 p-adically, we deduce that t € A . O

We now define Bes by Beis = Bis[1/t] and we extend the actions of G and of the
Frobenius to B by setting ¢(1/t) = é and g(1/t) = x(7)~'1/t. Note that By is a
domain but not a field because for example w — p belongs to B;s but not its inverse.

We now recall a useful lemma. Let N be a torsion free Z,-module which is separated
and complete for the p-adictopology and let M C N. If M denotes the completion of
M for the p-adic topology, then the inclusion map M — N extends to a map M — N

whose image is the closure of M in N.

Lemma 1.5. — If there exists i > 1 such that p'N N M C pM, then the map above is
imjective.

Proof. — Every element of M can be written as m = Zn>0 pm,, with m,, € M and if
m € ker(M — N) then mq € p'N N M C pM so that ker(M — N) C pker(M — N).
By iterating this, we get that ker(M — N) C Nisop® M = 0. O

Proposition 1.6. — The natural map K @ B, — By is injective.

cris

Proof. — We will prove that the natural map K @p Bt — Bl is injective. Actually
it suffices to prove that the natural map Ox ®o, At — BJy is injective. This map is
obtained by gluing together the maps Ok R0, At — B, =B+ /(ker 0)" so that its kernel
is N1 ([Fx] — m6)" - Ok ®0, AT = {0}.

By definition of B/, and with the previous lemma, this finishes the proof. O
Proposition 1.7. —  We have Frac(Bl;,)9% = F.
Proof. — We already know that F C Frac(Bf,,)9% € Bgr%% = K. Let a/b € BY,, such
that a/b=12 € K. Then 1 ® a —x ®b is in the kernel of the map K ®r B}, — Bz and
thus 1 ® @ = x ® b and therefore x € F. ]

Definition 1.8. — Let V be a p-adic representation of Gg. We let Deis(V) = (Beis®q,
V)9x.

We say that V' is crystalline if it is B.s-admissible, that is if Ds(V) is an F-vector
space whose dimension is the same as dimqg, V.

Since K @p B, C Bly, we get that K ®p Deis(V) C Dgr(V) and thus is endowed
with a filtration induced by the one on Dggr (V). Moreover, since B, is endowed with a
Frobenius ¢, 5o is Deis(V).
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Definition 1.9. — We define the category of filtered p-modules as follow: A filtered
p-module over K is a F-vector space D equipped with a bijective map ¢ : D — D
which is semilinear relatively to o, the absolute Frobenius on F', and with a decreasing,
separated and exhaustive filtration indexed by Z on K ®p D.

One can associate to a filtered ¢-module D two polygons: its Hodge polygon Py (D),
coming from the filtration, and its Newton polygon Py (D), coming from the slopes of (.

Remark 1.10. — The topology on B is actually quite bad. Let us see why by

following an example given by Colmez [Col98, II1.2]. The sequence z, = % does

p
n
wP

T3] tends to 0, so that

tz,, tends to 0 in B, and so z, tends to 0 in Bg. This is one of the reasons why we

cris

usually prefer to work with the ring B _ instead of B, , which has been defined in the

max cris»

last talk. Just recall that we can define B, by Bl = A,.x[1/p] and where A,y is
defined as follows:

not tend to 0 in B, by construction, but the sequence wz,, = p"

x € By such that x can be written as z = Y _ a,w"/p"
Amax - n20

where a,, € A tends to 0 for the p-adic topology
Remark 1.11. — One can check that we have
@(Bmax> C Bcris C Bmax-

Thus, since the periods of crystalline representations live inside finite dimensional F-
vector spaces that are stable by ¢, they also live inside B,.x and thus crystalline rep-
resentations are the same as By,.-admissible representations, and the same as B, [1/t]-

™ rig
admissible representations (recall that B, = N> B, = N>2By).
1.2. Example: elliptic curves. — The following ezamples come from [Ber04]. If

V = Q,®z, T,F, where E is an elliptic curve over F' with good ordinary reduction, then
D..is(V) is a 2-dimensional F-vector space with a basis z,y, and there exists A € F' and
g, Bo € O} depending on E such that:

D.i(V) ifi< -1
and  Fil'Dei(V) =< (y+ \o)F ifi=0

{0} iti>1

{90(37) = app~ '
oy) = Poy

The Newton and Hodge polygons of D,;s(V') are then as follows:

. .
Newton polygon Hodge polygon
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If on the other hand, an elliptic curve E has good supersingular reduction, then the
operator ¢ : Deis(V) — Deais(V) is irreducible and the Newton and Hodge polygons are

as follows:

.
Newton polygon Hodge polygon

1.3. The case of bad semi-stable reduction. — In what follows we consider the
case where K = F for simplicity. Let g be a formal parameter and define

oo pkgn S5 S5
s(q) = Z:l ; _qqn a(g) = —s5(a)  aelg) = — 9 ;;7 9
400 ) +o00 ) 2
z(q,v) = :z_: (1_qqnv)2 —251(q) y(q,v) = :2_: m) + 51(q).

All those series are convergent if ¢ € pOp and v ¢ ¢% = {(¢q) (the multiplicative subgroup
of F* generated by ¢). For such ¢ # 0, let E, be the elliptic curve defined by the
equation y? + zy = z® + a4(q)z + ae(q). The theorem of Tate is then: the elliptic curve
E, is defined over F', it has bad semi-stable reduction, and £, is uniformized by T, that
is, there exists a map o : F~ — E,(F), given by

(z(g,v),y(q,v)) ifv ¢ q”
V=
0 if v € ¢
which induces an isomorphism of groups with Gg-action F /{q) — E,(F).
Furthermore, if £ is an elliptic curve over F' with bad semi-stable reduction, then there
exists ¢ such that E is isomorphic to £, over F'

1.3.1. The p-adic representation attached to E,. — Using Tate’s theorem, we can give
an explicit description of T,(E,). Let ¢ € E* be such that ¢ = ¢. Then « induces
isomorphisms

F*/{a) —  Ey(F)
{e e F" /@), 2" € ()} —— Ey(F)[p"]

and one sees that {z € F " /(g), 2" € (¢)} = {(€™)i(¢™)/,0 < i,j < p" — 1}. The
elements ™ and ¢™ therefore form a basis of E,(F)[p"], so that a basis of T,(E,) is
given by e = lgln ™ and f = ann ¢™. This makes it possible to compute explicitly the
Galois action on T),(E,). We have g(e) = @ng(e(")) = x(g)e and g(f) = @ng(q(”)) =
@n ™ ()9 = f + ¢(g)e where c(g) is some p-adic integer, determined by the fact
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that g(¢™) = ™ (e™)). Note that [g — c(g)] € H'(F,Z,(1)). The matrix of g in the
basis (e, f) is therefore given by
x(9) clg)
0 1

1.3.2. p-adic periods of E,. — We are looking for p-adic periods of V = Q, ®z, T,,(E,)
which live in Bgg, that is for elements of (B4r ®q, V). An obvious candidate is t ' ®e
since g(t) = x(g)t and g(e) = x(g)e. Let us look for a second element of (Bqr ®q, V),
of the form a ® e + 1 ® f. We see that this element will be fixed by Gp if and only if
g9(a)x(g) + c(g) = a. B

Let ¢ be the element of E* defined by § = (¢©,¢",---). Observe that we have
9(@) = (9(¢),9(¢M),---) = &), and that 6([g]/q'” — 1) = 0, so that [q]/¢® — 1 is
small in the ker(f)-adic topology. The series

too (1 Z]v q(O) n
logp(q(o)) . Z ( [ ]/ )
n=1 n
therefore converges in B to an element which we call u. One should think of u as being
u = log([g]). In particular, g(u) = g(log(|g])) = log([g(q)]) = log([q]) + c(g)log([e]) =
u+ c(g)t, and we see that a = —u/t satisfies the equation g(a)x(g) + c¢(g) = a. A basis

of Dgr(V) = (Baqr ®q, V)" is therefore given by

r=t'®e

y=—ut"'Qe+1® f
and this shows that 7,(E,) is Bgr-admissible. Furthermore, one sees that 6(u —
log,(¢¥)) = 0, so that u — log,(¢'”)) is divisible by ¢ and

Dar (V) ifi < —1
Fil'Dar (V) = { (y + log,(¢@)z)F  if i =0
{0} ifi>1

We will now see why B, is not sufficient in order to take into account the represen-
tations arising from elliptic curves with bad semi-stable reduction. First, we will define
a log map : z € EX — log[z] € Bl;.

Proposition 1.12. — There exists a unique map log : = — log[z] from EX to BJg
satisfying log|xy] = log[z] + log[y], log[z] = 0 if z € F),

— 1)
log[x] _ Z(_l)n—kl([l‘} )
n>0 n
if v,(2® — 1) > 1 and such that
Foo (@ — 1"

log[f] = Y- (—1)" 1

i=1 n
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Proof. — If x € E with vg(z — 1) > 1, then we set

_ 1)
onfe] - =y (="
n>0 n
The series converges in Ay since then 6([z] — 1) = 2% — 1, and thus (Mn;,l)n € A and
_1)n
logla] = 3 (~1)1 - L= L
n>0 TL'

which converges in A5 since (n — 1)! — 0 when n — +o0.
This map extends uniquely to a map from 1 + mg to B}, by setting

1 7
log[z] := p—mlog[xp ]

for m such that vg(2z?" — 1) > 1, this value being independant of the choice of such m,
and we check that if z € F,, then log[z] = 0.

If 2 € (E*)*, one can write 2 = xy with zy € F; and y € 1+ mg, and we put

log[x] := log]y].
If + € EX with vg(z) = L, r,s € Z and s > 1, then %—: =y € (E)%, so that the
relation .
log (gﬂ) = log[y] = slog[z] — rlog|p]
gives us

1 .
log[z] = —(rlog[p] + log[y])
and thus it suffices in order to define log[x] to define log[p]. It thus suffices to check that

e
log[p] = >_(—1)""—F——
i=0 n
converges in Bz, which is indeed the case since 0(% —1)=0. O

Remark 1.13. — In the above proof, we actually showed that if z € (E*)*, then
log[z] € B,

cris*
Proposition 1.14. — The element log[p] is transcendental over Frac(Beis)-

Proof. — The hardest part is to show that log[p] ¢ Frac(B;s). We assume for now that
log[p] ¢ Frac(Beys)-

Let X%+ ug 1 X%t + ... 4+ uy be the minimal polynomial of log[p] over Frac(Beys).
By applying ¢ and comparing the coefficients we obtain g(uq—1) = ug—1 + de(g)t so
that ug_; — dlog[p] can be seen as an element of Bggr stable by Gr and thus log[p] =
d Y (ug_1 — ¢) for some ¢ € F, which is impossible.

Let us now see why log[p] ¢ Frac(B.is). Here we follow Fontaine’s original proof
[Fon94, 4.3.2]. Let &€ = p — [p] and let 8 = &/p. Then both 3 and ¢ are in Fil' B4 but
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not in Fil*Bgg. Let S = A*[3] € Blg. For every i € N, let Fil'S = S N Fil'B4g. Then
Fil'S is the principal ideal of S generated by /3°. Let

0" : FiI'S — Oc,

be the map sending F'a to 6(cr). We then have 0°Fil'S = Oc,. By construction, we have
A s C S and thus Frac(Bes) = Frac(Aqis) C Frac(S). We will now show that if « € S
is not zero, then a'log[p] ¢ S which will conclude the proof.

Since S is separated for the p-adic topology, it suffices to show that if » € NN and
o€ S\ pS then praloglp] ¢ S. If a € A* satisfies 0(a) € pOc, then a € (p, £)A* and
hence a € pS. Therefore one can find i > 0 and a sequence (b,) of elements of A* such
that the 0(b;) ¢ pOc, and

a = p( Z b,B") + anﬂn.
0<n<i n>i

Recall that we have log[p] = — 3,1 8"/n. Suppose j > r is an integer such that p’ > 7. If
pralog[p] € S, then we have a-3,- p' 13" /n € S. Note also that Y genep PP 0 E
S so that « - Bpj/p € S + Fil* Byg.

Thus we get that b;87% /p € S + Fil'*? *'Byg N Fil"™ By = Fil'*? § + Fil'"” *'Bp.

But we have 6"+ (Fil'*?' S 4 Fil *# * 1By ) = Og, and 67 (b5 /p) = 6(b;) /p ¢ Oc,
and thus we get a contradiction. O]

In particular, when FE is an elliptic curve with bad semi-stable reduction, then the
representation coming from its Tate module is not crystalline. This makes us define a
new ring of periods:

Definition 1.15. — We define By, := B,;s[log[p]] as the sub-B;s-algebra of Bgr gen-
erated by log[p], and B := BZ[log[p]] as the sub-Bf-algebra of Bl; generated by

log]p].
The Frobenius naturally extends to By by ¢(log[p]) = p - log[p].
Note that there exists an element log(m) € By and that By, = Bes[log(m)]. We endow

B with a monodromy operator N defined by

N (Z a log(w)k> ==Y kaglog(m)" ",

Proposition 1.16. — One has:
1. the natural map K @ B, — Blg is injective;
2. BS¥ = F;
3. the operator N commutes with Gr and satisfies Ny = ppN ;
4 B = By,
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Proof. — The last two items are just straightforward computations. For the first point,
note that Frac(K ®p Beis) is a finite extension of Frac(Bes) and thus log[p] is transcen-
dental over Frac(K ®p Beis). Therefore we have

K @5 By = (K ®p Bes) [log|[p]]

and this proves the first point.
For the second point, we already know that F C (B )% C Frac(Bg)“% C Bgr’% = K
and the result now follows from the first point. O

Definition 1.17. — Let V be a p-adic representation of Gg. We let Dy (V) = (B ®q,
V)9x.

We say that V' is semi-stable if it is Bg-admissible, that is if Dg (V') is an F-vector
space whose dimension is the same as dimq, V.

Remark 1.18. — Since we have the Gg-equivariant inclusions B,;s C By, C Bggr, it fol-
lows that crystalline representations are semi-stable, and that semi-stable representations
are de Rham.

As in the crystalline case, since K @ B C Blg, we get that K @ D (V) C Dgr(V)
and thus is endowed with a filtration induced by the one on Dyr(V'). Moreover, since
By is endowed with a Frobenius ¢ and a monodromy map N, so is Dy (V).

Definition 1.19. — We define the category of filtered (¢, N)-modules over K as follow:
A filtered (¢, N)-module over K is a finite dimensional F-vector space D equipped with
two maps ¢, N : D — D satsfying the following properties:

1. ¢ is bijective and semilinear with respect to op;
2. N is a F-linear map;
3. Ny = ppN;
and also equipped with a decreasing, separated and exhaustive filtration indexed by Z

on K ®r D.

Remark 1.20. — The relation between N and ¢ in the definition implies that N is
nilpotent.

Similarly to the crystalline case, one can also associate to a filtered (¢, N)-module D
two polygons: its Hodge polygon Py (D), coming from the filtration, and its Newton
polygon Py(D), coming from the slopes of .

It follows from the definition of Dy (V') that Dg (V) is a filtered (¢, N)-module over
K. We now go back to the example of Tate’s elliptic curve. The computatons we made
showed that a basis of Dgr (V') was given by

x:t*1®e
y=—logpplt "' ®e+1® f
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and since both ¢~! and log[p] belong to By, this shows that (z,y) is also a basis of
D (V). We already computed the filtration on Dggr (V') above, so it remains to compute
¢ and N on Dy (V). A direct computation gives N(z) = 0 and N(y) = x. Note that
since p(log[p]) = p - log[p], we have p(z) = p~'z and ¢(y) = y. Thus the Newton and
Hodge polygons of D (V') are as follow:

/] /|

[ 4 [ 4
Newton polygon Hodge polygon

Proposition 1.21. — Ify € B]rlg is such that " (y) € tBly for alln € Z theny € tBrlg

Proof. — If y € A0 = A, .. recall that one can write y = >jz0a;([P pl/p)’ with
a; € AT and a; — 0. Recall that w = /¢~ (7) is a generator of ker(f : AT — Oc,).
Thus w/([p] — g)v) is a unit of A* and we can write y as y = ¥ ;>0 yj(w/p —L)j (to see
this, note that Al070] is the p-adic completion of A*[[p]/p] = A*[[p]/p—1] = At|w/p| =
Atfw/p=1)). I Q(m) = (L +7)" = 1) /7 = p(w), then p(y) = ;0 @(y;)(Q(m)/p — 1)
in Al®™l Since Q(7)/p— 1 is a multiple of 7, this means that we have ¢(y) = ©(yo) + 72
in BOm! with y, € A™.

By assumption, we have 6 o ¢"(y) = 0 for all n > 1. Since 0 o ¢ *(w) # 0 for all
k # 0, we get that y € w/¢ F(m)A* for all k > 1 (because it is then divisible by
w, " Hw),..., o *(w) and thus by their product). Let I be the ideal of elements of
A* such that 6 o ¢"(z) = 0 for all n > 0 so that I = Ngem/@ *(7)A*. In ET we have
T =7E* sothat I = rA*+p(A*NI) and thus I = 7A ™. This implies that p(y) € TA*
and hence that p(y) € 7B so that y € = (7)BI7. Since in addition #(y) = 0, we
have y € 7B%7]. Since ¢/ is a unit of BI®™! we have y € tBl070l.

Since ¥ : Bl — Bl g a bijection for k > 0, we see that if y € Brlg and
0 o¢(y) =0 for all n > —k, then y = t - 2, with z, € B By construction the
sequence {z;} defines an element z of B, that satisfies y = tz and thus this proves the

rig
proposition. O

Proposition 1.22. — We have B?Z!

cris

NFil’Bar = Q,.

Proof — If y € B then a direct computation shows that y € (B mg[l/t])‘p L Let
€ B9 NFil°Bgg and let k > 1 be such that y € t*B7,. We have " (tFy) = p~*"tky €

cris I‘lg
sz+R so that by the proposition above we have tFy € tBrlg so that by induction we get
y € BJl,. The result then follows from the fact that (B,)*~! = Q,. O

We have @ﬁ = W(F,)[1/p] C B C Bf,. If Ay € W(F,)* then there exists
p € W(F,)* such that \g = p/p(u) (to see this recall that if V is a ¢-module then

1 —¢:V =V is surjective). Every A € Q,"" can then be written as A\ = p"u/o(n).
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The map B2 — BY2P" given by y — uy is then a bijection which respects the filtration

cris cris

induced by Bgr.
Proposition 1.23. — If \ € @ and n = v,(\) then B N Fil" ' Byg = {0}.

cris

Proof. — It y € B NFil" ™' Byg and if p is as above, then t"uy € B2 NFil'Byg so

cris cris

that it is equal to O. O

Proposition 1.24. — The functors V +— Dqis(V) and V +— Dy (V) are fully faithful
from the categories of crystalline and semistable representations of Gx to the categories
of filtered p-modules over K and filtered (p, N')-modules over K.

Proof. — The proposition above shows that B2 N Fil’Byg = Q,, so that if V' is crys-
talline then V = Fil®(Bqr ®x Dar(V)) N (Beais @F Ders(V))#='. When V is semi-stable,
we have V = Fil’(Bqr @k Dar(V)) N (Bg ®p Dy (V))#="¥=0_ In both cases, we can

recover V from either D;s(V) or Dg (V). O

If n: Gk — Z) is a character, then we say that it is crystalline (resp. semi-stable,
resp. de Rham) if the associated representation is. Note that this is the case if and only
if there exists y € Bs (resp. € By, resp. € Bgr) such that n(g) = y/g(y).

Theorem 1.25. — If n: Gx — Z, 1is a character, then it is de Rham if and only if
n = - X" where u is potentially unramified and h € Z.

Proof. — The character n is de Rham if and only if there exists y € Bjg such that
n(g) = y/g(y). Let h be such that y = yot =" with yo € (Bjg)*. The character u = x "
then satisfies ©(g) = 0(yo)/9(0(yo)) and is then potentially unramified by Sen theory (it
is C,-admissible). O

Theorem 1.26. — Ifn: G — Z is a character, then it is crystalline if and only if it
is semi-stable, and this occurs if and only if n = - x" where p is unramified and h € Z.

Proof. — The first part follows from the fact that N is nilpotent on a vector space of
dimension 1 and thus N = 0 and D;5(V) = Dg (V).

If 5 is of the form n = p - x" where p is unramified and h € Z then there exists
yo € W(F,)* such that yo/¢(yo) = p(Frob,) and thus we have 7(g) = y/g(y) with
Yy = yOtih € Bais.

Assume now that n : G — Z) is crystalline. Then it is de Rham and thus of
the form 7 = p - x" where p is potentially unramified and h € Z. Let L be a finite
extension of K such that 1y, is unramified, so that there exists A\g € W(F,)* such that
Mo/ p(Xo) = p(Frob,) for g € G. Since p is crystalline, there exists yg € Beys such that

1(9) = v0/9(yo) if g € G and thus yo /Ao € B, = LNQ,™ and thus y is unramified. [

We say that a filtered (i, N)-module D is weakly admissible if for every subobject D’ of
D, the Hodge polygon of D’ lies below the Newton polygon of D', and the endpoints of the
Hodge and Newton polygons of D are the same. Note that, in the cases of representations
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arising from elliptic curves, this was always the case. If D is of dimension 1, then there
exists a well defined h € Z such that Fil"D = D and Fil"™ D = {0} and we set t (D) = h,
and if p(d) = X - d with d € D then v,()\) does not depend of the choice of d # 0 and we
let tn(D) = v,(A). If dim(D) > 1, we set ty(D) = ty(det D) and ty(D) = ty(det D).
Note that the terminal point of the Hodge polygon of D is (dim D,ty (D)) and the
terminal point of the Newton polygon of D is (dim D, tx(D)). One can check that weakly
admissibility is the same as asking that t5 (D) = t(D) and for every subobject D’ of D
one has ty(D') > ty (D).

Proposition 1.27. — If V is a semi-stable representation, then Dy (V') is weakly ad-
missible.

Proof. — Let D = Dy (V). The fact that ty(D) = tn(D) comes from the theorem above
on semi-stable characters applied to det(V).

If D' is a sub-object of rank r of D then we can replace V by A"V so that D’ is
of dimension 1. In this case, N = 0 on D’ and D’ C Dg;s(V) is a line so that D" C
(Bais ®q, V)#=* where tx(D) = v,(\) and the proposition follows from the fact that
B2 NFil" ™ Bgg = {0}. O

We say that a filtered (¢, N)-module D is admissible if there exists a p-adic representa-
tion V such that D = Dg (V). We should see in one of the following lectures that weakly

admissible filtered (¢, N)-modules are actually admissible.
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