
Perfectoid Algebras - Tilting equivalence and almost purity

De�nition 1. A complete topological �eld K with topology induced by a nondiscrete valuation of rank 1
is called perfectoid if the Frobenius morphism Φ : K◦/p→ K◦/p is surjective.

Example 2. The completions of Qp(p1/p∞), Qp(µp∞), Qp, Fp((t))(t1/p
∞

) and Fp((t)) are perfectoid
�elds. Perfectoid �elds of characteristic p are just perfect complete nonarchimedean �elds.

Let K be a perfectoid �eld of characteristic 0. We can associate to it a characteristic p �eld K[,
called the tilt of K, by setting

K[ := (lim←−ΦK
◦/$)[1/$],

for any $ ∈ K, |p| ≤ |$| < 1.

Example 3. Let K = Qp(p1/p∞)∧ and K[ = Fp((t1/p
∞

))∧ then we get

K◦/p = Zp[p1/p∞ ]∧/p = Fp[t1/p
∞

]∧/t = K[◦/t.

Under this map t is identi�ed with (p, p1/p, . . .).
This works similarly for the cyclotomic extension K = Qp(µp∞)∧. We choose a compatible sequence of
p-power roots of unity ε then K[ = Fp((t))(t1/p

∞
)∧ where t 7→ ε− 1.

Proposition 4. As a multiplicative monoid we can identify K[ with lim←−x7→xp K.

Proof. We construct a multiplicative map lim←−ΦK
◦/$ → K◦, x 7→ x] as follows: let x = (x0, x1, . . .) ∈

lim←−ΦK
◦/$ then, taking any lifts xn ∈ K◦, we set x] = lim−→xp

n

n which is independent of the choice of

lifts. This follows from the fact, that for two lifts xn, x
′
n we have $ |xn−x′n and thus $n+1 |xpnn −x′p

n

n .
The multiplicative map lim←−ΦK

◦/$ → lim←−x 7→xp K◦ given by x 7→ (x], (x1/p)], . . .) is bijective with the
inverse being the projection map. �

We can also use this map to provide K[ with a norm |x|K[ := |x]|K for x ∈ K[. The following
theorem is Scholze's generalization of the Fontaine-Wintenberger theorem:

Theorem 5. Let K be a perfectoid �eld and let L be a �nite �eld extension of K then L is a per-
fectoid �eld. Moreover, the tiliting functor L 7→ L[ induces an equivalence of categories between �nite
�eld extensions of K and K[.

Remark. Note that the fact that Qp(p1/p∞)∧ and Qp(µp∞)∧ have isomorphic tilts does not contra-
dict the theorem since the base �eld Qp is not perfectoid.

In the following we give a brief overview of almost mathematics. The main reference for this part is
the book of Gabber and Ramero on "Almost ring theory".
Let M be a K◦-module and m = {x ∈ K | |x| < 1}. We say that M is almost zero if mM = 0. Taking
the quotient of the category of K◦-modules K◦-Mod by the subcategory of almost zero K◦-modules we
obtain a localization functor

K◦-Mod→ K◦a-Mod : M 7→Ma.

We will state (without proof) some facts of almost ring theory:
For two K◦-modules M,N we have HomK◦a-Mod(Ma, Na) = HomK◦(m ⊗K◦ M,N). The localization
functor has a right-adjoint given by M 7→ M∗ = HomK◦a-Mod(K◦a,M) and the adjuntion morphism
(Ma
∗ → M is an isomorphism. One can de�ne an internal Hom-functor by setting alHomK◦(M,N) :=

HomK◦a-Mod(Ma, Na)a and a tensor product by M ⊗K◦a N := (M∗ ⊗K◦ N∗)a.

De�nition 6. (1.) An K◦a-module M is �at (resp. faithfully �at) if the functor N 7→M ⊗K◦a N is
exact (resp. exact and faithful).
(2.) An K◦a-module M is almost projective if the functor N 7→ alHomK◦a(M,N) is exact.

De�nition 7. Let M be an K◦-module then Ma is an almost �nitely generated (resp. almost

�nitely presented) K◦a-module if for every �nitely generated subideal m0 ⊂ m there exists a �nitely
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generated (resp. �nitely presented) K◦-module N0 and a homomorphism f : N0 → M such that ker(f)
and coker(f) are annihilated by m0.
We say that Ma is uniformly almost �nitely generated if there exists some n ∈ Z such that for
every m0 we can choose an N0 which is generated by n elements.

De�nition 8. The morphism pf K◦a-algebras f : A → B is said to be unrami�ed if B is an al-
most projective B ⊗A B- module via the multiplication map µB/A, and f is called étale if B is a �at

A-module and f is unrami�ed. We will wirte A-Étafp to denote the category of étale A-algebras B which
are almost �nitely presented as an A-module.

Theorem 9. Let A be a K◦a-algebra and let A be $-adically complete. Then the functor

A-Étafp → A/$-Étafp : B 7→ B ⊗A A/$,

is an equivalence of categories.

De�nition 10. Let K be a perfectoid �eld and $ ∈ K with |p| ≤ |$| < 1.
(1.) A Banach K-algebra R with the subset of powerbounded elements R◦ ⊂ R a bounded subring is
called a perfectoid K-algebra if the Frobenius morphism

Φ : R◦/$ → R◦/$,

is surjective.
(2.) A $-adically complete �at K◦a-algebra A is called a perfectoid K◦a-algebra if the Frobenius
induces an isomorphism

Φ : A/$1/p ∼= A/$.

(3.) A �at (K◦a/$)-algebra A is called a perfectoid (K◦a/$)-algebra if the Frobenius induces an
isomorphism

Φ : A/$1/p ∼= A.

We denote the category of perfectoid K-algebras (resp. K◦a-algebras; resp. (K◦/$)a-algebras) with
the obvious morphisms by K-Perf (resp. K◦a-Perf ; resp. (K◦a/$)-Perf).

Theorem 11. Let K be a perfectoid �eld, then we have the following chain of equivalences of cate-
gories

K-Perf
(1)∼= K◦a-Perf

(2)∼= (K◦a/$)-Perf = (K[◦a/$[)-Perf
(3)∼= K[◦a-Perf

(4)∼= K[-Perf .

(1) Let R be a perfectoid K-algebra. If xp ∈ $R◦ then xp = $y for some y ∈ R◦ and because $ is
invertible in R we get (x/$1/p)p = y ∈ R◦ which implies that x ∈ $1/pR◦. Therefore Φ induces an
isomorphism R◦/$1/p ∼= R◦/$. Since R◦ is �at over K◦ and − ⊗K◦ R◦ induces an exact functor on
the category of K◦a-modules we get that R◦a is �at over K◦a. The localization functor M 7→Ma has a
left-adjoint and therefore commutes with inverse limits:

R◦a = (lim←−R
◦/$n)a = lim←−R

◦a/$.

Thus R◦a is an object in K◦a-Perf .
Now, let A be a perfectoid K◦a-algebra, we show that R = A∗[1/$] is a perfectoid K-algebra when it is
equipped with the Banach K-algebra structure such that A∗ is open and bounded .
We show that Φ : A∗/$

1/p → A∗/$ is an actual isomorphism. For this, let x ∈ A∗ with xp ∈ $A∗ then
almost injectivity implies that for all ε ∈ m we have εx ∈ $1/pA∗. By de�nition A∗ = HomK◦a(m, A) =
HomK◦(K

◦, B) for B a K◦-module with Ba = A. Since A is �at we can write this as the set of
x ∈ HomK(K,B[$−1]) such that εx ∈ B for all ε ∈ m. Thus we have shown x ∈ ($1/pA∗)∗ = $1/pA∗.
By the almost surjectivity there exists for every x ∈ A∗ and c ∈ Q+, c < 1 elements y, z ∈ A∗ such that
$cx = yp +$z. Setting w := y/$c/p we get wp = yp/$c = yp ∈ A∗.
Claim. If w ∈ R with wp ∈ A∗ then w ∈ A∗.

2



Proof. By the injectivity of Φ : A∗/$
1/p → A∗/$ we know that for any y ∈ A∗ with yp ∈ $A∗ we

have y ∈ $1/pA∗. For some k ≥ 1 we can write y = $k/px ∈ A∗ and thus yp = $kxp ∈ $kA∗. Since
y ∈ $1/pA∗ we can lower k by one: $k−1/px = y$−1/p ∈ A∗ and thus deduce the claim by induction.
Thus we have shown that w ∈ A∗, i.e. x has a p-th root modulo m which proves the equivalence (1).

To prove the equivalence (2) we wil need some deformation theory. We want to show that any per-
fectoid K◦a/$-algbera deforms uniquely to K◦a.
Let us brie�y recall the construction of the cotangent complex. For any map of rings A→ B we can de-
�ne the cotangent complex LB/A in the derived category of B-modules, by taking a simplicial resolution
B• of B by free A-algebras and letting LB/A be the object of the derived category which corresponds to
ΩB•/A ⊗B• A via the Dold-Kan correspondence.

Proposition 12. Let I ⊂ B be an ideal with I2 = 0 and set B0 = B/I. Let C0 be a �at B0-algebra.
(1.) There exists an obstruction in Ext2C0

(LC0/B0
, C0 ⊗B0

I) to the existence of a �at B-algebra C with
C ⊗B B0 = C0.
(2.) If the obstruction vanishes the set of isomorphism classes of such a lifting forms a torsor under the
group Ext1C0

(LC0/B0
, C0 ⊗B0 I).

(3.) The group of automorphisms of a lifting is naturally isomorphic to Ext0C0
(LC0/B0

, C0 ⊗B0
I).

Proposition 13. Let B,B0, I be as above. Suppose we have two �at B-algebras C,C ′ and a mor-
phism f0 : C0 → C ′0 between their reductions mod I.
(1.) There is an obstruction in Ext1C0

(LC0/B0
, C ′0 ⊗B0 I) to the existence of a lift f : C → C ′ of the

morphism f0.
(2.) If the obstruction vanishes the set of such morphisms forms a torsor under the group
Ext0C0

(LC0/B0
, C ′0 ⊗B0

I).

Proposition 14 . Let R → S be a map of rings. Suppose that Fp ⊂ R. Denote by R(Φ) (resp.
S(Φ)) the ring R with R-algebra structure induced by the Frobenius endomorphism Φ. Assume that the
map

R(Φ)

L

⊗R S → S(Φ),

is an isomorphism in D(R-Mod). Then we have LS/R ∼= 0.

Proof. By considering the canonical resolution of S by free R-algebras we can reduce to the case
that S is a polynomial R-algebra, say S = R[Xi | i ∈ I]. Then the relative Frobenius ΦS/R maps Xi to
Xp
i for every i ∈ I and ΦS/R is a quasi-isomorphism by assumption. This induces an isomorphism

R(Φ)

L

⊗R LS/R
'→ LS(Φ)/R(Φ)

∼= LS/R,

but in the case of a polynomial algebra the cotangent complex has the simple description LS/R ∼= ΩS/R[0]

in D(S-Mod) and since d(Xp
i ) = pXp−1

i dXi = 0 we get the result. �

Gabber and Ramero have de�ned the derived category of K◦a-modules and LaB/A is an object of

D(B-Mod) which depends only on the morphism Aa → Ba. The following Lemma is a consequence of
the "almost version" of Proposition 14.

Lemma 15. Let A be a perfectoid (K◦a/$)-algebra. Then La
A/(K◦a/$)

∼= 0 in D(A-Mod).

Now we are ready to prove the equivalence (2): let A be a perfectoid K◦a/$-algebra. We want to lift
it to a �at (K◦/$n)a-algebra An. By the above results on deformation theory we can do this uniquely
if LAn/(K◦/$n)a vanishes. By the Lemma this is true for n = 1 and we can proceed by induction. By
tensoring the short exact sequence

0→ A
$n−1

→ An → An−1 → 0,

with La
An/(K◦a/$n)

we get the triangle

LA/(K◦a/$) → LAn/(K◦/$n)a → LAn−1/(K◦/$n−1)a
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and can conclude by induction on n.
Thus we obtain a unique system of lifts An with An/$

n−1 = An−1 and we denote the inverse limit by
A. Then A is a perfectoid K◦a-algebra and we get the result.

We thus have shown the following diagram of equivalences of categories

K-Perf K◦a-Perf (K◦a/$)-Perf

(K[◦a/$[)-Perf K[◦a-Perf K[-Perf

(1) (2)

(3) (4)

Now, let R,A,A,A
[
, A[, R[ be a sequence of perfectoids under the equivalences

K-Perf ∼= K◦a-Perf ∼= (K◦a/$)-Perf = (K[◦a/$[)-Perf ∼= K[◦a-Perf ∼= K[-Perf .

We look at the categories of étale almost �nitely presented algebras over these perfectoid algebras, i.e.
the diagram

R-FÉt
(A)← A-Étafp

(B)← A-Étafp = A
[
-Étafp

(C)→ A[-Étafp
(D)→ R[-FÉt,

where R-FÉt denotes the (usual) category of �nite étale algebras over R. First, note that the functors
(B) and (C) are equivalences of categories since étale algebras lift uniquely over nilpotents and the prop-
erty of being almost �nitely presented is preserved (Theorem 9).

Proposition 16. Let A be a perfectoid (K◦a/$)-algebra and let B be an étale almost �nitely pre-
sented A-algebra. Then B is a perfectoid (K◦a/$)-algebra.

Proof. The �atness is clear. We are left to show the Frobenius property. Let f : A → B be an
étale map of Fp-algebras. We need to show that the induced Frobenius map Φ : B(1) := B⊗A,ΦA

A→ B
is an isomorphism. A map between étale algebras is étale and on both sides B and B(1) the map Φ
factors through powers of the Frobenius.
Claim. Let Φ : R → S be an étale map of Fp-algebras factoring through powers of Frobenius on R and
S. Then Φ is an isomorphism.
Proof. We begin by showing that Φ is faithfully �at, i.e. that R/I ⊗R S = 0 implies R/I = 0 for an
ideal I ⊂ R. Base changing we reduce to R = R/I, i.e. to S = 0 implies R = 0. This is clear from the
factoring assumption.

Note that 1B ⊗ Φ : B → B ⊗A B
µ→ B also factors through powers of Frobenius and so does µ. Thus µ

is an isomorphism and the claim follows by fully faithfulness. �

By Proposition 16 andK-Perf ∼= K◦a-Perf , respectivelyK[◦a-Perf ∼= K[-Perf we see that the functors
(A) and (D) are fully faithfull. Scholze's almost purity theorem states that these functors are euqivalences
of categories. At his point we will only prove this in characteristic p.

Theorem 17. Let K be a perfectoid �eld of characteristic p. Let R be a perfectoid K-algebra and
let S be a �nite étale R-algebra. Then S is a perfectoid K-algebra and S◦a is étale almost �nitely pre-
sented over R◦a.

Proof. Let η : R◦a → S◦a be a map of perfectoid K◦a-algebras such that η[$−1] is �nite étale.
Since R → S is unrami�ed there exists an idempotent e ∈ (S◦ ⊗R◦ S◦)[$−1]. For some c ≥ 0 we have
$ce ∈ S◦ ⊗R◦ S◦. By perfectness there exists $c/pne ∈ S◦ ⊗R◦ S◦ and thus e ∈ (S◦a ⊗R◦a S◦a)∗.
Therefore R◦a is unrami�ed over S◦a.
By the above we can write εe as

∑n
i=1 ai⊗ bi with ai, bi ∈ S◦ for any ε ∈ m. De�ne the maps S◦ → R◦n,

s 7→ (TrS/R(s, b1), . . . ,TrS/R(s, bn)) and R◦n → S◦, (r1, . . . , rn) 7→
∑n
i=1 airi. The composition of the

two maps is multiplication by ε which implies that R◦/S◦ is almost projective but almost �nitely gen-
erated and almost projective modules are also almost �nitely presented. �

We will complete the proof of the Theorem in the 0-dimensional case:
Proof of Theorem 5. By the above we know that the functor K[-FÉt → K-FÉt is fully faithful. Let

M =
ˆ
K[ then M is perfectoid and the untilt M ] is an algebraically closed perfectoid �eld extension of
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K. Taking the union N = ∪K[⊂L⊂ML
] over �nite extensions L ⊂M of K[ gives a �eld N which is dense

in M ] (M ]◦ is the completion of the colimit of the L]◦). Krasner's lemma implies that N is algebraically
closed. Hence any �nite extension F/K is contained in M , i.e. there exists some L] containing F . In
particular F is associated to a subgroup H of Gal(L]/K) = Gal(L/K[) and F [ = LH untilts to F . �
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