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1 Introduction to φ-modules over Robba Rings

Definition 1.1. Let K be a field complete for a discrete valuation with residue
field k; let oK denote the valuation subring of K and let mK denote the
maximal ideal of oK . Suppose π is the uniformizer, ‖·‖ is the norm and v
is the corresponding valuation on it. For r ∈ (0, 1), let Rr be {

∑
i∈Z
ait

i :

v(ai) + iρ→ +∞ as i→∞, ρ ∈ (0,−log(r)]}, i.e. the Laurent series converging
on (0,−log(r)].

Definition 1.2. For r > 0, let ‖·‖r to be the r-Gauss norm:∥∥∥∥∥∑
i∈Z

ait
i

∥∥∥∥∥
r

= sup
i∈Z
‖ci‖ ri.

For vectors, we extend the norm by taking the maximum.

Remark 1.3. By Proposition 2.1.2 of [Ked10], we know that the Gauss norm
is multiplicative.

Definition 1.4. The Robba ring R is defined to be
⋃

r∈(0,1)
Rr. Rint is defined to

be the formal sums in R with coefficients in o. Rbd is defined to be {
∑
n∈Z

ant
n ∈

R : N ∈ Z, sup
i∈Z
‖ai‖ < +∞}.

Remark 1.5. Rint ⊂ Rbd.

Theorem 1.6. R× = Rbd \ {0}.

Proof. In fact, we have Rr ∩Rbd ⊂ B((0,−log(r)]).
Recall that in Prof. Xiao’s lectures, for f ∈ B((0,−log(r))]), we have the

typical factorization f = Pfuf where Pf is a polynomial and uf ∈ B((0,−log(r)))×.
Take a nonzero element f ∈ Rbd. It lies in Rr for some r. Then we have

f ∈ B((0,−log(r)]). Take the typical factorization Pfuf . Since the roots of
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Pf is finite, we can chose r′ bigger enough such that Pf has no roots on [r′, 1).
Hence f becomes a unit in B((0,−log(r′)]) ⊂ R. Thus Rbd \ {0} ⊂ R×.

Just using slope argument, we will learn that R× ⊂ Rbd.

Corollary 1.7. Rbd is equipped with a discrete valuation w where Rint is the
integral ring and π is the uniformizer.

Proof. Just set w(
∑
i∈Z
ait

i) := inf
i∈Z
v(ai).

Remark 1.8. For detailed proof of the above theorem and corollary, you may
consult Lemma 15.1.3 of [Ked10].

Theorem 1.9. R is a Bézout domain, i.e. every finitely generated ideal is a
principal ideal.

Proof. See [Laz62].

Definition 1.10. Fix an integer q > 1. A relative q-power Frobenius lift on the
Robba ring is a homomorphism φ : R → R of the form

∑
i∈Z
cit

i →
∑
i∈Z
φK(ci)u

i

where φK is an isometric field endomorphism of K and u ∈ Rint is such that
u − tq is in the maximal ideal of Rint. If k has characteristic p > 0 and q is a
power of p, we define an absolute q-power Frobenius lift as a relative Frobenius
lift in which φK is itself of q-power Frobenius lift.

Remark 1.11. Note that
∥∥ u
tq − 1

∥∥
s

is continuous with respect to s by consid-

ering the Newton polygon. Since
∥∥ u
tq − 1

∥∥
1
< 1, there exists r0 < 1 such that∥∥ u

tq − 1
∥∥
s
< 1,∀s ∈ [r0, 1]. Then

∥∥∥ uitqi − 1
∥∥∥
s
< 1,∀s ∈ [r0, 1],∀i ∈ Z. Thus we

have ‖φ(f)‖
r

1
q

= ‖f‖r ,∀r ∈ [r0, 1)

Theorem 1.12. Let φ be a relative Frobenius lift and let A be an n× n matrix
over Rint. Then the map v→ v−Aφ(v) on column vectors induces a bijection
on (R/Rbd)n.

Proof. (See Proposition 1.2.6 of [Ked08])
In fact we can replace v and A with tmv and tm

φ(tm)A without changing the

theorem.
Note that we have tm

φ(tm) = t(1−q)m(1 + πf)m for some f ∈ Rint.
Suppose A is defined on [r, 1). Note that we have∥∥t1−q(1 + πf)

∥∥
r

= r1−q ‖1 + πf‖r ≥ r
1−q > 1.

Thus we can pick proper m such that
∥∥∥ tm

φ(tm)A
∥∥∥
r
≤ 1. On the other hand, we

have ∥∥t1−q(1 + πf)
∥∥
1

= ‖1 + πf‖1 = 1.
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Thus we learned that
∥∥∥ tm

φ(tm)A
∥∥∥
1

= ‖A‖1. Above all, by the replacement men-

tioned above, we may assume that A is defined on [r, 1) and entries of A are
bounded on [r, 1] where r is chosen among [r0, 1].

Injectivity:
Suppose entries of w := v−Aφ(v) are in Rbd. We may further assume that

w and v both are defined over [r, 1). Then there exists c > 0 such that ‖w‖s ≤
c, ∀s ∈ [r, 1] and ‖φ(v)‖s ≤ c,∀s ∈ [r, r

1
q ]. Then we have ‖v‖s ≤ c,∀s ∈ [r, r

1
q ].

Hence we have ‖φ(v)‖s ≤ c,∀s ∈ [r
1
q , r

1
q2 ]. Repeat the above argument, we will

get that ‖v‖s ≤ c,∀s ∈ [r, 1). Hence, by the continuity, we know that ‖v‖1 ≤ c.
Surjectivity:

Pick up w ∈ Rn. Suppose that w is defined on [r′, 1) where r′ ∈ [r
1
q

0 , 1).
Let’s take r ∈ (r′, 1). We are going to construct a sequence {wi}i∈N. Start with
w0 = w. Given wl =

∑
i∈Z

wl,it
i defined on [r, 1), decompose it as follows

wl = w+
l + w−l ,w

+
l =

∑
i>0

wl,it
i.

Note that t−1w+
l is defined on [0, 1). We have the following inequality:∥∥w+

l

∥∥
r
≤ s

q−1
q

∥∥w+
l

∥∥
r

1
q
≤ r

q−1
q ‖wl‖

r
1
q
.

Let’s put wl+1 to be φ(w+
l ). Then we know that

‖wl+1‖
r

1
q
≤ r

q−1
q ‖wl‖

r
1
q
.

Thus we learn that w+
l converges to zero with respect to the norm ‖·‖

r
1
q

(hence

the norms ‖·‖s , s ≤ r
1
q ). Hence

∑
i∈N

w+
l can be defined over [0, r

1
q ].

Similarly, we have
∥∥w−l ∥∥s ≤ ∥∥w−l ∥∥r 1

q
≤ ‖wl‖

r
1
q
,∀s ∈ [r

1
q , 1). Thus we have∑

i∈N
w−l is well defined and bounded over [r

1
q , 1). Hence

∑
i∈N

w−l ’s entries lie in

Rbd.
Let’s set v :=

∑
l∈N

w+
l . Then v is defined over [0, r

1
q ] and φ(v) is defined over

[r
1
q

0 , r
1
q2 ].

Above all, we have the following term w − v + Aφ(v) =
∑
i∈N

w−l which can

be defined over [r′, r
1
q2 ]. Thus we can rewrite v as w −

∑
i∈N

w−l + Aφ(v) over

[r′, r
1
q2 ]. Thus v can be defined over [0, r

1
q2 ]. Repeat the above process, we get

that v can be defined over [0, 1). After all, we have constructed v ∈ Rn such
that w − v +Aφ(v) =

∑
i∈N

w−l are of Rbd coefficients.

Remark 1.13. We need q 6= 1 in this theorem.
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Definition 1.14. A φ-ring R is just a ring equipped with an endomorphism φ.
It is called inversive if φ is bijective. For a module M over R, we can view it
as a bimodule Mφ over R where the right multiplication factors through φ. A
(dualizable) φ-module over a φ-ring R is just a finite free R-module M with an
isomorphism between R-modules φ∗M ∼= M where φ∗M = Rφ ⊗M . Thus we
have a map φM : M →M such that φM (am) = φ(a)φM (m).

Remark 1.15. Pick up a basis of M : e1, e2, ..., en. Consider the following ma-
trix A = (Ai,j)1≤i,j≤n such that φM (ei) =

∑
1≤j≤n

Ai,jej . In fact, we can identify

M as Rn. Then the action of φM is determined by φM (x) = Aφ(x), x ∈ Rn

where φ(x) means φ acts on each coordinates. In fact, the R-linear isomorphism
φ∗M ∼= M is given by A.

Remark 1.16. Usually, we don’t require the morphism between φ∗M = M is
an isomorphism. The requirement here is to assure the existence of dual. For the
concrete construction, M∨ := HomR(M,R) with φ-action (φM∨(f))(cφM (m)) =
cφ(f(m)), c ∈ R. The related matrix is (At)−1

Remark 1.17. Let’s consider the twisted polynomial ring Rφ{T} where Ta =
φ(a)T . Every φ-module over R can be identified as a left module of Rφ{T}
which is finite free over R. Without the finite free condition and isomorphic
condition, φ-modules will become an abelian category.

Remark 1.18. Our φ-modules admit tensor products, symmetric products and
exterior products.

Definition 1.19. For a positive integer a, the a-pushforward functor [a]∗ is
just using the automorphism φ∗M ∼= M a times for a φ-module M to make
it a φa-module. Or, in a fancier language, view the Rφ{T}-module M as an
Rφa{T a}-module through the injection Rφa{T a} ↪→ Rφ{T}.

Definition 1.20. For a positive integer a, the a-pullback functor [a]∗ is just
taking a φa-module to a φ-module Rφ{T} ⊗Rφa{Ta}M .

The following statements are facts of [a]∗ and [a]∗:
1. They are exact functors commuting with duals.
2. The functors ([a]∗, [a]∗) and ([a]∗, [a]∗) form an adjoint pair.
3. The functor [a]∗ commutes with tensor products while [a] + ∗ does not.
4. If M is a φ-module and N is a φa-module, then M⊗[a]∗N ∼= [a]∗([a]∗M⊗

N).
5. If M is a φ-module, then rank([a]∗M) = rank(M).
6. If N is a φa-module, then rank([a]∗N) = arank(N).
7. If N is a φa-module, then [a]∗[a]∗N ∼= N ⊕ φ∗(N)⊕ · · · ⊕ (φa−1)∗(N)

Definition 1.21. For M a φ-module, put

H0(M) = ker(φ− 1 : M →M);H1(M) = coker(φ− 1 : M →M).
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Remark 1.22. In the category of φ-modules, let’s consider Hom and Ext. For
φ-modules M,N , we have

H0(M∨ ⊗N) = Hom(M,N);H1(M∨ ⊗N) = Ext(M,N).

For a φa-module N , we have natural bijections Hi(N) = Hi([a]∗N), i = 1, 2.

2 Preliminary for slope filtrations theorem

In this section, we will introduce degrees, slopes, stability, étale modules and
pure modules.

We will assume the following hypothesis(This word is used in [Ked08]. Per-
sonally, I prefer ’assumption’) in this section:

Hypothesis 2.1. Let Rint ⊂ Rbd ⊂ R be inclusions of Bézout domains such
that R× = Rbd \ {0}. Let φ be an injective endomorphism of R which also
acts on Rint and Rbd. Let w : Rbd → Z be a φ-equivariant valuation such that
w(R×) = Z and Rint = {r ∈ Rbd|w(r) ≥ 0}. Suppose in addition that for
any n × n matrix A over Rint, the map v − Aφ(v) on column vectors induces
an injection(weak form) or bijection(strong form) on (R/Rbd)n. Note that the
analogous hypothesis for φn also holds since one van identify the kernel and
cokernel of v→ v −Aφav on (R/Rbd)n with the kernel and cokernel of

(v0,v1, ...,va−1)→ (v0 −Aφ(va−1),v1 − φ(v0), · · · ,va−1 − φ(va−2))

on (R/Rbd)n.

Example 2.2. By theorem 1.9 and 2.22, we know Rint ⊂ Rbd ⊂ R with the
relative Frobenius satisfies the strong hypothesis. We will construct an extended
Robba ring R̃ satisfying the strong hypothesis in proving the slope filtrations
theorem.

Definition 2.3. For a φ-module M of rank n over R, the exterior power
∧n

M
is of rank 1 over R. Let v be a generator of

∧n
M and write φ(v) = rv for

some r ∈ R×. Define the degree of M of m by setting deg(M) = w(r). If M is

nonzero, the slope of M is defined to be µ(M) := deg(M)
rank(M) .

Remark 2.4. We can view deg as the determinant of A.

Here are some facts about slopes:
1. If 0→M1 →M →M2 → 0 is exact, then deg(M) = deg(M1)+deg(M2);

hence µ(M) is a weighted average of µ(M1) and µ(M2).
2. µ(M1 ⊗M2) = µ(M1) + µ(M2).

3. µ(
∧i

M) = iµ(M)
4. deg(M∨) = −deg(M), µ(M) = −µ(M).
5. If M is a φ-module, then µ([a]∗M) = aµ(M).
6. If N is a φa-module, then µ([a]∗M) = 1

aµ(M).
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Definition 2.5. We say a φ-moduleM is (module-)semistable if for any nontriv-
ial φ-submodule N , we have µ(N) ≥ µ(M). We say a φ-module M is (module-
)stable if for any proper non-trivial φ-submodule N , we have µ(N) > µ(M).

Remark 2.6. Twisted by a rank 1 module doesn’t change the semistability or
stability.

Theorem 2.7. Any φ-module of rank 1 is stable.

Proof. We only need the weak hypothesis.
By twisting, it suffices to check the case that M = R and φM = φ. Suppose

N = Rx and λ = φ(x)
x ∈ R∗.Thus we have µ(N) = w(λ). If µ(N) ≤ 0, then we

have x − λ−1φ(x) = 0 where λ−1 ∈ Rint. By weak hypothesis, we know that
x ∈ Rbd \ {0} = R×. Thus we have N = M .

Corollary 2.8. If N ⊂ M is an inclusion of φ-modules of same rank, then
µ(N) ≥ µ(M) where the equality hold if and only if N = M .

Proof. Just using the above theorem for top wedge product.

Before going on, let’s recall some facts about Bézout domain.
1. Every finitely generated torsion-free module is finite free.(Dedekind The-

orem)
2. Every finitely presented module is a direct sum of finite free module and

a finitely presented torsion module.(See Proposition 4.9 of [Cre98])

Definition 2.9. Given an inclusion of φ-modules N ⊂M , define the saturation
of N to be N ′ = M ∩ (N ⊗ Frac(R)).

Lemma 2.10. Given an inclusion of φ-modules N ⊂ M , both the saturation
N ′ and M/N ′ are φ-modules.

Proof. Firstly, by the definition of N ′, we have N ′ = M ∩(N ′⊗Frac(R)). Thus
M/N ′ is finitely generated torsion free R-module. So M/N ′ is free.

Secondly, let’s show φM (N ′) ⊂ N ′. Note that for any n′ ∈ N ′, there exists
a ∈ R \{0} such that an ∈ N . Thus we have φM (an′) = φ(a)φM (n′). Since φ is
injective, we have φ(a) 6= 0. Inside M ⊗ Frac(R), φ(a)φM (n′) ∈ N ⊗ Frac(R)
implies that φM (n′) ∈ N ⊗ Frac(R). Thus we have φM (n′) ∈ N ′.

Last but not least, M is isomorphic to N ′ ⊕M/N ′ as R-modules. Thus the
determinant of φM is the product of the determinants of φ-action on N ′ and
M/N ′. By the determinant of φ-action on M is invertible, we know that so are
N ′ and M/N ′. Thus both M and M/N ′ are φ-modules.

Remark 2.11. By Corollary 2.8, we have µ(N ′) ≤ µ(N).

Theorem 2.12. Let M be a φ-module over R. Then the slopes of nonzero
φ-submodules of M are bounded below.
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Proof. We will prove it by induction.
When M is of rank 1, it’s just from Theorem 2.7.
Let’s consider the case that M is of rank greater than 1.
If M has no φ-submodules of rank strictly smaller, it just comes from corol-

lary 2.8.
Suppose that M has a φ-submodule N of rank strictly smaller. Using Lemma

2.10, we can assume that M/N is also a φ-module.
For any φ-submodule P of M , we have the following exact sequence φ-

modules(since N ∩ P is invariant under φ action and (P +N)/N is free):

0→ N ∩ P → P → (P +N)/N → 0.

Note that µ(P ) is a weighted average of µ(N ∩ P ) and µ((P + N)/N). By
induction, we know that µ(N ∩ P ) is bounded below by some constant related
to N and µ((P + N)/N) is bounded below by some constant related to M/N .
Thus we have µ(P ) is bounded below since we have already fixed our N at the
very beginning.

Theorem 2.13. Let M be a nonzero φ-module over R. Then there is a largest
φ-submodule of M of least slope which is module-semistable. Moreover, this
largest φ-submodule is saturated.

Proof. By Theorem 2.12, we know that there exists a least slope s for φ-
submodules of M . Clearly, any φ-submodules of M with slope s is semistable.
By Remark 2.11, we know that for a φ-submodule N of slope s, its saturation
is still of slope s.

Moreover, φ-submodules of slope s is closed under taking sums:
Suppose we have two φ-submodules M1,M2. Let’s consider the following

exact sequence:
0→ K →M1 ⊕M2 →M1 +M2 → 0.

Note that M1 + M2 is a finitely generated torsion free R-module. So it’s free
thus finitely presented. Hence we know that the kernel K is finitely generated.
Moreover, it’s torsion free since it’s a submodule of M . We know that K is free,
too. So the above exact sequence lies in the category of φ-modules. Since K
and M1 +M2 are φ-submodules of M , we have µ(K), µ(M1 +M2) ≥ s. On the
other hand, µ(M1 ⊕M2), as a weighted average of µ(M1) = s and µ(M2) = s,
is a weighted average of µ(K) and µ(M1 +M2). Thus we have µ(M1 +M2) = s.

Above all, let’s pick up the saturated φ-submodules with slope s and maximal
rank: (Ni)i∈I . As is shown, any φ-submodule with slope s is contained in Ni
for some i ∈ I. My goal is to show #(I) = 1. For any i, j ∈ I, let’s consider N
to be the saturation of Ni + Nj . As is shown, N is with slope s and maximal
rank. By checking the definition, we know that N is also the saturation of Ni.
By the uniqueness of saturation, we know that N = Ni. Thus we have i = j.
Above all, #(I) = 1.

Corollary 2.14. Let M be a nonzero φ-module over R. Then for any positive
integer a, M is module-semistable if and only if [a]∗M is module-semistable.
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Proof. It’s clear for the ’if’ part. Let’s check the ’only if’ part.
Note that any φ-submodule of the least slope is also of the least slope as φa-

module. Suppose [a]∗M is not semistable, then its largest φa-submodule with
least slope M1 is of strictly lower rank. Note that φ(M1) is of the same slope of
M1 as φa-modules. Thus we have φ(M1) ⊂ M1. Then, as a φ-submodule, M1

is of the least slope. Thus we know that M1 is the largest one with the least
slope as a φ-module, which contradicts with the fact that M is semistable as a
φ-module.

Let M be a φ-module over R. A module-semistable filtration of M is a
filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M by saturated φ-submodules such
that each quotient Mi/Mi−1 is module-semistable. A Harder-Narasimhan(HN)
filtration is a module-semistable filtration in which

µ(M1/M0) < · · ·µ(Ml/Ml−1).

Remark 2.15. By Theorem 2.13, the HN filtration always exists.

Definition 2.16. Define the slope multiset of a module-semistable filtration of
a φ-module of M as the multiset in which each slope of a successive quotient
occurs with multiplicity equal to the rank of that quotient. These assemble into
the lower boundary of a convex region in the xy-plane as follows: start at (0, 0),
then take each slope s in increasing order and append to the polygon a segment
with slope s and width equal to the multiplicity of s. The result is called the
slope polygon of the filtration. For the HN filtration, we call the result the HN
polygon.

Remark 2.17. The HN polygon lies on or above the slope polygon of any
module semistable filtration., with the same endpoint

Definition 2.18. A φ-module M over R or Rbd is said to be étale if it can be
obtained by base change from a φ-module N over Rint. We will call this N as
the étale lattice of M .

Remark 2.19. The étale lattice is not unique generally.

Remark 2.20. The dual of an étale φ-module is again étale.

Definition 2.21. Define an isogeny φ-module over Rint to be a finite free Rint-
module M quipped with an injection φ∗M ↪→M whose cokernel will be killed by
some power of a uniformizer of Rint, i.e. the injection will become isomorphism
after base change to Rbd.

Theorem 2.22. Let M be an isogeny φ-module over Rint. Then the natural
maps Hi(M ⊗ Rbd) → Hi(M ⊗ R) for i = 0(under weak hypothesis) or i =
0, 1(under strong hypothesis) are bijective.

Proof. Note that φ is defined on Rint. Thus the above statements come directly
from the hypothesis.
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Theorem 2.23. The base change functor from étale φ-modules over Rbd to
étale φ-modules over R is an equivalence of categories.

Proof. The essential surjectivity just comes from definition. It suffices to check
full faithfulness. Using theorem 2.22, for any étale φ-modules M1,M2 over Rbd,
we have Hom(M1,M2) = H0(M∨1 ⊗M2) → H(M∨1 ⊗M2 ⊗ R) = Hom(M1 ⊗
R,M2 ⊗R) is a bijection.

Lemma 2.24. Let M be an étale φ-module over Rbd. Then any finitely gener-
ated φ-stable Rint-submodule of M is a φ-module over Rint.

Proof. Let N be finitely generated φ-stable Rint-submodule of M . Note that
Rint is a DVR and Rbd is the fraction field. We are able to pick up an étale lattice
M0 of M such that N ⊂M0. It suffices to check the φ transforms a basis of N

to another basis of N . By replacing M with
∧rank(N)

M , we are able to assume
that N is of rank 1 with the basis n. Pick up a basis of M0: e1, · · · em. Suppose
φM0

(ei) =
∑

1≤j≤m
ai,jej . Then φM0

(x) = Aφ(x) where A = (ai,j) ∈ GLm(Rint).

Thus we will find w(n) = w(φM0
(n)). Hence the map between N and φ∗N is a

bijection.

Theorem 2.25. Let 0 → M1 → M → M2 → 0 be a short ecsvt sequenvr of
φ-modules over R. If any two of M1,M2,M are étale(except possibly M1,M2 in
the case of weak hypothesis), then so is the third.

Proof. First, suppose M and M2 are étale. By Theorem 2.23, we know that
the morphism M →M2 can descend to Rbd. By Lemma 2.24, we learn that the
kernel the map between étale lattice of M and M2 produces an étale lattice of
M1.

By duality, we will know if M and M1 are étale, so is M2.
Suppose M1 and M2 are étale and the strong hypothesis holds. Pick up

étale lattices N1(N2) of M1(M2). Using theorem 2.22, we know that there
is a natural bijection Ext(N1 ⊗ Rbd, N2 ⊗ Rbd) = H1(N∨1 ⊗ N2 ⊗ Rbd) and
H1(N∨1 ⊗ N2 ⊗ R) = Ext(N1 ⊗ R,N2 ⊗ R). Thus we may descend the exact
sequence 0 → M1 → M → M2 → 0 to an exact sequence of Rbd-modules. The
following is just analysing the DVR Rint and its fraction field Rbd.

Definition 2.26. Let a φ-module M is of slope s = d
c where c, d are coprime

integers with d > 0. We say M is pure of slope s if for some φ-module N of
rank 1 and degree −c, ([d]∗M)⊗N is étale(it is equivalent to hold for any such
N since any module with rank 1 and degree 0 is étale).

Remark 2.27. For a φ-module M of rank 1, let’s tale N to be M∨. Then we
will see that M is pure.

Remark 2.28. A module is pure of slope 0 if and only if it’s étale.

Remark 2.29. Suppose M is pure of slope s and N is the corresponding rank
1 module. Note that M∨⊗N∨ = (M ⊗N)∨ is étale. Thus M∨ is pure of slope
−s.
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Lemma 2.30. Let M be a φ-module over Rbd or R, and let a be a positive
integer. Then M is pure of some slope s if and only if [a]∗M is pure of slope
as.

Proof. See Lemma 1.6.3 of [Ked08] for details. Just reduce to the étale(slope 0
case.

Here are some facts of pure modules(for proof, you may check section 1.6 of
[Ked08]):

1. Suppose M is of slope s = c
d where d > 0. Then M is pure of slope s if

and only if there exists some φ-module N of rank 1 and degree −c such that
([d]∗M)⊗N is étale.

2. If M1,M2 are pure φ-modules of slopes s1, s2, then M1 ⊗M2 is pure of
slope s1 + s2

3. For any rational number s, the base change functor from pure φ-modules
of slope s over Rbd to pure φ-modules of slope s over R is an equivalence of
categories.

4. Let 0 → M1 → M → M2 → 0 is a short exact sequence of φ-modules
over R. If any two of M1,M2,M are pure of slope s (except possibly M1,M2 in
the case of weak hypothesis), then so is the third.

5. Let M be a pure φ-module over R of positive slope. Then H0(M) = 0.
6. If M and N are pure φ-modules over R with µ(M) < µ(N), then

Hom(M,N) = 0.
7. If M is a pure φ-module over R of slope s, then M is module semistable.

Moreover, if it has a φ-submodule N of slope s, then N is saturated and both
N and M/N are pure of slope s.

8. M1 ⊕M2 is pure of slope s if and only if both M1 and M2 are pure of
slope s.

9. Let M be a φa-module over R. The M is pure of some slope s if and only
if [a] ∗M is pure of slope s

a .

3 Slope filtration theorem

In this section, let’s turn back to Robba ring.
Here is the statement of the slope filtration theorem.

Theorem 3.1. Every module-semistable φ-module over the Robba ring R is
pure. In particular, every φ-module over R admits a unique filtration 0 = M0 ⊂
M1 ⊂ · · · ⊂ Ml = M by saturated φ-modules whose successive quotients are
pure with µ(M1/M0) < · · · < µ(Ml/Ml−1).

Proof. Here is the sketch of the proof. We will construct an extended Robba
ring R̃ satisfying the strong hypothesis. We will also have the following facts:

1. Every semistable φ-module over R is still semistable after basing change
to R̃.

2. Every semistable φ-module over R̃ is pure.
3. For a φ-module M over R, if M ⊗ R̃ is pure, then M is pure.
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Let us give the construction of extended Robba ring now.
For technical issues, we will make the following assumptions:
φK is a field automorphism of K and any étale phi-module is trivial.

Definition 3.2. For r > 0, define R̃r to be set of formal sums
∑
i∈Q

riu
i, ri ∈ K

satisfying the following conditions:
1. For each c > 0, the set of i ∈ Q such that ‖ri‖ ≥ c is discrete.
2. We have ‖ri‖ e−ri → 0 as i→ −∞.
3. For all s > 0, we have ‖ri‖ e−si → 0, as i→ +∞.
The addition is just pointwise addition and the multiplication is convolution:

(
∑
i∈Q

riu
i)(
∑
q∈Q

r′iu
i) =

∑
i∈Q

(
∑
i′∈Q

ri′r
′
i−i′)u

i.

Then the extended Robba ring is just R̃ :=
⋃
r>0
R̃r with φ action as follows:

φ(
∑
i∈Q

riu
i) :=

∑
i∈Q

φK(ri)u
qi.
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