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1 Introduction

The first goal of this lecture is to study Cp-representations, which we want to reduce to
K∞-representations.

Theorem 1. Let K be a finite extension of Qp, the inflation-restriction map

H1(ΓK ,Gld(K∞)) −→ H1(GK,Gld(Cp))

is a bijection.

In another word, any Cp-representation W of GK has a K∞-submodule WK,∞ which
is ΓK-stable, which we call as Sen space DSen(W ) := WK,∞. One thing we can say about
it is to define a K∞-linear map Θ : DSen → DSen named as the Sen operator. To see it, a
group homomorphism Zp ' ΓQp → Gld(K∞) is a one-parameter subgroup of Gld(K∞),
then we can define Θ as its derivative in gld(K∞). We will show that its characteristic
polynomial actually lies in K[x]. The Sen operator shows plentiful properties of a Cp-
representations. For example,

Theorem 2. Let K be a finite extension of Qp, (ρ, V ) is a Qp-representation. Then the
followings are equivalent.

(1) (ρ, V ) is Cp-admissible.

(2) ρ(IK) is finite.

(3) Θ = 0.

By Cp-admissible we mean dimK(Cp ⊗Qp V )GK = dimQp V . We may not have time
to introduce the proof in the lecture, but I will write it down in this notes.

Another thing we can say about theorem 1 is to generalize Cp to other Qp-algebras.
We use the Colmez-Sen-Tate condition, or CST condition for short. Then theorem 1 is
still true for those Qp-algebras after passing to a finite extension of K. For example,

the overconvergent elements for radius r in B̃ will form a domain that satisfies the CST
condition.

2 The Colmez-Sen-Tate condition

Let Ω̃ be a Qp-algebra, with a valuation valΩ : Ω̃→ R∪{∞}, namely the following holds

1. valΩ(x) = +∞ if and only if x = 0.
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2. valΩ(x+ y) ≥ min valΩ(x), valΩ(y).

3. valΩ(xy) ≥ valΩ(x) + valΩ(y).

4. valΩ(p) > 0 and valΩ(px) = valΩ(p) + valΩ(x) if x ∈ Ω̃.

We assume Ω̃ to be complete with respect to the topology defined by valΩ. And suppose
Ω̃ is equipped by an action of GK that preserves the valuation. We say that Ω̃ satisfies
the CST condition if there exists three constants c1, c2, c3 ∈ R≥0 such that the following
three conditions hold.

CST1 For every finite extensions M/L of K, there exists α ∈ Ω̃HM such that valΩ(α) >
−c1 and TrM∞/L∞(α) = 1.

CST2 For every finite extension L of K, there exists n(L) ∈ Z≥1 and an increasing

sequence {ΩL,n}n≥n(L) of closed sub Qp-algebras of Ω̃HL along with maps RL,n :

Ω̃HL → ΩL,n satisfying the following properties.

1. if x ∈ Ω̃HL then valΩ(RL,n(x)) ≥ valΩ(x)− c2 and RL,n(x)→ x as n→∞.

2. if L2/L1 is finite, then ΩL1,n ⊆ ΩL2,n and RL2,n|ΩL1,n
= RL1,n.

3. RL,n is ΩL,n-linear and is the identity on ΩL,n.

4. if g ∈ GK then g(ΩL,n) = Ωg(L),n and g ◦RL,n = Rg(L),n ◦ g.

CST3 For every finite extension L of K, there exists m(L) ≥ n(L) such that if γ ∈ ΓL
and n ≥ max(n(γ),m(L)), then 1− γ is invertible on XL,n = (1−RL,n)(Ω̃HL) and
we have valΩ((γ − 1)−1(x)) ≥ valΩ(x)− c3 if x ∈ XL,n.

Here n(γ) means valp(χ(γ)− 1), namely γ topologically generates ΓLn .

By CST2, we have Ω̃ = ΩL,n ⊕XL,n. Let ΩL,∞ := ∪n≥0ΩL,n so that ΩL,n is dense in

Ω̃HL .
In the previous lectures, we’ve known that Cp is a typical example for the CST condi-

tion. For CST1, choose any c1 > 0, it follows by proposition 9.2 that trM∞/L∞(mM∞) =
mL∞ , then take some α′ ∈ mM∞ such that valp(trM∞/L∞(α′)) < c1. And then α :=
α′/ tr(α′) will be okay. For CST2 and CST3, it follows from the discussion in §10.

Now we can introduce the main theorem of this section.

Theorem 3. If Ω̃ satisfies the CST condition, and U is a cocycle on GK with values in
Gld(Ω̃), then there exists a finite extension L/K, and a matrix M ∈ Gld(Ω̃) such that
the cocycle on GL defined by Ũ : g 7→ M−1Ugg(M) is trivial on HL and has values in
Gld(ΩL,n) for n� 0.

Definition 1. For c ∈ R>0 and R ⊆ Ω̃ is a subring. Denote

Gld(c,R) := {X ∈ Gld(R) | valΩ(1−X) ≥ c}

Notice that if X ∈ Gld(c,R) ,then

X−1 = (1− (1−X))−1

= 1 + (1−X) + (1−X)2 + . . . ∈ Gld(c,R)

Thus Gld(c,R) is an open (and hence closed) subgroup of Gld(R).



Lemma 1. If a > c1, U is a cocycle on HL with values in Gld(a, Ω̃), then there exists
M ∈ Gld(a− c1, Ω̃) such that the cocycle g 7→M−1Ugg(M) has values in Gld(a + 1, Ω̃).

Proof. Take some finite extension N/L such that U(HN ) ⊆ Gld(a + 1 + c1, Ω̃). It’s
possible because U−1(Gld(a+1+c1, Ω̃)) is a compact open neighborhood of the identity,
and thus contains an open subgroup. Then by CST1, there exisits α ∈ Ω̃HN such that
trN∞/L∞(α) = 1, valΩ(α) ≥ −c1.

Take Q to be a system of representations of the cosets HL/HN , and define

MQ :=
∑
h∈Q

h(α)Uα ∈ Gld(a− c1, Ω̃).

Then by the cocycle relation, we have Ugg(MQ) = MgQ. If we take M to be MQ,
then M−1

Q Ugg(MQ) = M−1
Q MgQ = 1 + M−1

Q (MgQ −MQ). So it suffices to show that
valΩ(MgQ−MQ) ≥ a+ 1. Notice that gQ is also a representation of the cosets HL/HN ,
for any h′ ∈ gQ, write it as h′ = hn with h ∈ Q,n ∈ HN . Then

MgQ −MQ =
∑
h′∈gQ

h′(α)Uh′ −MQ

=
∑
h∈Q

h(α)Uhh(Un)−MQ

=
∑
h∈Q

h(α)Uh(h(Un)− 1)

So we have valΩ(MgQ −MQ) ≥ a+ 1.

Corollary 1. If a > c1, U a cocycle on HL, then there exists M ∈ Gld(a − c1, Ω̃) such
that M−1Ugg(M) = 1.

Proof. Using lemma 1, take {Mk}k∈N inductively, then the cocycle

g 7→M−1
k M−1

k−1 . . .M
1
0Ugg(M0M1 . . .Mk)

has values in Gld(a + k, Ω̃).
Since we have Mk ∈ Gld(a + k − c1, Ω̃), the product

∏
k≥0Mk exists, and then we can

take M =
∏
k≥0Mk.

Proposition 1. The inflation map

H1(ΓK ,Gld(K̂∞)) −→ H1(GK,Gld(Cp))

is a bijection.

Proof. By the inflation-restriction exact sequence, it suffices to show H1(HK ,Gld(Cp))
is trivial.

For U ∈ H1(HK ,Gld(Cp)), pick some a > c1, and a finite extension L/K such that
U(HL) ⊆ Gld(a,Cp). By the previous corollary, U |HL

is trivial. Now consider the exact
sequence.

0 −→ H1(HK/HL,Gld(L̂∞)) −→ H1(HK,Gld(Cp)) −→ H1(HL,Gld(Cp))

U becomes trivial in H1(HL,Gld(Cp)), then U must come from H1(HK/HL,Gld(L̂∞)),
which by Hilbert’s 90 is also trivial. Hence U is trivial.



Remark 1. This proof relies on Hilbert’s 90, which is only true for the Cp case. For

general Ω̃ that satisfies the CST conditions, we have to pass to a finite extension L, and
the bijection still holds.

Lemma 2. If a ≥ c2 + c3 + 1, b ≥ max{a + c2, 2c2 + 2c3 + 1}, and γ ∈ ΓL, n ≥
max{n(γ),m(L)}. Suppose a matrix U = 1 + U1 + U2 with

U1 ∈Md(ΩL,n) valΩ(U1) ≥ a.

U2 ∈Md(Ω̃
HL) valΩ(U2) ≥ b.

Then there exists M ∈ Gld(b− c2 − c3, Ω̃
HL) such that M−1Uγ(M) = 1 + V1 + V2, with

V1 ∈Md(ΩL,n) valΩ(V1) ≥ a.

V2 ∈Md(Ω̃
HL) valΩ(V2) ≥ b+ 1.

Proof. By CST2, write U2 = RL,n(U2) + X where X ∈ XL,n. And by CST3, we may
write X = (1− γ)(V ), where

valΩ(RL,n(U2)) ≥ b− c2 ≥ a.
valΩ(V ) ≥ valΩ(X)− c3 ≥ b− c2 − c3.

Take M = 1 + V and V1 = U1 +RL,n(U2), then

(1 + V )−1U(1 + γV ) = (1− V +O(V 2))(1 + V1 + (1− γ)V )(1 + γV )

= 1 + V1 + V1O(V ) +O(V 2)

Then valΩ(V1) ≥ max{valΩ(U1), valΩ(RL,n)(U2)} ≥ a;valΩ(V1V ) ≥ a+b−c2−c3 ≥ b+1;
valΩ(V2) ≥ 2valΩ(V ) ≥ 2(b− c2 − c3) ≥ b+ 1.

Corollary 2. If b ≥ 2c2 + 2c3 + 1 and U ∈ Gld(b, Ω̃HL), then there exists M ∈ Gld(b−
c2 − c3, Ω̃

HL) such that M−1Uγ(M) ∈ Gld(ΩL,n).

Proof. Exercise.

Proof of Theorem 3. By remark 1, we may assume U ∈ H1(ΓL, Ω̃
HL) for a finite ex-

tension L/K. Choose some n � 0 such that for all γ ∈ ΓL that n(γ) ≥ n, then
Uγ ∈ Gld(2c2 + 2c3 + 1, Ω̃HL).

Fix such a γ, by corollary 2, there exists M ∈ Gld(c2 + c3 + 1, Ω̃) such that U ′γ :=
M−1Uγγ(M) ∈ Gld(ΩL,n). For any other σ ∈ ΓL, we also denote U ′σ := M−1Uσσ(M).
Then

U ′γγ(U ′σ) = U ′γσ = U ′σγ = U ′σσ(U ′γ)

shows U
′−1
γ U ′σσ(U ′γ) = γ(U ′σ). It suffices to prove the following lemma.

Lemma 3. If γ ∈ ΓL and n ≥ max{n(γ),m(L)}, with three matrices

M1 ∈ Gld(> c3,ΩL,n)

M2 ∈ Gld(> c3,ΩL,n)

B ∈Md1×d2(Ω̃HL)

If M1BM2 = γ(B), then B ∈Md1×d2(ΩL,n).



Proof of Lemma 3. Let C = B−RL,n(B) ∈Md1×d2(XL,n), then we also have M1CM2 =
γ(C). Then

(γ − 1)C = γ(C)− C
= (M1 − 1)CM2 +M1C(M2 − 1) + (M1 − 1)C(M2 − 1)

Hence valΩ((γ − 1)C) > valΩ(C) + c3. But by CST3, it shows valΩ(C) = +∞, namely
C = 0, and B ∈Md1×d2(ΩL,n).

Back to theorem 2, then we have U ′σ ∈ Gld(ΩL,n) for all σ ∈ ΓL.

Now we are able to prove proposition 2, and together with proposition 1, theorem 1
follows.

Proposition 2. Let K be a finite extension of Qp, then the restriction map

H1(HK ,Gld(ΩK,∞)) −→ H1(HK,Gld(Ω̃HK))

is a bijection.

Proof. In the proof of theorem 3, we have proved the surjectivity. Now for the injectivity,
if U,U ′ be two cocycles that become cohomologous in Gld(Ω̃HK), namely there exists
M ∈ Gld(Ω̃HK), such that M−1Uγγ(M) = U ′γ for all γ ∈ ΓK . Choose γ sufficiently close
to 1, then Uγ , U

′
γ ∈ Gld(c3 + 1,ΩK,∞). Apply lemma 3, we have M ∈ Gld(ΩK,∞). Then

U and U ′ are also cohomologous in Gld(ΩK,∞).

If we translate the language of cohomology into Galois representations, we then get
the following theorem.

Theorem 4. If W is a free Ω̃-module of rank d with an action of GK , then for n � 0
there exists a finite extension L/K and a ΩL,n-submodule WL,n ⊆ WHL which is free

of rank d and stable under ΓL, and such that W = Ω̃ ⊗ΩL,n
WL,n. Moreover, taking

ΩL,∞ := ΩL,n ⊗Ln L∞, if XL,∞ is an ΩL,∞-submodule of WHL which is free of rank d
and stable under ΓL then XL,∞ ⊆WL,∞.

Proof. The existence of WL,n just follows from theorem 3. For the second part of the
theorem, fix a basis of WL,∞ and a basis of XL,∞. Let B be the matrix of the basis of
XL,∞ under the basis of WL,∞. Then for any γ ∈ ΓL, consider the matrix of γ we have

B−1MatW(γ)γ(B) = MatX(γ)

Choose γ close enough to 1 to satisfy the condition of lemma 3, we have B ∈ ΩL,n for
n� 0. Then XL,∞ ⊆WL,∞.

This theorem shows that WL,∞ is canonical, although the choice of WL,n may not be
canonical.



3 Sen’s Operator

In this section we set Ω̃ = Cp. And in theorem 4 we need not pass to a finite extension
L. In this case, we denote DSen(W ) := WK,∞.

Definition 2. For a Cp-representation of GK , then a vector v ∈ WH is K-finite if the
set ΓK .v generates a finite K-subspace of W .

For example, choose a WK,n for n� 0, then elements of WK,n must be all K-finite.
Denote the set of finite elements by W0, then we have DSen(W ) = WK,n ⊗K∞ ⊆ W0 ⊆
DSen(W ). Hence DSen(W ) is exactly the finite vectors in WH .

As a corollary, taking DSen is left exact. And then by dimensional analysis, it is also
exact.

Fix a basis {e1, e2, . . . , ed} of DSen(W ), by theorem 3 it corresponds to a cocycle
U : ΓK → Gld(Kn) for some n� 0. Then on ΓKn the map U is actually a group homo-
morphism, and is hence Zp-linear. We may also assume on ΓKn , log ◦U is well defined,
for example, U(ΓKn) ⊆ Gld(1,Kn). Then there exist a unique linear endomorphism Θ
of DSen(W ) defined by

Mat(Θ) =
log Uγ

logp χ(γ)
, γ ∈ ΓKn .

which is independent on the choice of γ since U is Zp-linear on ΓKn . In another word,
we have

γ.v = exp(log(χ(γ)) ·Θ).v

for any γ ∈ ΓKn and v ∈ DSen(W ). We can also rewrite the definition of Θ

Θ(v) =
1

logp χ(γ)
lim
t∈Zp
t→0

γt.v − v
t

, for t ∈ DSen(W ).

in the above formula it’s easy to see Θ commutes with the whole ΓK .

Definition 3. The Θ : DSen(W )→ DSen(W ) defined above is called the Sen’s operator
of W , and its eigenvalues are called Sen weights.

Proposition 3. If W is a Cp-representation of GK , then the characteristic polynomial
of ΘW has coefficients in K.

Proof. Since Θ commutes with any element γ ∈ ΓK , then for any γ ∈ ΓK , we have

Mat(Θ) ·Uγ = Mat(Θ ◦ γ) = Mat(γ ◦Θ) = Uγ · γ(Mat(Θ)).

Hence γ(Mat(Θ)) is similar to Mat(Θ) for all γ ∈ ΓK . It follows that the characteristic
polynomial of Mat(Θ) is invariant under ΓK , namely it lies in K[X].

Example 1. Take K = Qp(ζp), then χ(GK) = (1 + pZp)× on which logp is convergent.

Then for any λ ∈ Zp, define χλ(·) := exp(logp(χ(·)) · λ), then we can take W := Cp(λ).
The Sen’s operator Θ is multiplication by λ, then W has the weight λ.



4 Hodge-Tate representations

We set BHT :=
⊕

i∈ZCp(i), then we can talk about the BHT-admissible representations.

Definition 4. Suppose V is a Qp-representation of GK , then W is Hodge-Tate or
BHT-admissible if the following holds

dim
K̂∞

(V ⊗Qp BHT)GK = dimQp V.

where we denote DHT := (V ⊗Qp BHT)GK .

A strict definition for B-admissible representations can be found in many notes. It’s
a powerful method to detect properties of a representation. For example, in following
lectures we will introduce the domain BdR, then V is a de Rham representation iff it is
BdR-admissible. We will not discuss it here, and just take two examples. In the next
section we will talk about Cp-admissible representations.

Definition 5. Note that if V is Hodge-Tate, then DHT =
⊕

i∈Z(V ⊗Qp Cp(i))GK . The
i for which dim(V ⊗Cp(−i))GK > 0 are called the Hodge-Tate weights of V , and in this
case dim(V ⊗ Cp(−i))GK is called the multiplicity of i.

Theorem 5. Suppose W is a Cp-representation of GK , then the following three things
are equivalent.

1) W is isomorphic to Cp(h1)⊕ . . .⊕ Cp(hd).

2) Θ is semisimple on DSen(W ) with eigenvalues h1, h2, . . . , hd ∈ Z.

Proof. 1) obviously implies 2). Now for 2) ⇒ 1), we can write

DSen(W ) =
⊕
h∈Z

DSen(W )Θ=h

where each summand is stable under ΓK . For each h ∈ Z, Θ = h on DSen(W )Θ=h. Thus
there exists some open subgroup Γ0 ⊆ ΓK such that γ.v = χ(γ)h(v) for each γ ∈ Γ0

and v ∈ DSen(W )Θ=h. Use Hilbert’s 90 we can see it’s true on the whole ΓK . Hence
DSen(W )Θ=h is a direct sum of K∞(h), which implies 1).

So a Qp-representation V is Hodge-Tate if W = V ⊗Qp Cp satisfies the conditions in
theorem 5. Example 1 shows that semi-simple is not enough to force a Qp-representation
to be Hodge-Tate.

Corollary 3. If there is an exact sequence of GK representations

0 −→ U −→ V −→W −→ 0

and if U,W are Hodge-Tate with no weights in common, then V is Hodge-Tate.

Example 2. If U and W has common weights, then corollary 3 may not be true. Con-
sider a two-dimensional Qp-representation with

ρ(g) =

(
1 α(g)
0 1

)
, α : GK → (Qp,+)



where α is such that α(IK) is infinite, which is possible since I(Kab/K) ' O∗K . Then
we get an exact sequence

0 −→ Qp −→ V −→ Qp −→ 0

But if V is Hodge-Tate, then its weights must be 0, 0, and so Θ must be 0, and by theorem
2, IK must have finite image.

Proposition 4. If W satisfies the condition in theorem 5, then if X ⊆ DSen(W ) is a
finite dimensional Kn vector space stable under ΓK and has a basis on which ΓKn acts
by integer powers of χ, then X ⊆WK,n.

Proof. Choose a basis {e1, e2, . . . , ed} of DSen(W ) that ΓK acts on it by χhi . Suppose
ed+1 ∈ DSen(W ) such that g(ed+1) = χ(g)hi+1ed+1 for all g ∈ ΓKn . The elements
e1, e2, . . . , ed+1 are linear dependant in DSen(W ) so that we can write

d+1∑
i=1

λiei = 0.

Suppose that this relation has minimal length and then by letting ΓKn acts, we get

d+1∑
i=1

g(λi)χ(ghi)ei = 0.

then for nonzero λi, λj we have

g(λi)

λi
χ(g)hi−1 =

g(λj)

λj
χ(g)hj−1.

namely

λi/λj ∈ K
ΓKn=χhj−hi

∞ =

{
0 if hi 6= hj .

Kn if hi = hj .

So the relation can have coefficients in Kn, which means ed+1 ∈WK,n.

Example 3. A typical example for Hodge-Tate representations is the Tate module of Tate
curves, which is an elliptic curve E/K that is isomorphic to K∗/qZ for some |q| < 1.

Looking at the group structure of K
∗
, we have an exact sequence

1 −→ µpn(K) −→ (K
∗
/qZ)[pn] −→ q1/pnZ/qZ −→ 1.

Then by taking limits, we have an exact sequence

1 // lim←−µpn(K) // Tp(Eq) // lim←− q
1/pnZ/qZ // 1.

0 // Zp(1) // Tp(Eq) // Zp // 0.

So after tensoring with Qp, we have

0 // Qp(1) // Vp(Eq) // Qp
// 0.

So its Tate module is Hodge-Tate with weights 0 and 1.



There are two big generalizations of example 3.

Theorem 6 (Raynaud). Any abelian variety over K of dimension g is Hodge-Tate with
weights 0, 1, each of multiplicity g.

Theorem 7 (Faltings). Let X/K be a proper and smooth variety of dimension d, then
for 0 ≤ n ≤ 2d, Hn

et(X,Qp) is Hodge-Tate.

5 A sketch to the proof of theorem 2

I’m not going to talk about this section in class. If you have interest, then you are free
to have a look at this section and its reference.

Firstly, to show (1) ⇔ (3), it suffices to show the stronger result.

Proposition 5. If W is a Cp-representation of GK . The kernel of Θ is the Cp-subspace
of W generated by the elements invariant under G. Namely WG ⊗K Cp = ker Θ.

Proof. Denote ker Θ by X .Obviously WG ⊆ X = ker Θ. So it suffices to show that WG

actually generates X, in another word, to find a K∞-basis {e1, e2, . . . , en} of DSen(X)
such that each ei is fixed by ΓK . But since Θ(ei) = 0, by the formula

Θ(v) =
1

logp χ(γ)
lim
t∈Zp
t→0

γt.v − v
t

, for t ∈ DSen(W ).

the ΓK-orbit of ei is finite. Hence ei is fixed by some open subgroup Γi. Take Γ′ :=
⋂
i Γi,

the basis {e1, . . . en} is fixed by the open subgroup Γ′. Using Hilbert’s 90, there exists a
basis of DSen(X) fixed by the whole Γ.

Corollary 4. In theorem 2, (1) and (3) are equivalent.

To see (2) ⇔ (3), we need the following theorem. The proof for it is much more
complicated, you can find it in [1].

Theorem 8. Let (ρ, V ) be any Qp-representation, and let G := ρ(IK) ⊆ Gld(Qp). G is
compact since IK is compact and thus is a closed subgroup of a Lie group, so is itself a
Lie group. Let its Lie algebra be g. Thus

g = {M ∈ gld(Qp) | exp(tM) ∈ G, t→ 0}

This is a subspace of gld(Qp), and dimG = dim g. Then g is the smallest subspace of
gld(Qp) such that Θ ∈ gld(Cp) lies in g⊗ Cp ⊆ gld(Cp).

Proof. See [1], p100.

=
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