Sen's Theory

Chen Zekun

August 17, 2020

1 Introduction

The first goal of this lecture is to study \mathbb{C}_{p}-representations, which we want to reduce to K_{∞}-representations.

Theorem 1. Let K be a finite extension of \mathbb{Q}_{p}, the inflation-restriction map

$$
H^{1}\left(\Gamma_{K}, \mathrm{Gl}_{\mathrm{d}}\left(\mathrm{~K}_{\infty}\right)\right) \longrightarrow \mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{K}}, \mathrm{Gl}_{\mathrm{d}}\left(\mathbb{C}_{\mathrm{p}}\right)\right)
$$

is a bijection.
In another word, any \mathbb{C}_{p}-representation W of G_{K} has a K_{∞}-submodule $W_{K, \infty}$ which is Γ_{K}-stable, which we call as Sen space $D_{\operatorname{Sen}}(W):=W_{K, \infty}$. One thing we can say about it is to define a K_{∞}-linear map $\Theta: D_{\text {Sen }} \rightarrow D_{\text {Sen }}$ named as the Sen operator. To see it, a group homomorphism $\mathbb{Z}_{p} \simeq \Gamma_{\mathbb{Q}_{p}} \rightarrow \mathrm{Gl}_{\mathrm{d}}\left(\mathrm{K}_{\infty}\right)$ is a one-parameter subgroup of $\mathrm{Gl}_{\mathrm{d}}\left(\mathrm{K}_{\infty}\right)$, then we can define Θ as its derivative in $\mathfrak{g l}_{d}\left(K_{\infty}\right)$. We will show that its characteristic polynomial actually lies in $K[x]$. The Sen operator shows plentiful properties of a $\mathbb{C}_{p^{-}}$ representations. For example,

Theorem 2. Let K be a finite extension of $\mathbb{Q}_{p},(\rho, V)$ is a \mathbb{Q}_{p}-representation. Then the followings are equivalent.
(1) (ρ, V) is \mathbb{C}_{p}-admissible.
(2) $\rho\left(I_{K}\right)$ is finite.
(3) $\Theta=0$.

By \mathbb{C}_{p}-admissible we mean $\operatorname{dim}_{K}\left(\mathbb{C}_{p} \otimes_{\mathbb{Q}_{p}} V\right)^{G_{K}}=\operatorname{dim}_{\mathbb{Q}_{p}} V$. We may not have time to introduce the proof in the lecture, but I will write it down in this notes.

Another thing we can say about theorem 1 is to generalize \mathbb{C}_{p} to other \mathbb{Q}_{p}-algebras. We use the Colmez-Sen-Tate condition, or CST condition for short. Then theorem 1 is still true for those \mathbb{Q}_{p}-algebras after passing to a finite extension of K. For example, the overconvergent elements for radius r in \widetilde{B} will form a domain that satisfies the CST condition.

2 The Colmez-Sen-Tate condition

Let $\widetilde{\Omega}$ be a \mathbb{Q}_{p}-algebra, with a valuation $\operatorname{val}_{\Omega}: \widetilde{\Omega} \rightarrow \mathbb{R} \cup\{\infty\}$, namely the following holds

1. $\operatorname{val}_{\Omega}(x)=+\infty$ if and only if $x=0$.
2. $\operatorname{val}_{\Omega}(x+y) \geq \min \operatorname{val}_{\Omega}(x), \operatorname{val}_{\Omega}(y)$.
3. $\operatorname{val}_{\Omega}(x y) \geq \operatorname{val}_{\Omega}(x)+\operatorname{val}_{\Omega}(y)$.
4. $\operatorname{val}_{\Omega}(p)>0$ and $\operatorname{val}_{\Omega}(p x)=\operatorname{val}_{\Omega}(p)+\operatorname{val}_{\Omega}(x)$ if $x \in \widetilde{\Omega}$.

We assume $\widetilde{\Omega}$ to be complete with respect to the topology defined by val ${ }_{\Omega}$. And suppose $\widetilde{\Omega}$ is equipped by an action of G_{K} that preserves the valuation. We say that $\widetilde{\Omega}$ satisfies the CST condition if there exists three constants $c_{1}, c_{2}, c_{3} \in \mathbb{R}_{\geq 0}$ such that the following three conditions hold.

CST1 For every finite extensions M / L of K, there exists $\alpha \in \widetilde{\Omega}^{H_{M}}$ such that val $(\alpha)>$ $-c_{1}$ and $\operatorname{Tr}_{M_{\infty} / L_{\infty}}(\alpha)=1$.

CST2 For every finite extension L of K, there exists $n(L) \in \mathbb{Z}_{\geq 1}$ and an increasing sequence $\left\{\Omega_{L, n}\right\}_{n \geq n(L)}$ of closed sub \mathbb{Q}_{p}-algebras of $\widetilde{\Omega}^{H_{L}}$ along with maps $R_{L, n}$: $\widetilde{\Omega}^{H_{L}} \rightarrow \Omega_{L, n}$ satisfying the following properties.

1. if $x \in \widetilde{\Omega}^{H_{L}}$ then $\operatorname{val}_{\Omega}\left(R_{L, n}(x)\right) \geq \operatorname{val}_{\Omega}(x)-c_{2}$ and $R_{L, n}(x) \rightarrow x$ as $n \rightarrow \infty$.
2. if L_{2} / L_{1} is finite, then $\Omega_{L_{1}, n} \subseteq \Omega_{L_{2}, n}$ and $\left.R_{L_{2}, n}\right|_{\Omega_{L_{1}, n}}=R_{L_{1}, n}$.
3. $R_{L, n}$ is $\Omega_{L, n}$-linear and is the identity on $\Omega_{L, n}$.
4. if $g \in G_{K}$ then $g\left(\Omega_{L, n}\right)=\Omega_{g(L), n}$ and $g \circ R_{L, n}=R_{g(L), n} \circ g$.

CST3 For every finite extension L of K, there exists $m(L) \geq n(L)$ such that if $\gamma \in \Gamma_{L}$ and $n \geq \max (n(\gamma), m(L))$, then $1-\gamma$ is invertible on $X_{L, n}=\left(1-R_{L, n}\right)\left(\widetilde{\Omega}^{H_{L}}\right)$ and we have $\operatorname{val}_{\Omega}\left((\gamma-1)^{-1}(x)\right) \geq \operatorname{val}_{\Omega}(x)-c_{3}$ if $x \in X_{L, n}$.

Here $n(\gamma)$ means $\operatorname{val}_{p}(\underset{\widetilde{\Omega}}{ }(\gamma)-1)$, namely γ topologically generates $\Gamma_{L_{n}}$.
By CST2, we have $\widetilde{\Omega}=\Omega_{L, n} \oplus X_{L, n}$. Let $\Omega_{L, \infty}:=\cup_{n \geq 0} \Omega_{L, n}$ so that $\Omega_{L, n}$ is dense in $\widetilde{\Omega}^{H_{L}}$.

In the previous lectures, we've known that \mathbb{C}_{p} is a typical example for the CST condition. For CST1, choose any $c_{1}>0$, it follows by proposition 9.2 that $\operatorname{tr}_{M_{\infty} / L_{\infty}}\left(\mathfrak{m}_{M_{\infty}}\right)=$ $\mathfrak{m}_{L_{\infty}}$, then take some $\alpha^{\prime} \in \mathfrak{m}_{M_{\infty}}$ such that $\operatorname{val}_{p}\left(\operatorname{tr}_{M_{\infty} / L_{\infty}}\left(\alpha^{\prime}\right)\right)<c_{1}$. And then $\alpha:=$ $\alpha^{\prime} / \operatorname{tr}\left(\alpha^{\prime}\right)$ will be okay. For CST2 and CST3, it follows from the discussion in $\S 10$.

Now we can introduce the main theorem of this section.
Theorem 3. If $\widetilde{\Omega}$ satisfies the CST condition, and U is a cocycle on G_{K} with values in $\mathrm{Gl}_{\mathrm{d}}(\widetilde{\Omega})$, then there exists a finite extension L / K, and a matrix $M \in \mathrm{Gl}_{\mathrm{d}}(\widetilde{\Omega})$ such that the cocycle on G_{L} defined by $\widetilde{U}: g \mapsto M^{-1} U_{g} g(M)$ is trivial on H_{L} and has values in $\mathrm{Gl}_{\mathrm{d}}\left(\Omega_{\mathrm{L}, \mathrm{n}}\right)$ for $n \gg 0$.

Definition 1. For $c \in \mathbb{R}_{>0}$ and $R \subseteq \widetilde{\Omega}$ is a subring. Denote

$$
\mathrm{Gl}_{\mathrm{d}}(\mathrm{c}, \mathrm{R}):=\left\{\mathrm{X} \in \mathrm{Gl}_{\mathrm{d}}(\mathrm{R}) \mid \operatorname{val}_{\Omega}(1-\mathrm{X}) \geq \mathrm{c}\right\}
$$

Notice that if $X \in \mathrm{Gl}_{\mathrm{d}}(\mathrm{c}, \mathrm{R})$, then

$$
\begin{aligned}
X^{-1} & =(1-(1-X))^{-1} \\
& =1+(1-X)+(1-X)^{2}+\ldots \in \mathrm{Gl}_{\mathrm{d}}(\mathrm{c}, \mathrm{R})
\end{aligned}
$$

Thus $\mathrm{Gl}_{\mathrm{d}}(\mathrm{c}, \mathrm{R})$ is an open (and hence closed) subgroup of $\mathrm{Gl}_{\mathrm{d}}(\mathrm{R})$.

Lemma 1. If $a>c_{1}, U$ is a cocycle on H_{L} with values in $\mathrm{Gl}_{\mathrm{d}}(\mathrm{a}, \widetilde{\Omega})$, then there exists $M \in \mathrm{Gl}_{\mathrm{d}}\left(\mathrm{a}-\mathrm{c}_{1}, \widetilde{\Omega}\right)$ such that the cocycle $g \mapsto M^{-1} U_{g} g(M)$ has values in $\mathrm{Gl}_{\mathrm{d}}(\mathrm{a}+1, \widetilde{\Omega})$.

Proof. Take some finite extension N / L such that $U\left(H_{N}\right) \subseteq \mathrm{Gl}_{\mathrm{d}}\left(\mathrm{a}+1+\mathrm{c}_{1}, \widetilde{\Omega}\right)$. It's possible because $U^{-1}\left(\mathrm{Gl}_{\mathrm{d}}\left(\mathrm{a}+1+\mathrm{c}_{1}, \widetilde{\Omega}\right)\right)$ is a compact open neighborhood of the identity, and thus contains an open subgroup. Then by CST1, there exisits $\alpha \in \widetilde{\Omega}^{H_{N}}$ such that $\operatorname{tr}_{N_{\infty} / L_{\infty}}(\alpha)=1, \operatorname{val}_{\Omega}(\alpha) \geq-c_{1}$.

Take Q to be a system of representations of the cosets H_{L} / H_{N}, and define

$$
M_{Q}:=\sum_{h \in Q} h(\alpha) U_{\alpha} \in \mathrm{Gl}_{\mathrm{d}}\left(\mathrm{a}-\mathrm{c}_{1}, \widetilde{\Omega}\right)
$$

Then by the cocycle relation, we have $U_{g} g\left(M_{Q}\right)=M_{g Q}$. If we take M to be M_{Q}, then $M_{Q}^{-1} U_{g} g\left(M_{Q}\right)=M_{Q}^{-1} M_{g Q}=1+M_{Q}^{-1}\left(M_{g Q}-M_{Q}\right)$. So it suffices to show that $\operatorname{val}_{\Omega}\left(M_{g Q}-M_{Q}\right) \geq a+1$. Notice that $g Q$ is also a representation of the cosets H_{L} / H_{N}, for any $h^{\prime} \in g Q$, write it as $h^{\prime}=h n$ with $h \in Q, n \in H_{N}$. Then

$$
\begin{aligned}
M_{g Q}-M_{Q} & =\sum_{h^{\prime} \in g Q} h^{\prime}(\alpha) U_{h^{\prime}}-M_{Q} \\
& =\sum_{h \in Q} h(\alpha) U_{h} h\left(U_{n}\right)-M_{Q} \\
& =\sum_{h \in Q} h(\alpha) U_{h}\left(h\left(U_{n}\right)-1\right)
\end{aligned}
$$

So we have $\operatorname{val}_{\Omega}\left(M_{g Q}-M_{Q}\right) \geq a+1$.
Corollary 1. If $a>c_{1}, U$ a cocycle on H_{L}, then there exists $M \in \mathrm{Gl}_{\mathrm{d}}\left(\mathrm{a}-\mathrm{c}_{1}, \widetilde{\Omega}\right)$ such that $M^{-1} U_{g} g(M)=1$.
Proof. Using lemma 1, take $\left\{M_{k}\right\}_{k \in \mathbb{N}}$ inductively, then the cocycle

$$
g \mapsto M_{k}^{-1} M_{k-1}^{-1} \ldots M_{0}^{1} U_{g} g\left(M_{0} M_{1} \ldots M_{k}\right)
$$

has values in $\operatorname{Gl}_{\mathrm{d}}(\mathrm{a}+\mathrm{k}, \widetilde{\Omega})$.
Since we have $M_{k} \in \operatorname{Gl}_{\mathrm{d}}\left(\mathrm{a}+\mathrm{k}-\mathrm{c}_{1}, \widetilde{\Omega}\right)$, the product $\prod_{k \geq 0} M_{k}$ exists, and then we can take $M=\prod_{k \geq 0} M_{k}$.
Proposition 1. The inflation map

$$
H^{1}\left(\Gamma_{K}, \mathrm{Gl}_{\mathrm{d}}\left(\widehat{\mathrm{~K}_{\infty}}\right)\right) \longrightarrow \mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{K}}, \mathrm{Gl}_{\mathrm{d}}\left(\mathbb{C}_{\mathrm{p}}\right)\right)
$$

is a bijection.
Proof. By the inflation-restriction exact sequence, it suffices to show $H^{1}\left(H_{K}, \mathrm{Gl}_{\mathrm{d}}\left(\mathbb{C}_{\mathrm{p}}\right)\right)$ is trivial.

For $U \in H^{1}\left(H_{K}, \mathrm{Gl}_{\mathrm{d}}\left(\mathbb{C}_{\mathrm{p}}\right)\right)$, pick some $a>c_{1}$, and a finite extension L / K such that $U\left(H_{L}\right) \subseteq \mathrm{Gl}_{\mathrm{d}}\left(\mathrm{a}, \mathbb{C}_{\mathrm{p}}\right)$. By the previous corollary, $\left.U\right|_{H_{L}}$ is trivial. Now consider the exact sequence.

$$
0 \longrightarrow H^{1}\left(H_{K} / H_{L}, \mathrm{Gl}_{\mathrm{d}}\left(\widehat{\mathrm{~L}_{\infty}}\right)\right) \longrightarrow \mathrm{H}^{1}\left(\mathrm{H}_{\mathrm{K}}, \mathrm{Gl}_{\mathrm{d}}\left(\mathbb{C}_{\mathrm{p}}\right)\right) \longrightarrow \mathrm{H}^{1}\left(\mathrm{H}_{\mathrm{L}}, \mathrm{Gl}_{\mathrm{d}}\left(\mathbb{C}_{\mathrm{p}}\right)\right)
$$

U becomes trivial in $H^{1}\left(H_{L}, \mathrm{Gl}_{\mathrm{d}}\left(\mathbb{C}_{\mathrm{p}}\right)\right)$, then U must come from $H^{1}\left(H_{K} / H_{L}, \mathrm{Gl}_{\mathrm{d}}\left(\widehat{\mathrm{L}_{\infty}}\right)\right)$, which by Hilbert's 90 is also trivial. Hence U is trivial.

Remark 1. This proof relies on Hilbert's 90 , which is only true for the \mathbb{C}_{p} case. For general $\widetilde{\Omega}$ that satisfies the CST conditions, we have to pass to a finite extension L, and the bijection still holds.

Lemma 2. If $a \geq c_{2}+c_{3}+1, b \geq \max \left\{a+c_{2}, 2 c_{2}+2 c_{3}+1\right\}$, and $\gamma \in \Gamma_{L}, n \geq$ $\max \{n(\gamma), m(L)\}$. Suppose a matrix $U=1+U_{1}+U_{2}$ with

$$
\begin{array}{ll}
U_{1} \in M_{d}\left(\Omega_{L, n}\right) & \operatorname{val}_{\Omega}\left(U_{1}\right) \geq a \\
U_{2} \in M_{d}\left(\widetilde{\Omega}^{H_{L}}\right) & \operatorname{val}_{\Omega}\left(U_{2}\right) \geq b
\end{array}
$$

Then there exists $M \in \mathrm{Gl}_{\mathrm{d}}\left(\mathrm{b}-\mathrm{c}_{2}-\mathrm{c}_{3}, \widetilde{\Omega}^{\mathrm{H}_{\mathrm{L}}}\right)$ such that $M^{-1} U \gamma(M)=1+V_{1}+V_{2}$, with

$$
\begin{array}{ll}
V_{1} \in M_{d}\left(\Omega_{L, n}\right) & \operatorname{val}_{\Omega}\left(V_{1}\right) \geq a \\
V_{2} \in M_{d}\left(\widetilde{\Omega}^{H_{L}}\right) & \operatorname{val}_{\Omega}\left(V_{2}\right) \geq b+1
\end{array}
$$

Proof. By CST2, write $U_{2}=R_{L, n}\left(U_{2}\right)+X$ where $X \in X_{L, n}$. And by CST3, we may write $X=(1-\gamma)(V)$, where

$$
\begin{aligned}
& \operatorname{val}_{\Omega}\left(R_{L, n}\left(U_{2}\right)\right) \geq b-c_{2} \geq a . \\
& \operatorname{val}_{\Omega}(V) \geq \operatorname{val}_{\Omega}(X)-c_{3} \geq b-c_{2}-c_{3}
\end{aligned}
$$

Take $M=1+V$ and $V_{1}=U_{1}+R_{L, n}\left(U_{2}\right)$, then

$$
\begin{aligned}
(1+V)^{-1} U(1+\gamma V) & =\left(1-V+O\left(V^{2}\right)\right)\left(1+V_{1}+(1-\gamma) V\right)(1+\gamma V) \\
& =1+V_{1}+V_{1} O(V)+O\left(V^{2}\right)
\end{aligned}
$$

Then $\operatorname{val}_{\Omega}\left(V_{1}\right) \geq \max \left\{\operatorname{val}_{\Omega}\left(U_{1}\right), \operatorname{val}_{\Omega}\left(R_{L, n}\right)\left(U_{2}\right)\right\} \geq a ; \operatorname{val}_{\Omega}\left(V_{1} V\right) \geq a+b-c_{2}-c_{3} \geq b+1$; $\operatorname{val}_{\Omega}\left(V_{2}\right) \geq 2 \operatorname{val}_{\Omega}(V) \geq 2\left(b-c_{2}-c_{3}\right) \geq b+1$.

Corollary 2. If $b \geq 2 c_{2}+2 c_{3}+1$ and $U \in \mathrm{Gl}_{\mathrm{d}}\left(\mathrm{b}, \widetilde{\Omega}^{\mathrm{H}_{\mathrm{L}}}\right)$, then there exists $M \in \mathrm{Gl}_{\mathrm{d}}(\mathrm{b}-$ $\left.\mathrm{c}_{2}-\mathrm{c}_{3}, \widetilde{\Omega}^{\mathrm{H}_{\mathrm{L}}}\right)$ such that $M^{-1} U \gamma(M) \in \mathrm{Gl}_{\mathrm{d}}\left(\Omega_{\mathrm{L}, \mathrm{n}}\right)$.

Proof. Exercise.
Proof of Theorem 3. By remark 1, we may assume $U \in H^{1}\left(\Gamma_{L}, \widetilde{\Omega}^{H_{L}}\right)$ for a finite extension L / K. Choose some $n \gg 0$ such that for all $\gamma \in \Gamma_{L}$ that $n(\gamma) \geq n$, then $U_{\gamma} \in \mathrm{Gl}_{\mathrm{d}}\left(2 \mathrm{c}_{2}+2 \mathrm{c}_{3}+1, \widetilde{\Omega}^{\mathrm{H}_{\mathrm{L}}}\right)$.

Fix such a γ, by corollary 2 , there exists $M \in \mathrm{Gl}_{\mathrm{d}}\left(\mathrm{c}_{2}+\mathrm{c}_{3}+1, \widetilde{\Omega}\right)$ such that $U_{\gamma}^{\prime}:=$ $M^{-1} U_{\gamma} \gamma(M) \in \mathrm{Gl}_{\mathrm{d}}\left(\Omega_{\mathrm{L}, \mathrm{n}}\right)$. For any other $\sigma \in \Gamma_{L}$, we also denote $U_{\sigma}^{\prime}:=M^{-1} U_{\sigma} \sigma(M)$. Then

$$
U_{\gamma}^{\prime} \gamma\left(U_{\sigma}^{\prime}\right)=U_{\gamma \sigma}^{\prime}=U_{\sigma \gamma}^{\prime}=U_{\sigma}^{\prime} \sigma\left(U_{\gamma}^{\prime}\right)
$$

shows $U_{\gamma}^{\prime-1} U_{\sigma}^{\prime} \sigma\left(U_{\gamma}^{\prime}\right)=\gamma\left(U_{\sigma}^{\prime}\right)$. It suffices to prove the following lemma.
Lemma 3. If $\gamma \in \Gamma_{L}$ and $n \geq \max \{n(\gamma), m(L)\}$, with three matrices

$$
\begin{aligned}
& M_{1} \in \mathrm{Gl}_{\mathrm{d}}\left(>\mathrm{c}_{3}, \Omega_{\mathrm{L}, \mathrm{n}}\right) \\
& M_{2} \in \mathrm{Gl}_{\mathrm{d}}\left(>\mathrm{c}_{3}, \Omega_{\mathrm{L}, \mathrm{n}}\right) \\
& B \in M_{d_{1} \times d_{2}}\left(\widetilde{\Omega}^{H_{L}}\right)
\end{aligned}
$$

If $M_{1} B M_{2}=\gamma(B)$, then $B \in M_{d_{1} \times d_{2}}\left(\Omega_{L, n}\right)$.

Proof of Lemma 3. Let $C=B-R_{L, n}(B) \in M_{d_{1} \times d_{2}}\left(X_{L, n}\right)$, then we also have $M_{1} C M_{2}=$ $\gamma(C)$. Then

$$
\begin{aligned}
(\gamma-1) C & =\gamma(C)-C \\
& =\left(M_{1}-1\right) C M_{2}+M_{1} C\left(M_{2}-1\right)+\left(M_{1}-1\right) C\left(M_{2}-1\right)
\end{aligned}
$$

Hence $\operatorname{val}_{\Omega}((\gamma-1) C)>\operatorname{val}_{\Omega}(C)+c_{3}$. But by CST3, it shows val $(C)=+\infty$, namely $C=0$, and $B \in M_{d_{1} \times d_{2}}\left(\Omega_{L, n}\right)$.

Back to theorem 2, then we have $U_{\sigma}^{\prime} \in \mathrm{Gl}_{\mathrm{d}}\left(\Omega_{\mathrm{L}, \mathrm{n}}\right)$ for all $\sigma \in \Gamma_{L}$.
Now we are able to prove proposition 2, and together with proposition 1, theorem 1 follows.

Proposition 2. Let K be a finite extension of \mathbb{Q}_{p}, then the restriction map

$$
H^{1}\left(H_{K}, \mathrm{Gl}_{\mathrm{d}}\left(\Omega_{\mathrm{K}, \infty}\right)\right) \longrightarrow \mathrm{H}^{1}\left(\mathrm{H}_{\mathrm{K}}, \mathrm{Gl}_{\mathrm{d}}\left(\widetilde{\Omega}^{\mathrm{H}_{\mathrm{K}}}\right)\right)
$$

is a bijection.
Proof. In the proof of theorem 3, we have proved the surjectivity. Now for the injectivity, if U, U^{\prime} be two cocycles that become cohomologous in $\mathrm{Gl}_{\mathrm{d}}\left(\widetilde{\Omega}^{\mathrm{H}_{\mathrm{K}}}\right)$, namely there exists $M \in \mathrm{Gl}_{\mathrm{d}}\left(\widetilde{\Omega}^{\mathrm{H}_{\mathrm{K}}}\right)$, such that $M^{-1} U_{\gamma} \gamma(M)=U_{\gamma}^{\prime}$ for all $\gamma \in \Gamma_{K}$. Choose γ sufficiently close to 1 , then $U_{\gamma}, U_{\gamma}^{\prime} \in \mathrm{Gl}_{\mathrm{d}}\left(\mathrm{c}_{3}+1, \Omega_{\mathrm{K}, \infty}\right)$. Apply lemma 3 , we have $M \in \mathrm{Gl}_{\mathrm{d}}\left(\Omega_{\mathrm{K}, \infty}\right)$. Then U and U^{\prime} are also cohomologous in $\mathrm{Gl}_{\mathrm{d}}\left(\Omega_{\mathrm{K}, \infty}\right)$.

If we translate the language of cohomology into Galois representations, we then get the following theorem.
Theorem 4. If W is a free $\widetilde{\Omega}$-module of rank d with an action of G_{K}, then for $n \gg 0$ there exists a finite extension L / K and a $\Omega_{L, n}$-submodule $W_{L, n} \subseteq W^{H_{L}}$ which is free of rank d and stable under Γ_{L}, and such that $W=\widetilde{\Omega} \otimes_{\Omega_{L, n}} W_{L, n}$. Moreover, taking $\Omega_{L, \infty}:=\Omega_{L, n} \otimes_{L_{n}} L_{\infty}$, if $X_{L, \infty}$ is an $\Omega_{L, \infty}$-submodule of $W^{H_{L}}$ which is free of rank d and stable under Γ_{L} then $X_{L, \infty} \subseteq W_{L, \infty}$.

Proof. The existence of $W_{L, n}$ just follows from theorem 3. For the second part of the theorem, fix a basis of $W_{L, \infty}$ and a basis of $X_{L, \infty}$. Let B be the matrix of the basis of $X_{L, \infty}$ under the basis of $W_{L, \infty}$. Then for any $\gamma \in \Gamma_{L}$, consider the matrix of γ we have

$$
B^{-1} \operatorname{Mat}_{\mathrm{W}}(\gamma) \gamma(\mathrm{B})=\operatorname{Mat}_{\mathrm{X}}(\gamma)
$$

Choose γ close enough to 1 to satisfy the condition of lemma 3 , we have $B \in \Omega_{L, n}$ for $n \gg 0$. Then $X_{L, \infty} \subseteq W_{L, \infty}$.

This theorem shows that $W_{L, \infty}$ is canonical, although the choice of $W_{L, n}$ may not be canonical.

3 Sen's Operator

In this section we set $\widetilde{\Omega}=\mathbb{C}_{p}$. And in theorem 4 we need not pass to a finite extension L. In this case, we denote $D_{\text {Sen }}(W):=W_{K, \infty}$.

Definition 2. For a \mathbb{C}_{p}-representation of G_{K}, then a vector $v \in W^{H}$ is K-finite if the set $\Gamma_{K} \cdot v$ generates a finite K-subspace of W.

For example, choose a $W_{K, n}$ for $n \gg 0$, then elements of $W_{K, n}$ must be all K-finite. Denote the set of finite elements by W_{0}, then we have $D_{\text {Sen }}(W)=W_{K, n} \otimes K_{\infty} \subseteq W_{0} \subseteq$ $D_{\text {Sen }}(W)$. Hence $D_{\text {Sen }}(W)$ is exactly the finite vectors in W^{H}.

As a corollary, taking $D_{\text {Sen }}$ is left exact. And then by dimensional analysis, it is also exact.

Fix a basis $\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$ of $D_{\text {Sen }}(W)$, by theorem 3 it corresponds to a cocycle $U: \Gamma_{K} \rightarrow \mathrm{Gl}_{\mathrm{d}}\left(\mathrm{K}_{\mathrm{n}}\right)$ for some $n \gg 0$. Then on $\Gamma_{K_{n}}$ the map U is actually a group homomorphism, and is hence \mathbb{Z}_{p}-linear. We may also assume on $\Gamma_{K_{n}}, \log \circ U$ is well defined, for example, $U\left(\Gamma_{K_{n}}\right) \subseteq \mathrm{Gl}_{\mathrm{d}}\left(1, \mathrm{~K}_{\mathrm{n}}\right)$. Then there exist a unique linear endomorphism Θ of $D_{\text {Sen }}(W)$ defined by

$$
\operatorname{Mat}(\Theta)=\frac{\log U_{\gamma}}{\log _{\mathrm{p}} \chi(\gamma)}, \quad \gamma \in \Gamma_{\mathrm{K}_{\mathrm{n}}}
$$

which is independent on the choice of γ since U is \mathbb{Z}_{p}-linear on $\Gamma_{K_{n}}$. In another word, we have

$$
\gamma \cdot v=\exp (\log (\chi(\gamma)) \cdot \Theta) \cdot v
$$

for any $\gamma \in \Gamma_{K_{n}}$ and $v \in D_{\operatorname{Sen}}(W)$. We can also rewrite the definition of Θ

$$
\Theta(v)=\frac{1}{\log _{p} \chi(\gamma)} \lim _{\substack{t \in \mathbb{Z}_{p} \\ t \rightarrow 0}} \frac{\gamma^{t} \cdot v-v}{t}, \quad \text { for } t \in D_{\operatorname{Sen}}(W) .
$$

in the above formula it's easy to see Θ commutes with the whole Γ_{K}.
Definition 3. The $\Theta: D_{\text {Sen }}(W) \rightarrow D_{\operatorname{Sen}}(W)$ defined above is called the Sen's operator of W, and its eigenvalues are called Sen weights.

Proposition 3. If W is a \mathbb{C}_{p}-representation of G_{K}, then the characteristic polynomial of Θ_{W} has coefficients in K.

Proof. Since Θ commutes with any element $\gamma \in \Gamma_{K}$, then for any $\gamma \in \Gamma_{K}$, we have

$$
\operatorname{Mat}(\Theta) \cdot \mathrm{U}_{\gamma}=\operatorname{Mat}(\Theta \circ \gamma)=\operatorname{Mat}(\gamma \circ \Theta)=\mathrm{U}_{\gamma} \cdot \gamma(\operatorname{Mat}(\Theta))
$$

Hence $\gamma(\operatorname{Mat}(\Theta))$ is similar to $\operatorname{Mat}(\Theta)$ for all $\gamma \in \Gamma_{K}$. It follows that the characteristic polynomial of $\operatorname{Mat}(\Theta)$ is invariant under Γ_{K}, namely it lies in $K[X]$.

Example 1. Take $K=\mathbb{Q}_{p}\left(\zeta_{p}\right)$, then $\chi\left(G_{K}\right)=\left(1+p \mathbb{Z}_{p}\right)^{\times}$on which $\log _{p}$ is convergent. Then for any $\lambda \in \mathbb{Z}_{p}$, define $\chi^{\lambda}(\cdot):=\exp \left(\log _{p}(\chi(\cdot)) \cdot \lambda\right)$, then we can take $W:=\mathbb{C}_{p}(\lambda)$. The Sen's operator Θ is multiplication by λ, then W has the weight λ.

4 Hodge-Tate representations

We set $B_{\mathrm{HT}}:=\bigoplus_{i \in \mathbb{Z}} \mathbb{C}_{p}(i)$, then we can talk about the B_{HT}-admissible representations.
Definition 4. Suppose V is a \mathbb{Q}_{p}-representation of G_{K}, then W is Hodge-Tate or B_{HT}-admissible if the following holds

$$
\operatorname{dim}_{\widehat{K_{\infty}}}\left(V \otimes_{\mathbb{Q}_{p}} B_{\mathrm{HT}}\right)^{G_{K}}=\operatorname{dim}_{\mathbb{Q}_{p}} V .
$$

where we denote $D_{\mathrm{HT}}:=\left(V \otimes_{\mathbb{Q}_{p}} B_{\mathrm{HT}}\right)^{G_{K}}$.
A strict definition for B-admissible representations can be found in many notes. It's a powerful method to detect properties of a representation. For example, in following lectures we will introduce the domain B_{dR}, then V is a de Rham representation iff it is B_{dR}-admissible. We will not discuss it here, and just take two examples. In the next section we will talk about \mathbb{C}_{p}-admissible representations.

Definition 5. Note that if V is Hodge-Tate, then $D_{\mathrm{HT}}=\bigoplus_{i \in \mathbb{Z}}\left(V \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p}(i)\right)^{G_{K}}$. The i for which $\operatorname{dim}\left(V \otimes \mathbb{C}_{p}(-i)\right)^{G_{K}}>0$ are called the Hodge-Tate weights of V, and in this case $\operatorname{dim}\left(V \otimes \mathbb{C}_{p}(-i)\right)^{G_{K}}$ is called the multiplicity of i.

Theorem 5. Suppose W is a \mathbb{C}_{p}-representation of G_{K}, then the following three things are equivalent.

1) W is isomorphic to $\mathbb{C}_{p}\left(h_{1}\right) \oplus \ldots \oplus \mathbb{C}_{p}\left(h_{d}\right)$.
2) Θ is semisimple on $D_{\operatorname{Sen}}(W)$ with eigenvalues $h_{1}, h_{2}, \ldots, h_{d} \in \mathbb{Z}$.

Proof. 1) obviously implies 2). Now for 2$) \Rightarrow 1$), we can write

$$
D_{\operatorname{Sen}}(W)=\bigoplus_{h \in \mathbb{Z}} D_{\operatorname{Sen}}(W)^{\Theta=h}
$$

where each summand is stable under Γ_{K}. For each $h \in \mathbb{Z}, \Theta=h$ on $D_{\operatorname{Sen}}(W)^{\Theta=h}$. Thus there exists some open subgroup $\Gamma_{0} \subseteq \Gamma_{K}$ such that $\gamma \cdot v=\chi(\gamma)^{h}(v)$ for each $\gamma \in \Gamma_{0}$ and $v \in D_{\text {Sen }}(W)^{\Theta=h}$. Use Hilbert's 90 we can see it's true on the whole Γ_{K}. Hence $D_{\text {Sen }}(W)^{\Theta=h}$ is a direct sum of $K_{\infty}(h)$, which implies 1$)$.

So a \mathbb{Q}_{p}-representation V is Hodge-Tate if $W=V \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p}$ satisfies the conditions in theorem 5. Example 1 shows that semi-simple is not enough to force a \mathbb{Q}_{p}-representation to be Hodge-Tate.

Corollary 3. If there is an exact sequence of G_{K} representations

$$
0 \longrightarrow U \longrightarrow V \longrightarrow W \longrightarrow 0
$$

and if U, W are Hodge-Tate with no weights in common, then V is Hodge-Tate.
Example 2. If U and W has common weights, then corollary 3 may not be true. Consider a two-dimensional \mathbb{Q}_{p}-representation with

$$
\rho(g)=\left(\begin{array}{cc}
1 & \alpha(g) \\
0 & 1
\end{array}\right), \quad \alpha: G_{K} \rightarrow\left(\mathbb{Q}_{p},+\right)
$$

where α is such that $\alpha\left(I_{K}\right)$ is infinite, which is possible since $I\left(K^{\mathrm{ab}} / K\right) \simeq \mathcal{O}_{K}^{*}$. Then we get an exact sequence

$$
0 \longrightarrow \mathbb{Q}_{p} \longrightarrow V \longrightarrow \mathbb{Q}_{p} \longrightarrow 0
$$

But if V is Hodge-Tate, then its weights must be 0,0 , and so Θ must be 0 , and by theorem 2, I_{K} must have finite image.

Proposition 4. If W satisfies the condition in theorem 5, then if $X \subseteq D_{\operatorname{Sen}}(W)$ is a finite dimensional K_{n} vector space stable under Γ_{K} and has a basis on which $\Gamma_{K_{n}}$ acts by integer powers of χ, then $X \subseteq W_{K, n}$.

Proof. Choose a basis $\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$ of $D_{\operatorname{Sen}}(W)$ that Γ_{K} acts on it by $\chi^{h_{i}}$. Suppose $e_{d+1} \in D_{\operatorname{Sen}}(W)$ such that $g\left(e_{d+1}\right)=\chi(g)^{h_{i+1}} e_{d+1}$ for all $g \in \Gamma_{K_{n}}$. The elements $e_{1}, e_{2}, \ldots, e_{d+1}$ are linear dependant in $D_{\text {Sen }}(W)$ so that we can write

$$
\sum_{i=1}^{d+1} \lambda_{i} e_{i}=0
$$

Suppose that this relation has minimal length and then by letting $\Gamma_{K_{n}}$ acts, we get

$$
\sum_{i=1}^{d+1} g\left(\lambda_{i}\right) \chi\left(g^{h_{i}}\right) e_{i}=0
$$

then for nonzero λ_{i}, λ_{j} we have

$$
\frac{g\left(\lambda_{i}\right)}{\lambda_{i}} \chi(g)^{h_{i}-1}=\frac{g\left(\lambda_{j}\right)}{\lambda_{j}} \chi(g)^{h_{j}-1} .
$$

namely

$$
\lambda_{i} / \lambda_{j} \in K_{\infty}^{\Gamma_{K_{n}}=\chi^{h_{j}-h_{i}}}= \begin{cases}0 & \text { if } h_{i} \neq h_{j} . \\ K_{n} & \text { if } h_{i}=h_{j} .\end{cases}
$$

So the relation can have coefficients in K_{n}, which means $e_{d+1} \in W_{K, n}$.
Example 3. A typical example for Hodge-Tate representations is the Tate module of Tate curves, which is an elliptic curve E / K that is isomorphic to $K^{*} / q^{\mathbb{Z}}$ for some $|q|<1$.

Looking at the group structure of \bar{K}^{*}, we have an exact sequence

$$
1 \longrightarrow \mu_{p^{n}}(\bar{K}) \longrightarrow\left(\bar{K}^{*} / q^{\mathbb{Z}}\right)\left[p^{n}\right] \longrightarrow q^{1 / p^{n} \mathbb{Z}} / q^{\mathbb{Z}} \longrightarrow 1
$$

Then by taking limits, we have an exact sequence

$$
\begin{aligned}
& 1 \longrightarrow \lim _{\rightleftarrows} \mu_{p^{n}}(\bar{K}) \longrightarrow T_{p}\left(E_{q}\right) \longrightarrow \lim _{\hookleftarrow} q^{1 / p^{n} \mathbb{Z}} / q^{\mathbb{Z}} \longrightarrow 1 . \\
& 0 \longrightarrow \mathbb{Z}_{p}(1) \longrightarrow T_{p}\left(E_{q}\right) \longrightarrow \mathbb{Z}_{p} \longrightarrow
\end{aligned}
$$

So after tensoring with \mathbb{Q}_{p}, we have

$$
0 \longrightarrow \mathbb{Q}_{p}(1) \longrightarrow V_{p}\left(E_{q}\right) \longrightarrow \mathbb{Q}_{p} \longrightarrow 0 .
$$

So its Tate module is Hodge-Tate with weights 0 and 1.

There are two big generalizations of example 3 .
Theorem 6 (Raynaud). Any abelian variety over K of dimension g is Hodge-Tate with weights 0,1 , each of multiplicity g.

Theorem 7 (Faltings). Let X / K be a proper and smooth variety of dimension d, then for $0 \leq n \leq 2 d, H_{\mathrm{et}}^{n}\left(X, \mathbb{Q}_{p}\right)$ is Hodge-Tate.

5 A sketch to the proof of theorem 2

I'm not going to talk about this section in class. If you have interest, then you are free to have a look at this section and its reference.

Firstly, to show (1) $\Leftrightarrow(3)$, it suffices to show the stronger result.
Proposition 5. If W is a \mathbb{C}_{p}-representation of G_{K}. The kernel of Θ is the \mathbb{C}_{p}-subspace of W generated by the elements invariant under G. Namely $W^{G} \otimes_{K} \mathbb{C}_{p}=\operatorname{ker} \Theta$.
Proof. Denote $\operatorname{ker} \Theta$ by X. Obviously $W^{G} \subseteq X=\operatorname{ker} \Theta$. So it suffices to show that W^{G} actually generates X, in another word, to find a K_{∞}-basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of $D_{\operatorname{Sen}}(X)$ such that each e_{i} is fixed by Γ_{K}. But since $\Theta\left(e_{i}\right)=0$, by the formula

$$
\Theta(v)=\frac{1}{\log _{p} \chi(\gamma)} \lim _{\substack{t \in \mathbb{Z}_{p} \\ t \rightarrow 0}} \frac{\gamma^{t} \cdot v-v}{t}, \quad \text { for } t \in D_{\mathrm{Sen}}(W)
$$

the Γ_{K}-orbit of e_{i} is finite. Hence e_{i} is fixed by some open subgroup Γ_{i}. Take $\Gamma^{\prime}:=\bigcap_{i} \Gamma_{i}$, the basis $\left\{e_{1}, \ldots e_{n}\right\}$ is fixed by the open subgroup Γ^{\prime}. Using Hilbert's 90 , there exists a basis of $D_{\text {Sen }}(X)$ fixed by the whole Γ.

Corollary 4. In theorem 2, (1) and (3) are equivalent.
To see $(2) \Leftrightarrow(3)$, we need the following theorem. The proof for it is much more complicated, you can find it in [1].

Theorem 8. Let (ρ, V) be any \mathbb{Q}_{p}-representation, and let $G:=\rho\left(I_{K}\right) \subseteq \operatorname{Gl}_{\mathrm{d}}\left(\mathbb{Q}_{\mathrm{p}}\right)$. G is compact since I_{K} is compact and thus is a closed subgroup of a Lie group, so is itself a Lie group. Let its Lie algebra be \mathfrak{g}. Thus

$$
\mathfrak{g}=\left\{M \in \mathfrak{g l}_{d}\left(\mathbb{Q}_{p}\right) \mid \exp (t M) \in G, t \rightarrow 0\right\}
$$

This is a subspace of $\mathfrak{g l}{ }_{d}\left(\mathbb{Q}_{p}\right)$, and $\operatorname{dim} G=\operatorname{dim} \mathfrak{g}$. Then \mathfrak{g} is the smallest subspace of $\mathfrak{g l}_{d}\left(\mathbb{Q}_{p}\right)$ such that $\Theta \in \mathfrak{g l}_{d}\left(\mathbb{C}_{p}\right)$ lies in $\mathfrak{g} \otimes \mathbb{C}_{p} \subseteq \mathfrak{g l}_{d}\left(\mathbb{C}_{p}\right)$.

Proof. See [1], p100.
$=$

References

[1] Theory of p-adic Galois Representations, Jean-Marc Fontaine, Yi Ouyang.
[2] Galois Representations, Joel Bellaiche.

