Sen's Theory

Chen Zekun

August 17, 2020

1 Introduction

The first goal of this lecture is to study \mathbb{C}_p -representations, which we want to reduce to K_{∞} -representations.

Theorem 1. Let K be a finite extension of \mathbb{Q}_p , the inflation-restriction map

 $H^1(\Gamma_K, \operatorname{Gl}_d(\mathbf{K}_\infty)) \longrightarrow \mathrm{H}^1(\mathbf{G}_{\mathbf{K}}, \operatorname{Gl}_d(\mathbb{C}_p))$

is a bijection.

In another word, any \mathbb{C}_p -representation W of G_K has a K_∞ -submodule $W_{K,\infty}$ which is Γ_K -stable, which we call as Sen space $D_{\text{Sen}}(W) := W_{K,\infty}$. One thing we can say about it is to define a K_∞ -linear map $\Theta : D_{\text{Sen}} \to D_{\text{Sen}}$ named as the Sen operator. To see it, a group homomorphism $\mathbb{Z}_p \simeq \Gamma_{\mathbb{Q}_p} \to \operatorname{Gl}_d(K_\infty)$ is a one-parameter subgroup of $\operatorname{Gl}_d(K_\infty)$, then we can define Θ as its derivative in $\mathfrak{gl}_d(K_\infty)$. We will show that its characteristic polynomial actually lies in K[x]. The Sen operator shows plentiful properties of a \mathbb{C}_p representations. For example,

Theorem 2. Let K be a finite extension of \mathbb{Q}_p , (ρ, V) is a \mathbb{Q}_p -representation. Then the followings are equivalent.

- (1) (ρ, V) is \mathbb{C}_p -admissible.
- (2) $\rho(I_K)$ is finite.
- (3) $\Theta = 0$.

By \mathbb{C}_p -admissible we mean $\dim_K (\mathbb{C}_p \otimes_{\mathbb{Q}_p} V)^{G_K} = \dim_{\mathbb{Q}_p} V$. We may not have time to introduce the proof in the lecture, but I will write it down in this notes.

Another thing we can say about theorem 1 is to generalize \mathbb{C}_p to other \mathbb{Q}_p -algebras. We use the Colmez-Sen-Tate condition, or CST condition for short. Then theorem 1 is still true for those \mathbb{Q}_p -algebras after passing to a finite extension of K. For example, the overconvergent elements for radius r in \widetilde{B} will form a domain that satisfies the CST condition.

2 The Colmez-Sen-Tate condition

Let $\widetilde{\Omega}$ be a \mathbb{Q}_p -algebra, with a valuation $\operatorname{val}_{\Omega} : \widetilde{\Omega} \to \mathbb{R} \cup \{\infty\}$, namely the following holds

1. $\operatorname{val}_{\Omega}(x) = +\infty$ if and only if x = 0.

- 2. $\operatorname{val}_{\Omega}(x+y) \ge \min \operatorname{val}_{\Omega}(x), \operatorname{val}_{\Omega}(y).$
- 3. $\operatorname{val}_{\Omega}(xy) \ge \operatorname{val}_{\Omega}(x) + \operatorname{val}_{\Omega}(y)$.
- 4. $\operatorname{val}_{\Omega}(p) > 0$ and $\operatorname{val}_{\Omega}(px) = \operatorname{val}_{\Omega}(p) + \operatorname{val}_{\Omega}(x)$ if $x \in \widetilde{\Omega}$.

We assume Ω to be complete with respect to the topology defined by val_{Ω}. And suppose $\widetilde{\Omega}$ is equipped by an action of G_K that preserves the valuation. We say that $\widetilde{\Omega}$ satisfies the CST condition if there exists three constants $c_1, c_2, c_3 \in \mathbb{R}_{\geq 0}$ such that the following three conditions hold.

- CST1 For every finite extensions M/L of K, there exists $\alpha \in \widetilde{\Omega}^{H_M}$ such that $\operatorname{val}_{\Omega}(\alpha) > -c_1$ and $\operatorname{Tr}_{M_{\infty}/L_{\infty}}(\alpha) = 1$.
- CST2 For every finite extension L of K, there exists $n(L) \in \mathbb{Z}_{\geq 1}$ and an increasing sequence $\{\Omega_{L,n}\}_{n\geq n(L)}$ of closed sub \mathbb{Q}_p -algebras of $\widetilde{\Omega}^{H_L}$ along with maps $R_{L,n}$: $\widetilde{\Omega}^{H_L} \to \Omega_{L,n}$ satisfying the following properties.
 - 1. if $x \in \widetilde{\Omega}^{H_L}$ then $\operatorname{val}_{\Omega}(R_{L,n}(x)) \ge \operatorname{val}_{\Omega}(x) c_2$ and $R_{L,n}(x) \to x$ as $n \to \infty$.
 - 2. if L_2/L_1 is finite, then $\Omega_{L_1,n} \subseteq \Omega_{L_2,n}$ and $R_{L_2,n}|_{\Omega_{L_1,n}} = R_{L_1,n}$.
 - 3. $R_{L,n}$ is $\Omega_{L,n}$ -linear and is the identity on $\Omega_{L,n}$.
 - 4. if $g \in G_K$ then $g(\Omega_{L,n}) = \Omega_{g(L),n}$ and $g \circ R_{L,n} = R_{g(L),n} \circ g$.
- CST3 For every finite extension L of K, there exists $m(L) \ge n(L)$ such that if $\gamma \in \Gamma_L$ and $n \ge \max(n(\gamma), m(L))$, then $1 - \gamma$ is invertible on $X_{L,n} = (1 - R_{L,n})(\widetilde{\Omega}^{H_L})$ and we have $\operatorname{val}_{\Omega}((\gamma - 1)^{-1}(x)) \ge \operatorname{val}_{\Omega}(x) - c_3$ if $x \in X_{L,n}$.

Here $n(\gamma)$ means $\operatorname{val}_p(\chi(\gamma) - 1)$, namely γ topologically generates Γ_{L_n} .

By CST2, we have $\Omega = \Omega_{L,n} \oplus X_{L,n}$. Let $\Omega_{L,\infty} := \bigcup_{n \ge 0} \Omega_{L,n}$ so that $\Omega_{L,n}$ is dense in $\widetilde{\Omega}^{H_L}$.

In the previous lectures, we've known that \mathbb{C}_p is a typical example for the CST condition. For CST1, choose any $c_1 > 0$, it follows by proposition 9.2 that $\operatorname{tr}_{M_{\infty}/L_{\infty}}(\mathfrak{m}_{M_{\infty}}) = \mathfrak{m}_{L_{\infty}}$, then take some $\alpha' \in \mathfrak{m}_{M_{\infty}}$ such that $\operatorname{val}_p(\operatorname{tr}_{M_{\infty}/L_{\infty}}(\alpha')) < c_1$. And then $\alpha := \alpha'/\operatorname{tr}(\alpha')$ will be okay. For CST2 and CST3, it follows from the discussion in §10.

Now we can introduce the main theorem of this section.

Theorem 3. If $\widetilde{\Omega}$ satisfies the CST condition, and U is a cocycle on G_K with values in $\operatorname{Gl}_{d}(\widetilde{\Omega})$, then there exists a finite extension L/K, and a matrix $M \in \operatorname{Gl}_{d}(\widetilde{\Omega})$ such that the cocycle on G_L defined by $\widetilde{U} : g \mapsto M^{-1}U_gg(M)$ is trivial on H_L and has values in $\operatorname{Gl}_{d}(\Omega_{L,n})$ for $n \gg 0$.

Definition 1. For $c \in \mathbb{R}_{>0}$ and $R \subseteq \widetilde{\Omega}$ is a subring. Denote

$$Gl_d(c, R) := \{ X \in Gl_d(R) \mid val_{\Omega}(1 - X) \ge c \}$$

Notice that if $X \in Gl_d(c, \mathbf{R})$, then

$$X^{-1} = (1 - (1 - X))^{-1}$$

= 1 + (1 - X) + (1 - X)^{2} + ... \equiv Gl_d(c, R)

Thus $Gl_d(c, R)$ is an open (and hence closed) subgroup of $Gl_d(R)$.

Lemma 1. If $a > c_1$, U is a cocycle on H_L with values in $\operatorname{Gl}_d(\mathfrak{a}, \widetilde{\Omega})$, then there exists $M \in \operatorname{Gl}_d(\mathfrak{a} - \mathfrak{c}_1, \widetilde{\Omega})$ such that the cocycle $g \mapsto M^{-1}U_qg(M)$ has values in $\operatorname{Gl}_d(\mathfrak{a} + 1, \widetilde{\Omega})$.

Proof. Take some finite extension N/L such that $U(H_N) \subseteq \operatorname{Gl}_d(a + 1 + c_1, \Omega)$. It's possible because $U^{-1}(\operatorname{Gl}_d(a + 1 + c_1, \widetilde{\Omega}))$ is a compact open neighborhood of the identity, and thus contains an open subgroup. Then by CST1, there exists $\alpha \in \widetilde{\Omega}^{H_N}$ such that $\operatorname{tr}_{N_{\infty}/L_{\infty}}(\alpha) = 1, \operatorname{val}_{\Omega}(\alpha) \geq -c_1$.

Take Q to be a system of representations of the cosets H_L/H_N , and define

$$M_Q := \sum_{h \in Q} h(\alpha) U_{\alpha} \in \mathrm{Gl}_{\mathrm{d}}(\mathrm{a} - \mathrm{c}_1, \widetilde{\Omega}).$$

Then by the cocycle relation, we have $U_{gg}(M_Q) = M_{gQ}$. If we take M to be M_Q , then $M_Q^{-1}U_gg(M_Q) = M_Q^{-1}M_{gQ} = 1 + M_Q^{-1}(M_{gQ} - M_Q)$. So it suffices to show that $\operatorname{val}_{\Omega}(M_{gQ} - M_Q) \ge a + 1$. Notice that gQ is also a representation of the cosets H_L/H_N , for any $h' \in gQ$, write it as h' = hn with $h \in Q, n \in H_N$. Then

$$M_{gQ} - M_Q = \sum_{h' \in gQ} h'(\alpha)U_{h'} - M_Q$$
$$= \sum_{h \in Q} h(\alpha)U_h h(U_n) - M_Q$$
$$= \sum_{h \in Q} h(\alpha)U_h (h(U_n) - 1)$$

So we have $\operatorname{val}_{\Omega}(M_{gQ} - M_Q) \ge a + 1$.

Corollary 1. If $a > c_1$, U a cocycle on H_L , then there exists $M \in \text{Gl}_d(a - c_1, \widetilde{\Omega})$ such that $M^{-1}U_gg(M) = 1$.

Proof. Using lemma 1, take $\{M_k\}_{k\in\mathbb{N}}$ inductively, then the cocycle

$$g \mapsto M_k^{-1} M_{k-1}^{-1} \dots M_0^1 U_g g(M_0 M_1 \dots M_k)$$

has values in $\operatorname{Gl}_{d}(a+k, \widetilde{\Omega})$. Since we have $M_k \in \operatorname{Gl}_{d}(a+k-c_1, \widetilde{\Omega})$, the product $\prod_{k>0} M_k$ exists, and then we can

Proposition 1. The inflation map

 $H^1(\Gamma_K, \operatorname{Gl}_d(\widehat{\mathbf{K}_{\infty}})) \longrightarrow \mathrm{H}^1(\mathbf{G}_K, \operatorname{Gl}_d(\mathbb{C}_p))$

is a bijection.

take $M = \prod_{k>0} M_k$.

Proof. By the inflation-restriction exact sequence, it suffices to show $H^1(H_K, \operatorname{Gl}_d(\mathbb{C}_p))$ is trivial.

For $U \in H^1(H_K, \operatorname{Gl}_d(\mathbb{C}_p))$, pick some $a > c_1$, and a finite extension L/K such that $U(H_L) \subseteq \operatorname{Gl}_d(a, \mathbb{C}_p)$. By the previous corollary, $U|_{H_L}$ is trivial. Now consider the exact sequence.

$$0 \longrightarrow H^{1}(H_{K}/H_{L}, \mathrm{Gl}_{d}(\widehat{\mathcal{L}_{\infty}})) \longrightarrow \mathrm{H}^{1}(\mathrm{H}_{K}, \mathrm{Gl}_{d}(\mathbb{C}_{p})) \longrightarrow \mathrm{H}^{1}(\mathrm{H}_{L}, \mathrm{Gl}_{d}(\mathbb{C}_{p}))$$

U becomes trivial in $H^1(H_L, \operatorname{Gl}_d(\mathbb{C}_p))$, then U must come from $H^1(H_K/H_L, \operatorname{Gl}_d(\widehat{L_{\infty}}))$, which by Hilbert's 90 is also trivial. Hence U is trivial. \Box

Remark 1. This proof relies on Hilbert's 90, which is only true for the \mathbb{C}_p case. For general $\widetilde{\Omega}$ that satisfies the CST conditions, we have to pass to a finite extension L, and the bijection still holds.

Lemma 2. If $a \ge c_2 + c_3 + 1$, $b \ge \max\{a + c_2, 2c_2 + 2c_3 + 1\}$, and $\gamma \in \Gamma_L$, $n \ge \max\{n(\gamma), m(L)\}$. Suppose a matrix $U = 1 + U_1 + U_2$ with

$$U_1 \in M_d(\Omega_{L,n}) \quad \text{val}_{\Omega}(U_1) \ge a.$$
$$U_2 \in M_d(\widetilde{\Omega}^{H_L}) \quad \text{val}_{\Omega}(U_2) \ge b.$$

Then there exists $M \in \text{Gl}_d(b - c_2 - c_3, \widetilde{\Omega}^{H_L})$ such that $M^{-1}U\gamma(M) = 1 + V_1 + V_2$, with

$$V_1 \in M_d(\Omega_{L,n}) \quad \operatorname{val}_{\Omega}(V_1) \ge a.$$
$$V_2 \in M_d(\widetilde{\Omega}^{H_L}) \quad \operatorname{val}_{\Omega}(V_2) \ge b+1$$

Proof. By CST2, write $U_2 = R_{L,n}(U_2) + X$ where $X \in X_{L,n}$. And by CST3, we may write $X = (1 - \gamma)(V)$, where

$$\operatorname{val}_{\Omega}(R_{L,n}(U_2)) \ge b - c_2 \ge a.$$

$$\operatorname{val}_{\Omega}(V) \ge \operatorname{val}_{\Omega}(X) - c_3 \ge b - c_2 - c_3$$

Take M = 1 + V and $V_1 = U_1 + R_{L,n}(U_2)$, then

$$(1+V)^{-1}U(1+\gamma V) = (1-V+O(V^2))(1+V_1+(1-\gamma)V)(1+\gamma V)$$

= 1+V₁+V₁O(V) + O(V²)

Then $\operatorname{val}_{\Omega}(V_1) \ge \max\{\operatorname{val}_{\Omega}(U_1), \operatorname{val}_{\Omega}(R_{L,n})(U_2)\} \ge a; \operatorname{val}_{\Omega}(V_1V) \ge a+b-c_2-c_3 \ge b+1;$ $\operatorname{val}_{\Omega}(V_2) \ge 2\operatorname{val}_{\Omega}(V) \ge 2(b-c_2-c_3) \ge b+1.$

Corollary 2. If $b \geq 2c_2 + 2c_3 + 1$ and $U \in Gl_d(b, \widetilde{\Omega}^{H_L})$, then there exists $M \in Gl_d(b - c_2 - c_3, \widetilde{\Omega}^{H_L})$ such that $M^{-1}U\gamma(M) \in Gl_d(\Omega_{L,n})$.

Proof. Exercise.

Proof of Theorem 3. By remark 1, we may assume $U \in H^1(\Gamma_L, \widetilde{\Omega}^{H_L})$ for a finite extension L/K. Choose some $n \gg 0$ such that for all $\gamma \in \Gamma_L$ that $n(\gamma) \geq n$, then $U_{\gamma} \in \mathrm{Gl}_d(2c_2 + 2c_3 + 1, \widetilde{\Omega}^{H_L})$.

Fix such a γ , by corollary 2, there exists $M \in \operatorname{Gl}_d(c_2 + c_3 + 1, \widetilde{\Omega})$ such that $U'_{\gamma} := M^{-1}U_{\gamma}\gamma(M) \in \operatorname{Gl}_d(\Omega_{\mathrm{L,n}})$. For any other $\sigma \in \Gamma_L$, we also denote $U'_{\sigma} := M^{-1}U_{\sigma}\sigma(M)$. Then

$$U'_{\gamma}\gamma(U'_{\sigma}) = U'_{\gamma\sigma} = U'_{\sigma\gamma} = U'_{\sigma}\sigma(U'_{\gamma})$$

shows $U_{\gamma}^{\prime-1}U_{\sigma}^{\prime}\sigma(U_{\gamma}^{\prime}) = \gamma(U_{\sigma}^{\prime})$. It suffices to prove the following lemma.

Lemma 3. If $\gamma \in \Gamma_L$ and $n \ge \max\{n(\gamma), m(L)\}$, with three matrices

$$M_{1} \in Gl_{d}(>c_{3}, \Omega_{L,n})$$
$$M_{2} \in Gl_{d}(>c_{3}, \Omega_{L,n})$$
$$B \in M_{d_{1} \times d_{2}}(\widetilde{\Omega}^{H_{L}})$$

If $M_1BM_2 = \gamma(B)$, then $B \in M_{d_1 \times d_2}(\Omega_{L,n})$.

Proof of Lemma 3. Let $C = B - R_{L,n}(B) \in M_{d_1 \times d_2}(X_{L,n})$, then we also have $M_1CM_2 = \gamma(C)$. Then

$$(\gamma - 1)C = \gamma(C) - C$$

= $(M_1 - 1)CM_2 + M_1C(M_2 - 1) + (M_1 - 1)C(M_2 - 1)$

Hence $\operatorname{val}_{\Omega}((\gamma - 1)C) > \operatorname{val}_{\Omega}(C) + c_3$. But by CST3, it shows $\operatorname{val}_{\Omega}(C) = +\infty$, namely C = 0, and $B \in M_{d_1 \times d_2}(\Omega_{L,n})$.

Back to theorem 2, then we have $U'_{\sigma} \in \mathrm{Gl}_{d}(\Omega_{\mathrm{L},n})$ for all $\sigma \in \Gamma_{L}$.

Now we are able to prove proposition 2, and together with proposition 1, theorem 1 follows.

Proposition 2. Let K be a finite extension of \mathbb{Q}_p , then the restriction map

$$H^1(H_K, \operatorname{Gl}_d(\Omega_{K,\infty})) \longrightarrow H^1(H_K, \operatorname{Gl}_d(\widetilde{\Omega}^{H_K}))$$

is a bijection.

Proof. In the proof of theorem 3, we have proved the surjectivity. Now for the injectivity, if U, U' be two cocycles that become cohomologous in $\operatorname{Gl}_{d}(\widetilde{\Omega}^{\operatorname{H}_{K}})$, namely there exists $M \in \operatorname{Gl}_{d}(\widetilde{\Omega}^{\operatorname{H}_{K}})$, such that $M^{-1}U_{\gamma}\gamma(M) = U'_{\gamma}$ for all $\gamma \in \Gamma_{K}$. Choose γ sufficiently close to 1, then $U_{\gamma}, U'_{\gamma} \in \operatorname{Gl}_{d}(c_{3} + 1, \Omega_{\operatorname{K},\infty})$. Apply lemma 3, we have $M \in \operatorname{Gl}_{d}(\Omega_{\operatorname{K},\infty})$. Then U and U' are also cohomologous in $\operatorname{Gl}_{d}(\Omega_{\operatorname{K},\infty})$.

If we translate the language of cohomology into Galois representations, we then get the following theorem.

Theorem 4. If W is a free $\widetilde{\Omega}$ -module of rank d with an action of G_K , then for $n \gg 0$ there exists a finite extension L/K and a $\Omega_{L,n}$ -submodule $W_{L,n} \subseteq W^{H_L}$ which is free of rank d and stable under Γ_L , and such that $W = \widetilde{\Omega} \otimes_{\Omega_{L,n}} W_{L,n}$. Moreover, taking $\Omega_{L,\infty} := \Omega_{L,n} \otimes_{L_n} L_{\infty}$, if $X_{L,\infty}$ is an $\Omega_{L,\infty}$ -submodule of W^{H_L} which is free of rank d and stable under Γ_L then $X_{L,\infty} \subseteq W_{L,\infty}$.

Proof. The existence of $W_{L,n}$ just follows from theorem 3. For the second part of the theorem, fix a basis of $W_{L,\infty}$ and a basis of $X_{L,\infty}$. Let B be the matrix of the basis of $X_{L,\infty}$ under the basis of $W_{L,\infty}$. Then for any $\gamma \in \Gamma_L$, consider the matrix of γ we have

$$B^{-1}Mat_W(\gamma)\gamma(B) = Mat_X(\gamma)$$

Choose γ close enough to 1 to satisfy the condition of lemma 3, we have $B \in \Omega_{L,n}$ for $n \gg 0$. Then $X_{L,\infty} \subseteq W_{L,\infty}$.

This theorem shows that $W_{L,\infty}$ is canonical, although the choice of $W_{L,n}$ may not be canonical.

3 Sen's Operator

In this section we set $\Omega = \mathbb{C}_p$. And in theorem 4 we need not pass to a finite extension L. In this case, we denote $D_{\text{Sen}}(W) := W_{K,\infty}$.

Definition 2. For a \mathbb{C}_p -representation of G_K , then a vector $v \in W^H$ is K-finite if the set $\Gamma_K . v$ generates a finite K-subspace of W.

For example, choose a $W_{K,n}$ for $n \gg 0$, then elements of $W_{K,n}$ must be all K-finite. Denote the set of finite elements by W_0 , then we have $D_{\text{Sen}}(W) = W_{K,n} \otimes K_{\infty} \subseteq W_0 \subseteq D_{\text{Sen}}(W)$. Hence $D_{\text{Sen}}(W)$ is exactly the finite vectors in W^H .

As a corollary, taking D_{Sen} is left exact. And then by dimensional analysis, it is also exact.

Fix a basis $\{e_1, e_2, \ldots, e_d\}$ of $D_{\text{Sen}}(W)$, by theorem 3 it corresponds to a cocycle $U: \Gamma_K \to \text{Gl}_d(K_n)$ for some $n \gg 0$. Then on Γ_{K_n} the map U is actually a group homomorphism, and is hence \mathbb{Z}_p -linear. We may also assume on Γ_{K_n} , $\log \circ U$ is well defined, for example, $U(\Gamma_{K_n}) \subseteq \text{Gl}_d(1, K_n)$. Then there exist a unique linear endomorphism Θ of $D_{\text{Sen}}(W)$ defined by

$$Mat(\Theta) = \frac{\log U_{\gamma}}{\log_p \chi(\gamma)}, \quad \gamma \in \Gamma_{K_n}$$

which is independent on the choice of γ since U is \mathbb{Z}_p -linear on Γ_{K_n} . In another word, we have

$$\gamma . v = \exp(\log(\chi(\gamma)) \cdot \Theta) . v$$

for any $\gamma \in \Gamma_{K_n}$ and $v \in D_{\text{Sen}}(W)$. We can also rewrite the definition of Θ

$$\Theta(v) = \frac{1}{\log_p \chi(\gamma)} \lim_{\substack{t \in \mathbb{Z}_p \\ t \to 0}} \frac{\gamma^t \cdot v - v}{t}, \quad \text{for } t \in D_{\text{Sen}}(W).$$

in the above formula it's easy to see Θ commutes with the whole Γ_K .

Definition 3. The Θ : $D_{\text{Sen}}(W) \to D_{\text{Sen}}(W)$ defined above is called the **Sen's operator** of W, and its eigenvalues are called **Sen weights**.

Proposition 3. If W is a \mathbb{C}_p -representation of G_K , then the characteristic polynomial of Θ_W has coefficients in K.

Proof. Since Θ commutes with any element $\gamma \in \Gamma_K$, then for any $\gamma \in \Gamma_K$, we have

$$Mat(\Theta) \cdot U_{\gamma} = Mat(\Theta \circ \gamma) = Mat(\gamma \circ \Theta) = U_{\gamma} \cdot \gamma(Mat(\Theta)).$$

Hence $\gamma(\operatorname{Mat}(\Theta))$ is similar to $\operatorname{Mat}(\Theta)$ for all $\gamma \in \Gamma_K$. It follows that the characteristic polynomial of $\operatorname{Mat}(\Theta)$ is invariant under Γ_K , namely it lies in K[X].

Example 1. Take $K = \mathbb{Q}_p(\zeta_p)$, then $\chi(G_K) = (1 + p\mathbb{Z}_p)^{\times}$ on which \log_p is convergent. Then for any $\lambda \in \mathbb{Z}_p$, define $\chi^{\lambda}(\cdot) := \exp(\log_p(\chi(\cdot)) \cdot \lambda)$, then we can take $W := \mathbb{C}_p(\lambda)$. The Sen's operator Θ is multiplication by λ , then W has the weight λ .

4 Hodge-Tate representations

We set $B_{\mathrm{HT}} := \bigoplus_{i \in \mathbb{Z}} \mathbb{C}_p(i)$, then we can talk about the B_{HT} -admissible representations.

Definition 4. Suppose V is a \mathbb{Q}_p -representation of G_K , then W is **Hodge-Tate** or B_{HT} -admissible if the following holds

$$\dim_{\widehat{K_{\infty}}} (V \otimes_{\mathbb{Q}_p} B_{\mathrm{HT}})^{G_K} = \dim_{\mathbb{Q}_p} V.$$

where we denote $D_{\mathrm{HT}} := (V \otimes_{\mathbb{Q}_p} B_{\mathrm{HT}})^{G_K}$.

A strict definition for *B*-admissible representations can be found in many notes. It's a powerful method to detect properties of a representation. For example, in following lectures we will introduce the domain B_{dR} , then *V* is a de Rham representation iff it is B_{dR} -admissible. We will not discuss it here, and just take two examples. In the next section we will talk about \mathbb{C}_p -admissible representations.

Definition 5. Note that if V is Hodge-Tate, then $D_{\mathrm{HT}} = \bigoplus_{i \in \mathbb{Z}} (V \otimes_{\mathbb{Q}_p} \mathbb{C}_p(i))^{G_K}$. The *i* for which $\dim(V \otimes \mathbb{C}_p(-i))^{G_K} > 0$ are called the Hodge-Tate weights of V, and in this case $\dim(V \otimes \mathbb{C}_p(-i))^{G_K}$ is called the multiplicity of *i*.

Theorem 5. Suppose W is a \mathbb{C}_p -representation of G_K , then the following three things are equivalent.

1) W is isomorphic to $\mathbb{C}_p(h_1) \oplus \ldots \oplus \mathbb{C}_p(h_d)$.

2) Θ is semisimple on $D_{\text{Sen}}(W)$ with eigenvalues $h_1, h_2, \ldots, h_d \in \mathbb{Z}$.

Proof. 1) obviously implies 2). Now for $2 \ge 1$, we can write

$$D_{\mathrm{Sen}}(W) = \bigoplus_{h \in \mathbb{Z}} D_{\mathrm{Sen}}(W)^{\Theta = h}$$

where each summand is stable under Γ_K . For each $h \in \mathbb{Z}$, $\Theta = h$ on $D_{\text{Sen}}(W)^{\Theta=h}$. Thus there exists some open subgroup $\Gamma_0 \subseteq \Gamma_K$ such that $\gamma . v = \chi(\gamma)^h(v)$ for each $\gamma \in \Gamma_0$ and $v \in D_{\text{Sen}}(W)^{\Theta=h}$. Use Hilbert's 90 we can see it's true on the whole Γ_K . Hence $D_{\text{Sen}}(W)^{\Theta=h}$ is a direct sum of $K_{\infty}(h)$, which implies 1).

So a \mathbb{Q}_p -representation V is Hodge-Tate if $W = V \otimes_{\mathbb{Q}_p} \mathbb{C}_p$ satisfies the conditions in theorem 5. Example 1 shows that semi-simple is not enough to force a \mathbb{Q}_p -representation to be Hodge-Tate.

Corollary 3. If there is an exact sequence of G_K representations

$$0 \longrightarrow U \longrightarrow V \longrightarrow W \longrightarrow 0$$

and if U, W are Hodge-Tate with no weights in common, then V is Hodge-Tate.

Example 2. If U and W has common weights, then corollary 3 may not be true. Consider a two-dimensional \mathbb{Q}_p -representation with

$$\rho(g) = \begin{pmatrix} 1 & \alpha(g) \\ 0 & 1 \end{pmatrix}, \quad \alpha : G_K \to (\mathbb{Q}_p, +)$$

where α is such that $\alpha(I_K)$ is infinite, which is possible since $I(K^{ab}/K) \simeq \mathcal{O}_K^*$. Then we get an exact sequence

$$0 \longrightarrow \mathbb{Q}_p \longrightarrow V \longrightarrow \mathbb{Q}_p \longrightarrow 0$$

But if V is Hodge-Tate, then its weights must be 0, 0, and so Θ must be 0, and by theorem 2, I_K must have finite image.

Proposition 4. If W satisfies the condition in theorem 5, then if $X \subseteq D_{\text{Sen}}(W)$ is a finite dimensional K_n vector space stable under Γ_K and has a basis on which Γ_{K_n} acts by integer powers of χ , then $X \subseteq W_{K,n}$.

Proof. Choose a basis $\{e_1, e_2, \ldots, e_d\}$ of $D_{\text{Sen}}(W)$ that Γ_K acts on it by χ^{h_i} . Suppose $e_{d+1} \in D_{\text{Sen}}(W)$ such that $g(e_{d+1}) = \chi(g)^{h_{i+1}}e_{d+1}$ for all $g \in \Gamma_{K_n}$. The elements $e_1, e_2, \ldots, e_{d+1}$ are linear dependent in $D_{\text{Sen}}(W)$ so that we can write

$$\sum_{i=1}^{d+1} \lambda_i e_i = 0.$$

Suppose that this relation has minimal length and then by letting Γ_{K_n} acts, we get

$$\sum_{i=1}^{d+1} g(\lambda_i)\chi(g^{h_i})e_i = 0$$

then for nonzero λ_i, λ_j we have

$$\frac{g(\lambda_i)}{\lambda_i}\chi(g)^{h_i-1} = \frac{g(\lambda_j)}{\lambda_j}\chi(g)^{h_j-1}.$$

namely

$$\lambda_i/\lambda_j \in K_{\infty}^{\Gamma_{K_n} = \chi^{h_j - h_i}} = \begin{cases} 0 & \text{if } h_i \neq h_j. \\ K_n & \text{if } h_i = h_j. \end{cases}$$

So the relation can have coefficients in K_n , which means $e_{d+1} \in W_{K,n}$.

Example 3. A typical example for Hodge-Tate representations is the Tate module of Tate curves, which is an elliptic curve E/K that is isomorphic to $K^*/q^{\mathbb{Z}}$ for some |q| < 1. Looking at the group structure of \overline{K}^* , we have an exact sequence

$$1 \longrightarrow \mu_{p^n}(\overline{K}) \longrightarrow (\overline{K}^*/q^{\mathbb{Z}})[p^n] \longrightarrow q^{1/p^n \mathbb{Z}}/q^{\mathbb{Z}} \longrightarrow 1$$

Then by taking limits, we have an exact sequence

$$1 \longrightarrow \varprojlim \mu_{p^n}(\overline{K}) \longrightarrow T_p(E_q) \longrightarrow \varprojlim q^{1/p^n \mathbb{Z}}/q^{\mathbb{Z}} \longrightarrow 1.$$

 $0 \longrightarrow \mathbb{Z}_p(1) \longrightarrow T_p(E_q) \longrightarrow \mathbb{Z}_p \longrightarrow 0.$

So after tensoring with \mathbb{Q}_p , we have

$$0 \longrightarrow \mathbb{Q}_p(1) \longrightarrow V_p(E_q) \longrightarrow \mathbb{Q}_p \longrightarrow 0.$$

So its Tate module is Hodge-Tate with weights 0 and 1.

There are two big generalizations of example 3.

Theorem 6 (Raynaud). Any abelian variety over K of dimension g is Hodge-Tate with weights 0, 1, each of multiplicity g.

Theorem 7 (Faltings). Let X/K be a proper and smooth variety of dimension d, then for $0 \le n \le 2d$, $H^n_{\text{et}}(X, \mathbb{Q}_p)$ is Hodge-Tate.

5 A sketch to the proof of theorem 2

I'm not going to talk about this section in class. If you have interest, then you are free to have a look at this section and its reference.

Firstly, to show (1) \Leftrightarrow (3), it suffices to show the stronger result.

Proposition 5. If W is a \mathbb{C}_p -representation of G_K . The kernel of Θ is the \mathbb{C}_p -subspace of W generated by the elements invariant under G. Namely $W^G \otimes_K \mathbb{C}_p = \ker \Theta$.

Proof. Denote ker Θ by X. Obviously $W^G \subseteq X = \ker \Theta$. So it suffices to show that W^G actually generates X, in another word, to find a K_{∞} -basis $\{e_1, e_2, \ldots, e_n\}$ of $D_{\text{Sen}}(X)$ such that each e_i is fixed by Γ_K . But since $\Theta(e_i) = 0$, by the formula

$$\Theta(v) = \frac{1}{\log_p \chi(\gamma)} \lim_{\substack{t \in \mathbb{Z}_p \\ t \to 0}} \frac{\gamma^t \cdot v - v}{t}, \quad \text{for } t \in D_{\text{Sen}}(W).$$

the Γ_K -orbit of e_i is finite. Hence e_i is fixed by some open subgroup Γ_i . Take $\Gamma' := \bigcap_i \Gamma_i$, the basis $\{e_1, \ldots, e_n\}$ is fixed by the open subgroup Γ' . Using Hilbert's 90, there exists a basis of $D_{\text{Sen}}(X)$ fixed by the whole Γ .

Corollary 4. In theorem 2, (1) and (3) are equivalent.

To see (2) \Leftrightarrow (3), we need the following theorem. The proof for it is much more complicated, you can find it in [1].

Theorem 8. Let (ρ, V) be any \mathbb{Q}_p -representation, and let $G := \rho(I_K) \subseteq \operatorname{Gl}_d(\mathbb{Q}_p)$. G is compact since I_K is compact and thus is a closed subgroup of a Lie group, so is itself a Lie group. Let its Lie algebra be \mathfrak{g} . Thus

$$\mathfrak{g} = \{ M \in \mathfrak{gl}_d(\mathbb{Q}_p) \mid \exp(tM) \in G, t \to 0 \}$$

This is a subspace of $\mathfrak{gl}_d(\mathbb{Q}_p)$, and dim $G = \dim \mathfrak{g}$. Then \mathfrak{g} is the smallest subspace of $\mathfrak{gl}_d(\mathbb{Q}_p)$ such that $\Theta \in \mathfrak{gl}_d(\mathbb{C}_p)$ lies in $\mathfrak{g} \otimes \mathbb{C}_p \subseteq \mathfrak{gl}_d(\mathbb{C}_p)$.

Proof. See [1], p100.

=

References

- [1] Theory of *p*-adic Galois Representations, Jean-Marc Fontaine, Yi Ouyang.
- [2] Galois Representations, Joel Bellaiche.