IWASAWA COHOMOLOGY

1. EULER-POINCARE CHARACTERISTIC
1.1. D¥=Y and D/(¢) —1).
Lemma 1.1. Let D be an étale p-module over Eg,. Then :
(1) D¥=1 is compact.
(2) dimg,(D/(x — 1)) < +oo0.

Proof. Choose a basis eg, ...,eq of D. Then by definition ¢(eq), ..., p(eq) is a basis,
too. Let (a;;) be the matrix relating the two bases, and let ¢ = infvg(a;;). For
x € D, write x = ), z;p(e;) for x; € E&p by étaleness. Let vg(z) := inf; vg(z;).
Then, from

Y(z) = Z Y(w;)es,

we have
ve(¥(2)) 2 ¢+ mf g (Y (z:))-

Since z; are in E('gp, and 1 preseves E(igp and w(ﬁpk x;) = (), we get v (Y (x;)) >
[vg(z;)/p]. Therefore,

(1) vp(Y(x) = ¢+ [ve(z)/p)
implies that if vg(z) < %, then vp(¥(z)) > ve(z). So D¥=! is a subset of the
set
. Pe=1)y NS kg (1] (e
M :={z:vg(x) > b1 }C Zw Fp,[[7]].¢(es)
i=1

for appropriate k. This set is compact, and D¥=" is a closed set.

Above proof shows that 1) —1 is bijective on D/M. Thus, it suffices to prove that
(v —1)D contains {z : vg(x) > ¢’} for some ¢’ to prove (2). Let p(z;) = ijl bije;
and ¢o = inf; ; vg(b;;). Then we have z = Z?:l y;e; for y; = Ele x;b;; and thus
vE(yj) > co +ve(x). Then, p(z) = Ele ©(yi)p(e;) shows that
(2) vg(d(x)) = pinfvg(y;) = pve(z) + peo.

So, if v (w) > 2L +1, then vp(p" (x)) > p", which implies that y = S i)
converges in D. Then, (¢ — 1)(y) = z shows that (¢ — 1)D contains the set
{z:vp(x) = B2 +1} O

Proposition 1.2. Let D is an étale p-module over Ak (resp. over Bi ). Then :

(1) D¥=1 is compact (resp. locally compact).
(2) D/ — 1 is finitely generated over Z, (resp. over Q).
1
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Proof. Observe first that we can assume K = Q, because Ak is a finite free module
over Ag,. Also, the statement for By follows from the statement for Ax. So we
only need to consider D over Ag,.

Then note that D¥=! = @(D/p”D)wzl. Thus, it suffices to prove the statement
of compactness at each finite level, since then we get a closed subset of a product of
compact spaces. We have proven the result for n = 1 in the previous lemma. The
argument is completed by induction which is to compute that by the same analysis
of action of ¢ that we have done, we can express each (D/p™¥)¥=! as a closed subset
of 7=F»(D/pN~1) for a suitable (positive) choice of k,.

Similarly, we know that (D/p)/vy — 1 is finite dimensional over F,. It suffices to
prove that D /¢ — 1 does not contain p-divisible elements, i.e. if there exists « such
that there exist y,, with x = (¢ — 1)y, + p"Z,, for all n, then in fact © = (¢» — 1)D.
If m > n, then ¥y, — y, € (D/p™)¥=!, and this is compact. Hence, there is a
subsequence of the sequence ¥, which converges modulo p™. Doing this for each n,
we can get a diagonal subsequence that converges modulo p™ for all n and which
has a limit y. By passing to the limit, we get © = (¢ — 1)y. O

1.2. The I'-action. If p # 2, we let I'g = I'g, = Z;. Let I'y, C I'g with I';, =
1+ p"Z, for n > 1. Then I'y = A x I'1 where A = p1,_; and I, = @Fn/f‘nﬂn.
Then we define

Zp[[Tn]] := @Zp[rn/rnﬁn]'

Then, for n > 1, let ~, be a topological generator of I',,, so that I',, = 'y%”. We
have isomorphisms
Zy[[Tn]] <= Zp[[T]] = Ag,
obtained by
Yn T — .
Then we have Z,[[['g]] = Zy[A] x Z,[[I'1]]. Furthermore, for n > 1 we define

Zp{{Tn}} = (Zp[[Calll (v = D"
and this is isomorphic as a ring to Ag,. Finally, Z,{{To}} = Z,[A] x Z,{{I'1}}.
We can also go modulo p to get F,{{I',,}} = Eg, as a ring.
If M = M /M, is a topological Z,-module with a continuous action of I',,. Then
the group algebra Z,[[I',]] acts continuously on M. Furthermore, if the element
vn — 1 has a continuous inverse, then Z,{{I',}} also acts continuously on M.

Lemma 1.3. (1) If n > 1, vg(y(7) — 7) = p"vg(T).
(2) For all x € Eqg,,ve(yn(x) — ) > ve(x) + (p" — Dop(7).
Proof.
(T) =T =70+7)—(1+7)

and since v, acts by the cyclotomic character, we get

n

(7)) =7 =1 +7)((1+7)" —1)
for some p-adic unit u. Thus (1) follows.
In general, if € Eg, equals Y.~ a7, then vp(z) = kovp(7) and RHS of
(2) becomes p"vg(7) + (ko — 1)vg (7). We have

Vo) — 2 o = a ’Yn(ﬁ)k_ﬂ'k
(W)_ﬁ—Z @) -7

Tn m k=ko Tn (ﬁ -

Bl
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Thus, the result follows from (1

Yu (T
Y (T) —

and the observation that

k
> (k? — 1)’UE(7T(').

Bl

)
)k

=l

O
Proposition 1.4. Let D be an étale (p,T')-module of dimension d over Eqg,. As-
sumen > 1,(i,p) =1. Then :
(1) v €T induces an isomorphism €™ (D) = XMip™ (D).
(2) v — 1 admits a continuous inverse on €'¢™(D). Moreover, if {e1,...,eq}
is a basis of D, then

]Fp{{rn}}d = ¢"(D)
given by
ALy Ad) = AL xer@™(er) + ...+ Mg * €¢0"(eq)
is a topological isomorphism. (x denotes the group element acting.)
Remark 1. This is the most delicate point of all the computations.

Proof. (1) follows from the action of . For (2), we claim that if the assertion
is true for (n + 1), then it is true for n. This is so, because we have direct sum
decompositions

'™ (D) = €i¢n(@§;éejg0(D)) = @?;ééi+pnj(pn+1(l))

and
Fp{{Tn}} 2 Fp{{Tns}} @ ... @ B Fp{{T0s1}}
along with the identification 5 171 = %:171 (1+7,+...+9271). So we can and

will assume n to be sufﬁcientlynlarge.

Recall vg(x) = inf; vg(z;) for x = ), x;e;. We can assume, because n is large,
vE(yn(e;) — e;) > 2vg(7) by an induction argument, this implies vg (v, (x) — z) >
vp(z) + 2vg(7) by the previous lemma. Now, we have x(v,) = 1 + p™u as before,
with u € Z;,. Hence, we have

m(€9"(2)) — " () = (P " (a(2)) — 9"(2)) = " (M (@) — ).
Thus, it suffices to prove
r— f(z) =y (z) —x

has a continuous inverse on D and D is a F,{{f}}-module with basis {e1,...,eq}.
Let oo = € —1,iu € Z. Then vp(e) = vp(7). Hence,

ve (f@c) - x) > up(x) + vp(A).

(0%

This implies that the sum g = > 7 (1 — g)” converges, and thus g is an inverse
for g with vg(g(z) — ) > vg(x) + vg(7). Therefore, f has an inverse g(%£) and

vs(f (@) — £) > vp(a).
By induction, for all k € Z, we have

ve(ff(z) — o*z) > vp(z) + (k + Dogp(7).
Let M = E&pq ®...0P E&ped, then f* induces
M/aM = a* M/ M = 7% M7+ M.
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Therefore, f*F,{{f}}e1 ® ... ® fF*F,{{f}}ea is dense in #¥M and hence is equal
to it by compactness.
O

Corollary 1.5. v — 1 has a continuous inverse on D¥=Y, and D¥=C is a free
F,{{To}}-module with basis {ep(e1),...,ep(eq)}.

Proof. The proof is the same as (2) for n + 1 implies (2) for n in the previous

proposition for n = 0 using v, = 75~ ". -

Proposition 1.6. If D is an étale (p,T")-module over Ak or Bk, then v — 1 has
a continuous inverse on DV=0,

Proof. The statement for By follows from the statement for Ax. We further ob-
serve that

(Indj D)*=" = (Homgr|(Z[Cg, ], D))¥=° = Homgr,|(Z[l'g, ], DV=°).
Since Z[I'g, is a finite free Z[I'k]-module, the statement of the theorem for D is

equivalent to that for Ind%’D. Thus we reduce to the case K = Q,.
Since D¥=% — (D/p)¥=" is surjective, we have the exact sequence

0 — (pD)¥=° = D¥=0 — (D/p)*=° — 0.

Since everything is p-adically complete, it suffices to verify the result modulo p,
which is the previous corollary. [

1.3. Compuation of Galois cohomology groups.

Proposition 1.7. Let Cy ., be the complex

0 - D(V) 0, pvy @ pevy LR WEIRE, by g,
Then we have a commutative diagram of complexes
Cppy: 0 D(V) D(V) @ D(V) D) 0
J{Id wa J{Id }w
Cyp~:0 D(V) D(V) @ D(V) D(V) 0

that induces an isomorphism on cohomology.

Proof. The diagram commutes since (—)(¢ — 1) — ¢ — 1 and ¢ commutes with ~.
1) is surjective, hence the cokernel complex is 0. The kernel complex is given by

0— 0 — D(V)¥=0 =4 pv)¥=0 - 0,
and by the previous proposition, its cohomology vanishes. (I

Theorem 1.8. IfV is a Z, or Q,-representation of Gk, then the complex Cy (K, V)
computes the Galois cohomology of V :
(1) HO (G, V) = D(V)¥=20=1 = D(V)e=to=t,
~ DV
(2) H*(Gi,V) = ity
(8) There is an exact sequence

D(V)*=

0—
v—1

— HY (Cy (K, V)) — <i(_vi> o
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We further express one of the terms in (3) more explicitly, this helps in the
Euler-Poincaré computation later.

Definition 1.9. Define C(V) = (¢ — 1)D¥~t ¢ D¥=0.
The exact sequence
0= DVt s DV)¥=! 5 C(V)—=0
induces an exact sequence
D(V)#=1 P=1
’(yV_)l . D(VV_) S S(_Vl)
since C(V)Y=! C (D¥=0)7=! = 0, since v — 1 has an inverse.

0— — 0

Proposition 1.10. If D is an étale (@,I')-module of dimension d over Eq,, then
C = (¢ — 1)D¥= is a free Fp[[Lo]]-module of rank d.

Proof. Tt suffices to prove that C contains {ep(e1),...,ep(eq)}, for some basis
{e1,...,eq} of D over Eg,. (By earlier propositions) This can be extracted from
any basis {f1,..., fa} using properties of ¢ and . O

Theorem 1.11. If V is a finite Z,-representation of G, then
2

XV) =T 1 B (G V) |V = v |1
i=0

Proof. By Shapiro’s Lemma, we have
H'(Gk,V) = H(Gg,, Indg V).

. Go . TS
Since | IndGi”V |=| V |K®] we can assume K = Q,. By multiplicativity of
dimensions in exact sequences, we further reduce to the case that V is an F,-
representation of Gg,. Then we have :

| O |=| D)e=1 |
gt = 20 e (D(V)“) ;

v-1 7-1 P -1
D(V)
| H? =] ————|.
d) - 17’7 -1
Then, we get that |HY||H?||H'|~! = |[(’;(7V1)]|_1, because D(V)¥=1 and % are
finite groups since the ranks are d. And for finite groups M, [M7=!| = | 2|, So
2l
we have to prove that | (’;(Yl) | = |V|. But these two are F,-vector spaces of the same
dimension. Hence, done. O

2. TATE DUALITY
Let M be a finite Z,-module. Then Tate’s duality constructs a perfect pairing
HY(Gg, M) x H* (G, M"(1)) = Q,/Z,.

Here, M"(1) is a certain Tate twist of M. Using Shapiro’s Lemma as before, we
may assume K = Q,. We write a precise version of Tate duality first.
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Theorem 2.1. Let V be a Gg,-representation that is p-torsion, and n € N such
that p"V = 0. Put V(1) := Hom(V, pipn). Then there is a canonical isomorphism
from H2(GQP7 tpn) to Z/p™ and a perfect pairing given by the cup product

HZ(GQp’V) X Hzii(GQp’V/\(]‘)) i> Hz(GQp’MP’L) = Z/pn

Sketch. (1) Beginning : A fundamental and starting step is a computation of
D(pipn). In particular, if Q' is the module of (continuous) differential forms of Ag,
over W (k, then after fixing 7 a lift of uniformizer, this module is generated by the
symbol dr. So that for any z =3, , apmk € Bg,, we can consider the differential
form xdz and define its residue res(zdz) := a_s.

Q! has an étale (o, I')-module structure by the formulas

p(Admr) = %w(/\)d(w(ﬂ)), Y(Adm) =y (N)d(v(m)).

A key fact is that there is a natural isomorphism of (¢, I')-modules between
D(ppn) and the reduction 2 of Q' modulo p™.

(2) Pontryagin duality and topological arguments : We have D := D(V/(1)) =
Hom(D(V),QL). By composing the residue map with trace map, we can get a sur-
jective and continuous map Tr, from D(V) to Z/p™. Using this map, we can
explicitly describe Pontryagin dual of D(V).

(3) Pontryagin duality implies local duality : We can dualize the cohomol-
ogy complex using Pontryagin duality to get a duality as required. All that remains
is -

(4) To show that H?(Q!) is Z/p" and that duality we got is actually
gotten from the cup product : Both of these can be deduced by explicit (com-
putational) methods. Choices involved cancel each other out to give canonical
maps.

See Herr’s paper in Math. Ann. for details. O

3. (¢,I')-MODULES AND IWASAWA THEORY

3.1. Iwasawa modules. Let K be a finite extension of Q, and G'i is the absolute
Galois group of K. Then K, = K(uyn) and T, = Gal(Koo/Ky) = a7 if n > 1
(For p = 2, if K contains Q2(u4)), otherwise for n > 2) where ~,, is a topological

generator of I';,. We choose ~,, such that v, = 'yfn_l. (Similar for p = 2.) The
Twasawa algebra Z,[[I' k]| is isomorphic to Z,[[T]] with the (p, T')-adic topology by
sending T to v — 1. We have

Zp[[Cx]l/ (o = 1) = Zp[Gal(Kp /K]

Furthermore, Z,[[I'k]] is a G g-module via the quotient. Similarly for Z,[Gal(K,,/K)].
Using Shapiro’s Lemma, we get for M a Z,[Gk]-module,

HY(Gk,,M) = H(Gk,Z,|Gal(K,/K)] @ M)

n?

with the inverse map given by

(01, o)=Y g®Cylor,...,0) | = ((01,...,05) = Cialon,...,0%)).
g€Gal(Ky /K)

Thus, we have a commutative diagram
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H'(Gk,,,,M) —— H' Gk, Zy[Gal(K,11/K)] @ M)

HY(Gk,,M) —=— H'(Gg,Z,|Gal(K, /K)] © M)
It can be checked that the second vertical map is induced by the natural map
Gal(K,4+1/K) — Gal(K,,/K).

Definition 3.1. (i) If T is a Z,-representation of G, define
H}, (K, T) = lim B (G, . T).
(i) If V is a Qp-representation of Gk, choose T' a stable Z,-lattice in V, then

define
H}w<K’ V) = @P ®Zp H}w(K7 T)

Note that we can always assume n >> 1.

3.2. Description of Iwasawa cohomology in terms of D(V).

Lemma 3.2, Let 7, = 22=L = 14 v, 1 +... + 727} € Z,[[Tk]]. Then the

Yn—1—1 n—1
diagram
Cypyn (K, V) : 0 ——— D(V) —— D(V) @ DV)—— D(V) —— 0
J J de sz
Cyyn1(Kn-1,V):0 —— D(V) —— D(V) & DV)—— D(V) —— 0

is commutative and induces corestrictions on cohomology via
Hi<0¢ﬁn (Km V)) = Hi(GKn ) V)

Proof. T, is a cohomological functor and it induces Ty, /x on H°, hence it
induces corestrictions on H*. [l

n—1

Theorem 3.3. Let V be a Zy, or Qp-representation of Gx. Then we have :
(i) Hp, (K,V)=0,ifi#1,2.

(ii) H},(K,V) = D(V)¥=! H? (K,V) = 1;(_\/1)7 and the isomorphisms are canon-

ical.
Before proving the theorem, let us state a lemma.

Lemma 3.4. If M is compact with continuous action of 'k, then

M%@(M/Vn —1).

Proof of Theorem. 1t is clear that Ht (K, V') vanishesifi > 3 for V a Z,-representation
and the case of Q, follows.

For i« = 0, by definition,

0 . G
HIw(K’ V) = @V o
Tr

Since V' has finite rank over Z, and VGrn is an increasing sequence of submodules,
it stabilizes for n > ng. Then Trg, . /K, is multiplication by p for n > ng, but V'
does not contain p-divisible elementws, so that we get the required vanishing.
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For i = 2 : H*Gg,,V) = % by previous section. The corestriction

map is induced by I'd on D(V'). Thus,

. D) D(V)
H? (K, V)=lim——=/(y, — 1) = ——=
BV) = lim 2/ = 1) =
by previous lemma, as D(V) /¢ — 1 is compact.
For i =1 : We have commutative diagrams -
P=1 Yn=1
0 e HY(Gk,,V) (Z(_Vl)) 0
Jpl Jcor lTn
p=1 Yn—1=1
0 DV H'(Gg, V) — (%) — 0

where p; denotes the projection onto second coordinate and ps denotes the pro-
jection onto first coordinate. Applying the functor Liil, we get

= n=1
Oa@%%l'&lyl(GKn,V)%@(i(ﬁ)v .

The first term is D(V)¥=1, so it suffices to prove that the last term vanishes.
This is the same argument which was used to show the vanishing of H?, .
O

3.3. Structure of H;, (K,V). Recall that we proved that if D is an étale (p,T)-
module of dimension d over Eg,, then C' = (¢ — 1)D¥=! is a free F,[[I'g,]]-module
of rank d. The same proof shows that if n > 1 and i € Z;, C'Nep™ (D) is free of
rank d over F,[[T',]].

Corollary 3.5. If D is an étale (p,T')-module of dimension d over Eg, then C is
a free Fp|[Tk]]-module of rank d.[K : Qp].
Proposition 3.6. Let V' be a free Z,- or Q,-representation of rank d of Gg. Then,
(i) D(V)#=1 is a torsion sub-Z,[[L x NT1]]-module of D(V)¥=".
(i) We have an exact sequence
0= D(V)¥=' = D(V)*=' - C(V) — 0.
C(V) is free of rank d.[K : Qp] over Zy[[T'k]]. (or over Q, ®z, Z,[[T'k]].)

Proof. The fact that D(V)#=! = VHx is torsion follows from (ii) since it is finitely
generated over Z,. To prove (ii), we have to prove that C(V)/p is free of rank
d.[K : Q] over F,[[Tk]].

Consider the commutative diagram with exact rows

0——— D(V)#=! — 5 D(V)¥=! —21, (V) —— 0
| | |

0 —— (D(V)/p)?=" — (D(V)/p)*=" <= C(V/p) — 0
for our modules. Using the exact sequence

0—-pV =V -=>V/p—=0
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and using the snake lemma, we get the cokernel complex
D(V) D) C(V/p)
p| — p| — — 0.
-0 G- ewy
Then since the middle term is a finite dimensional F,-vector space, gé%% is, too.

Therefore, C(V)/p is a F,[[['k]]-lattice of C(V/p) but C(V/p) is a free Fp[[T'k]]-
module of rank d.[K : Qp] and we conclude. O

Remark 2. (i) The sequence
0— D(V)*=t - D(V)¥=t - C(V) = 0.
is the inflation-restriction exact sequence
0— H' (T, A@VHr) 5 HY (G, A®V) = H' (Hg, A® V)I'* — 0.
(ii) Let 0 - V3 -V — V5 — 0 be an exact sequence. Then from snake lemma
we get
D(Vi) | D(V) _ D(V)
v-1 v-1 ¢-1
This is just the sequence of H}, and H?, for respective modules. It can

also be obtained from the long exact sequence of cohomology from the exact
sequence

0—=Zy[[Tk]]@Vi = Zy[Tk]] @V — Z,[[Tk]] ® V2 — 0.
Corollary 3.7. Let V be a free Zy,- or Qp-representation of rank d of Gx. Then the
torsion sub-Z,|[T kNC'1]]-module of H}, (K, V) is D(V)?=! = VHx and H}, (K, V)/VHx
is free of rank d.[K : Q] over Z,[[I'k]].

0— D(V})¥=! = D(V)¥=! - D(V)¥=! — — 0.




