IWASAWA COHOMOLOGY

1. Euler-Poincaré characteristic

1.1. $D^{\psi=1}$ and $D /(\psi-1)$.

Lemma 1.1. Let D be an étale φ-module over $E_{\mathbb{Q}_{p}}$. Then :
(1) $D^{\psi=1}$ is compact.
(2) $\operatorname{dim}_{\mathbb{F}_{p}}(D /(\psi-1))<+\infty$.

Proof. Choose a basis e_{1}, \ldots, e_{d} of D. Then by definition $\varphi\left(e_{1}\right), \ldots, \varphi\left(e_{d}\right)$ is a basis, too. Let $\left(a_{i j}\right)$ be the matrix relating the two bases, and let $c=\inf v_{E}\left(a_{i j}\right)$. For $x \in D$, write $x=\sum_{i} x_{i} \varphi\left(e_{i}\right)$ for $x_{i} \in E_{\mathbb{Q}_{p}}^{+}$by étaleness. Let $v_{E}(x):=\inf _{i} v_{E}\left(x_{i}\right)$. Then, from

$$
\psi(x)=\sum_{i} \psi\left(x_{i}\right) e_{i}
$$

we have

$$
v_{E}(\psi(x)) \geq c+\inf _{i} v_{E}\left(\psi\left(x_{i}\right)\right)
$$

Since x_{i} are in $E_{\mathbb{Q}_{p}}^{+}$, and ψ preseves $E_{\mathbb{Q}_{p}}^{+}$and $\psi\left(\bar{\pi}^{p^{k}} x_{i}\right)=\bar{\pi}^{k} \psi\left(x_{i}\right)$, we get $v_{E}\left(\psi\left(x_{i}\right)\right) \geq$ $\left[v_{E}\left(x_{i}\right) / p\right]$. Therefore,

$$
\begin{equation*}
v_{E}(\psi(x)) \geq c+\left[v_{E}(x) / p\right] \tag{1}
\end{equation*}
$$

implies that if $v_{E}(x)<\frac{p(c-1)}{p-1}$, then $v_{E}(\psi(x))>v_{E}(x)$. So $D^{\psi=1}$ is a subset of the set

$$
M:=\left\{x: v_{E}(x) \geq \frac{p(c-1)}{p-1}\right\} \subset \sum_{i=1}^{d} \bar{\pi}^{k} \mathbb{F}_{p}[[\bar{\pi}]] . \varphi\left(e_{i}\right)
$$

for appropriate k. This set is compact, and $D^{\psi=1}$ is a closed set.
Above proof shows that $\psi-1$ is bijective on D / M. Thus, it suffices to prove that $(\psi-1) D$ contains $\left\{x: v_{E}(x) \geq c^{\prime}\right\}$ for some c^{\prime} to prove (2). Let $\varphi\left(x_{i}\right)=\sum_{j=1}^{d} b_{i j} e_{j}$ and $c_{0}=\inf _{i, j} v_{E}\left(b_{i j}\right)$. Then we have $x=\sum_{j=1}^{d} y_{j} e_{j}$ for $y_{j}=\sum_{i=1}^{d} x_{i} b_{i j}$ and thus $v_{E}\left(y_{j}\right) \geq c_{0}+v_{E}(x)$. Then, $\varphi(x)=\sum_{i=1}^{d} \varphi\left(y_{i}\right) \varphi\left(e_{i}\right)$ shows that

$$
\begin{equation*}
v_{E}(\phi(x))=p \inf v_{E}\left(y_{j}\right) \geq p v_{E}(x)+p c_{0} . \tag{2}
\end{equation*}
$$

So, if $v_{E}(x) \geq \frac{-p c_{0}}{p-1}+1$, then $v_{E}\left(\varphi^{n}(x)\right) \geq p^{n}$, which implies that $y=\sum_{i=1}^{\infty} \varphi^{i}(x)$ converges in D. Then, $(\psi-1)(y)=x$ shows that $(\psi-1) D$ contains the set $\left\{x: v_{E}(x) \geq \frac{-p c_{0}}{p-1}+1\right\}$.

Proposition 1.2. Let D is an étale φ-module over A_{K} (resp. over B_{K}). Then :
(1) $D^{\psi=1}$ is compact (resp. locally compact).
(2) $D / \psi-1$ is finitely generated over \mathbb{Z}_{p} (resp. over \mathbb{Q}_{p}).

Proof. Observe first that we can assume $K=\mathbb{Q}_{p}$ because A_{K} is a finite free module over $A_{\mathbb{Q}_{p}}$. Also, the statement for B_{K} follows from the statement for A_{K}. So we only need to consider D over $A_{\mathbb{Q}_{p}}$.

Then note that $D^{\psi=1} \cong \lim \left(D / p^{n} D\right)^{\psi=1}$. Thus, it suffices to prove the statement of compactness at each finite level, since then we get a closed subset of a product of compact spaces. We have proven the result for $n=1$ in the previous lemma. The argument is completed by induction which is to compute that by the same analysis of action of ψ that we have done, we can express each $\left(D / p^{N}\right)^{\psi=1}$ as a closed subset of $\pi^{-k_{n}}\left(D / p^{N-1}\right)$ for a suitable (positive) choice of k_{n}.

Similarly, we know that $(D / p) / \psi-1$ is finite dimensional over \mathbb{F}_{p}. It suffices to prove that $D / \psi-1$ does not contain p-divisible elements, i.e. if there exists x such that there exist y_{n} with $x=(\psi-1) y_{n}+p^{n} \mathbb{Z}_{p}$ for all n, then in fact $x=(\psi-1) D$. If $m \geq n$, then $y_{m}-y_{n} \in\left(D / p^{n}\right)^{\psi=1}$, and this is compact. Hence, there is a subsequence of the sequence y_{m} which converges modulo p^{n}. Doing this for each n, we can get a diagonal subsequence that converges modulo p^{n} for all n and which has a limit y. By passing to the limit, we get $x=(\psi-1) y$.
1.2. The Γ-action. If $p \neq 2$, we let $\Gamma_{0}=\Gamma_{\mathbb{Q}_{p}} \cong \mathbb{Z}_{p}^{*}$. Let $\Gamma_{n} \subset \Gamma_{0}$ with $\Gamma_{n} \cong$ $1+p^{n} \mathbb{Z}_{p}$ for $n \geq 1$. Then $\Gamma_{0} \cong \Delta \times \Gamma_{1}$ where $\Delta=\mu_{p-1}$ and $\Gamma_{n} \cong \lim _{\leftrightarrows} \Gamma_{n} / \Gamma_{n+m}$. Then we define

$$
\mathbb{Z}_{p}\left[\left[\Gamma_{n}\right]\right]:=\lim \mathbb{Z}_{p}\left[\Gamma_{n} / \Gamma_{n+m}\right]
$$

Then, for $n \geq 1$, let γ_{n} be a topological generator of Γ_{n}, so that $\Gamma_{n} \cong \gamma_{n}^{\mathbb{Z}_{p}}$. We have isomorphisms

$$
\mathbb{Z}_{p}\left[\left[\Gamma_{n}\right]\right] \stackrel{\mathbb{Z}_{p}[[T]] \xrightarrow{\sim} A_{\mathbb{Q}_{p}}^{+}}{+}
$$

obtained by

$$
\gamma_{n} \leftarrow T \rightarrow \pi
$$

Then we have $\mathbb{Z}_{p}\left[\left[\Gamma_{0}\right]\right] \cong \mathbb{Z}_{p}[\Delta] \times \mathbb{Z}_{p}\left[\left[\Gamma_{1}\right]\right]$. Furthermore, for $n \geq 1$ we define

$$
\mathbb{Z}_{p}\left\{\left\{\Gamma_{n}\right\}\right\}:=\left(\mathbb{Z}_{p}\left[\left[\Gamma_{n}\right]\right]\left[\left(\gamma_{n}-1\right)^{-1}\right]\right)^{\wedge}
$$

and this is isomorphic as a ring to $A_{\mathbb{Q}_{p}}$. Finally, $\mathbb{Z}_{p}\left\{\left\{\Gamma_{0}\right\}\right\} \cong \mathbb{Z}_{p}[\Delta] \times \mathbb{Z}_{p}\left\{\left\{\Gamma_{1}\right\}\right\}$. We can also go modulo p to get $\mathbb{F}_{p}\left\{\left\{\Gamma_{n}\right\}\right\} \cong E_{\mathbb{Q}_{p}}$ as a ring.

If $M \cong M / M_{i}$ is a topological \mathbb{Z}_{p}-module with a continuous action of Γ_{n}. Then the group algebra $\mathbb{Z}_{p}\left[\left[\Gamma_{n}\right]\right]$ acts continuously on M. Furthermore, if the element $\gamma_{n}-1$ has a continuous inverse, then $\mathbb{Z}_{p}\left\{\left\{\Gamma_{n}\right\}\right\}$ also acts continuously on M.
Lemma 1.3. (1) If $n \geq 1, v_{E}\left(\gamma_{n}(\bar{\pi})-\bar{\pi}\right)=p^{n} v_{E}(\bar{\pi})$.
(2) For all $x \in E_{\mathbb{Q}_{p}}, v_{E}\left(\gamma_{n}(x)-x\right) \geq v_{E}(x)+\left(p^{n}-1\right) v_{E}(\bar{\pi})$.

Proof.

$$
\gamma_{n}(\bar{\pi})-\bar{\pi}=\gamma_{n}(1+\bar{\pi})-(1+\bar{\pi})
$$

and since γ_{n} acts by the cyclotomic character, we get

$$
\gamma_{n}(\bar{\pi})-\bar{\pi}=(1+\bar{\pi})\left((1+\bar{\pi})^{u}-1\right)^{p^{n}}
$$

for some p-adic unit u. Thus (1) follows.
In general, if $x \in E_{\mathbb{Q}_{p}}$ equals $\sum_{k=k_{0}}^{\infty} a_{k} \bar{\pi}^{k}$, then $v_{E}(x)=k_{0} v_{E}(\bar{\pi})$ and $R H S$ of (2) becomes $p^{n} v_{E}(\bar{\pi})+\left(k_{0}-1\right) v_{E}(\bar{\pi})$. We have

$$
\frac{\gamma_{n}(x)-x}{\gamma_{n}(\bar{\pi})-\bar{\pi}}=\sum_{k=k_{0}}^{\infty} a_{k} \frac{\gamma_{n}(\bar{\pi})^{k}-\bar{\pi}^{k}}{\gamma_{n}(\bar{\pi})-\bar{\pi}}
$$

Thus, the result follows from (1) and the observation that

$$
\frac{\gamma_{n}(\bar{\pi})^{k}-\bar{\pi}^{k}}{\gamma_{n}(\bar{\pi})-\bar{\pi}} \geq(k-1) v_{E}(\bar{\pi}) .
$$

Proposition 1.4. Let D be an étale (φ, Γ)-module of dimension d over $E_{\mathbb{Q}_{p}}$. Assume $n \geq 1,(i, p)=1$. Then:
(1) $\gamma \in \Gamma$ induces an isomorphism $\epsilon^{i} \varphi^{n}(D) \cong \epsilon^{\chi(\gamma) i} \varphi^{n}(D)$.
(2) $\gamma_{n}-1$ admits a continuous inverse on $\epsilon^{i} \varphi^{n}(D)$. Moreover, if $\left\{e_{1}, \ldots, e_{d}\right\}$ is a basis of D, then

$$
\mathbb{F}_{p}\left\{\left\{\Gamma_{n}\right\}\right\}^{d} \xrightarrow{\sim} \varphi^{n}(D)
$$

given by

$$
\left(\lambda_{1}, \ldots, \lambda_{d}\right) \rightarrow \lambda_{1} * \epsilon^{i} \varphi^{n}\left(e_{1}\right)+\ldots+\lambda_{d} * \epsilon^{i} \varphi^{n}\left(e_{d}\right)
$$

is a topological isomorphism. ($*$ denotes the group element acting.)
Remark 1. This is the most delicate point of all the computations.
Proof. (1) follows from the action of Γ. For (2), we claim that if the assertion is true for $(n+1)$, then it is true for n. This is so, because we have direct sum decompositions

$$
\epsilon^{i} \varphi^{n}(D) \cong \epsilon^{i} \varphi^{n}\left(\oplus_{j=0}^{p-1} \epsilon^{j} \varphi(D)\right)=\oplus_{j=0}^{p-1} \epsilon^{i+p^{n} j} \varphi^{n+1}(D)
$$

and

$$
\mathbb{F}_{p}\left\{\left\{\Gamma_{n}\right\}\right\} \cong \mathbb{F}_{p}\left\{\left\{\Gamma_{n+1}\right\}\right\} \oplus \ldots \oplus \gamma_{n}^{p-1} \mathbb{F}_{p}\left\{\left\{\Gamma_{n+1}\right\}\right\}
$$

along with the identification $\frac{1}{\gamma_{n}-1}=\frac{1}{\gamma_{n+1}-1}\left(1+\gamma_{n}+\ldots+\gamma_{n}^{p-1}\right)$. So we can and will assume n to be sufficiently large.

Recall $v_{E}(x)=\inf _{i} v_{E}\left(x_{i}\right)$ for $x=\sum_{i} x_{i} e_{i}$. We can assume, because n is large, $v_{E}\left(\gamma_{n}\left(e_{i}\right)-e_{i}\right) \geq 2 v_{E}(\bar{\pi})$ by an induction argument, this implies $v_{E}\left(\gamma_{n}(x)-x\right) \geq$ $v_{E}(x)+2 v_{E}(\bar{\pi})$ by the previous lemma. Now, we have $\chi\left(\gamma_{n}\right)=1+p^{n} u$ as before, with $u \in \mathbb{Z}_{p}^{*}$. Hence, we have

$$
\gamma_{n}\left(\epsilon^{i} \varphi^{n}(x)\right)-\epsilon^{i} \varphi^{n}(x)=\epsilon^{i}\left(\epsilon^{i p^{n} u} \varphi^{n}\left(\gamma_{n}(x)\right)-\varphi^{n}(x)\right)=\epsilon^{i} \varphi^{n}\left(\epsilon^{i u} \gamma_{n}(x)-x\right)
$$

Thus, it suffices to prove

$$
x \rightarrow f(x)=\epsilon^{i u} \gamma_{n}(x)-x
$$

has a continuous inverse on D and D is a $\mathbb{F}_{p}\{\{f\}\}$-module with basis $\left\{e_{1}, \ldots, e_{d}\right\}$.
Let $\alpha=\epsilon^{i u}-1, i u \in \mathbb{Z}_{p}^{*}$. Then $v_{E}(\alpha)=v_{E}(\bar{\pi})$. Hence,

$$
v_{E}\left(\frac{f}{\alpha}(x)-x\right) \geq v_{E}(x)+v_{E}(\bar{\pi}) .
$$

This implies that the sum $g=\sum_{n=0}^{\infty}\left(1-\frac{f}{\alpha}\right)^{n}$ converges, and thus g is an inverse for $\frac{f}{\alpha}$ with $v_{E}(g(x)-x) \geq v_{E}(x)+v_{E}(\bar{\pi})$. Therefore, f has an inverse $g\left(\frac{x}{\alpha}\right)$ and $v_{E}\left(f^{-1}(x)-\frac{x}{\alpha}\right) \geq v_{E}(x)$.

By induction, for all $k \in \mathbb{Z}$, we have

$$
v_{E}\left(f^{k}(x)-\alpha^{k} x\right) \geq v_{E}(x)+(k+1) v_{E}(\bar{\pi})
$$

Let $M=E_{\mathbb{Q}_{p}}^{+} e_{1} \oplus \ldots \oplus E_{\mathbb{Q}_{p}}^{+} e_{d}$, then f^{k} induces

$$
M / \bar{\pi} M \cong \alpha^{k} M / \alpha^{k+1} M \cong \bar{\pi}^{k} M / \bar{\pi}^{k+1} M
$$

Therefore, $f^{k} \mathbb{F}_{p}\{\{f\}\} e_{1} \oplus \ldots \oplus f^{k} \mathbb{F}_{p}\{\{f\}\} e_{d}$ is dense in $\bar{\pi}^{k} M$ and hence is equal to it by compactness.

Corollary 1.5. $\gamma-1$ has a continuous inverse on $D^{\psi=0}$, and $D^{\psi=0}$ is a free $\mathbb{F}_{p}\left\{\left\{\Gamma_{0}\right\}\right\}$-module with basis $\left\{\epsilon \varphi\left(e_{1}\right), \ldots, \epsilon \varphi\left(e_{d}\right)\right\}$.

Proof. The proof is the same as (2) for $n+1$ implies (2) for n in the previous proposition for $n=0$ using $\gamma_{1}=\gamma_{0}^{p-1}$.

Proposition 1.6. If D is an étale (φ, Γ)-module over A_{K} or B_{K}, then $\gamma-1$ has a continuous inverse on $D^{\psi=0}$.

Proof. The statement for B_{K} follows from the statement for A_{K}. We further observe that

$$
\left(\operatorname{Ind}_{K}^{\mathbb{Q}_{p}} D\right)^{\psi=0}=\left(\operatorname{Hom}_{\mathbb{Z}\left[\Gamma_{K}\right]}\left(\mathbb{Z}\left[\Gamma_{\mathbb{Q}_{p}}\right], D\right)\right)^{\psi=0}=\operatorname{Hom}_{\mathbb{Z}\left[\Gamma_{K}\right]}\left(\mathbb{Z}\left[\Gamma_{\mathbb{Q}_{p}}\right], D^{\psi=0}\right)
$$

Since $\mathbb{Z}\left[\Gamma_{\mathbb{Q}_{p}}\right.$ is a finite free $\mathbb{Z}\left[\Gamma_{K}\right]$-module, the statement of the theorem for D is equivalent to that for $\operatorname{Ind}_{K}^{\mathbb{Q}_{p}} D$. Thus we reduce to the case $K=\mathbb{Q}_{p}$.

Since $D^{\psi=0} \rightarrow(D / p)^{\psi=0}$ is surjective, we have the exact sequence

$$
0 \rightarrow(p D)^{\psi=0} \rightarrow D^{\psi=0} \rightarrow(D / p)^{\psi=0} \rightarrow 0
$$

Since everything is p-adically complete, it suffices to verify the result modulo p, which is the previous corollary.

1.3. Compuation of Galois cohomology groups.

Proposition 1.7. Let $C_{\psi, \gamma}$ be the complex

$$
0 \rightarrow D(V) \xrightarrow{(\psi-1, \gamma-1)} D(V) \oplus D(V) \xrightarrow{(\gamma-1) p r_{1}-(\psi-1) p r_{2}} D(V) \rightarrow 0 .
$$

Then we have a commutative diagram of complexes

that induces an isomorphism on cohomology.
Proof. The diagram commutes since $(-\psi)(\varphi-1)-\psi-1$ and ψ commutes with γ. ψ is surjective, hence the cokernel complex is 0 . The kernel complex is given by

$$
0 \rightarrow 0 \rightarrow D(V)^{\psi=0} \xrightarrow{\gamma-1} D(V)^{\psi=0} \rightarrow 0,
$$

and by the previous proposition, its cohomology vanishes.
Theorem 1.8. If V is a \mathbb{Z}_{p} or \mathbb{Q}_{p}-representation of G_{K}, then the complex $C_{\psi, \gamma}(K, V)$ computes the Galois cohomology of V :
(1) $H^{0}\left(G_{K}, V\right)=D(V)^{\psi=1, \gamma=1}=D(V)^{\varphi=1, \gamma=1}$.
(2) $H^{2}\left(G_{K}, V\right) \cong \frac{D(V)}{(\psi-1, \gamma-1)}$.
(3) There is an exact sequence

$$
0 \rightarrow \frac{D(V)^{\psi=1}}{\gamma-1} \rightarrow H^{1}\left(C_{\psi, \gamma}(K, V)\right) \rightarrow\left(\frac{D(V)}{\psi-1}\right)^{\gamma=1} \rightarrow 0
$$

We further express one of the terms in (3) more explicitly, this helps in the Euler-Poincaré computation later.

Definition 1.9. Define $C(V)=(\varphi-1) D^{\psi-1} \subset D^{\psi=0}$.
The exact sequence

$$
0 \rightarrow D(V)^{\varphi=1} \rightarrow D(V)^{\psi=1} \rightarrow C(V) \rightarrow 0
$$

induces an exact sequence

$$
0 \rightarrow \frac{D(V)^{\varphi=1}}{\gamma-1} \rightarrow \frac{D(V)^{\psi=1}}{\gamma-1} \rightarrow \frac{C(V)}{\gamma-1} \rightarrow 0
$$

since $C(V)^{\gamma=1} \subset\left(D^{\psi=0}\right)^{\gamma=1}=0$, since $\gamma-1$ has an inverse.
Proposition 1.10. If D is an étale (φ, Γ)-module of dimension d over $E_{\mathbb{Q}_{p}}$, then $C=(\varphi-1) D^{\psi=1}$ is a free $\mathbb{F}_{p}\left[\left[\Gamma_{0}\right]\right]-m o d u l e ~ o f ~ r a n k d$.

Proof. It suffices to prove that C contains $\left\{\epsilon \varphi\left(e_{1}\right), \ldots, \epsilon \varphi\left(e_{d}\right)\right\}$, for some basis $\left\{e_{1}, \ldots, e_{d}\right\}$ of D over $E_{\mathbb{Q}_{p}}$. (By earlier propositions) This can be extracted from any basis $\left\{f_{1}, \ldots, f_{d}\right\}$ using properties of φ and ψ.

Theorem 1.11. If V is a finite \mathbb{Z}_{p}-representation of G_{K}, then

$$
\chi(V)=\prod_{i=0}^{2}\left|H^{i}\left(G_{K}, V\right)\right|^{(-1)^{i}}=|V|^{-\left[K: \mathbb{Q}_{p}\right]}
$$

Proof. By Shapiro's Lemma, we have

$$
H^{i}\left(G_{K}, V\right) \cong H^{i}\left(G_{\mathbb{Q}_{p}}, \operatorname{Ind}_{G_{K}}^{G_{Q_{p}}} V\right)
$$

Since $\left|\operatorname{Ind}_{G_{K}}^{G_{\mathbb{Q}_{p}}} V\right|=|V|{ }^{\left[K: \mathbb{Q}_{p}\right]}$, we can assume $K=\mathbb{Q}_{p}$. By multiplicativity of dimensions in exact sequences, we further reduce to the case that V is an $\mathbb{F}_{p^{-}}$ representation of $G_{\mathbb{Q}_{p}}$. Then we have :

$$
\begin{aligned}
& \left|H^{0}\right|=\left|D(V)^{\varphi=1 . \gamma=1}\right| ; \\
& \left|H^{1}\right|=\left|\frac{D(V)^{\varphi=1}}{\gamma-1}\right| \cdot\left|\frac{C(V)}{\gamma-1}\right| \cdot\left|\left(\frac{D(V)^{\gamma-1}}{\psi-1}\right)\right| ; \\
& \left|H^{2}\right|=\left|\frac{D(V)}{\psi-1, \gamma-1}\right| \text {. }
\end{aligned}
$$

Then, we get that $\left|H^{0}\right|\left|H^{2} \| H^{1}\right|^{-1}=\left|\frac{C(V)}{[\gamma-1]}\right|^{-1}$, because $D(V)^{\varphi=1}$ and $\frac{D(V)}{\psi-1}$ are finite groups since the ranks are d. And for finite groups $M,\left|M^{\gamma=1}\right|=\left|\frac{M}{\gamma-1}\right|$. So we have to prove that $\left|\frac{C(V)}{\gamma-1}\right|=|V|$. But these two are \mathbb{F}_{p}-vector spaces of the same dimension. Hence, done.

2. Tate Duality

Let M be a finite \mathbb{Z}_{p}-module. Then Tate's duality constructs a perfect pairing

$$
H^{i}\left(G_{K}, M\right) \times H^{2-i}\left(G_{K}, M^{\wedge}(1)\right) \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p}
$$

Here, $M^{\wedge}(1)$ is a certain Tate twist of M. Using Shapiro's Lemma as before, we may assume $K=\mathbb{Q}_{p}$. We write a precise version of Tate duality first.

Theorem 2.1. Let V be a $G_{\mathbb{Q}_{p}}$-representation that is p-torsion, and $n \in \mathbb{N}$ such that $p^{n} V=0$. Put $V^{\wedge}(1):=\operatorname{Hom}\left(V, \mu_{p^{n}}\right)$. Then there is a canonical isomorphism from $H^{2}\left(G_{\mathbb{Q}_{p}}, \mu_{p^{n}}\right)$ to \mathbb{Z} / p^{n} and a perfect pairing given by the cup product

$$
H^{i}\left(G_{\mathbb{Q}_{p}}, V\right) \times H^{2-i}\left(G_{\mathbb{Q}_{p}}, V^{\wedge}(1)\right) \xrightarrow{\cup} H^{2}\left(G_{\mathbb{Q}_{p}}, \mu_{p^{n}}\right) \cong \mathbb{Z} / p^{n}
$$

Sketch. (1) Beginning : A fundamental and starting step is a computation of $D\left(\mu_{p^{n}}\right)$. In particular, if Ω^{1} is the module of (continuous) differential forms of $A_{\mathbb{Q}_{p}}$ over $W(\bar{k}$, then after fixing π a lift of uniformizer, this module is generated by the symbol $d \pi$. So that for any $x=\sum_{k \in \mathbb{Z}} a_{k} \pi^{k} \in B_{\mathbb{Q}_{p}}$, we can consider the differential form $x d z$ and define its residue $\operatorname{res}(x d z):=a_{-1}$.
Ω^{1} has an étale (φ, Γ)-module structure by the formulas

$$
\varphi(\lambda d \pi):=\frac{1}{p} \varphi(\lambda) d(\varphi(\pi)), \gamma(\lambda d \pi):=\gamma(\lambda) d(\gamma(\pi))
$$

A key fact is that there is a natural isomorphism of (φ, Γ)-modules between $D\left(\mu_{p^{n}}\right)$ and the reduction Ω_{n}^{1} of Ω^{1} modulo p^{n}.
(2) Pontryagin duality and topological arguments : We have $\tilde{D}:=D\left(V^{\wedge}(1)\right)=$ $\operatorname{Hom}\left(D(V), \Omega_{n}^{1}\right)$. By composing the residue map with trace map, we can get a surjective and continuous map $T r_{n}$ from $D(V)$ to \mathbb{Z} / p^{n}. Using this map, we can explicitly describe Pontryagin dual of $D(V)$.
(3) Pontryagin duality implies local duality : We can dualize the cohomology complex using Pontryagin duality to get a duality as required. All that remains is -
(4) To show that $H^{2}\left(\Omega_{n}^{1}\right)$ is \mathbb{Z} / p^{n} and that duality we got is actually gotten from the cup product : Both of these can be deduced by explicit (computational) methods. Choices involved cancel each other out to give canonical maps.

See Herr's paper in Math. Ann. for details.

3. (φ, Γ)-MODULES AND IWASAWA THEORY

3.1. Iwasawa modules. Let K be a finite extension of \mathbb{Q}_{p} and G_{K} is the absolute Galois group of K. Then $K_{n}=K\left(\mu_{p^{n}}\right)$ and $\Gamma_{n}=\operatorname{Gal}\left(K_{\infty} / K_{n}\right)=\gamma_{n}^{\mathbb{Z}_{p}}$ if $n \geq 1$ (For $p=2$, if K contains $\mathbb{Q}_{2}\left(\mu_{4}\right)$), otherwise for $n \geq 2$) where γ_{n} is a topological generator of Γ_{n}. We choose γ_{n} such that $\gamma_{n}=\gamma_{1}^{p^{n-1}}$. (Similar for $p=2$.) The Iwasawa algebra $\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$ is isomorphic to $\mathbb{Z}_{p}[[T]]$ with the (p, T)-adic topology by sending T to $\gamma-1$. We have

$$
\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right] /\left(\gamma_{n}-1\right)=\mathbb{Z}_{p}\left[\operatorname{Gal}\left(K_{n} / K\right)\right] .
$$

Furthermore, $\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$ is a $G_{K^{-}}$module via the quotient. Similarly for $\mathbb{Z}_{p}\left[\operatorname{Gal}\left(K_{n} / K\right)\right]$.
Using Shapiro's Lemma, we get for M a $\mathbb{Z}_{p}\left[G_{K}\right]$-module,

$$
H^{i}\left(G_{K_{n}}, M\right) \xrightarrow{\sim} H^{i}\left(G_{K}, \mathbb{Z}_{p}\left[\operatorname{Gal}\left(K_{n} / K\right)\right] \otimes M\right)
$$

with the inverse map given by
$\left(\left(\sigma_{1}, \ldots, \sigma_{i}\right) \rightarrow \sum_{g \in \operatorname{Gal}\left(K_{n} / K\right)} g \otimes C_{g}\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right) \rightarrow\left(\left(\sigma_{1}, \ldots, \sigma_{i}\right) \rightarrow C_{i d}\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right)$.
Thus, we have a commutative diagram

It can be checked that the second vertical map is induced by the natural map $\operatorname{Gal}\left(K_{n+1} / K\right) \rightarrow \operatorname{Gal}\left(K_{n} / K\right)$.

Definition 3.1. (i) If T is a \mathbb{Z}_{p}-representation of G_{K}, define
(ii) If V is a \mathbb{Q}_{p}-representation of G_{K}, choose T a stable \mathbb{Z}_{p}-lattice in V, then define

$$
H_{I w}^{i}(K, V):=\mathbb{Q}_{p} \otimes_{\mathbb{Z}_{p}} H_{I w}^{i}(K, T)
$$

Note that we can always assume $n \gg 1$.

3.2. Description of Iwasawa cohomology in terms of $D(V)$.

Lemma 3.2. Let $\tau_{n}=\frac{\gamma_{n}-1}{\gamma_{n-1}-1}=1+\gamma_{n-1}+\ldots+\gamma_{n-1}^{p-1} \in \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$. Then the diagram

is commutative and induces corestrictions on cohomology via

$$
H^{i}\left(C_{\psi, \gamma_{n}}\left(K_{n}, V\right)\right) \xrightarrow{\sim} H^{i}\left(G_{K_{n}}, V\right)
$$

Proof. τ_{n} is a cohomological functor and it induces $T r_{K_{n} / K_{n-1}}$ on H^{0}, hence it induces corestrictions on H^{i}.

Theorem 3.3. Let V be a \mathbb{Z}_{p} or \mathbb{Q}_{p}-representation of G_{K}. Then we have :
(i) $H_{I w}^{i}(K, V)=0$, if $i \neq 1,2$.
(ii) $H_{I w}^{1}(K, V) \cong D(V)^{\psi=1}, H_{I w}^{2}(K, V) \cong \frac{D(V)}{\psi-1}$, and the isomorphisms are canonical.

Before proving the theorem, let us state a lemma.
Lemma 3.4. If M is compact with continuous action of Γ_{K}, then

$$
M \cong \underset{\lim _{n}}{\lim _{n}}\left(M / \gamma_{n}-1\right)
$$

Proof of Theorem. It is clear that $H_{I w}^{i}(K, V)$ vanishes if $i \geq 3$ for V a \mathbb{Z}_{p}-representation and the case of \mathbb{Q}_{p} follows.

For $i=0$, by definition,

$$
H_{I w}^{0}(K, V)={\underset{T r}{\lim } V^{G_{K_{n}}}}_{\overleftarrow{T r}}
$$

Since V has finite rank over \mathbb{Z}_{p} and $V^{G_{K_{n}}}$ is an increasing sequence of submodules, it stabilizes for $n \geq n_{0}$. Then $T r_{K_{n+1} / K_{n}}$ is multiplication by p for $n \geq n_{0}$, but V does not contain p-divisible elementws, so that we get the required vanishing.

For $i=2: H^{2}\left(G_{K_{n}}, V\right)=\frac{D(V)}{\left(\psi-1, \gamma_{n}-1\right)}$ by previous section. The corestriction map is induced by $I d$ on $D(V)$. Thus,

$$
H_{I w}^{2}(K, V)=\lim _{\rightleftarrows} \frac{D(V)}{\psi-1} /\left(\gamma_{n}-1\right)=\frac{D(V)}{\psi-1}
$$

by previous lemma, as $D(V) / \psi-1$ is compact.
For $i=1$: We have commutative diagrams -

where p_{1} denotes the projection onto second coordinate and p_{2} denotes the projection onto first coordinate. Applying the functor lim, we get

$$
0 \rightarrow \lim _{\longleftarrow} \frac{D(V)^{\psi=1}}{\gamma_{n}-1} \rightarrow \lim _{\rightleftarrows} H^{1}\left(G_{K_{n}}, V\right) \rightarrow \lim _{\hookleftarrow}\left(\frac{D(V)}{\psi-1}\right)^{\gamma_{n}=1} .
$$

The first term is $D(V)^{\psi=1}$, so it suffices to prove that the last term vanishes. This is the same argument which was used to show the vanishing of $H_{I w}^{0}$.
3.3. Structure of $H_{I w}^{1}(K, V)$. Recall that we proved that if D is an étale (φ, Γ) module of dimension d over $E_{\mathbb{Q}_{p}}$, then $C=(\varphi-1) D^{\psi=1}$ is a free $\mathbb{F}_{p}\left[\left[\Gamma_{\mathbb{Q}_{p}}\right]\right]$-module of rank d. The same proof shows that if $n \geq 1$ and $i \in \mathbb{Z}_{p}^{*}, C \cap \epsilon \varphi^{n}(D)$ is free of rank d over $\mathbb{F}_{p}\left[\left[\Gamma_{n}\right]\right]$.

Corollary 3.5. If D is an étale (φ, Γ)-module of dimensiond over E_{K}, then C is a free $\mathbb{F}_{p}\left[\left[\Gamma_{K}\right]\right]$-module of rank d. $\left[K: \mathbb{Q}_{p}\right]$.

Proposition 3.6. Let V be a free $\mathbb{Z}_{p^{-}}$or \mathbb{Q}_{p}-representation of rank d of G_{K}. Then,
(i) $D(V)^{\varphi=1}$ is a torsion sub- $\mathbb{Z}_{p}\left[\left[\Gamma_{K} \cap \Gamma_{1}\right]\right]$-module of $D(V)^{\psi=1}$.
(ii) We have an exact sequence

$$
0 \rightarrow D(V)^{\varphi=1} \rightarrow D(V)^{\psi=1} \rightarrow C(V) \rightarrow 0
$$

$C(V)$ is free of rank d. $\left[K: \mathbb{Q}_{p}\right]$ over $\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$. (or over $\mathbb{Q}_{p} \otimes_{\mathbb{Z}_{p}} \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$.)
Proof. The fact that $D(V)^{\varphi=1}=V^{H_{K}}$ is torsion follows from (ii) since it is finitely generated over \mathbb{Z}_{p}. To prove (ii), we have to prove that $C(V) / p$ is free of rank $d .\left[K: \mathbb{Q}_{p}\right]$ over $\mathbb{F}_{p}\left[\left[\Gamma_{K}\right]\right]$.

Consider the commutative diagram with exact rows

for our modules. Using the exact sequence

$$
0 \rightarrow p V \rightarrow V \rightarrow V / p \rightarrow 0
$$

and using the snake lemma, we get the cokernel complex

$$
\frac{D(V)}{(\varphi-1)}[p] \rightarrow \frac{D(V)}{(\psi-1)}[p] \rightarrow \frac{C(V / p)}{C(V) / p} \rightarrow 0 .
$$

Then since the middle term is a finite dimensional \mathbb{F}_{p}-vector space, $\frac{C(V / p)}{C(V) / p}$ is, too. Therefore, $C(V) / p$ is a $\mathbb{F}_{p}\left[\left[\Gamma_{K}\right]\right]$-lattice of $C(V / p)$ but $C(V / p)$ is a free $\mathbb{F}_{p}\left[\left[\Gamma_{K}\right]\right]$ module of rank $d .\left[K: \mathbb{Q}_{p}\right]$ and we conclude.

Remark 2. (i) The sequence

$$
0 \rightarrow D(V)^{\varphi=1} \rightarrow D(V)^{\psi=1} \rightarrow C(V) \rightarrow 0 .
$$

is the inflation-restriction exact sequence

$$
0 \rightarrow H^{1}\left(\Gamma_{K}, \Lambda \otimes V^{H_{K}}\right) \rightarrow H^{1}\left(G_{K}, \Lambda \otimes V\right) \rightarrow H^{1}\left(H_{K}, \Lambda \otimes V\right)^{\Gamma_{K}} \rightarrow 0
$$

(ii) Let $0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$ be an exact sequence. Then from snake lemma we get

$$
0 \rightarrow D\left(V_{1}\right)^{\psi=1} \rightarrow D(V)^{\psi=1} \rightarrow D\left(V_{2}\right)^{\psi=1} \rightarrow \frac{D\left(V_{1}\right)}{\psi-1} \rightarrow \frac{D(V)}{\psi-1} \rightarrow \frac{D\left(V_{1}\right)}{\psi-1} \rightarrow 0 .
$$

This is just the sequence of $H_{I w}^{1}$ and $H_{I w}^{2}$ for respective modules. It can also be obtained from the long exact sequence of cohomology from the exact sequence

$$
0 \rightarrow \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right] \otimes V_{1} \rightarrow \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right] \otimes V \rightarrow \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right] \otimes V_{2} \rightarrow 0 .
$$

Corollary 3.7. Let V be a free \mathbb{Z}_{p} - or \mathbb{Q}_{p}-representation of rank d of G_{K}. Then the torsion sub- $\mathbb{Z}_{p}\left[\left[\Gamma_{K} \cap \Gamma_{1}\right]\right]$-module of $H_{I w}^{1}(K, V)$ is $D(V)^{\varphi=1}=V^{H_{K}}$, and $H_{I w}^{1}(K, V) / V^{H_{K}}$ is free of rank d. $\left[K: \mathbb{Q}_{p}\right]$ over $\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$.

