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Abstract. Motivated by the Beauville decomposition of an abelian scheme and the “Per-
verse = Chern” phenomenon for a compactified Jacobian fibration, we study in this paper
splittings of the perverse filtration for compactified Jacobian fibrations.

On the one hand, we prove for the Beauville–Mukai system associated with an irreducible
curve class on a K3 surface the existence of a Fourier-stable multiplicative splitting of the
perverse filtration, which extends the Beauville decomposition for the nonsingular fibers.
Our approach is to construct a Lefschetz decomposition associated with a Fourier-conjugate
sl2-triple, which relies heavily on recent work concerning the interaction between derived
equivalences and LLV algebras for hyper-Kähler varieties. Motivic lifting and connections to
the Beauville–Voisin conjectures are also discussed.

On the other hand, we construct for any g ≥ 2 a compactified Jacobian fibration of genus g

curves such that each curve is integral with at worst simple nodes and the (multiplicative)
perverse filtration does not admit a multiplicative splitting. Our argument relies on the
recently established universal double ramification cycle relations. This shows that in general
an extension of the Beauville decomposition cannot exist for compactified Jacobian fibrations
even when the simplest singular point appears.
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0. Introduction

Throughout, we work over the complex numbers C. To motivate the discussion, we con-
sider a principally polarized abelian scheme π : A → B of relative dimension g so that A is
isomorphic to its dual A∨ = Pic0(A). The Fourier–Mukai transform

(1) ΦL : DbCoh(A) → DbCoh(A)
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associated with the normalized Poincaré line bundle L induces a Fourier transform

(2) F := ch(L) (= exp(c1(L))) : H∗(A,Q) ≃−→ H∗(A,Q).

There is an interesting grading on H∗(A,Q) (other than the cohomological grading) which
splits the Leray filtration L•H

∗(A,Q) and interacts well with the Fourier transform (2).

Theorem 0.1. [7, 16] There exists a splitting of the Leray filtration associated with π : A → B,

LkH
∗(A,Q) =

k⊕
i=0

H∗
(i)(A,Q),

which is
(a) stable under the Fourier transform

F
(
H∗

(i)(A,Q)
)

= H∗
(2g−i)(A,Q);

(b) multiplicative with respect to the cup-product

H∗
(i)(A,Q) ×H∗

(j)(A,Q) ∪−−→ H∗
(i+j)(A,Q).

The splitting H∗(A,Q) = ⊕2g
i=0H

∗
(i)(A,Q) in Theorem 0.1, which is now referred to as the

Beauville decomposition, is induced by the “multiplication by N” map [N ] : A → A; more
precisely, the component H∗

(i)(A,Q) is given by the eigenspace

H∗
(i)(A,Q) := {α ∈ H∗(A,Q) | [N ]∗α = N iα}.

Furthermore, it has actually been shown in [7, 16] that the Beauville decomposition admits a
motivic lifting.

The work of Arinkin [3, 4] extends the Fourier–Mukai transform (1) to compactified Jaco-
bian fibrations associated with families of integral projective locally planar curves. Let C → B

be such a family of curves over a nonsingular base B, and let π : JC → B be the associated
compactified Jacobian fibration.1 We further assume that the total space JC is nonsingu-
lar. Analogously to the abelian scheme case, Arinkin’s Fourier–Mukai transform induces a
(cohomological) Fourier transform

F : H∗(JC ,Q) ≃−→ H∗(JC ,Q).

The goal of this paper is to investigate the following question:

Question 0.2. For what class of families of integral locally planar curves C → B, does there
exist a generalization of the Beauville decomposition for JC satisfying conditions analogous
to (a) and (b) in Theorem 0.1?

1Recall that the compactified Jacobian of an integral curve is the moduli space of rank 1 degree 0 torsion
free sheaves on that curve; it is integral and contains an open subset parameterizing line bundles when the
singularities of the curve are planar.
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When C → B arises as curves on a nonsingular surface S, we may view JC as the moduli
of certain stable torsion sheaves on S, and the Fourier transform F governs tautological classes
on JC ; see [33, Section 5]. Therefore, a systematic study of Question 0.2 may lead to a
better understanding of the “Perverse = Chern” phenomenon identifying perverse and Chern
filtrations; this phenomenon was originally found for Hitchin systems via non-abelian Hodge
theory and the P = W conjecture [13, 32, 22] but was recently discovered in cases [25] beyond
Hitchin moduli spaces.

We will give both positive and negative results towards Question 0.2. In a positive direction,
our first result is the construction of a decomposition as in Theorem 0.1 for the compactified
Jacobian fibration π : JC → B where C → B = |L| is a complete linear system associated
with an irreducible curve class on a K3 surface. Such a compactified Jacobian fibration is now
known as the Beauville–Mukai system [8]. Compared to Theorem 0.1, a major difference of
Theorem 0.3 is that we replace the Leray filtration by the perverse filtration [14]; the latter is
more natural when singular fibers appear.

Theorem 0.3. Let L be an irreducible curve class on a K3 surface S with L2 = 2g − 2.
Let π : JC → B = |L| be the associated compactified Jacobian fibration. Then there exists a
splitting of the perverse filtration

PkH
∗(JC ,Q) =

k⊕
i=0

H∗
(i)(JC ,Q)

which is
(a) stable under the Fourier transform

F
(
H∗

(i)(JC ,Q)
)

= H∗
(2g−i)(JC ,Q);

(b) multiplicative with respect to the cup-product

H∗
(i)(JC ,Q) ×H∗

(j)(JC ,Q) ∪−−→ H∗
(i+j)(JC ,Q).

For a family of integral locally planar curves C → B with JC nonsingular, we call a splitting
of the perverse filtration satisfying (a, b) of Theorem 0.3 a generalized Beauville decomposition.

On the other hand, our next result shows that, if we work with a general compactified
Jacobian fibration for curves of genus g ≥ 2, a generalized Beauville decomposition does not
exist.2 Indeed, an obstruction arises even when the simplest planar singularity appears.

Theorem 0.4. For any g ≥ 2, there exists a family of integral projective curves C → B

with JC nonsingular such that
(a) each closed fiber of C → B has at worst nodal singularities, and

2For g = 1 one can check directly that a generalized Beauville decomposition exists; c.f. [50]. Therefore
Theorem 0.4 is optimal.



4 Y. BAE, D. MAULIK, J. SHEN, AND Q. YIN

(b) the (multiplicative) perverse filtration associated with π : JC → B does not admit a
multiplicative splitting.

If we weaken the splitting to the filtration, then versions of Theorem 0.3(a, b) were proven
to hold in [33] for any π : JC → B with JC nonsingular. More precisely, it is shown that
the perverse filtration is multiplicative and the Fourier transform is compatible with the per-
verse filtration; we refer to [33, Theorem 2.4] for the more precise statements. The point of
Theorem 0.4 is that upgrading these properties from filtrations to decompositions seems to
impose strong constraints on the family. For example, the proof of Theorem 0.3 relies heavily
on recent developments in the study of derived categories of compact hyper-Kähler varieties.
We expect that Question 0.2 has a positive answer when π : JC → B is Lagrangian.3 We refer
to Section 1.5 for more discussions.

As a by-product of the proof of Theorem 0.3, we obtain an interesting sl2-triple acting on
the cohomology H∗(JC ,Q) which is of algebraic nature; see Remark 2.17.

Theorem 0.5. Let π : JC → B be as in Theorem 0.3. Then there is an sl2-triple

(e0, h0, f0) ⊂ End
(
H∗(JC ,Q)

)
satisfying that

(a) it induces a generalized Beauville decomposition of H∗(JC ,Q), and
(b) all three operators e0, h0, f0 are given by relative correspondences over B induced by

algebraic cycles on JC ×B JC .

We discuss in Section 3 a conjectural motivic lifting of this sl2-triple and the generalized
Beauville decomposition of Theorem 0.3. We verify the conjectures (Conjectures 3.1 and 3.2)
for elliptic K3 surfaces.

0.1. Acknowledgements. We would like to thank Giuseppe Ancona, Vicky Hoskins, Simon
Pepin Lehalleur, Weite Pi, Shuting Shen, and Claire Voisin for helpful discussions on relevant
topics. J.S. gratefully acknowledges the hospitality of the math department of MIT during
his stay in the fall of 2023 and the spring of 2024.
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EXC-2047/1-390685813. J.S. was supported by the NSF grant DMS-2301474. Q.Y. was
supported by the NSFC grants 11831013 and 11890661.

1. Fourier transforms, generalized theta divisors, and decompositions

In this section, we first review Arinkin’s Fourier–Mukai transform on the derived category
and its associated Fourier transform on cohomology. Then we discuss strategies for construct-
ing generalized Beauville decompositions for compactified Jacobian fibrations. Along the way,

3Here we do not require that JC is compact.
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we also introduce the generalized theta divisor which provides an obstruction to the existence
of a multiplicative splitting of the perverse filtration.

1.1. Fourier transforms. Throughout, we assume that C → B is a flat family of integral
projective locally planar curves of arithmetic genus g over a nonsingular variety B. Let
π : JC → B be the compactified Jacobian with JC nonsingular. In [3, 4], Arinkin constructed
a normalized Poincaré sheaf

P ∈ Coh
(
JC ×B JC

)
which induces an equivalence of the bounded derived category of coherent sheaves

ΦP : DbCoh(JC) ≃−→ DbCoh(JC).

Its inverse is induced by the Fourier–Mukai kernel

P−1 := Hom
(
P,OJC×BJC

)
⊗ p∗

2ωπ

with p2 : JC ×B JC → JC the second projection and ωπ the relative canonical line bundle.
The functors ΦP ,ΦP−1 yield the Fourier transforms on cohomology:

(3) F, F−1 : H∗(JC ,Q) ≃−→ H∗(JC ,Q), F ◦ F−1 = F−1 ◦ F = id.

More precisely, the operators F,F−1 are induced by correspondences given by the cycle classes

(4) F = td
(
−TJC×BJC

) 1
2 ∩ τ(P), F−1 = td

(
−TJC×BJC

) 1
2 ∩ τ(P−1),

where TJC×BJC
is the virtual tangent bundle of the l.c.i. scheme JC ×B JC . Since in general

the relative product JC ×B JC is singular and the normalized Poincaré sheaf P of [4] does not
admit a finite resolution by locally free sheaves, we use the tau-class τ(−) of [20, Chapter 18];
see also [33, Section 2.3] for a brief review.

Remark 1.1. Here the Todd convention for the Fourier transforms differs from the one in [33].
Previously we let F−1 bear all the Todd contribution so that F restricts to the usual ch(L)
over the smooth locus of π : JC → B. But in the present paper we decide to let F,F−1 share
the Todd classes equally. The advantage is the compatibility with the pushforward under the
closed embedding i : JC ×B JC ↪→ JC × JC , i.e.,

i∗F = td
(
TJC×JC

) 1
2 ch(i∗P), i∗F

−1 = td
(
TJC×JC

) 1
2 ch(i∗P−1).

In particular, the Fourier transforms (3) on H∗(JC ,Q) agree with the ones induced by the
Fourier–Mukai kernels on the nonsingular absolute product JC × JC supported on the closed
subset JC ×B JC . We emphasize that the Fourier transforms are naturally relative correspon-
dences over B. This is will be used to show Theorem 0.5(b) for the operators f0, h0. We will
discuss its motivic lifting in Section 3, where all the constructions are relative over B.
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1.2. Decompositions. If the family of curves C → B has no singular fiber, the Jacobian
fibration π : JC → B is a principally polarized abelian scheme over B. There are three
typical approaches to recover the Beauville decomposition. In the following, we discuss these
approaches, and the difficulty in extending each approach over singular fibers.

The first approach, as described in Section 0, is to use the “multiplication by N” map
[N ] : JC → JC to decompose the total cohomology into eigenspaces. However, when singular
fibers appear, it is difficult to extend the map [N ] over them.

The second approach, which was initiated in [7, 16], is to use the cycles (4) associated
with the Fourier transforms to obtain projectors, which yields a (motivic) decomposition of
the total cohomology. When there are singular fibers, this idea has been exploited in [33]
intensively. It yields a number of consequences concerning the perverse filtration, which include
the construction of a motivic decomposition splitting the perverse filtration analogously to the
smooth case. However, as discussed in [33, Section 2.5.5], singular fibers force us to modify
the correspondences constructed from F,F−1 in order to get projectors. Consequently, the
resulting decomposition becomes mysterious and is therefore hard to analyze; in particular it
is unclear whether it is multiplicative and how it interacts with the Fourier transform.

The third approach is due to Künnemann [27], who constructed an sl2-triple (e0, f0, h0) via
the Fourier transform acting on the cohomology of JC and showed that the weight decompo-
sition associated with this sl2-triple recovers the Beauville decomposition. More precisely, the
operator e0 is given by the cup-product with a relatively ample class, the operator f0 is the
Fourier-conjugate of e0, and h0 is the commutator of e0, f0. The advantage of this approach
is that all three operators are constructed for π : JC → B with singular fibers, so it suffices
to check commutation relations between them.

The goal of this paper is to explore the third approach above for compactified Jacobian
fibrations. We first discuss a proposal for constructing the sl2-triple for general C → B, and
a natural obstruction for this approach to work. This also provides an obstruction to the
existence of a multiplicative splitting of the perverse filtration.

1.3. Generalized theta divisors. Now we consider C → B with singular fibers. By the
relative Hard Lefschetz theorem, a relatively ample class ω has perversity 2,

ω ∈ P2H
2(JC ,Q) \ P1H

2(JC ,Q).

Therefore, if the generalized Beauville decomposition exists, there is a relatively ample class Θ
given by the projection of ω to the component H2

(2)(JC ,Q). Since the perverse filtration
terminates at P2gH

∗(JC ,Q), we have

H∗
(i)(JC ,Q) = 0, i > 2g.

Therefore the condition Θ ∈ H2
(2)(JC ,Q) forces the vanishing

(5) Θg+1 = 0 ∈ H2g+2(JC ,Q).



ON GENERALIZED BEAUVILLE DECOMPOSITIONS 7

Over the smooth locus of π, such a Θ is provided by the (normalized) relative theta divisor.
We call a relatively ample Q-divisor Θ satisfying (5) a generalized theta divisor.

Question 1.2. Does there exist a generalized theta divisor for π : JC → B?

Remark 1.3. If the answer to Question 1.2 is negative for C → B, then there exists no
multiplicative splitting of the perverse filtration P•H

∗(JC ,Q).

We will show in Section 4 that a generalized theta divisor does not exist in general for C → B

whose fibers have at worst simple nodes when g ≥ 2.

1.4. A proposal for constructing the sl2-triple. We assume Question 1.2 has an affirma-
tive answer for a family C → B with Θ ∈ H2(JC ,Q) a generalized theta divisor. Following [27],
we define the raising operator

e0 := Θ ∪ − ∈ End
(
H∗(JC ,Q)

)
,

and its Fourier conjugate

f0 := −F−1 ◦ e0 ◦ F ∈ End
(
H∗(JC ,Q)

)
.

We write h0 to be their commutator

h0 := [e0, f0] ∈ End
(
H∗(JC ,Q)

)
.

The operator e0 is of degree 2 with respect the cohomological grading, but a priori the
operators f0, h0 may be of mixed degrees.

Question 1.4. Do (e0, h0, f0) form an sl2-triple with f0 of degree −2?

Both the sl2-triple and the degree −2 conditions concern a set of cohomology relations.
If the answer to Question 1.4 is affirmative for C → B, we get a decomposition from this
sl2-triple. Finally, we require that the decomposition obtained from the sl2-triple (e0, h0, f0)
satisfies all the desired properties — it is Fourier-stable, splits the perverse filtration, and is
multiplicative with respect to the cup-product.

Question 1.5. Is the decomposition associated with the sl2-triple (e0, h0, f0) a Fourier-stable
multiplicative decomposition splitting the perverse filtration?

In general, answering the questions above for a given family C → B seems to be difficult.
As we show in Section 4, we do not expect positive answers in general. On the other hand, we
are able to provide positive answers to all three questions in the setting of the Beauville–Mukai
system, where we use recently developed tools in the study of compact hyper-Kähler varieties.
As we will discuss in Section 2, Question 1.2 is solved using the Beauville–Bogomolov–Fujiki
quadratic form, Question 1.4 is solved using the Looijenga–Lunts–Verbitsky (LLV) Lie algebra
[30, 45] and Taelman’s recent work [44] on its interaction with derived equivalences, and
Question 1.5 is solved by relating with a decomposition introduced in [41].
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1.5. Relations to other work. As a consequence of the P = W conjecture [13] (now a
theorem by [32, 22]) and the Hodge–Tate decomposition of the character variety [43], the
perverse filtration associated with the Hitchin fibration h : MHiggs → B has a multiplicative
splitting. The idea of [22] is that this splitting is characterized by an sl2-triple constructed
geometrically by Hecke operators. In [33], a different proof of the P = W conjecture was
given using the Fourier transform. As commented in [23], considerations from the geometric
Langlands correspondence suggest that the Fourier transform should exchange Hecke operators
and certain tautological operators. Therefore, the Fourier transform seems to provide a path
to connect the two proofs [32, 22], which concern tautological operators and Hecke operators
respectively.

However, as we explained in Section 1.2, the Fourier transform does not seem to provide
the desired decomposition using the approach of Deninger–Murre [16] when there are singular
fibers. On the other hand, results of this paper suggest that Künnemann’s Lefschetz decompo-
sition may have a chance to work over singular fibers in the Lagrangian setting. Our method
here relies on techniques from compact hyper-Kähler geometry, so it only works for compact
total spaces JC . New ideas may be needed to treat other interesting cases of Lagrangian
fibrations π : JC → B. A typical example to be understood is that B is the elliptic locus of
the Hitchin base with π : JC → B is the corresponding Hitchin system; we expect that in the
Hitchin setting the operators e0, h0, f0 constructed as in this paper form an sl2-triple, which
yields a generalized Beauville decomposition.

In another direction, we propose in Section 3 conjectures on lifting the sl2-triple and the
generalized Beauville decomposition motivically. This is related to the Beauville–Voisin con-
jectures [9, 47, 49] concerning algebraic cycles on compact hyper–Kähler varieties.

2. Proof of Theorem 0.3

In this section we prove Theorem 0.3 following the proposal of Section 1.4. We consider
a pair

(S,L), L2 = 2g − 2
with S a projective K3 surface and L ∈ Pic(S) an irreducible curve class, that is, every curve
in the linear system |L| is irreducible.

2.1. Compact hyper-Kähler varieties. Since the family of curves C → B is given by the
complete linear system associated with |L|, the compactified Jacobian JC is the moduli of
stable 1-dimensional sheaves F on the K3 surface S with

[supp(F)] = L, χ(F) = 1 − g,

with the stability condition given by any polarization. In particular, JC is a compact hyper-
Kähler variety of K3[g]-type, and π : JC → B is a Lagrangian fibration with B ≃ Pg. This
allows us to apply tools in compact hyper-Kähler geometry to study the cohomology of JC ,
which lead to solutions to Questions 1.2, 1.4, and 1.5.
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2.2. Solving Question 1.2. By specialization, it suffices to solve Question 1.2 for a very
general pair (S,L). In this case, the moduli space JC is of Picard rank 2; the algebraic part
of the cohomology is spanned by an ample class A and the pullback of the hyperplane class H
of the base B ≃ Pg.

We are looking for a solution to the following equation

(A+ λH)g+1 = 0, λ ∈ Q.

Although this is a polynomial equation of degree g (this is because Hg+1 = 0), the Beauville–
Bogomolov–Fujiki (BBF) quadratic form q(−) on H2(JC ,Q) [6] reduces it to a linear equation:

q(A+ λH) = q(A) + 2λ(A,H) = 0.

Here (−,−) is the bilinear form associated with the BBF form, and we have used that
q(H) = 0. This solves λ uniquely:

λ = − q(A)
2(A,H) ∈ Q.

Now we consider arbitrary (S,L) with L an irreducible curve class. After changing the
basis and specialization, we may assume that the algebraic part of the cohomology H2(JC ,Q)
contains a relatively ample class Θ which, together with H, forms a rank 2 hyperbolic Q-lattice
under the BBF form,

q(Θ) = q(H) = 0, (Θ, H) = 1.

As in Section 1.4, we define the operators

(6) e0 := Θ ∪ −, f0 := −F−1 ◦ e0 ◦ F, h0 := [e0, f0] ∈ End
(
H∗(JC ,Q)

)
.

Clearly, all three operators are relative algebraic correspondences over B.
The goal of the next few sections is to establish the following proposition.

Proposition 2.1. The operator f0 is of degree −2, and (e0, h0, f0) form an sl2-triple in
End

(
H∗(JC ,Q)

)
.

Our main tools are the LLV algebra [30, 45] and its categorical perspective initiated by
Taelman [44, 11, 31].

2.3. LLV algebras. We first recall the definition of the LLV algebra. Let X be a compact
hyper-Kähler variety of dimension 2n. Since it suffices to prove the statements of Proposi-
tion 2.1 in End

(
H∗(JC ,C)

)
, we work with LLV algebras with C-coefficients for convenience.

An element η ∈ H2(X,C) is called of Lefschetz type if for any k ≥ 0, the cup-product
with ηk induces an isomorphism

ηk ∪ − : H2n−k(X,C) ≃−→ H2n+k(X,C).
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In other words, the class η induces an sl2-triple (eη, h, fη) acting on H∗(X,C). The LLV
algebra of X, denoted by g(X), is defined to be the Lie algebra generated by all sl2-triples
associated with Lefschetz type classes.

The LLV algebra of a compact hyper-Kähler variety can be calculated in terms of the
extended Mukai lattice [30, 45]. Recall that the (complexified) extended Mukai lattice of X
is a graded vector space

H̃(X,C) := Cα⊕H2(X,C) ⊕ Cβ, deg(α) = 0, deg(β) = 4

with a quadratic form q̃(−). The form q̃(−) restricts to the BBF form on H2(X,C), and the
two classes α, β are orthogonal to H2(X,C) satisfying

q̃(α) = q̃(β) = 0, (α, β) = −1.

Then the results of [30, 45] give a canonical isomorphism

g(X) = so(H̃(X,C)).

Example 2.2 (The symplectic sl2-triple). We describe an interesting sl2-triple in g(X) which
plays a crucial role [45]. The holomorphic symplectic form σ on X produces a class σ ∈
H2(X,C). It further induces an operator

eσ := σ ∪ − ∈ End(H∗(X,C)).

We denote by hhol the holomorphic grading operator, which is characterized by acting on
Hp,q(X) via hhol = (p− n)id. Then eσ, hhol can be completed into an sl2-triple

(eσ, hhol, fσ) ⊂ g(X),

which we call the symplectic sl2-triple associated with σ.

2.4. Lie algebra calculations. In this section, we carry out some explicit calculations with
the LLV algebra to be used later. We consider four classes η1, η2, η3, η4 ∈ H2(X,C) satisfying

(7) q̃(η1) = q̃(η2) = q̃(η3) = q̃(η4) ̸= 0, (ηi, ηj) = 0, i ̸= j.

They generate sl2-triples (eηi , h, fηi) in the LLV algebra g(X) (this is essentially deduced
in [45]; see e.g. [41, Lemma 2.5]).

We write
Kij := [eηi , fηj ] ∈ g(X), i ̸= j.

Recall the Verbitsky relations concerning the operators Kij .

Proposition 2.3 (Verbitsky relations [45]). For three distinct integers 1 ≤ i, j, k ≤ 4, we have

Kij = −Kji, [Kij ,Kjk] = 2Kik, [Kij , h] = 0,
[Kij , eηj ] = 2eηi , [Kij , fηj ] = 2fηi , [Kij , eηk

] = [Kij , fηk
] = 0.
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Now we define for i ̸= j the following elements

σij := 1
2(ηi + iηj), σij := 1

2(ηi − iηj) ∈ H2(X,C)

which induce the following elements in the LLV algebra:

eσij = 1
2(eηi + ieηj ), eσij = 1

2(eηi − ieηj ) ∈ g(X).

One can check directly that

q̃(σij) = q̃(σij) = 0, (σ, σ) ̸= 0.

Proposition 2.4 (c.f. [41, Section 3.1]). For distinct i, j, we consider the elements

fσij := 1
2(fηi − ifηj ), fσij := 1

2(fηi + ifηj ) ∈ g(X).

The following hold.

(a) The three elements (eσij , hσij := [eσij , fσij ], fσij ) in g(X) form an sl2-triple.
(b) The three elements (eσij , hσij := [eσij , fσij ], fσij ) in g(X) form an sl2-triple.
(c) We have

[eσij , fσij ] = [eσij , fσij ] = 0.

Proof. All three statements follow from the Verbitsky relations of Proposition 2.3.
Alternatively, we notice that when ηi, ηj , ηk form the Kähler classes associated with three

complex structures, the classes σij , σij are given by the holomorphic symplectic form and its
complex conjugate with respect to the complex structure corresponding to ηk. Therefore (a,
b, c) follow from the fact that σ, σ generate an sl2 × sl2 ⊂ g(X) given by Example 2.2 and its
complex conjugate; the general case can be reduced to this special case using hyper-Kähler
rotations as in [45]. □

For our purpose, we need to construct a more complicated sl2-triple as follows which will
play a crucial role. We set

L := [eσ12 , fσ34 ], Λ := [eσ34 , fσ12 ], H := [L,Λ] ∈ g(X).

Proposition 2.5. The elements (L,H,Λ) form an sl2-triple in g(X).

Proof. It suffices to show that

(8) [H,L] = 2L, [H,Λ] = −2Λ.

This can also be deduced from the Verbitsky relations. Since the calculation is more involved
than that of Proposition 2.4, we provide a proof for the reader’s convenience.
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We first express L,Λ, H in terms of Kij (i < j) using the Verbitsky relations:

L = 1
4((K13 +K24) − i(K14 −K23)),

Λ = 1
4(−(K13 +K24) − i(K14 −K23)),

H = [L,Λ] = − i

8[K13 +K24,K14 −K23] = − i

2(K12 −K34),

where we have used Kij = −Kji, [Kij ,Kjk] = 2Kik in calculating H. We further notice that

[K12 −K34,K13 +K24] = 4(K14 −K23),
[K12 −K34,K14 −K23] = −4(K13 +K24),

from which we may calculate the commutators [H,L], [H,Λ]. The commutation relations (8)
then follow. □

Remark 2.6. Unlike the sl2-triples of Proposition 2.4, the sl2-triple of Proposition 2.5 does not
have a clear geometric meaning. However, we will use this sl2-triple to construct a Fourier–
conjugate sl2-triple in Section 2.7.

2.5. Derived perspectives of LLV algebras. A beautiful observation of Taelman [44] is
that g(X) is a derived invariant — it only depends on the bounded derived categoryDbCoh(X).
Taelman’s result relies on the fact that the LLV algebra can be recovered from Hochschild
cohomology which we review as follows.

We denote by HT∗(X) the graded C-algebra of polyvector fields with degree k part

HTk(X) =
⊕

p+q=k

Hq (X,∧pTX) .

Via the isomorphism ∧pTX ≃ Ωp
X induced by σ, and the natural isomorphism between singular

cohomology and de Rham cohomology, we have a graded isomorphism

HT∗(X) = H∗(X,C).

The cohomology H∗(X,C) admits a natural action of the algebra HT∗(X) by contraction, i.e.,
for v ∈ Hq(X,∧pTX) and γ ∈ Hp′,q′(X), we have

v⌟γ ∈ Hp′−p,q′+q(X).

Using this action, we consider sl2-triples

(9) (e′
µ, h

′, f ′
µ), µ ∈ HT2(X)

in the Lie algebra End(H∗(X,C)), where e′
µ acts by contracting µ as above and h′ acts

on Hp,q(X) via (q − p)id. Taelman proved in [44] that g(X) is exactly the minimal Lie
subalgebra of End(H∗(X,C)) containing all sl2-triples of the form (9). Since the Hochschild–
Kostant–Rosenberg isomorphism identifies the Hochschild cohomology of X with HT∗(X), the
following theorem is a consequence of the discussion above.
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Theorem 2.7 ([44]). A derived equivalence between compact hyper-Kähler varieties

Φ : DbCoh(X) ≃−→ DbCoh(X ′)

induces a natural isomorphism of Lie algebras

Φg : g(X) ≃−→ g(X ′).

Moreover, the cohomological correspondence ΦH : H∗(X,C) ≃−→ H∗(X ′,C) induced by Φ is
equivariant with respect to Φg.

2.6. Fourier transforms. Now we focus on the the compact hyper-Käher variety JC and
Arinkin’s Fourier–Mukai transform

(10) ΦP : DbCoh(JC) ≃−→ DbCoh(JC).

Applying Theorem 2.7, we obtain an isomorphism of Lie algebras

Fg : g(JC) ≃−→ g(JC)

with respect to which the Fourier transform F : H∗(JC ,C) ≃−→ H∗(JC ,C) is equivariant.
Recall the operators (6); we note that they all lie in the LLV algebra.

Lemma 2.8. We have
e0, f0, h0 ∈ g(JC).

Proof. By Verbitsky’s construction of the LLV algebra [45], any element eη associated with
η ∈ H2(X,C) lies in the LLV algebra. Therefore, e0 ∈ g(JC). Alternatively, this can be
seen from [41, Lemma 2.5], since any class η ∈ H2(JC ,C) can be written as the η = η′ − η′′

with q(η), q(η′) nonzero. By definition and Theorem 2.7, we have

f0 = −Fg(e0) ∈ g(JC),

which further implies h0 = [e0, f0] ∈ g(JC). □

Next, we want to show that (e0, h0, f0) form an sl2-triple in g(JC), and we relate it to the
symplectic sl2-triple of Example 2.2.

Using the Verbitsky component generated by classes in the second cohomology, Taelman
attaches to the derived equivalence (10) a canonical (Hodge) isometry between the extended
Mukai lattices

(11) FH̃ : H̃(JC ,C) ≃−→ H̃(JC ,C);

see [44, Theorems 4.8, 4.9]. Taelman’s construction relies on certain numerical assumptions
which are satisfied by all known examples of compact hyper-Kähler varieties including JC .

Using extended Mukai vectors, the action of (11) on the four algebraic classes

(12) α, β,Θ, H ∈ H̃(JC ,C)

is completely described by the following formulas of Beckmann.
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Proposition 2.9 ([11]). We have

FH̃(α) = (−1)g
(

Θ − g + 1
2 β

)
, FH̃(β) = (−1)g−1H,

FH̃(Θ) = (−1)g−1α− g + 1
2 H, FH̃(H) = (−1)gβ.

Proof. The action of (11) on the classes (12) is established in [11, Section 10.2].4 The calcula-
tion uses the theory of extended Mukai vectors [11, 31], which further relies on the Rozansky–
Witten theory governing the square root of the Todd class (see [11, Section 3]). For our
purpose, it suffices to check that the class −λ

2 + g−1
4 f in Beckmann’s calculation coincides

with −Θ; this class actually is uniquely characterized by that it and H form a hyperbolic
lattice when (S,L) is very general. □

2.7. Solving Question 1.4. In this section we prove Proposition 2.1, which solves Ques-
tion 1.4. We first note some lemmas.

Recall the class of the symplectic form σ ∈ H2(JC ,C). For any µ ∈ HT2(JC), the associated
element e′

µ(σ) defines naturally an element in the extended Mukai lattice. This induces an
embedding of vector spaces

ι : HT2(JC) ↪→ H̃(JC ,C), µ 7→ e′
µ(σ)

whose image is Cα⊕H1,1(JC) ⊕ Cβ; see [31, Equation (6.10)]. The identification

(13) HT2(JC) = Cα⊕H1,1(JC) ⊕ Cβ

induced by ι allows us to view elements on the right-hand side of (13) as elements in HT2(JC);
this further allows us to write

e′
η ∈ g(JC), η ∈ Cα⊕H1,1(JC) ⊕ Cβ.

We recall the expression of the sl2-triple of Example 2.2 in terms of α.

Lemma 2.10 ([44, Lemma 2.9]). We have

e′
α = fσ.

From now on, we also write the symplectic sl2-triple as

(e′
α, hhol, f

′
α) := (fσ, hhol, eσ) ⊂ g(JC).

Next, since the action of the Fourier transform on the extended Mukai lattice is induced by
a Hodge isometry, it preserves (13).

Lemma 2.11. There is a constant c = 1 or −1, such that for any η in (13) we have

Fg(e′
η) = ce′

FH̃(η)
∈ g(JC).

4Here we corrected some signs in [11].
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Proof. This follows from the construction of FH̃ and the argument of [31, Lemma 6.5]. □

Finally, we recall an important involution on H∗(JC ,C) which lies in the LLV algebra. The
symplectic form σ induces an operator

Ω : H∗(JC ,C) → H∗(JC ,C)

which acts on the Hodge components H i,j(JC) as Serre duality

Ωi,j : H i,j(JC) ≃−→ H2g−i,j(JC).

This operator relates the two types of sl2-triples considered by Looijenga–Lunts–Verbitsky
[30, 45] and Taelman [44] by conjugation. We collect some useful facts from [31, Section 6.1]
and [46].

Lemma 2.12. We have the following properties of Ω.

(a) The operator

Ω ∈ End
(
H∗(JC ,C)

)
is an involution lying in g(JC) which conjugates h, h′, i.e.,

Ω ◦ h ◦ Ω−1 = h′.

(b) For any element µ ∈ HT2(JC), which yields an element µ ∈ H2(JC ,C) via the nat-
ural identification HT2(JC) = H2(JC ,C) induced by σ, the operator Ω conjugates eµ

and e′
µ, i.e.,

Ω ◦ eµ ◦ Ω−1 = e′
µ.

(c) Under the notation of (b), for any η ∈ H1,1(JC) we have

Ω ◦ eη ◦ Ω−1 = [fσ, eη] ∈ g(JC).

Proof. Parts (a, b) are in [31, Section 6.1], and (c) is given by [46, Proposition 9.7]. □

Corollary 2.13. For any η ∈ H1,1(JC), we have

eη = [eσ, e
′
η] ∈ g(JC).

Proof. By Lemma 2.12(b, c), it suffices to show that

(14) eη = [eσ, [fσ, eη]].

It suffices to treat the case where we have three classes η1, η2, η3 satisfying (7) with

η = η1, eσ = eσ23 , fσ = fσ23 .
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Under this assumption, we calculate the right-hand side of (14):

[eσ, [fσ, eη]] =
[1

2(eη2 + ieη3), 1
2(−K12 + iK13)

]
= 1

4(−[eη2 ,K12] − [eη3 ,K13])

= 1
4(2eη1 + 2eη1) = eη,

where we used the Verbitsky relations in Proposition 2.3. □

Proof of Proposition 2.1. Now we are ready to prove Proposition 2.1. We first introduce some
notation for convenience. We set

Θ := FH̃(α) ∈ H̃(JC ,C).

We will use cst to denote a constant which is not important for us. So Proposition 2.9 implies

(15) Θ = (−1)gΘ + cst · β, FH̃(Θ) = −α+ cst ·H.

Since all the calculations in this section only concern the four classes α, β,Θ, H, we may
use the conjugation of Lemma 2.12 to reduce them to the Lie algebra model of Section 2.4
with the four classes η1, η2, η3, η4. More precisely, we may assume that after applying the
conjugation

(16) Ω ◦ (−) ◦ Ω−1 : g(JC) → g(JC),

(i) (e′
α, f

′
α), e′

β become (eσ12 , fσ12), eσ12 respectively;
(ii) e′

Θ, e
′
H become eσ34 , eσ34 respectively.

Furthermore, we use (16) to define the operators f ′
β, f

′
Θ, f

′
H , completing the sl2-triples with

the raising operators e′
β, e

′
Θ, e

′
H respectively. For example

f ′
Θ := Ω ◦ fσ34 ◦ Ω−1, etc.

Recall the operators (6). Combining Corollary 2.13, Lemma 2.10, and (15), we have

e0 = [f ′
α, e

′
Θ] = (−1)g[f ′

α, e
′
Θ] + cst · [f ′

α, e
′
β].

By Proposition 2.4(c) and (16), we obtain immediately that [f ′
α, e

′
β] = 0. Therefore

(17) e0 = (−1)g[f ′
α, e

′
Θ].

Since the action of Fg on g(JC) is linear on the e′-operators by Lemma 2.11 and it preserves h′,
by passing through (16) this action is also linear on the e-operators and it preserves h; see
Lemma 2.12(a, b). Therefore it also acts linearly on the f -operators:

fσ12 7→ fσ34 , fσ34 7→ −cfσ12 + cst · fσ34 .

In particular, we deduce that

Fg(f ′
α) = cf ′

Θ, Fg(f ′
Θ) = −cf ′

α + cst · f ′
H .
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Here we used (15) in the equations above.
Now we obtain from (17) that

f0 = −Fg(e0) = (−1)g−1[Fg(f ′
α),Fg(e′

Θ)]
= (−1)g[cf ′

Θ, ce
′
α] + cst · [f ′

Θ, e
′
H ]

= (−1)g[f ′
Θ, e

′
α].

Here the vanishing [f ′
Θ, e

′
H ] = 0 follows again from Proposition 2.4(c) via (16). At this point,

we have already shown that f0 is of degree −2, since f ′
Θ, e

′
α are of degrees 0, −2 respectively;

more precisely
f0 : H i,j(JC) → H i−1,j−1(JC).

Finally, the operators (e0, h0 = [e0, f0], f0) form an sl2-triple by Proposition 2.5. □

2.8. Solving Question 1.5. We solve Question 1.5 and complete the proof of Theorems 0.3
and 0.5.

We first note that the sl2-triple (e0, h0, f0) is Fourier-conjugate.

Proposition 2.14. We have

Fg(e0) = −f0, Fg(f0) = −e0, Fg(h0) = −h0.

Proof. The first equation follows from the definition of f0. The second equation is obtained
similarly as in the proof of Proposition 2.1:

Fg(f0) = (−1)g[Fg(f ′
Θ),Fg(e′

α)]
= (−1)g[−cf ′

α, ce
′
Θ] + cst · [f ′

α, e
′
β]

= −(−1)g[f ′
α, e

′
Θ]

= −e0.

The last equation follows from the first two. □

Remark 2.15. For a general compactified Jacobian fibration, the Fourier transform F is not an
involution on the cohomology H∗(JC ,C).5 Therefore, even if the operators (e0, h0, f0) defined
in (6) form an sl2-triple, we do not seem to get for free that

e0 = −F−1 ◦ f0 ◦ F.

In particular, it is unclear if the induced decomposition is Fourier-stable.

We have concluded that the decomposition induced by (e0, h0, f0) is Fourier-stable. We
normalize its indices to make the fundamental class [JC ] ∈ H0(JC ,C) lie in H0

(0)(JC ,C).

5It is not an involution even for the Beauville–Mukai system.
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Since all three operators e0, h0, f0 are rational, this gives rise to a decomposition with rational
coefficients:

H∗(JC ,Q) =
⊕

i

H∗
(i)(JC ,Q), F

(
H∗

(i)(JC ,Q)
)

= H∗
(2g−i)(JC ,Q).

Finally, we recall the following theorem from [41] concerning a canonical sl2-triple associated
with a general Lagrangian fibration π : X → B.

Theorem 2.16 (Canonical sl2-triple [41]). Let π : X → B be a Lagrangian fibration from
a compact hyper-Kähler variety. Let Θ be a relatively ample class satisfying q(Θ) = 0 with
respect to the BBF form q(−). Then there is a unique sl2-triple

(e0, h0, f0) ⊂ g(X) ⊂ End(H∗(X,Q))

with
e0 = Θ ∪ −, deg(f0) = −2, deg(h0) = 0.

Moreover, the induced decomposition splits the perverse filtration associated with π : X → B,
and is multiplicative with respect to the cup-product.

Proof. As before, we let H be the pullback of a hyperplane class of the base B. By the proof
of [41, Theorem 3.1], there is a Lie subalgebra

sl2 × sl2 ⊂ g(X),

whose raising operators are given by e0 and e1 := H ∪ − respectively, and the decomposition
given by the first sl2-triple (e0, h0, f0) splits the perverse filtration. Furthermore, this de-
composition is multiplicative with respect to the cup-product by [41, Proposition A.2]. This
proves the existence part.

It remains to prove uniqueness. Assume that (e0, h0, f0) is an sl2-triple with the desired
degrees. On one hand, the (canonical) Jacobson–Morosov filtration associated with e0 splits
the (also canonical) perverse filtration on each H i(X,Q) up to an index shift uniquely deter-
mined by the cohomology degree i. On the other hand, this splitting can be read off from the
decomposition induced by (e0, h0, f0) as the latter respects cohomology degrees. Therefore,
the grading operator h0 is uniquely determined, which further determines f0. □

In our setting π : JC → B, since we have already proven that the operators (6) form an sl2-
triple with the desired degrees, this has to coincide with the sl2-triple of Theorem 2.16. This
completes the proofs of Theorems 0.3 and 0.5. □

Remark 2.17. In the setting of the Beauville–Mukai system, we show that we can construct f0
of Theorem 2.16 from Arinkin’s sheaf [3, 4]. Therefore all three operators of this sl2-triple are
given by relative correspondences over B, induced by algebraic cycles on JC ×B JC . This is
not obvious at all from the perspective of [41]. We refer to Section 3 for further discussions
on a possible motivic lifting of this sl2-triple.
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Remark 2.18. The multiplicativity of the perverse filtration

PkH
∗(JC ,Q) =

⊕
i≤k

H∗
(i)(JC ,Q)

for any compactified Jacobian fibration π : JC → B as in Section 1.1 has been proven in [33]
using the convolution product. However, it is not clear if the techniques of [33] can upgrade
the multiplicativity from the filtration level to the decomposition even in the Lagrangian
setting. Here the multiplicativity of the decomposition is for reasons completely different
from [33]. It relies heavily on compact hyper-Kähler geometry and is deduced essentially from
the multiplicativity of the Hodge decomposition.

3. Motivic lifting of the generalized Beauville decomposition

In this section we propose a lifting of the generalized Beauville decomposition and the sl2-
triple to the level of Chow groups/motives for certain compactified Jacobian fibrations. As
discussed in Section 1.5, evidence suggests that the Lagrangian condition should be a natural
setup for the generalized Beauville decomposition and the sl2-triple to happen, in which case
we expect both to happen motivically. Explicit computations are carried out to verify the
proposal in the case of elliptic K3 surfaces. At the end of this section, we will also discuss
relations with the Beauville–Voisin conjectures on the Chow ring of compact hyper-Kähler
varieties.

3.1. Motivic Beauville decomposition and sl2-triple. A natural framework for the mo-
tivic lifting is the theory of relative Chow motives of Corti–Hanamura [15]. It is built to be
compatible with the decomposition theorem, adapts well to non-proper bases (e.g. the Hitchin
fibration), and admits natural Chow/homological realizations [21]. We refer to [37, Chapter 8]
and [33, Section 2.2] for a brief review of the theory.

Recall that over a nonsingular base B, the group of degree k relative correspondences
between two proper morphisms X → B, Y → B with X,Y nonsingular is

Corrk
B(X,Y ) := CHdim Y −k(X ×B Y,Q).

Compositions of relative correspondences are defined via refined intersection theory. The
category of relative Chow motives CHM(B) consists of objects triples (X, p,m) where X → B

is a proper morphism with X nonsingular, p ∈ Corr0
B(X,X) is a projector, and m ∈ Z. In

particular, the motive of X is given by h(X/B) := (X, [∆X/B], 0) where ∆X/B is the relative
diagonal. Morphisms between two motives M = (X, p,m), N = (Y, q, n) are

HomCHM(B)(M,N) := q ◦ Corrn−m
B (X,Y ) ◦ p.

Finally, the degree k Chow group of M = (X, p,m) is defined by

CHk(M,Q) := HomCHM(B)(h(B/B),M(k))

where M(k) := (X, p,m+ k) is the k-th Tate twist of M .
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We propose the following motivic versions of the generalized Beauville decomposition and
the sl2-action for compactified Jacobian fibrations under the Lagrangian assumption.

Conjecture 3.1. Let π : JC → B be the compactified Jacobian fibration associated with a
flat family of integral projective locally planar curves of arithmetic genus g over a nonsingular
variety B. We assume that JC is nonsingular, and that the fibration π is Lagrangian with
respect to a holomorphic symplectic form on JC . Then there exists a decomposition

(18) h(JC/B) =
2g⊕

i=0
hi(JC/B) ∈ CHM(B), hi(JC/B) = (JC , pi, 0)

whose homological realization splits the perverse filtration on Rπ∗QJC
, and which is

(a) stable under the Fourier transform

pj ◦ F ◦ pi = 0, i+ j ̸= 2g;

(b) multiplicative with respect to the cup-product

pk ◦ [∆sm
JC/B

] ◦ (pi × pj) = 0, i+ j ̸= k.

Here ∆sm
JC/B

is the small relative diagonal of JC in JC ×B JC ×B JC and we refer to [33,
Section 2.2.3] for the multiplicative structure of CHM(B).

Conjecture 3.2. Let π : JC → B be as in Conjecture 3.1. Then there is an sl2-triple

e0 ∈ Corr1
B(JC , JC), f0 ∈ Corr−1

B (JC , JC), h0 ∈ Corr0
B(JC , JC)

which induces the Fourier-stable multiplicative decomposition of motives (18)

(19) h0 ◦ pi = (i− g)pi, 0 ≤ i ≤ 2g.

Note that the identities (19) together with [∆JC/B] =
∑2g

i=0 pi already imply that the pi are
orthogonal projectors. Indeed, we have

pi = [∆JC/B] ◦ pi =
2g∑

j=0
pj ◦ pi.

Comparing eigenvalues with respect to h0 on both sides, we see that pj ◦ pi = δij . We also
deduce

pj ◦ h0 = (j − g)pj, 0 ≤ j ≤ 2g
since h0 =

∑2g
i=0 h0 ◦ pi =

∑2g
i=0(i− g)pi. Then, Fourier-stability can be detected by verifying

the identity
F−1 ◦ h0 ◦ F = −h0,

and multiplicativity by

(20) [∆sm
JC/B

] ◦
(
(h0 + g · [∆JC/B]) × [∆JC/B] + [∆JC/B] × (h0 + g · [∆JC/B])

)
= (h0 + g · [∆JC/B]) ◦ [∆sm

JC/B
].
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Similar ideas involving h0 have already been employed in [38].
We make two more comments on the conjectures above. First, when B is proper there is a

natural pushforward functor

(21) CHM(B) → CHM(pt)

from the category of relative Chow motives to the category of absolute Chow motives. It is
defined by pushing forward

Corr0
B(X,X) = CHdim X(X ×B X,Q) → CHdim X(X ×X,Q) = Corr0(X,X)

via the closed embedding X ×B X ↪→ X ×X. In this case we can formulate weaker versions
of Conjectures 3.1 and 3.2 concerning the absolute Chow motive h(JC) ∈ CHM(pt), i.e., the
image of h(JC/B) ∈ CHM(B) under (21). These weaker versions in turn specialize to the
cohomological statements of Theorems 0.3 and 0.5 for the Beauville–Mukai system. We also
mention here the recent work of Ancona–Cavicchi–Laterveer–Saccà [1] on decomposing the
relative/absolute homological motive of a compact hyper-Kähler variety carrying a Lagrangian
fibration. In particular, using their results one can give another proof that the generalized
Beauville decomposition of Theorem 0.5 (which coincides with the decomposition in [41] by
Theorem 2.16) is induced by relative correspondences over B; see [1, Proposition 5.3 and
Corollary 6.5].6

Remark 3.3. There is a subtle difference between an sl2-action on the relative Chow mo-
tive h(JC/B) and an sl2-action on the absolute Chow motive h(JC) induced by relative
correspondences over B. The former is significantly stronger as it requires the sl2-relations to
hold in the Chow groups CH∗(JC ×B JC ,Q). Meanwhile, we also lose the realization

CHM(B) → Db
c(B)

when passing from CHM(B) to CHM(pt).

Second, we believe that the motivic sl2-triple can be constructed following the strategy of
Section 1.4. To begin with, the generalized theta divisor should be upgraded to the Chow
level, i.e., Θ ∈ CH1(h2(JC/B),Q) such that

(22) Θg+1 = 0 ∈ CHg+1(JC ,Q).

When the base B is proper the existence of Θ is well-studied in the context of compact
hyper-Kähler geometry and is part of the Beauville–Voisin philosophy (see Section 3.3 below).
Notably Rieß [40] proved that assuming the hyper-Kähler SYZ conjecture, any Q-divisor D
with q(D) = 0 on a compact hyper-Kähler variety X of dimension 2n satisfies Dn+1 = 0 ∈
CHn+1(X,Q). Next, with the divisor Θ in (22) we define

(23) e0 := ∆JC/B∗Θ ∈ Corr1
B(JC , JC)

6The arguments of [1] work equally for twisted Beauville–Mukai systems associated with an irreducible curve
class and for (twisted) LSV fibrations [28].
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where ∆JC/B : JC ↪→ JC ×B JC is the relative diagonal map, and

f0 := −F−1 ◦ e0 ◦ F, h0 := [e0, f0]

following Section 1.4. We expect f0 to lie in Corr−1
B (JC , JC) (hence h0 ∈ Corr0

B(JC , JC)),
and that (e0, h0, f0) form the desired sl2-triple of Conjecture 3.2.

We now illustrate how this proposal works for elliptic K3 surfaces.

3.2. Elliptic K3 surfaces. In this section, let π : S → P1 be an elliptic fibration from
a projective K3 surface with only integral fibers and a section s : P1 → S, so that S is
isomorphic to a genus 1 compactified Jacobian family JC . To set up the notation, let

s := [s(P1)] ∈ CH1(S,Q), f := [π−1(pt)] ∈ CH1(S,Q)

be the classes of the section and fibers. A generalized theta divisor is then given by

Θ := s + f, Θ2 = 0 ∈ CH2(S,Q).

Also let c ∈ CH2(S,Q) be the Beauville–Voisin distinguished class [10] which is supported on
any rational curve of S.

We define self-correspondences in Corr0
P1(S, S):

p0 := p∗
1Θ, p2 := p∗

2Θ, p1 := [∆S/P1 ] − p0 − p2,

where p1, p2 : S ×P1 S → S are the two projections. It is straightforward to check that the pi

are orthogonal projectors, and the resulting motivic decomposition

(24) h(S/P1) =
2⊕

i=0
hi(S/P1) ∈ CHM(P1), hi(S/P1) = (S, pi, 0)

specializes to a splitting of the perverse filtration on Rπ∗QS .
Concerning the sl2-triple we set as in (23)

e0 := ∆S/P1∗Θ ∈ Corr1
P1(S, S),

and for dimension reasons
f0 := [S ×P1 S] ∈ Corr−1

P1 (S, S).
Then we have

h0 := [e0, f0] = p∗
2Θ − p∗

1Θ ∈ Corr0
P1(S, S).

We give a list of desired properties of the motivic decomposition and the sl2-triple in the
following proposition, verifying Conjectures 3.1 and 3.2 for π : S → P1.

Proposition 3.4. We have
(a) [h0, e0] = 2e0, [h0, f0] = −2f0;
(b) h0 ◦ pi = (i− 1)pi for i = 0, 1, 2;
(c) F−1 ◦ e0 ◦ F = −f0, F−1 ◦ f0 ◦ F = −e0, F−1 ◦ h0 ◦ F = −h0;
(d) [∆sm

S/P1 ] ◦ (h0 × [∆S/P1 ] + [∆S/P1 ] × h0 + [∆S/P1 ] × [∆S/P1 ]) = h0 ◦ [∆sm
S/P1 ].
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Here (b) shows that the motivic decomposition (24) is induced by the sl2-triple (e0, h0, f0)
from (a), (c) shows that it is Fourier-stable, and (d) which is a reformulation of (20) verifies
the multiplicativity of the motivic decomposition.

Proof. For (a) we observe that

(25) e0 = ∆S/P1∗Θ = p∗
1Θ p∗

2Θ ∈ CH1(S ×P1 S,Q).

In fact we have ∆S/P1∗s = p∗
1s p∗

2s by definition. For ∆S/P1∗f we may take f to be the class of
a (singular) rational fiber of π. Since [∆P1 ] = [pt × P1] + [P1 × pt], we find

(26) ∆S/P1∗f = p∗
1s p∗

2f + p∗
1f p∗

2s ∈ CH1(S ×P1 S,Q).

Altogether we have

∆S/P1∗Θ = ∆S/P1∗(s + f) = p∗
1s p∗

2s + p∗
1s p∗

2f + p∗
1f p∗

2s = p∗
1(s + f)p∗

2(s + f) = p∗
1Θ p∗

2Θ

since p∗
1f p∗

2f = 0.
We compute

[h0, e0] = h0 ◦ e0 − e0 ◦ h0

= (p∗
2Θ − p∗

1Θ) ◦ (p∗
1Θ p∗

2Θ) − (p∗
1Θ p∗

2Θ) ◦ (p∗
2Θ − p∗

1Θ)
= p∗

1Θ p∗
2Θ − (−p∗

1Θ p∗
2Θ) = 2e0,

where the second to last equality uses Θ2 = 0. The other identity [h0, f0] = −2f0 and part (b)
are both straightforward.

For (c) we will need the following version of Proposition 2.9:

F([S]) = −Θ + c, F(c) = f, F(Θ) = [S] − f, F(f) = −c,

F−1([S]) = Θ + c, F−1(c) = −f, F−1(Θ) = −[S] − f, F−1(f) = c,

which is a consequence of the more general result [24, 42] that derived equivalences preserve
the Beauville–Voisin ring. We also recall from [4] that F is symmetric with respect to the two
factors of S ×P1 S.

We compute

F−1 ◦ e0 ◦ F = F−1 ◦ (p∗
1Θ p∗

2Θ) ◦ F

= F−1 ◦ (p∗
1F(Θ) p∗

2Θ)

= p∗
1F(Θ) p∗

2F
−1(Θ)

= p∗
1([S] − f) p∗

2(−[S] − f)
= −[S ×P1 S] = −f0,
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where the second to last equality uses that f is pulled back from the base P1. Similarly, we have

F−1 ◦ f0 ◦ F = F−1 ◦ [S ×P1 S] ◦ F

= F−1 ◦ p∗
1F([S])

= p∗
1F([S]) p∗

2F
−1([S])

= p∗
1(−Θ + c) p∗

2(Θ + c)
= −p∗

1Θ p∗
2Θ = −e0,

where the second to last equality is because −p∗
1Θ p∗

2c + p∗
1c p

∗
2Θ is a 0-cycle of degree 0

supported on a chain of rational curves and hence vanishes. The third identity of (c) follows
from the first two.

We now prove (d). By plugging in the definition of h0, we may rewrite (d) as

q∗
23∆S/P1∗Θ − q∗

1Θ q∗
23[∆S/P1 ] + q∗

13∆S/P1∗Θ − q∗
2Θ q∗

13[∆S/P1 ] + [∆sm
S/P1 ]

= q∗
3Θ q∗

12[∆S/P1 ] − q∗
12∆S/P1∗Θ ∈ CH2(S ×P1 S ×P1 S,Q),

where the qi : S ×P1 S ×P1 S → S, qij : S ×P1 S ×P1 S → S ×P1 S are the natural projections.
In a more symmetric form we find

[∆sm
S/P1 ] −

(
q∗

1Θ q∗
23[∆S/P1 ] + permutations

)
+
(
q∗

23∆S/P1∗Θ + permutations
)

= 0.

Applying (25) and (26) we are further reduced to

(27) [∆sm
S/P1 ] −

(
q∗

1s q∗
23[∆S/P1 ] + permutations

)
+ (q∗

2s q∗
3s + permutations) = 0.

The proof of (27) follows closely the original argument of Beauville–Voisin in [10]. First,
the left-hand side of (27) vanishes when restricted to the smooth locus of π : S → P1 (see
e.g. [34] for a proof of this fact). Hence by the localization sequence, it is supported on the
triple products of the (singular) rational fibers. On the other hand, all S3-invariant 2-cycles
supported on such triple products are proportional to the effective cycle

(28) q∗
1c+ q∗

2c+ q∗
3c ∈ CH2(S ×P1 S ×P1 S,Q).

We deduce that the left-hand side of (27) is a multiple of (28).
Next, we push the left-hand side of (27) all the way to the absolute triple product S×S×S,

which sends [∆sm
S/P1 ] to the small diagonal [∆sm

S ] ∈ CH2(S × S × S,Q). Using sf = c and the
identities

[S ×P1 S] = p′∗
1 f + p′∗

2 f ∈ CH3(S × S,Q),
[S ×P1 S ×P1 S] = q′∗

2 f q′∗
3 f + q′∗

1 f q′∗
3 f + q′∗

1 f q′∗
2 f ∈ CH4(S × S × S,Q)

where the p′
i : S×S → S, q′

i : S×S×S → S (as well as the q′
ij below) are the natural projections

from the absolute products, we find that the pushforward of q∗
1s q∗

23[∆S/P1 ] in (27) is

(29) q′∗
1 c q

′∗
23[∆S ] + q′∗

1 s q′∗
23∆S∗f ∈ CH2(S × S × S,Q).
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Similarly, the pushforward of q∗
2s q∗

3s is

(30) q′∗
2 c q

′∗
3 c+ q′∗

1 f q′∗
2 s q′∗

3 c+ q′∗
1 f q′∗

2 c q
′∗
3 s ∈ CH2(S × S × S,Q).

Further expanding (29) using the relation (either by [10] or by representing f by a rational fiber)

∆S∗f = p′∗
1 c p

′∗
2 f + p′∗

1 f p′∗
2 c ∈ CH1(S × S,Q)

and summing up the other two permutations of (29) and (30), we conclude that the pushfor-
ward of the left-hand side of (27) is precisely

[∆sm
S ] − (q′∗

1 c q
′∗
23[∆S ] + permutations) + (q′∗

2 c q
′∗
3 c+ permutations),

which vanishes by [10].
As the left-hand side of (27) is a multiple of (28) whose pushforward to S×S×S is clearly

nonzero, this multiple must be 0. This proves the relation (27). □

3.3. Relations to Beauville–Voisin. The Beauville–Voisin conjectures [9, 47] refer to a se-
ries of open problems concerning the Chow ring/motive of compact hyper-Kähler varieties and
the behavior of their Chern classes. Roughly speaking, the conjectures predict a multiplicative
decomposition of the Chow ring which splits the conjectural Bloch–Beilinson filtration, and
for which the Chern classes lie in the “correct” components. We will not review the history
of the conjectures, but only mention a subconjecture recently investigated by Voisin [49].

Conjecture 3.5 ([49, Conjecture 1.5]). Let X be a compact hyper-Kähler variety of dimen-
sion 2n. Then for any Q-divisor D with q(D) = 0 and any Chern monomial cI ∈ CH2k(X,Q),
we have

Dn−k+1cI = 0 ∈ CHn+k+1(X,Q).

Here a Chern monomial refers to a monomial in the Chern classes c2(X), . . . , c2n(X).
When X admits a Lagrangian fibration π : X → B and D = Θ is relatively ample, we can
reinterpret Conjecture 3.5 as a statement on the “Chow-theoretic perversity” of the Chern
classes. This leads to the following prediction, which for convenience we state for compactified
Jacobian fibrations under the Lagrangian assumption over possibly non-proper bases.

Conjecture 3.6. Let π : JC → B be as in Conjecture 3.1. Then for i ≥ 0, we have

c2i(JC) ∈ CH2i(h2i(JC/B),Q).

Remark 3.7. Conjecture 3.6 is immediate for the ellipticK3 surface π : S → P1 of Section 3.2 as
c ∈ CH2(h2(S/P1),Q). The weaker, cohomological statement c2i(JC) ∈ H4i

(2i)(JC ,Q) holds for
both the Beauville–Mukai system (and more generally for any Lagrangian fibration π : X → B

from a compact hyper-Kähler variety by the calculations in [49, Introduction]) and the Hitchin
system. In the Hitchin case, this can be seen as a consequence of P = W and the natural
splitting of the weight filtration on the Betti side.
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Proposition 3.8. Assume Conjectures 3.1 and 3.6. Then for any Θ ∈ CH1(h2(JC/B),Q)
and any Chern monomial cI ∈ CH2k(JC ,Q), we have

Θg−k+1cI = 0 ∈ CHg+k+1(JC ,Q).

Proof. By the multiplicativity of the motivic decomposition (18) and Conjecture 3.6, we find

Θg−k+1cI ∈ CHg+k+1(h2(g−k+1)+2k(JC/B),Q) = CHg+k+1(h2g+2(JC/B),Q) = 0. □

It is plausible that with the techniques of [40, 1], one can possibly deduce Conjecture 3.5
from the analogues of Conjectures 3.1 and 3.6 for more general compact hyper-Kähler varieties
together with the hyper-Kähler SYZ conjecture.

We also comment on how Conjectures 3.1, 3.2, and 3.6 are related to the full Beauville–
Voisin conjecture. Previously, Oberdieck [39] initiated an approach to the multiplicative de-
composition problem by lifting Lefschetz triples (or more generally the Néron–Severi part of
the LLV algebra) to the level of Chow groups/motives. This was carried out in full for the
Hilbert schemes of K3 surfaces and partially in dimension 4 in the subsequent papers [38, 26].
When the compact hyper-Kähler variety admits a Lagrangian fibration, the relative struc-
ture may lead to a two-step construction of the eventual multiplicative decomposition. For
illustration purposes we restrict ourselves to the Beauville–Mukai system π : JC → B.

Step 1. Prove Conjectures 3.1, 3.2, and 3.6 for π : JC → B. It is worth mentioning again that
all three conjectures concerning the relative Chow motive of JC are stronger than predicted
by Beauville–Voisin, and are interesting in their own right.

Step 2. Consider the pushforward of the motivic decomposition (18) via (21). Look for a
second sl2-triple (e1, h1, f1) with

e1 := ∆∗H ∈ Corr1(JC , JC)

where H ∈ CH1(JC ,Q) is the pullback of the hyperplane class of B ≃ Pg, thus lifting
sl2 × sl2 ⊂ g(JC) (see [41]) to an action on the absolute Chow motive of JC . Further de-
compose the image of each hi(JC/B) into eigen-motives with respect to h1. Finally, rearrange
the eigen-motives with respect to h := h0 + h1, and use it to detect multiplicativity as well as
the locations of the Chern classes.

Similar two-step approaches have succeeded in proving cases of the Lefschetz standard
conjecture for compact hyper-Kähler varieties in [48, 1].

4. Proof of Theorem 0.4

In this section we prove Theorem 0.4 using tautological relations on the universal Picard
stack. For g ≥ 2, let Mg be the moduli stack of stable curves of genus g. It is the Deligne–
Mumford compactification of the moduli of genus g nonsingular projective curves Mg ⊂ Mg,
and every curve on the boundary Mg \Mg has at worst simple nodes as singular points. More
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generally we also consider the Deligne–Mumford moduli stack of stable curves with marked
points Mg,n ⊂ Mg,n.

We denote by M≤1
g ⊂ Mg the open locus where the curves are integral and have at most

one node. Let C≤1
g → M≤1

g be the universal curve with π : J≤1
g → M≤1

g the corresponding
compactified Jacobian fibration.

Our main result is the following.

Theorem 4.1. We have the following statements concerning generalized theta divisors.
(a) For g ≥ 3, a generalized theta divisor does not exist for π : J≤1

g → M≤1
g .

(b) Let Mint
2 ⊂ M2 be the open locus of integral stable curves of genus 2 with πint :

J
int
2 → Mint

2 the corresponding compactified Jacobian fibration. Then a generalized
theta divisor does not exist for πint.

By the discussions of Section 1.3, Theorem 4.1 proves a version of Theorem 0.4 when the
base B is a nonsingular Deligne–Mumford stack. We will explain in Section 4.4 that the same
argument actually also proves Theorem 0.4 with B a nonsingular quasi-projective variety.

4.1. The universal Picard stack. We recall some basic facts about the universal Picard
stack; our reference is [5].

Let Mg be the moduli stack of (not necessarily stable) nodal curves of genus g and let
Cg → Mg be the universal curve. We consider the universal Picard stack Picg → Mg parame-
terizing total degree 0 line bundles. The relative Picard stack Picrel

g is the quotient of Picg by
relative inertia BGm over Mg; in other words, it is the rigidification of the universal Picard
stack with respect to the automorphism Gm.

We consider the universal line bundle L on the universal curve p : CPicg
→ Picg; see [5].

This yields the tautological class

θ := −1
2p∗(c1(L)2) ∈ CH1(Picg,Q).

Since this class is invariant under twisting L by the line bundle from the base, it descends to

θ ∈ CH1(Picrel
g ,Q).

For a family of genus g integral projective nodal curves C → B, the relative compactified
Jacobian admits a natural morphism to the relative Picard stack

JC → Picrel
g .

This is because the universal sheaf can be interpreted as an admissible line bundle on the
quasi-stable model of the family of nodal curves by [18]. It is necessary to allow unstable
nodal curves and line bundles which are not of multi-degree 0 for such a map to exist. In
particular we have a natural morphism

J
≤1
g → Picrel

g .
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4.2. Universal double ramification cycle relations. For the relative compactified Jaco-
bian π : J≤1

g → M≤1
g , we have the following commutative diagram

(31)
Jg−1,2 J−1

g−1,2 Jδ J
≤1
g Jg

Mg−1,2 M≤1
g Mg

t ϵ

π′

ι

π

j

ι j

where j : Mg ↪→ M≤1
g is an open embedding, ι : Mg−1,2 → M≤1

g is the morphism gluing
the two marked points on the curve, and J−1

g−1,2 is the relative Jacobian of degree −1 line
bundles over Mg−1,2. The morphism ϵ is given by (C̃, L) 7→ (C, ν∗L) where ν : C̃ → C is the
normalization of a nodal curve with one self-node. The image of ι◦ ϵ is the singular locus of π.
The relative Jacobian J−1

g−1,2 is isomorphic to Jg−1,2 under a translation

t : Jg−1,2
∼=−→ J−1

g−1,2, (C, x1, x2, L) 7→ (C, x1, x2, L(−x2)).

The diagram can be deduced from the description of the torus rank 1 boundary of the moduli
space of principally polarized abelian varieties in [35].

Proposition 4.2. On the relative compactified Jacobian J
≤1
g , we have

θg+1

(g + 1)! = 1
48 ι∗ϵ∗t∗

θg−1

(g − 1)! + ι∗ϵ∗t∗α ∈ CHg+1(J≤1
g ,Q)

for some class α ∈
⊕

w<2g−2 CHg−1
(w) (Jg−1,2,Q). Here w stands for the weight with respect to

the “multiplication by N” map on Jg−1,2.

Proof. Recall the universal double ramification cycle relation7 [5, Theorem 8] on the universal
Picard stack:

Pg+1
g := Pg+1

g,A=∅ = 0 ∈ CHg+1
op (Picg,Q).

We restrict Pixton’s formula for Pg+1
g to the relative Picard stack over M≤1

g ; we thus focus
on the substack M≤1

g ⊂ Mg where the quasi-stable curve stabilizes to a stable curve with at
most one self node. Let i : Picrel

δ → Picrel
g be the inclusion of the boundary strata where

the underlying curve has at least one node. For an integer d, let id : Picrel
Γd

→ Picrel
g be the

boundary stratum corresponding to a decorated prestable graph Γd with two vertices of degree
splitting d,−d, connected by two edges e1 = (h1, h

′
1) and e2 = (h2, h

′
2). Then Pixton’s formula

7In general the universal double ramification cycle relation depends on a vector A of integers. Here we only
consider the special case A = ∅.
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has the form

(32) Pg+1
g = θg+1

(g + 1)! +
∑

a+b=g

cst · θai∗
(
(ψh + ψh′)b)

+
∑
d∈Z

∑
k+ℓ+m=g−1

fk,ℓ,m(d) · θkid∗
(
(ψh1 + ψh′

1
)ℓ(ψh2 + ψh′

2
)m),

where fk,ℓ,m is a polynomial with rational coefficients of degree at most 2(ℓ+m+2). Here the
polynomiality of fk,ℓ,m follows from Faulhaber’s formula on sum of powers applied to Pixton’s
formula. We refer to [5, Section 0.3.5] for notations, and explicit expressions of cst and fk,ℓ,m.

For our purpose, we further refine the relation Pg+1
g = 0 using the “multiplication byN” map

[N ] : Picrel
g → Picrel

g .

For the first two terms of (32), we have

[N ]∗θg+1 = N2g+2 · θg+1

and
[N ]∗

(
θai∗

(
(ψh + ψh′)b)) = N2a · θai∗

(
(ψh + ψh′)

)b
respectively. For the third term of (32), we have

[N ]∗
(
θkid∗

(
(ψh1 + ψh′

1
)ℓ(ψh2 + ψh′

2
)m)) = N2k · θki

d/N
∗

(
(ψh1 + ψh′

1
)ℓ(ψh2 + ψh′

2
)m)

if N divides d and zero otherwise. Applying [N ]∗ to the right-hand side of (32), the first two
terms are clearly polynomials in N and for the third term, we have

[N ]∗
∑
d∈Z

∑
k+ℓ+m=g−1

fk,ℓ,m(d) · θkid∗
(
(ψh1 + ψh′

1
)ℓ(ψh2 + ψh′

2
)m)

=
∑
N |d

∑
k+ℓ+m=g−1

fk,ℓ,m(d) ·N2k · θki
d/N
∗

(
(ψh1 + ψh′

1
)ℓ(ψh2 + ψh′

2
)m)

=
∑
d∈Z

∑
k+ℓ+m=g−1

fk,ℓ,m(Nd) ·N2k · θkid∗
(
(ψh1 + ψh′

1
)ℓ(ψh2 + ψh′

2
)m)

which is a polynomial in N because fk,ℓ,m(d) are polynomials. Therefore we find an expression
of [N ]∗Pg+1

g = 0 which is a polynomial in N , so that each coefficient gives rise to a relation
on Picrel

g . We take the coefficient of N2g+2 in the expression of [N ]∗Pg+1
g = 0 and pull it back

to J≤1
g . In particular, the second summand of the right-hand side of (32) does not contribute

for weight reasons. This gives the desired relation on J
≤1
g of the proposition.

For the reader’s convenience, we spell out in the following more details in deducing this
relation. The contribution from the prestable graph with two vertices of

• genus g − 1 with degree −1, and
• genus 0 with degree 1
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connected by two edges corresponds to a class under the pushforward ι∗ϵ∗t∗. We denote the
two edges by e1 = (h1, h

′
1) and e2 = (h2, h

′
2) where h1, h2 are the two half-edges attached

to the genus g − 1 vertex. After pulling back to J≤1
g , other strata do not contribute by the

quasi-stable model of a rank 1 torsion-free sheaf on a nodal curve. Then we have

(33) θg+1

(g + 1)! = 1
48 ι∗ϵ∗t∗

θg−1

(g − 1)! + ι∗ϵ∗t∗(other terms).

Here the coefficient 1
48 associated with the leading term of the right-hand side can be read of

from the explicit computation of the polynomial:

fg−1,0,0(d) = −d4

48 + d2

24 − 1
240 .

The other terms correspond to a linear combination of prestable graphs decorated by mono-
mials of θ and ψ-classes. The ψ-classes are the contributions of the first Chern class of the
cotangent line bundle at the various markings (see also Section 4.3).

We explain how to interpret the classes given by prestable graphs decorated by ψ-monomials
as classes pushed forward from Jg−1,2. Let L be the universal line bundle on the universal
curve over Jg−1,2 trivialized along the first marking, and let ξ2 ∈ CH1

(1)(Jg−1,2,Q) be c1(L)
pulled back along the second marking. Analogous classes are defined on J−1

g−1,2. We take the
coefficient of N1 in the expression of [N ]∗P1

0,(1,−1) = 0. This gives a relation

ψh′
2

= −ψh′
1

= ξh′
1

− ξh′
2

at the unstable genus 0 vertex. Since ξh′
1

= ξh1 = 0 and ξh′
2

= ξh2 = ξ2, the “other terms”
in (33) have an expression in terms of monomials of θ, ψ•, ξ2. Under the translation, these
monomials pull back to classes on Jg−1,2 of weights < 2g − 2. □

Remark 4.3. Although the “multiplication by N” map extends to the relative Picard stack
Picrel

g , the cohomology H∗(Picrel
g ,Q) may not be a direct sum of weight spaces since it is

infinite-dimensional.

We denote by J
0
g ⊂ J

≤1
g the relative Jacobian of degree 0 line bundles. We have the

tautological relation
θg+1 = 0 ∈ CHg+1(J0

g ,Q)
by [2, Theorem 4.9]. As a consequence of the proposition above, we show that this vanishing
fails to be further extended to the relative compactified Jacobian J

≤1
g .

Corollary 4.4. For g ≥ 2, we have

π∗
θg+1

(g + 1)! = 1
48 ι∗[Mg−1,2] ∈ CH1(M≤1

g ,Q).

In particular we have the non-vanishing

θg+1 ̸= 0 ∈ H2g+2(J≤1
g ,Q).
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Proof. By Proposition 4.2, it is enough to calculate the pushforward along π of the classes
ι∗ϵ∗t∗(θg−1/(g − 1)!) and ι∗ϵ∗t∗α. Since α ∈ CHg−1(Jg−1,2,Q) has weights < 2g − 2, we have
π∗ι∗ϵ∗t∗α = ι∗π

′
∗t∗α = 0. We also recall

(34) θg−1

(g − 1)! = [0] ∈ CHg−1(Jg−1,2,Q),

where 0 : Mg−1,2 → Jg−1,2 is the 0-section; see e.g. [16]. Therefore by the diagram (31)
we have

π∗ι∗ϵ∗t∗
θg−1

(g − 1)! = ι∗[Mg−1,2];

it is proportional to the fundamental class of the boundary stratum which is nontrivial in the
cohomology H2(M≤1

g ,Q). □

Remark 4.5. Here the universal double ramification relation of Proposition 4.2 helps us to
relate θg+1 to an explicit nontrivial boundary class.

4.3. Proof of Theorem 4.1. In this section we prove some non-vanishing results on the
cohomology of the relative compactified Jacobian which imply Theorem 4.1.

We recall a few standard tautological classes. The cotangent line of the i-th marking defines
a line bundle Li on Mg,n with first Chern class

ψi := c1(Li) ∈ H2(Mg,n,Q).

The forgetful map p : Mg,1 → Mg coincides with the universal family of curves, and we define
the i-th κ-class to be

κi := p∗ψ
i+1
1 ∈ H2i(Mg,Q).

After restriction, we have the κ-classes on M≤1
g . We also define the boundary class

δ := ι∗[Mg−1,2] ∈ H2(M≤1
g ,Q).

By the pullback π∗, these tautological classes are naturally viewed as classes in H∗(J≤1
g ,Q).

We first note that the degree 2 cohomology group of J≤1
g is tautological.

Lemma 4.6. For g ≥ 2, H2(J≤1
g ,Q) is spanned by the tautological classes

θ, κ1, δ ∈ H2(J≤1
g ,Q).

Proof. We consider J0
g ⊂ J

≤1
g the open locus of degree 0 line bundles. Since its complement

has (complex) codimension 2, the restriction H2(J≤1
g ,Q) → H2(J0

g ,Q) is an isomorphism.
We apply the long exact sequence

· · · → H0(J0
g \ Jg,Q) → H2(J0

g ,Q) → H2(Jg,Q) → H1(J0
g \ Jg,Q) → · · · .

By [17], H2(Jg,Q) is spanned by θ and κ1. The lemma follows since the image of H0(J0
g \Jg,Q)

is spanned by δ. □
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We compare the theta divisors on J≤1
g and J−1

g−1,2. Recall the tautological class ξ2 from the
proof of Proposition 4.2.

Lemma 4.7. Let L be the universal line bundle on the universal curve p : Cg−1,2 → J−1
g−1,2

which is trivialized along the first marking, which induces θ := −1
2p∗(c1(L)2) on J−1

g−1,2. Then
we have

ϵ∗ι∗θ = (θ − ξ2) + 1
2(ψ1 + ψ2) ∈ H2(J−1

g−1,2,Q).

Proof. Let p̄ : Cg → J−1
g−1,2 be the universal curve on J≤1

g pulled back to J−1
g−1,2 along ι ◦ ϵ, and

let q : Cqs
g → Cg be the quasi-stable model. Let Lqs be the universal admissible line bundle

on Cqs
g trivialized along the first marking. The normalization of Cqs

g is the disjoint union of a
P1-bundle P over Jg−1,2 and the universal curve Cg−1,2. By [18, eq. (8)], we have a short exact
sequence

0 → Lqs|Cg−1,2(−x1 − x2) → Lqs → Lqs|P → 0 .
Since Lqs|Cg−1,2

∼= L, we get

ϵ∗ι∗θ = −1
2 p̄∗(c1(Lqs)2) = −1

2p∗(c1(L(−x1 − x2)2)) = θ − ξ2 + 1
2(ψ1 + ψ2)

where we used the self-intersection formula [xi]2 = xi∗(−ψi). □

Now we treat the case when g ≥ 4.

Proposition 4.8. Let

Θ := θ + aκ1 + bδ ∈ H2(J≤1
g ,Q), a, b ∈ Q

be a generalized theta divisor.
(a) If g ≥ 2, then Θ can be written as Θ = θ + bδ.
(b) If g ≥ 4, then there is no such b ∈ Q.

Proof. To prove (a), we use again the diagram (31). First, we pull the relation Θg+1 = 0 back
to Jg and obtain

0 = j∗Θg+1 = (θ + aκ1)g+1 ∈ H2g+2(Jg,Q).
By taking the weight 2g part with respect to the “multiplication by N” map, we get

a · θgκ1 = 0 ∈ H2g+2(Jg,Q).

Taking pushforward and applying (34), we have

aκ1 = 0 ∈ H2(Mg,Q).

This shows that aκ1 is supported on the boundary M≤1
g \ Mg and is therefore proportional

to δ by the irreducibility of the boundary.8

8If g ≥ 3, we can directly deduce a = 0 from κ1 ̸= 0 ∈ H2(Mg,Q).
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To prove (b), we restrict the relation to Jg−1,2. Let ψ1, ψ2 be the pullback of the ψ-classes
on Mg−1,2 to Jg−1,2. By Lemma 4.7 and [5, Lemma 4.2], we have

t∗ϵ∗ι∗θ = θ + 1
2(ψ1 + ψ2).

Since the excess intersection term for ι is −(ψ1 + ψ2), we have

0 = t∗ϵ∗ι∗Θg+1 = (θ + (1
2 − b)(ψ1 + ψ2))g+1 ∈ H2g+2(Jg−1,2,Q).

By taking the weight 2g − 2 part, we get

(1
2 − b)2 · θg−1(ψ1 + ψ2)2 = 0 ∈ H2g+2(Jg−1,2,Q).

Taking pushforward and using (34), we have (1
2 − b)2(ψ1 + ψ2)2 = 0 on Mg−1,2. If g ≥ 4, we

have the non-vanishing

(35) (ψ1 + ψ2)2 ̸= 0 ∈ H4(Mg−1,2,Q)

by the calculation of top intersection numbers [12]. Therefore b = 1
2 .

On the other hand, by Corollary 4.4 we have

0 = π∗

(
Θg+1

(g + 1)!

)
= π∗

(
θg+1

(g + 1)! + b
θg

g! δ
)

= π∗

(
1
48 ι∗ϵ∗t∗

θg−1

(g − 1)! + b
θg

g! δ
)

= ( 1
48 + b)δ.

Since δ ̸= 0 in H2(M≤1
g ,Q), we have b = − 1

48 which is a contradiction. □

By Proposition 4.8, we conclude Theorem 4.1 for g ≥ 4. However, the non-vanishing (35)
fails for g = 2, 3. Therefore we treat them separately in the following.

• The g = 3 case. Let Θ be a generalized theta divisor. By Proposition 4.8(a) we set

Θ = θ + bδ, b ∈ Q.

Recall the class α ∈ CH2(J2,2,Q) of Proposition 4.2. We write the weight decomposition

α =
∑

α(w), α(w) ∈ CH2
(w)(J2,2,Q).

By an explicit computation on the relative Jacobian J2,2, we have

α(2) = 1
480θ(ψ1 + ψ2) − 1

8960ξ
2
2 .

Here ξ2 was introduced in the proof of Proposition 4.2.
Since we have the relation δ3 = 0 for g = 3 by [19], we get from Proposition 4.2 that

0 = π∗(θΘ4)

= π∗

(
ι∗ϵ∗t∗

(1
4(θ + 1

2(ψ1 + ψ2))3 + 24α(2)θ − b(θ + 1
2(ψ1 + ψ2))2(ψ1 + ψ2)

)
+ 6b2θ3δ2

)
=
(191

224 − 2b− 36b2
)
ι∗(ψ1 + ψ2) ∈ H4(M≤1

3 ,Q).
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Here we used the tautological relation 2θξ2
2 = −θ2(ψ1 + ψ2) ∈ H6(J2,2,Q). Note that

ψ1 + ψ2 ̸= 0 ∈ H2(M2,2,Q), H3(M3,Q) = 0

where the second vanishing can be seen from [29]. Applying the long exact sequence of
cohomology associated with the open embedding M3 ↪→ M≤1

3 , we find

ι∗(ψ1 + ψ2) ̸= 0 ∈ H4(M≤1
3 ,Q).

This forces b to satisfy a quadratic equation
191
224 − 2b− 36b2 = 0

which does not have a rational solution. □

• The g = 2 case. For g = 2, note that there actually exists a generalized theta divisor

Θ := θ − 1
48δ ∈ H2(J≤1

2 ,Q).

Here the coefficient − 1
48 can be uniquely determined by the relation

π∗(Θ3) = 0 ∈ H2(M≤1
2 ,Q).

Therefore, we have to consider the larger open subset Mint
2 ⊂ M2 consisting of integral curves

and the relative compactified Jacobian πint : J int
2 → Mint

2 as in Theorem 4.1(b).
Since the codimension of Mint

2 \M≤1
2 is 2, Proposition 4.8(a) shows that a generalized theta

divisor has to be of the form
Θ = θ + bδ, b ∈ Q.

We consider the open subset

M◦
1,2 = M1,2 \

(
M1,1 × M0,3

)
⊂ M1,2

with the gluing map
ιint : M◦

1,2 → Mint
2 .

Let rint : M0,4 \ D1,2|3,4 → Mint
2 be the gluing map with respect to the deeper stratum.

Here D1,2|3,4 is the locus where the markings split into two pairs of points on the two rational
components. We have by [36] the tautological relations

δ3 = 0, δ2 = −1
6r

int
∗

[
M0,4 \D1,2|3,4

]
∈ H∗(Mint

2 ,Q).

On J int
2 , the universal double ramification cycle relation P3

2 = 0 contains contribution from
the boundary strata with two loops. However, those boundary strata contribute to lower
degree coefficients of the expression [N ]∗P3

2 = 0. Therefore Proposition 4.2 continues to hold
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on J
int
2 . A direct computation yields α(0) = 1

480(ψ1 + ψ2). Combining with Proposition 4.2
and Lemma 4.7, we obtain

0 = πint
∗ (θΘ3) = πint

∗

(
ιint
∗ ϵ∗t∗

(1
8(θ + 1

2(ψ1 + ψ2))2 + 6θα(0) − 3b
8 θ(ψ1 + ψ2)

)
+ 3b2θ2δ2

)
= ιint

∗

(1
8(ψ1 + ψ2) + 6α(0) − 3b

8 (ψ1 + ψ2)
)

+ 6b2δ2

=
( 11

960 − 1
32b− b2

)
rint

∗

[
M0,4 \D1,2|3,4

]
∈ H4(Mint

2 ,Q).

Then, due to the non-vanishing

rint
∗

[
M0,4 \D1,2|3,4

]
̸= 0 ∈ H4(Mint

2 ,Q),

we have
11
960 − 1

32b− b2 = 0

which is a contradiction.
This completes the proof of Theorem 4.1(b). □

4.4. Deligne–Mumford stacks versus varieties. So far we have worked universally over
the moduli space of stable curves, and the base in our example is a nonsingular Deligne–
Mumford stack. We explain here that our arguments actually produce examples with nonsin-
gular quasi-projective base varieties; this proves honestly Theorem 0.4.

To start with, we take a smooth and surjective morphism

ρ : B → Mg

such that B is a (nonsingular) projective variety and ρ has irreducible fibers; here the existence
of ρ follows from the GIT construction of the moduli of stable curves. In particular, the
pullback map

(36) ρ∗ : H∗(Mg,Q) → H∗(B,Q)

is injective. We write
B◦ := ρ−1(Mg) ⊂ B.

If we pull back the compactified Jacobian fibration of Theorem 4.1 along ρ, we get a compact-
ified Jacobian fibration

π : JC → B, B◦ ⊂ B ⊂ B.

By the proof of Proposition 4.8(a), up to scaling a generalized theta divisor on JC can be
expressed as

Θ = ρ∗θ + bδB, δB := [B \B◦] = ρ∗δ.

In other words, a generalized theta divisor on JC has to be pulled back from the moduli stack
of stable curves. Theorem 4.1, combined with the injectivity of (36), then implies that it
cannot happen. We have completed the proof of Theorem 0.4. □
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