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L4 ¢:G— G R G RBAFNFHFRZS, WEZ Y.

If  : G — G is a surjective homomorphism from a group G to itself, then ¢ is an

Nej

isomorphism.

False. This is true for finite groups but fails for infinite group in general. For example,
G = Q/Z, multiplication by 2 induces a surjective homomorphism from G to itself, which is
not an isomorphism.

2. —MEEMAE ¢ G — H 2R AU HAZ ker ¢ 2 4R,

A group homomorphism ¢ : G — H is injective if and only if ker ¢ is the empty set.

False. The kernel of a group homomorphism is never empty, as it always contains the
identity element. A group homomorphism is injective if and only if its kernel is a singleton
consisting of the identity element.

3. AE— A G AR, —ANMERCTHE T MR A .

In a cyclic group of odd order, the square of a generator is also a generator.

True. If we view the cyclic group as Z/nZ with n odd and generator 1, then 2 is also a
generator.

4. 7 Gy M Gy NEE WD Gy x Gy MTFE#EIEW H, x Hy, KB H, < G, H
Hy < Gs.

Let G; and G5 be groups. Then every subgroup of G; X G is of the form H; x H, for
some subgroups H; < G and Hy < Gs.

False. The simplest counterexample is, when G; = Go = Zs, the subgroup ((1,1)) is

not of the product form.

5. WiE G 1E%EE X EEH. HHEATGER g e G BlE T X BN ICE, W g =1

A group G acts on a set X. If for some g € GG, g fixes every element of X, then g = 1.

False. For example, for a trivial action, every element of the group G fixes every element
of X.



6. W p B DRE, o B DERE WEAB 2p> BIFE G IS IR,

Let p be a prime number and o« € N. Then every group G of order 2p® is solvable.

True. By Sylow’s theorem, there exists a Sylow p-subgroup P of order p®. Since it has
index 2 inside G, it is normal and G/P = Z,. In addition, as a p-group, P is nilpotent and
hence solvable. So (G is solvable.

7. I R R T AT g OBRAR. WEAR [T R TRAED ob KIFET, K a e 1,
be J.

Let R be a commutative ring and let I and J be ideals. Then every element of the ideal
1J is of the form ab with a € [ and b € J.

False. An element of I.J is typically a finite sum of products of the form ab with a € I
and b € J.

8. TEME—/rEedh b, BN AR ICE A AT LAME— B9 5 BUR Ju ISR AR, FECH B 11O =
R

In a UFD, every nonzero element can be uniquely written as a product of prime elements,
up to permutation.

False. This is not accurate: every nonzero nonunit element can be written as a product
of prime elements, unique up to permutation and associates.

9. B F 2, — M EFFHMZ I (o) —ATANHANA Fla]/(f(r) 22—
AN

Let F be a field, a nonconstant polynomial f(x) is irreducible if and only if F[z]/(f(x))
is a field.

True. The polynomial f(x) is irreducible if and only if it is prime (and nonzero), which

is the same as generating a maximal ideal (because F'[x] is a PID), which in turn is equivalent
to Flx]/(f(z)) being a field.

10. =4~ p #F G EHAE—NMHRES X &, NITEHBIAS) AN 4X 1 p [FR.
Let G be a p-group acting on a finite set X. Then the number of fixed points of the
action is congruent modulo p to #X.

True. By orbit-stabilizer formula,
#X = #(G/Stabg(x)).
o

When Stabg(z) # G, the quotient G /Stabg(z) has nontrivial p-power elements, so divisible
by p, and when G = Stabg(x), x is a fixed point of the action and O = {x}.



Grading table

T/F 1 2 3 4 5 6 7 Total

/10 /10 /15 /20 /15 /15 /15 /10

fRER— (10 70) & R 22— DM MEIA, Q NHRIL. & f(x) 2 R[z] IREL
> 1 MAITAZ I, 8 f(x) £ Qo] FAEMMEAEDN 1. IEW Qx]/T &M, (WIARK
SIS el P SO B, 5 IR TE tAR 51 I E B TEAS)

Let R be a UFD with fraction field @ and let f(x) be an irreducible polynomial of
degree > 1 in R[z|. Let I denote the ideal in Q[z] generated by f(z). Prove that Q[z]/I is
a field. (If you want to cite a result from the lectures or books, make it clear which one you

are using.)

1EB. By Gauss Lemma, if f(z) factors as g(x)h(x) in Q[z], then we may adjust g(x) and
h(x) by elements in @ so that both g(z) and h(z) belong to R[z]. But f(x) is irreducible in
R[z], so one of g(z) and h(x) is a unit in R[z| and thus a unit in Q[z]. It follows that f(z)
is irreducible in Q[z] and hence generates a maximal ideal, as Q[z] is a PID. From this, we
know that Q[x]/I is a field. O



FREB— (15 47) WEMEEABY N 1947 = 3 - 11 - 59 FOREAR 2GR,
Prove that every group of order 1947 = 3 - 11 - 59 is cyclic.

1EB]. Consider the number nsg of Sylow 59-group. By Sylow’s theorems, nsg|3 - 11 and
nsg = 1 mod 59. So nzg = 1, i.e. the Sylow 59-group Psg is a normal subgroup, which itself
is isomorphic to Zsg.

Next, consider the conjugation action of G on Psy:
Vol G — Aut(P59) = Z;g >~ Z58-

It is clear that P59 C ker . So #Imyp divides 3dot11. Yet as a subgroup of Zsg, #Imy has
order divides 58. So #Ime is trivial. In other words, P59 C Z(G).

Now consider the number ny; and ns of Sylow 11-subgroups and 3-subgroups. We have
nyp = 1 mod 11, n11/3 - 59.

ns = 1 mod 3, ns|11 - 59.
In fact Zs9 belonging to the center implies that n3|11 as the conjugation action of G on the set
of Sylow 3-subgroups factors through the quotient by P; and Psg. From these divisibilities,
we see that n;; = ng = 1. So the Sylow 11-subgroup P;; and Sylow 3-subgroup P; are both

normal. It then follows that G = P3 X Pi1 X P59 = Z1947.
U



FRER= (20 47) STIEBE n > 3, F Do, FRARMN 2n 1 THIARHEE.

(1) 3k Dy EP!/I\JB%%E’JBH

(2) WL X —A> Ds MAFRM ¢, o(r) Z2H 2 MEF, o(s) Z2H 4 Mk dik
k] #Aut(Dg) § 8.

(3) UIEM]: Dg < Dyg. (R B, TATHG Ds FHIIEFTTHN Dis IR TTHIT TS )

(4) UEM: Aut(Dsg) & Dy,

For a positive integer n > 3, let Dy, denote the dihedral group of order 2n.

(1) Find the orders of elements of Ds.

(2) Show that, for an automorphism ¢ : Dg — Dg, ¢(r) has at most 2 possible choices,
and ¢(s) has at most 4 possible choices. Deduce that #Aut(Dg) < 8.

(3) Show that Dg <1 Dy (here the rotation element of Dy is sent to the square of the
rotation element of Dig.)

(4) Prove that Aut(Dsg) = Ds.

JEA. (1) We write Dy, = (r,s | r" = s> = 1,srs = r~'} in the usual notation. We list of

order of elements in the following table.

Elements | 1|7 |72 | 3| s |sr|sr?| sr

Order |1(4(2 4|22 2 | 2

(2) An automorphism must preserve the order of elements. So ¢(r) can only be r or

r3. The element ¢(s) has a priori five choices: 72, s, sr, sr?, sr3. But if ¢(s) = 72, then

Ime C (r). It cannot be an isomorphism. So ¢(s) has at most 4 choices. From this, we see
that #Aut(Dsg) < 8.

(3) If we write Dig = (rig,5 | 755 = 5% = 1, sr165 = 115 ), then Dg = (r?;, s). It suffices
to check that

7’16D87’fﬁl - Dg and SDgSil - Dg.

(Then the equalities hold by counting the number of elements.) To check inclusion, it is

enough to check for generators. The first inclusion follows from that
T16T56 e = Tig € Dg  and 75175 = 718 € Ds.
The second inclusion follows from that
sriss ' =1 € Dg and sss”!'=s¢€ Ds.

(4) Now, consider the conjugation action of Dyg on Ds:

@ . D16 — Aut(Dg)



We compute the kernel of this map ¢, it is the set of elements that commutes with s and
with 7.

For elements of the type 7%, it clearly commutes with r¥;, but sri;s~! = 7%, which is
equal to r{, if and only if @ = 4, i.e. the element 7.

For elements of the form srés, r2ssrisrs = sris, so it never commutes with 2.

It follows that kerp = {1,7{s}. So #Im(p) = 8. Combining this with (2), we deduce
that

Aut(Dg) = Im(Dyg) = Dig/(r]s)-

It is clear that Dyg/(ris) = (ris, s | ris = s> = 1,5r16s = 174 ) is isomorphic to Ds. O



BRERPY (15 7)) 0B G MO Z(G). 18 A G — Se Wi G EEHC ENAF#
YEF, FEMIE Ay = Mg), BF A\y(h) = gh (g,h € G). it pu: G — Sg NEE G 7EH C LA
BAEH, JFEIE 1y = u(g9), B pg(h) = hg™' (9, € G).

(1) SE: FE AR\ RATER o 228, B g.h € G, Ay o pin = in 0 Ay,

(2) WERH: A\, = py JHAY g 20 Z(G) hFrN 182 T E.

(3) EH: 22 N(G) N u(G) BEFFET MNZ(G)) = n(Z(G)).

Let G be a group with center Z(G). Let A : G — Sg be the left translation action of G
on itself, and we write A, = A(g) so that A\;(h) = gh for g,h € G. Similarly, let 4 : G — Sg
be the right translation action of G on itself, and we write p, := p(g) so that u,(h) = hg™'.

(1) Prove that the action of A and g commute with each other, i.e. for g,h € G,
Ag © Hn = [1h © Ag.

(2) Prove that A\, = p, if and only if ¢ is an element of order 1 or 2 in the center Z(G).

(3) Prove that the intersection A\(G) N u(G) in G is equal to A(Z(G)) = u(Z(G)).

1. (1) For z € G, we have
Ay o pn(x) = A\g(zh™!) = gzh™".

pin 0 Ag(z) = pp(gz) = gxh™'.
S0 Ag © [, = pip, © Ag, i.e. the left and right actions commute.

(2) If A, = g, then for any x € G, we have \,(x) = p,(x), ie. gr = xzg '

Setting
x =1 gives g?> = 1. Putting this back to gz = xg~! gives that gz = xg for every z € G. So
g € Z(G). Conversely, when g =1 and g € Z(G), this implies that \, = .

(3) An element in the intersection A(G) N u(G) corresponds to an equality A\, = gy
for some g,h € G. This means that for z € G, A\,(x) = p(x) or equivalently gz = zh™'.
Putting « = 1 gives ¢ = h~!. Putting this back to the equality gz = xh~! gives gz = g,
i.e. g € Z(G). This implies that A(G) N u(G) is contained in A(Z(G)) and in u(Z(G)).

Conversely, if we take any g € Z(G), A\j(x) = gr = xg = p,1(z). So MZ(G)) =
w(Z(G)) is contained in \(G) N u(G). O



FREELI (15 77) W R e —MME— MR, A I BEAMERRTT p, ¢ HHER
—ANERILHES p B g HFE.

(1) XTIE#EEL m, n, TEBIEAR (p™, ¢") = R.

(2) FEH R A FHATRLER,

Let R be a UFD with two nonassociate prime elements p and ¢ such that every prime
element is an associate of either p or g.

(1) Given positive integers m, n, prove that the ideal (p™, ¢") = R.

(2) Deduce that R is a PID.

1ERA. (1) Consider p™ + ¢" € (p™,¢"). We note that neither p nor ¢ divides p™ + ¢", so p
and ¢ does not appear in the factorization of p™ + ¢”. Yet R has only two primes, p™ + ¢"
must be a unit. So (p,¢") = R.

(2) Let I be a nonunit ideal of R. For each nonzero element z of I, it factors as
r = p"@g"@y(x) in R, where m(x),n(x) € Zso and u(z) is a unit. Let m := min, m(z)
and n := min, n(z). We claim that I = (p"q¢"). Clearly, by definition, p"¢" divides every
r = p™@g@y(z). It remains to show that p™q" € I.

Let z € I\{0} and y € I\{0} be so that m = m(x) and n = n(y). If n = n(z) or
m = m(y), then p™¢™ is a unit multiple of x or y, respectively, and thus p™¢™ € I. Now we

assume that n > n(z) and m > m(y). By (1), we know that
(" (), p" @ u(y)) = R.
So there exists 7, s € R such that
P () + sy = 1

P = rpm " Pu(z) + spm W u(y) = ra + sy.
So p™q™ € I. Thus R is a PID. O



BT (15 4)

HHEHL p, F D, (x) = 2__11 € Z[a] T p YA HIZ TR,

(1) SEB @, (x) 75 Qla] TRATL). (TSI —MEPEsE B, ASrT DAELE3I A6 T @, 1
o)

(2) 12 ¢ = e¥™/P N—AAKTE p WHAIAR. UEW: ¥ o B3] ¢, @5 7 — M N HIFEM

Zlz]/(Pp()) = Z(Cp) = {ao + a1y + -+ + ap—2<5_2 | ag,...,ap—9 € Z}.

R, Z[¢,) & —A B3
(3) UEML: AR n AN IEREAE Z(G,) TR ¢ — 1 BERR, T n 2 p BIARREL.
(FEXIE R, AFT DUE ARG TP i TR R R AT DU A 22 TS A R 24 3+

i)
P_1
Let p be a prime number. Let ®,(z) := ’ T € Z[z] denote the pth cyclotomic
x j—
polynomial.

(1) Show that ®,(z) is irreducible in Q[z]. (It is okay to use a “general” theorem, but
not okay to use a result specific to ®,(z).)
(2) Let ¢, = e?™/P denote a primitive pth root of unity. Prove that there is an isomor-

phism
Z[z]/(@y(2)) = Z[G) = {ao + arly + -+ + ap2Cl? | ag,...,ay—s € L}

sending = to (,. In particular Z|[(,] is an integral domain.

(3) Show that if n is an integer such that (, — 1 divides n in Z[(,], then n is divisible
by p.

(You are not allowed to use heavy tools from algebraic number theory. Just manipulate

with the polynomial ring and its quotients.)

. 1P —1
JE9. (1) Note that @, (x+1) = * TV =1

p divides all the non-leading coefficients and p* does not divide the constant coefficient; so

= 2P~ 4 prP~2+- . -+ p. By Eisenstein criterion,

®,(z + 1) is irreducible in Z[z], and thus ®,(z) is irreducible in Z[z]. By Gauss’ lemma,
®,(z) is also irreducible over Z|x].

(2) The natural homomorphism
p : Zlx] — Z[G]

sending « to (, clearly has the property that ker ¢ contains ®,(x). So we have a homomor-

phism
@ 2 Llx]/(Pp(x)) = Z[G)-



For the quotient Z[z]/(®,(z)), each coset can be represented by a polynomial ag + a1z +
-+ +a, o2P~% (as any terms that have degree > p — 1 can be substituted into lower degree
terms using ®,(z)). From this, it is clear that ¢ is an isomorphism.

(3) If n is divisible by (, — 1, then n = (¢, — 1)g((,) for some polynomial g(z) € Z[z].
Using the isomorphism from (2), we see that

n+(0p(z)) = (z = 1)g(x) + (Pp(2)).

So there exists some polynomial h(z) € Z[x| such that

n—(z —1)g(z) = ®p(x)h(z)

Evaluating this equality at z = 1 gives n = ®,(1)h(1). But ®,(1) = p so n is divisible by
p. 0]



BEEE (10 7)) W&EE p, G 2— pBf. WA R—D G FRNKIEMZHAE. UE
. A& G IR AC A
Let p be a prime, let G be a finite p-group. Let A be a maximal normal abelian subgroup

of GG. Prove that A is also a maximal abelian subgroup of G.

1EPF. Suppose that A is strictly contained in another abelian group A’. Let H be the
subgroup of G generated by gA’g~! for all g € G; clearly H is a normal subgroup of G' and
contains A.

We claim that H centralize A. For this, it is enough to check that for every @’ € A" and
g € G, ga’g~' commutes with every element a € A. Indeed,

gdg~ a-ga g = gd' - g lag - "rg
But A is normal, so g 'ag € A; so a’ commutes with g 'ag, and thus the above is equal to

g-9g tag-d -d g7t =a.

Now consider G := G'/A and let 7 : G — G be the projection. Write H for the image
of H, which is a nontrivial p-group. By a proposition we have proved in class, H intersects
nontrivially with the center Z(G). Pick any element i € H N Z(G), and set N := (n) C G.
Since N C Z(G), N is a normal subgroup of i, and thus N is a normal subgroup of G.

In addition, if we pick a preimage n € H of i € H, then n centralizes A and thus N is
abelian.

This then gives a normal abelian subgroup N strictly containing A, we arrive at a

contradiction. O

An alternative proof is to take the centralizer Z5(A) of A inside G. Since A is normal,
Za(A) is a normal subgroup of G: for any z € Zg(A), g € G, we want to show that
gz~ € Zg(A), ie. for a € A,
1

1 1

929 " ra-gz7lgT =gz-g ag 27 g7 = g9 ag)zr g = a,

where we used that g~ 'ag € A by normality of A. So gzg~! € Zg(A) and thus Zg(A) < G.
If A is not a maximal abelian subgroup, then A C Z5(A) is a strict inclusion.
Consider the subgroup Zg(A)/A C G/A; it is a normal subgroup. We note that

(Za(A)JA) N Z(G/A) is nontrivial. Picking an element from this intersection, and the

rest of the argument is similar to above.



