
2023 秋: 代数学一 (实验班) 期中考试
姓名: 院系: 学号: 分数:

时间：110 分钟 满分：110 分, 总分不超过 100 分

判断题 在下表中填写 T 或 F (10 分)

1 2 3 4 5 6 7 8 9 10
F F T F F T F F T T

1. 若 ϕ : G → G 是一个群 G 到自身的满同态, 则它是一个同构.
If ϕ : G → G is a surjective homomorphism from a group G to itself, then ϕ is an

isomorphism.
False. This is true for finite groups but fails for infinite group in general. For example,

G = Q/Z, multiplication by 2 induces a surjective homomorphism from G to itself, which is
not an isomorphism.

2. 一个群同态 ϕ : G → H 是单射当且仅当其核 kerϕ 是空集.
A group homomorphism ϕ : G → H is injective if and only if kerϕ is the empty set.
False. The kernel of a group homomorphism is never empty, as it always contains the

identity element. A group homomorphism is injective if and only if its kernel is a singleton
consisting of the identity element.

3. 在一个奇数阶的循环群中，一个生成元的平方也是生成元.
In a cyclic group of odd order, the square of a generator is also a generator.
True. If we view the cyclic group as Z/nZ with n odd and generator 1, then 2 is also a

generator.

4. 若 G1 和 G2 为群, 则每个 G1 × G2 的子群都形如 H1 × H2, 这里 H1 ≤ G1 且

H2 ≤ G2.
Let G1 and G2 be groups. Then every subgroup of G1 ×G2 is of the form H1 ×H2 for

some subgroups H1 ≤ G1 and H2 ≤ G2.
False. The simplest counterexample is, when G1 = G2 = Z2, the subgroup ⟨(1, 1)⟩ is

not of the product form.

5. 设群 G 在集合 X 上作用. 若某个元素 g ∈ G 固定了 X 中的每个元素, 则 g = 1.
A group G acts on a set X. If for some g ∈ G, g fixes every element of X, then g = 1.
False. For example, for a trivial action, every element of the group G fixes every element

of X.
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6. 设 p 是一个素数, α 是一个自然数. 则每个阶为 2pα 的群 G 都是可解群.
Let p be a prime number and α ∈ N. Then every group G of order 2pα is solvable.
True. By Sylow’s theorem, there exists a Sylow p-subgroup P of order pα. Since it has

index 2 inside G, it is normal and G/P ∼= Z2. In addition, as a p-group, P is nilpotent and
hence solvable. So G is solvable.

7. 交换环 R 中 I 和 J 为理想. 则理想 IJ 中每个元素是形如 ab 的样子, 其中 a ∈ I,
b ∈ J .

Let R be a commutative ring and let I and J be ideals. Then every element of the ideal
IJ is of the form ab with a ∈ I and b ∈ J .

False. An element of IJ is typically a finite sum of products of the form ab with a ∈ I

and b ∈ J .

8. 在唯一分解整环中, 每个非零元素都可以唯一的写成素元的乘积, 在交换因子的意
义下.

In a UFD, every nonzero element can be uniquely written as a product of prime elements,
up to permutation.

False. This is not accurate: every nonzero nonunit element can be written as a product
of prime elements, unique up to permutation and associates.

9. 设 F 是一个域, 一个非常数的多项式 f(x) 是不可约的当且仅当 F [x]/(f(x)) 是一

个域.
Let F be a field, a nonconstant polynomial f(x) is irreducible if and only if F [x]/(f(x))

is a field.
True. The polynomial f(x) is irreducible if and only if it is prime (and nonzero), which

is the same as generating a maximal ideal (because F [x] is a PID), which in turn is equivalent
to F [x]/(f(x)) being a field.

10. 一个 p 群 G 作用在一个有限集合 X 上, 则作用的不动点的个数和 #X 模 p 同余.
Let G be a p-group acting on a finite set X. Then the number of fixed points of the

action is congruent modulo p to #X.
True. By orbit-stabilizer formula,

#X =
∑
O

#(G/StabG(x)).

When StabG(x) ̸= G, the quotient G/StabG(x) has nontrivial p-power elements, so divisible
by p, and when G = StabG(x), x is a fixed point of the action and O = {x}.



Grading table

T/F 1 2 3 4 5 6 7 Total
/10 /10 /15 /20 /15 /15 /15 /10

解答题一 (10 分) 设 R 是一个唯一分解整环, Q 为其分式域. 设 f(x) 是 R[x] 中次数

≥ 1 的不可约多项式. 记 f(x) 在 Q[x] 中生成的理想为 I. 证明 Q[x]/I 是一个域. (如果你
引用书中或者讲义中的定理, 请明确指出你引用的定理是哪个.)

Let R be a UFD with fraction field Q and let f(x) be an irreducible polynomial of
degree ≥ 1 in R[x]. Let I denote the ideal in Q[x] generated by f(x). Prove that Q[x]/I is
a field. (If you want to cite a result from the lectures or books, make it clear which one you
are using.)

证明. By Gauss Lemma, if f(x) factors as g(x)h(x) in Q[x], then we may adjust g(x) and
h(x) by elements in Q so that both g(x) and h(x) belong to R[x]. But f(x) is irreducible in
R[x], so one of g(x) and h(x) is a unit in R[x] and thus a unit in Q[x]. It follows that f(x)

is irreducible in Q[x] and hence generates a maximal ideal, as Q[x] is a PID. From this, we
know that Q[x]/I is a field. □



解答题二 (15 分) 证明每个阶为 1947 = 3 · 11 · 59 的群都是循环群.
Prove that every group of order 1947 = 3 · 11 · 59 is cyclic.

证明. Consider the number n59 of Sylow 59-group. By Sylow’s theorems, n59|3 · 11 and
n59 ≡ 1 mod 59. So n59 = 1, i.e. the Sylow 59-group P59 is a normal subgroup, which itself
is isomorphic to Z59.

Next, consider the conjugation action of G on P59:

φ : G → Aut(P59) ∼= Z×
59 ≃ Z58.

It is clear that P59 ⊆ kerφ. So #Imφ divides 3dot11. Yet as a subgroup of Z58, #Imφ has
order divides 58. So #Imφ is trivial. In other words, P59 ⊆ Z(G).

Now consider the number n11 and n3 of Sylow 11-subgroups and 3-subgroups. We have

n11 ≡ 1 mod 11, n11|3 · 59.

n3 ≡ 1 mod 3, n3|11 · 59.

In fact Z59 belonging to the center implies that n3|11 as the conjugation action of G on the set
of Sylow 3-subgroups factors through the quotient by P3 and P59. From these divisibilities,
we see that n11 = n3 = 1. So the Sylow 11-subgroup P11 and Sylow 3-subgroup P3 are both
normal. It then follows that G = P3 × P11 × P59

∼= Z1947.
□



解答题三 (20 分) 对正整数 n ≥ 3, 用 D2n 表示阶为 2n 的二面体群.
(1) 求 D8 中每个元素的阶.
(2) 证明: 对一个 D8 的自同构 φ, φ(r) 至多有 2 个选择, φ(s) 至多有 4 个选择. 由此

证明 #Aut(D8) ≤ 8.
(3) 证明: D8 �D16. (这里, 我们将 D8 中的旋转元视为 D16 中的旋转元的平方.)
(4) 证明: Aut(D8) ∼= D8.
For a positive integer n ≥ 3, let D2n denote the dihedral group of order 2n.
(1) Find the orders of elements of D8.
(2) Show that, for an automorphism φ : D8 → D8, φ(r) has at most 2 possible choices,

and φ(s) has at most 4 possible choices. Deduce that #Aut(D8) ≤ 8.
(3) Show that D8 � D16 (here the rotation element of D8 is sent to the square of the

rotation element of D16.)
(4) Prove that Aut(D8) ∼= D8.

证明. (1) We write D2n = ⟨r, s | rn = s2 = 1, srs = r−1} in the usual notation. We list of
order of elements in the following table.

Elements 1 r r2 r3 s sr sr2 sr3

Order 1 4 2 4 2 2 2 2

(2) An automorphism must preserve the order of elements. So φ(r) can only be r or
r3. The element φ(s) has a priori five choices: r2, s, sr, sr2, sr3. But if φ(s) = r2, then
Imφ ⊆ ⟨r⟩. It cannot be an isomorphism. So φ(s) has at most 4 choices. From this, we see
that #Aut(D8) ≤ 8.

(3) If we write D16 = ⟨r16, s | r816 = s2 = 1, sr16s = r−1
16 ⟩, then D8 = ⟨r216, s⟩. It suffices

to check that

r16D8r
−1
16 ⊆ D8 and sD8s

−1 ⊆ D8.

(Then the equalities hold by counting the number of elements.) To check inclusion, it is
enough to check for generators. The first inclusion follows from that

r16r
2
16r

−1
16 = r216 ∈ D8 and r16sr

−1
16 = r216s ∈ D8.

The second inclusion follows from that

sr216s
−1 = r−2

16 ∈ D8 and sss−1 = s ∈ D8.

(4) Now, consider the conjugation action of D16 on D8:

φ : D16 → Aut(D8).



We compute the kernel of this map φ, it is the set of elements that commutes with s and
with r216.

For elements of the type ra16, it clearly commutes with r216, but sra16s
−1 = r−a, which is

equal to ra16 if and only if a = 4, i.e. the element r816.
For elements of the form sra16, r216sra16r−2

16 = sra−4
16 , so it never commutes with r2.

It follows that kerφ = {1, r416}. So #Im(φ) = 8. Combining this with (2), we deduce
that

Aut(D8) ∼= Im(D16) ∼= D16/⟨r416⟩.

It is clear that D16/⟨r416⟩ ∼= ⟨r16, s | r416 = s2 = 1, sr16s = r−1
16 ⟩ is isomorphic to D8. □



解答题四 (15 分) 记群 G 的中心为 Z(G). 记 λ : G → SG 为群 G 在自己上的左平移

作用, 并简记 λg = λ(g), 即 λg(h) = gh (g, h ∈ G). 记 µ : G → SG 为群 G 在自己上的右平

移作用, 并简记 µg = µ(g), 即 µg(h) = hg−1 (g, h ∈ G).
(1) 证明: 左作用 λ 和右作用 µ 交换, 即对 g, h ∈ G, λg ◦ µh = µh ◦ λg.
(2) 证明: λg = µg 当且仅当 g 是中心 Z(G) 中阶为 1 或 2 的元素.
(3) 证明: 交 λ(G) ∩ µ(G) 恰好等于 λ(Z(G)) = µ(Z(G)).
Let G be a group with center Z(G). Let λ : G → SG be the left translation action of G

on itself, and we write λg = λ(g) so that λg(h) = gh for g, h ∈ G. Similarly, let µ : G → SG

be the right translation action of G on itself, and we write µg := µ(g) so that µg(h) = hg−1.
(1) Prove that the action of λ and µ commute with each other, i.e. for g, h ∈ G,

λg ◦ µh = µh ◦ λg.
(2) Prove that λg = µg if and only if g is an element of order 1 or 2 in the center Z(G).
(3) Prove that the intersection λ(G) ∩ µ(G) in G is equal to λ(Z(G)) = µ(Z(G)).

证明. (1) For x ∈ G, we have

λg ◦ µh(x) = λg(xh
−1) = gxh−1.

µh ◦ λg(x) = µh(gx) = gxh−1.

So λg ◦ µh = µh ◦ λg, i.e. the left and right actions commute.
(2) If λg = µg, then for any x ∈ G, we have λg(x) = µg(x), i.e. gx = xg−1. Setting

x = 1 gives g2 = 1. Putting this back to gx = xg−1 gives that gx = xg for every x ∈ G. So
g ∈ Z(G). Conversely, when g2 = 1 and g ∈ Z(G), this implies that λg = µg.

(3) An element in the intersection λ(G) ∩ µ(G) corresponds to an equality λg = µh

for some g, h ∈ G. This means that for x ∈ G, λg(x) = µh(x) or equivalently gx = xh−1.
Putting x = 1 gives g = h−1. Putting this back to the equality gx = xh−1 gives gx = xg,
i.e. g ∈ Z(G). This implies that λ(G) ∩ µ(G) is contained in λ(Z(G)) and in µ(Z(G)).

Conversely, if we take any g ∈ Z(G), λg(x) = gx = xg = µg−1(x). So λ(Z(G)) =

µ(Z(G)) is contained in λ(G) ∩ µ(G). □



解答题五 (15 分) 设 R 是一个唯一分解整环, 恰有两个互不相伴的素元 p, q 使得任意
一个素元都与 p 或 q 相伴.

(1) 对正整数 m,n, 证明理想 (pm, qn) = R.
(2) 证明 R 是一个主理想整环.
Let R be a UFD with two nonassociate prime elements p and q such that every prime

element is an associate of either p or q.
(1) Given positive integers m, n, prove that the ideal (pm, qn) = R.
(2) Deduce that R is a PID.

证明. (1) Consider pm + qn ∈ (pm, qn). We note that neither p nor q divides pm + qn, so p

and q does not appear in the factorization of pm + qn. Yet R has only two primes, pm + qn

must be a unit. So (pm, qn) = R.
(2) Let I be a nonunit ideal of R. For each nonzero element x of I, it factors as

x = pm(x)qn(x)u(x) in R, where m(x), n(x) ∈ Z≥0 and u(x) is a unit. Let m := minx m(x)

and n := minx n(x). We claim that I = (pmqn). Clearly, by definition, pmqn divides every
x = pm(x)qn(x)u(x). It remains to show that pmqn ∈ I.

Let x ∈ I\{0} and y ∈ I\{0} be so that m = m(x) and n = n(y). If n = n(x) or
m = m(y), then pmqn is a unit multiple of x or y, respectively, and thus pmqn ∈ I. Now we
assume that n > n(x) and m > m(y). By (1), we know that

(qn(x)−nu(x), pm(y)−mu(y)) = R.

So there exists r, s ∈ R such that

rqn(x)−nu(x) + spm(y)−mu(y) = 1.

pmqn = rpmqn(x)u(x) + spm(y)qnu(y) = rx+ sy.

So pmqn ∈ I. Thus R is a PID. □



解答题六 (15 分)
对素数 p, 用 Φp(x) :=

xp − 1

x− 1
∈ Z[x] 记 p 次分圆多项式.

(1) 证明 Φp(x) 在 Q[x] 中不可约. (可以引用一般性定理, 不可以直接引用关于 Φp 的

定理.)
(2) 记 ζp = e2πi/p 为一个本元 p 次单位根. 证明：将 x 映到 ζp 建立了一个如下的同构

Z[x]/(Φp(x))
∼=−→ Z[ζp] = {a0 + a1ζp + · · ·+ ap−2ζ

p−2
p | a0, . . . , ap−2 ∈ Z}.

特别地, Z[ζp] 是一个整环.
(3) 证明: 如果 n 是一个正整数在 Z[ζp] 中被 ζp − 1 整除, 则 n 是 p 的倍数.
(在这道题中, 不可以使用代数数论中的工具. 证明只可以使用对多项式环和商环的讨

论.)
Let p be a prime number. Let Φp(x) :=

xp − 1

x− 1
∈ Z[x] denote the pth cyclotomic

polynomial.
(1) Show that Φp(x) is irreducible in Q[x]. (It is okay to use a “general” theorem, but

not okay to use a result specific to Φp(x).)
(2) Let ζp = e2πi/p denote a primitive pth root of unity. Prove that there is an isomor-

phism

Z[x]/(Φp(x))
∼=−→ Z[ζp] = {a0 + a1ζp + · · ·+ ap−2ζ

p−2
p | a0, . . . , ap−2 ∈ Z}

sending x to ζp. In particular Z[ζp] is an integral domain.
(3) Show that if n is an integer such that ζp − 1 divides n in Z[ζp], then n is divisible

by p.
(You are not allowed to use heavy tools from algebraic number theory. Just manipulate

with the polynomial ring and its quotients.)

证明. (1) Note that Φp(x+1) =
(x+ 1)p − 1

x
= xp−1+pxp−2+· · ·+p. By Eisenstein criterion,

p divides all the non-leading coefficients and p2 does not divide the constant coefficient; so
Φp(x + 1) is irreducible in Z[x], and thus Φp(x) is irreducible in Z[x]. By Gauss’ lemma,
Φp(x) is also irreducible over Z[x].

(2) The natural homomorphism

φ : Z[x] → Z[ζp]

sending x to ζp clearly has the property that kerφ contains Φp(x). So we have a homomor-
phism

φ̄ : Z[x]/(Φp(x)) → Z[ζp].



For the quotient Z[x]/(Φp(x)), each coset can be represented by a polynomial a0 + a1x +

· · ·+ ap−2x
p−2 (as any terms that have degree ≥ p− 1 can be substituted into lower degree

terms using Φp(x)). From this, it is clear that φ̄ is an isomorphism.
(3) If n is divisible by ζp − 1, then n = (ζp − 1)g(ζp) for some polynomial g(x) ∈ Z[x].

Using the isomorphism from (2), we see that

n+ (Φp(x)) = (x− 1)g(x) + (Φp(x)).

So there exists some polynomial h(x) ∈ Z[x] such that

n− (x− 1)g(x) = Φp(x)h(x)

Evaluating this equality at x = 1 gives n = Φp(1)h(1). But Φp(1) = p so n is divisible by
p. □



解答题七 (10 分) 对素数 p, G 是一个 p-群. 设 A 是一个 G 中的极大正规交换群. 证
明: A 是 G 中的极大交换群.

Let p be a prime, let G be a finite p-group. Let A be a maximal normal abelian subgroup
of G. Prove that A is also a maximal abelian subgroup of G.

证明. Suppose that A is strictly contained in another abelian group A′. Let H be the
subgroup of G generated by gA′g−1 for all g ∈ G; clearly H is a normal subgroup of G and
contains A.

We claim that H centralize A. For this, it is enough to check that for every a′ ∈ A′ and
g ∈ G, ga′g−1 commutes with every element a ∈ A. Indeed,

ga′g−1 · a · ga′−1g−1 = ga′ · g−1ag · a′−1g−1.

But A is normal, so g−1ag ∈ A; so a′ commutes with g−1ag, and thus the above is equal to

g · g−1ag · a′ · a′−1g−1 = a.

Now consider G := G/A and let π : G → G be the projection. Write H̄ for the image
of H, which is a nontrivial p-group. By a proposition we have proved in class, H̄ intersects
nontrivially with the center Z(Ḡ). Pick any element n̄ ∈ H̄ ∩ Z(Ḡ), and set N̄ := ⟨n̄⟩ ⊆ Ḡ.
Since N̄ ⊆ Z(Ḡ), N̄ is a normal subgroup of Ḡ, and thus N is a normal subgroup of G.

In addition, if we pick a preimage n ∈ H of n̄ ∈ H̄, then n centralizes A and thus N is
abelian.

This then gives a normal abelian subgroup N strictly containing A, we arrive at a
contradiction. □

An alternative proof is to take the centralizer ZG(A) of A inside G. Since A is normal,
ZG(A) is a normal subgroup of G: for any z ∈ ZG(A), g ∈ G, we want to show that
gzg−1 ∈ ZG(A), i.e. for a ∈ A,

gzg−1 · a · gz−1g−1 = gz · g−1ag · z−1g−1 = g(g−1ag)zz−1g−1 = a,

where we used that g−1ag ∈ A by normality of A. So gzg−1 ∈ ZG(A) and thus ZG(A)�G.
If A is not a maximal abelian subgroup, then A ⊊ ZG(A) is a strict inclusion.
Consider the subgroup ZG(A)/A ⊆ G/A; it is a normal subgroup. We note that

(ZG(A)/A) ∩ Z(G/A) is nontrivial. Picking an element from this intersection, and the
rest of the argument is similar to above.


