2023 秋：代数学一（实验班）期中考试

姓名： \qquad院系： \qquad
\qquad分数：

时间： 110 分钟 满分： 110 分，总分不超过 100 分

判断题 在下表中填写 T 或 F （10 分）

1	2	3	4	5	6	7	8	9	10
F	F	T	F	F	T	F	F	T	T

1．若 $\phi: G \rightarrow G$ 是一个群 G 到自身的满同态，则它是一个同构．
If $\phi: G \rightarrow G$ is a surjective homomorphism from a group G to itself，then ϕ is an isomorphism．

False．This is true for finite groups but fails for infinite group in general．For example， $G=\mathbb{Q} / \mathbb{Z}$ ，multiplication by 2 induces a surjective homomorphism from G to itself，which is not an isomorphism．

2．一个群同态 $\phi: G \rightarrow H$ 是单射当且仅当其核 $\operatorname{ker} \phi$ 是空集．
A group homomorphism $\phi: G \rightarrow H$ is injective if and only if ker ϕ is the empty set．
False．The kernel of a group homomorphism is never empty，as it always contains the identity element．A group homomorphism is injective if and only if its kernel is a singleton consisting of the identity element．

3．在一个奇数阶的循环群中，一个生成元的平方也是生成元．
In a cyclic group of odd order，the square of a generator is also a generator．
True．If we view the cyclic group as $\mathbb{Z} / n \mathbb{Z}$ with n odd and generator 1 ，then 2 is also a generator．

4．若 G_{1} 和 G_{2} 为群，则每个 $G_{1} \times G_{2}$ 的子群都形如 $H_{1} \times H_{2}$ ，这里 $H_{1} \leq G_{1}$ 且 $H_{2} \leq G_{2}$ ．

Let G_{1} and G_{2} be groups．Then every subgroup of $G_{1} \times G_{2}$ is of the form $H_{1} \times H_{2}$ for some subgroups $H_{1} \leq G_{1}$ and $H_{2} \leq G_{2}$ ．

False．The simplest counterexample is，when $G_{1}=G_{2}=\mathbf{Z}_{2}$ ，the subgroup $\langle(1,1)\rangle$ is not of the product form．

5．设群 G 在集合 X 上作用．若某个元素 $g \in G$ 固定了 X 中的每个元素，则 $g=1$ ．
A group G acts on a set X ．If for some $g \in G, g$ fixes every element of X ，then $g=1$ ．
False．For example，for a trivial action，every element of the group G fixes every element of X ．

6．设 p 是一个素数，α 是一个自然数。则每个阶为 $2 p^{\alpha}$ 的群 G 都是可解群．
Let p be a prime number and $\alpha \in \mathbb{N}$ ．Then every group G of order $2 p^{\alpha}$ is solvable．
True．By Sylow＇s theorem，there exists a Sylow p－subgroup P of order p^{α} ．Since it has index 2 inside G ，it is normal and $G / P \cong \mathbf{Z}_{2}$ ．In addition，as a p－group，P is nilpotent and hence solvable．So G is solvable．

7．交换环 R 中 I 和 J 为理想．则理想 $I J$ 中每个元素是形如 $a b$ 的样子，其中 $a \in I$ ， $b \in J$ ．

Let R be a commutative ring and let I and J be ideals．Then every element of the ideal $I J$ is of the form $a b$ with $a \in I$ and $b \in J$ ．

False．An element of $I J$ is typically a finite sum of products of the form $a b$ with $a \in I$ and $b \in J$ ．

8．在唯一分解整环中，每个非零元素都可以唯一的写成素元的乘积，在交换因子的意义下。

In a UFD，every nonzero element can be uniquely written as a product of prime elements， up to permutation．

False．This is not accurate：every nonzero nonunit element can be written as a product of prime elements，unique up to permutation and associates．

9．设 F 是一个域，一个非常数的多项式 $f(x)$ 是不可约的当且仅当 $F[x] /(f(x))$ 是一个域。

Let F be a field，a nonconstant polynomial $f(x)$ is irreducible if and only if $F[x] /(f(x))$ is a field．

True．The polynomial $f(x)$ is irreducible if and only if it is prime（and nonzero），which is the same as generating a maximal ideal（because $F[x]$ is a PID），which in turn is equivalent to $F[x] /(f(x))$ being a field．

10．一个 p 群 G 作用在一个有限集合 X 上，则作用的不动点的个数和 $\# X$ 模 p 同余．
Let G be a p－group acting on a finite set X ．Then the number of fixed points of the action is congruent modulo p to $\# X$ ．

True．By orbit－stabilizer formula，

$$
\# X=\sum_{\mathcal{O}} \#\left(G / \operatorname{Stab}_{G}(x)\right)
$$

When $\operatorname{Stab}_{G}(x) \neq G$ ，the quotient $G / \operatorname{Stab}_{G}(x)$ has nontrivial p－power elements，so divisible by p ，and when $G=\operatorname{Stab}_{G}(x), x$ is a fixed point of the action and $\mathcal{O}=\{x\}$ ．

Grading table

T / F	1	2	3	4	5	6	7	Total
$/ 10$	$/ 10$	$/ 15$	$/ 20$	$/ 15$	$/ 15$	$/ 15$	$/ 10$	

解答题一（10 分）设 R 是一个唯一分解整环，Q 为其分式域。设 $f(x)$ 是 $R[x]$ 中次数 ≥ 1 的不可约多项式。记 $f(x)$ 在 $Q[x]$ 中生成的理想为 I 。证明 $Q[x] / I$ 是一个域。（如果你引用书中或者讲义中的定理，请明确指出你引用的定理是哪个．）

Let R be a UFD with fraction field Q and let $f(x)$ be an irreducible polynomial of degree ≥ 1 in $R[x]$ ．Let I denote the ideal in $Q[x]$ generated by $f(x)$ ．Prove that $Q[x] / I$ is a field．（If you want to cite a result from the lectures or books，make it clear which one you are using．）

证明．By Gauss Lemma，if $f(x)$ factors as $g(x) h(x)$ in $Q[x]$ ，then we may adjust $g(x)$ and $h(x)$ by elements in Q so that both $g(x)$ and $h(x)$ belong to $R[x]$ ．But $f(x)$ is irreducible in $R[x]$ ，so one of $g(x)$ and $h(x)$ is a unit in $R[x]$ and thus a unit in $Q[x]$ ．It follows that $f(x)$ is irreducible in $Q[x]$ and hence generates a maximal ideal，as $Q[x]$ is a PID．From this，we know that $Q[x] / I$ is a field．

解答题二（15 分）证明每个阶为 $1947=3 \cdot 11 \cdot 59$ 的群都是循环群．
Prove that every group of order $1947=3 \cdot 11 \cdot 59$ is cyclic．
证明．Consider the number n_{59} of Sylow 59－group．By Sylow＇s theorems，$n_{59} \mid 3 \cdot 11$ and $n_{59} \equiv 1 \bmod 59$ ．So $n_{59}=1$ ，i．e．the Sylow 59－group P_{59} is a normal subgroup，which itself is isomorphic to \mathbf{Z}_{59} ．

Next，consider the conjugation action of G on P_{59} ：

$$
\varphi: G \rightarrow \operatorname{Aut}\left(P_{59}\right) \cong \mathbf{Z}_{59}^{\times} \simeq \mathbf{Z}_{58} .
$$

It is clear that $P_{59} \subseteq \operatorname{ker} \varphi$ ．So $\# \operatorname{Im} \varphi$ divides $3 \operatorname{dot} 11$ ．Yet as a subgroup of $\mathbf{Z}_{58}, \# \operatorname{Im} \varphi$ has order divides 58．So $\# \operatorname{Im} \varphi$ is trivial．In other words，$P_{59} \subseteq Z(G)$ ．

Now consider the number n_{11} and n_{3} of Sylow 11 －subgroups and 3 －subgroups．We have

$$
\begin{aligned}
n_{11} & \equiv 1 \bmod 11, & & n_{11} \mid 3 \cdot 59 \\
n_{3} & \equiv 1 \bmod 3, & & n_{3} \mid 11 \cdot 59
\end{aligned}
$$

In fact Z_{59} belonging to the center implies that $n_{3} \mid 11$ as the conjugation action of G on the set of Sylow 3－subgroups factors through the quotient by P_{3} and P_{59} ．From these divisibilities， we see that $n_{11}=n_{3}=1$ ．So the Sylow 11－subgroup P_{11} and Sylow 3 －subgroup P_{3} are both normal．It then follows that $G=P_{3} \times P_{11} \times P_{59} \cong \mathbf{Z}_{1947}$ ．

解答题三（20 分）对正整数 $n \geq 3$ ，用 $D_{2 n}$ 表示阶为 $2 n$ 的二面体群。
（1）求 D_{8} 中每个元素的阶。
（2）证明：对一个 D_{8} 的自同构 $\varphi, \varphi(r)$ 至多有 2 个选择，$\varphi(s)$ 至多有 4 个选择．由此证明 $\# \operatorname{Aut}\left(D_{8}\right) \leq 8$ 。
（3）证明：$D_{8} \triangleleft D_{16}$ ．（这里，我们将 D_{8} 中的旋转元视为 D_{16} 中的旋转元的平方．）
（4）证明： $\operatorname{Aut}\left(D_{8}\right) \cong D_{8}$ ．
For a positive integer $n \geq 3$ ，let $D_{2 n}$ denote the dihedral group of order $2 n$ ．
（1）Find the orders of elements of D_{8} ．
（2）Show that，for an automorphism $\varphi: D_{8} \rightarrow D_{8}, \varphi(r)$ has at most 2 possible choices， and $\varphi(s)$ has at most 4 possible choices．Deduce that \＃Aut $\left(D_{8}\right) \leq 8$ ．
（3）Show that $D_{8} \triangleleft D_{16}$（here the rotation element of D_{8} is sent to the square of the rotation element of D_{16} ．）
（4）Prove that $\operatorname{Aut}\left(D_{8}\right) \cong D_{8}$ ．
证明．（1）We write $D_{2 n}=\langle r, s| r^{n}=s^{2}=1$ ，srs $\left.=r^{-1}\right\}$ in the usual notation．We list of order of elements in the following table．

Elements	1	r	r^{2}	r^{3}	s	$s r$	$s r^{2}$	$s r^{3}$
Order	1	4	2	4	2	2	2	2

（2）An automorphism must preserve the order of elements．So $\varphi(r)$ can only be r or r^{3} ．The element $\varphi(s)$ has a priori five choices：$r^{2}, s, s r, s r^{2}, s r^{3}$ ．But if $\varphi(s)=r^{2}$ ，then $\operatorname{Im} \varphi \subseteq\langle r\rangle$ ．It cannot be an isomorphism．So $\varphi(s)$ has at most 4 choices．From this，we see that $\# \operatorname{Aut}\left(D_{8}\right) \leq 8$ ．
（3）If we write $D_{16}=\left\langle r_{16}, s \mid r_{16}^{8}=s^{2}=1, s r_{16} s=r_{16}^{-1}\right\rangle$ ，then $D_{8}=\left\langle r_{16}^{2}, s\right\rangle$ ．It suffices to check that

$$
r_{16} D_{8} r_{16}^{-1} \subseteq D_{8} \quad \text { and } \quad s D_{8} s^{-1} \subseteq D_{8}
$$

（Then the equalities hold by counting the number of elements．）To check inclusion，it is enough to check for generators．The first inclusion follows from that

$$
r_{16} r_{16}^{2} r_{16}^{-1}=r_{16}^{2} \in D_{8} \quad \text { and } \quad r_{16} s r_{16}^{-1}=r_{16}^{2} s \in D_{8}
$$

The second inclusion follows from that

$$
s r_{16}^{2} s^{-1}=r_{16}^{-2} \in D_{8} \quad \text { and } \quad s s s^{-1}=s \in D_{8}
$$

（4）Now，consider the conjugation action of D_{16} on D_{8} ：

$$
\varphi: D_{16} \rightarrow \operatorname{Aut}\left(D_{8}\right)
$$

We compute the kernel of this map φ, it is the set of elements that commutes with s and with r_{16}^{2}.

For elements of the type r_{16}^{a}, it clearly commutes with r_{16}^{2}, but $s r_{16}^{a} s^{-1}=r^{-a}$, which is equal to r_{16}^{a} if and only if $a=4$, i.e. the element r_{16}^{8}.

For elements of the form $s r_{16}^{a}, r_{16}^{2} s r_{16}^{a} r_{16}^{-2}=s r_{16}^{a-4}$, so it never commutes with r^{2}.
It follows that $\operatorname{ker} \varphi=\left\{1, r_{16}^{4}\right\}$. So $\# \operatorname{Im}(\varphi)=8$. Combining this with (2), we deduce that

$$
\operatorname{Aut}\left(D_{8}\right) \cong \operatorname{Im}\left(D_{16}\right) \cong D_{16} /\left\langle r_{16}^{4}\right\rangle
$$

It is clear that $D_{16} /\left\langle r_{16}^{4}\right\rangle \cong\left\langle r_{16}, s \mid r_{16}^{4}=s^{2}=1, s r_{16} s=r_{16}^{-1}\right\rangle$ is isomorphic to D_{8}.

解答题四（15 分）记群 G 的中心为 $Z(G)$ ．记 $\lambda: G \rightarrow S_{G}$ 为群 G 在自己上的左平移作用，并简记 $\lambda_{g}=\lambda(g)$ ，即 $\lambda_{g}(h)=g h(g, h \in G)$ 。记 $\mu: G \rightarrow S_{G}$ 为群 G 在自己上的右平移作用，并简记 $\mu_{g}=\mu(g)$ ，即 $\mu_{g}(h)=h g^{-1}(g, h \in G)$ 。
（1）证明：左作用 λ 和右作用 μ 交换，即对 $g, h \in G, \lambda_{g} \circ \mu_{h}=\mu_{h} \circ \lambda_{g}$ 。
（2）证明：$\lambda_{g}=\mu_{g}$ 当且仅当 g 是中心 $Z(G)$ 中阶为 1 或 2 的元素。
（3）证明：交 $\lambda(G) \cap \mu(G)$ 恰好等于 $\lambda(Z(G))=\mu(Z(G))$ 。
Let G be a group with center $Z(G)$ ．Let $\lambda: G \rightarrow S_{G}$ be the left translation action of G on itself，and we write $\lambda_{g}=\lambda(g)$ so that $\lambda_{g}(h)=g h$ for $g, h \in G$ ．Similarly，let $\mu: G \rightarrow S_{G}$ be the right translation action of G on itself，and we write $\mu_{g}:=\mu(g)$ so that $\mu_{g}(h)=h g^{-1}$ ．
（1）Prove that the action of λ and μ commute with each other，i．e．for $g, h \in G$ ， $\lambda_{g} \circ \mu_{h}=\mu_{h} \circ \lambda_{g}$.
（2）Prove that $\lambda_{g}=\mu_{g}$ if and only if g is an element of order 1 or 2 in the center $Z(G)$ ．
（3）Prove that the intersection $\lambda(G) \cap \mu(G)$ in G is equal to $\lambda(Z(G))=\mu(Z(G))$ ．
证明．（1）For $x \in G$ ，we have

$$
\begin{gathered}
\lambda_{g} \circ \mu_{h}(x)=\lambda_{g}\left(x h^{-1}\right)=g x h^{-1} \\
\mu_{h} \circ \lambda_{g}(x)=\mu_{h}(g x)=g x h^{-1} .
\end{gathered}
$$

So $\lambda_{g} \circ \mu_{h}=\mu_{h} \circ \lambda_{g}$ ，i．e．the left and right actions commute．
（2）If $\lambda_{g}=\mu_{g}$ ，then for any $x \in G$ ，we have $\lambda_{g}(x)=\mu_{g}(x)$ ，i．e．$g x=x g^{-1}$ ．Setting $x=1$ gives $g^{2}=1$ ．Putting this back to $g x=x g^{-1}$ gives that $g x=x g$ for every $x \in G$ ．So $g \in Z(G)$ ．Conversely，when $g^{2}=1$ and $g \in Z(G)$ ，this implies that $\lambda_{g}=\mu_{g}$ ．
（3）An element in the intersection $\lambda(G) \cap \mu(G)$ corresponds to an equality $\lambda_{g}=\mu_{h}$ for some $g, h \in G$ ．This means that for $x \in G, \lambda_{g}(x)=\mu_{h}(x)$ or equivalently $g x=x h^{-1}$ ． Putting $x=1$ gives $g=h^{-1}$ ．Putting this back to the equality $g x=x h^{-1}$ gives $g x=x g$ ， i．e．$g \in Z(G)$ ．This implies that $\lambda(G) \cap \mu(G)$ is contained in $\lambda(Z(G))$ and in $\mu(Z(G))$ ．

Conversely，if we take any $g \in Z(G), \lambda_{g}(x)=g x=x g=\mu_{g^{-1}}(x)$ ．So $\lambda(Z(G))=$ $\mu(Z(G))$ is contained in $\lambda(G) \cap \mu(G)$ ．

解答题五（15 分）设 R 是一个唯一分解整环，恰有两个互不相伴的素元 p, q 使得任意一个素元都与 p 或 q 相伴．
（1）对正整数 m, n ，证明理想 $\left(p^{m}, q^{n}\right)=R$ ．
（2）证明 R 是一个主理想整环．
Let R be a UFD with two nonassociate prime elements p and q such that every prime element is an associate of either p or q ．
（1）Given positive integers m ，n ，prove that the ideal $\left(p^{m}, q^{n}\right)=R$ ．
（2）Deduce that R is a PID．
证明．（1）Consider $p^{m}+q^{n} \in\left(p^{m}, q^{n}\right)$ ．We note that neither p nor q divides $p^{m}+q^{n}$ ，so p and q does not appear in the factorization of $p^{m}+q^{n}$ ．Yet R has only two primes，$p^{m}+q^{n}$ must be a unit．So $\left(p^{m}, q^{n}\right)=R$ ．
（2）Let I be a nonunit ideal of R ．For each nonzero element x of I ，it factors as $x=p^{m(x)} q^{n(x)} u(x)$ in R ，where $m(x), n(x) \in \mathbb{Z}_{\geq 0}$ and $u(x)$ is a unit．Let $m:=\min _{x} m(x)$ and $n:=\min _{x} n(x)$ ．We claim that $I=\left(p^{m} q^{n}\right)$ ．Clearly，by definition，$p^{m} q^{n}$ divides every $x=p^{m(x)} q^{n(x)} u(x)$ ．It remains to show that $p^{m} q^{n} \in I$ ．

Let $x \in I \backslash\{0\}$ and $y \in I \backslash\{0\}$ be so that $m=m(x)$ and $n=n(y)$ ．If $n=n(x)$ or $m=m(y)$ ，then $p^{m} q^{n}$ is a unit multiple of x or y ，respectively，and thus $p^{m} q^{n} \in I$ ．Now we assume that $n>n(x)$ and $m>m(y)$ ．By（1），we know that

$$
\left(q^{n(x)-n} u(x), p^{m(y)-m} u(y)\right)=R .
$$

So there exists $r, s \in R$ such that

$$
\begin{gathered}
r q^{n(x)-n} u(x)+s p^{m(y)-m} u(y)=1 . \\
p^{m} q^{n}=r p^{m} q^{n(x)} u(x)+s p^{m(y)} q^{n} u(y)=r x+s y .
\end{gathered}
$$

So $p^{m} q^{n} \in I$ ．Thus R is a PID．

解答题六（15 分）

对素数 p ，用 $\Phi_{p}(x):=\frac{x^{p}-1}{x-1} \in \mathbb{Z}[x]$ 记 p 次分圆多项式．
（1）证明 $\Phi_{p}(x)$ 在 $\mathbb{Q}[x]$ 中不可约。（可以引用一般性定理，不可以直接引用关于 Φ_{p} 的定理．）
（2）记 $\zeta_{p}=e^{2 \pi i / p}$ 为一个本元 p 次单位根．证明：将 x 映到 ζ_{p} 建立了一个如下的同构

$$
\mathbb{Z}[x] /\left(\Phi_{p}(x)\right) \stackrel{\cong}{\rightrightarrows} \mathbb{Z}\left[\zeta_{p}\right]=\left\{a_{0}+a_{1} \zeta_{p}+\cdots+a_{p-2} \zeta_{p}^{p-2} \mid a_{0}, \ldots, a_{p-2} \in \mathbb{Z}\right\} .
$$

特别地， $\mathbb{Z}\left[\zeta_{p}\right]$ 是一个整环。
（3）证明：如果 n 是一个正整数在 $\mathbb{Z}\left[\zeta_{p}\right]$ 中被 $\zeta_{p}-1$ 整除，则 n 是 p 的倍数。
（在这道题中，不可以使用代数数论中的工具。证明只可以使用对多项式环和商环的讨论．）

Let p be a prime number．Let $\Phi_{p}(x):=\frac{x^{p}-1}{x-1} \in \mathbb{Z}[x]$ denote the p th cyclotomic polynomial．
（1）Show that $\Phi_{p}(x)$ is irreducible in $\mathbb{Q}[x]$ ．（It is okay to use a＂general＂theorem，but not okay to use a result specific to $\Phi_{p}(x)$ ．）
（2）Let $\zeta_{p}=e^{2 \pi i / p}$ denote a primitive p th root of unity．Prove that there is an isomor－ phism

$$
\mathbb{Z}[x] /\left(\Phi_{p}(x)\right) \stackrel{\cong}{\rightrightarrows} \mathbb{Z}\left[\zeta_{p}\right]=\left\{a_{0}+a_{1} \zeta_{p}+\cdots+a_{p-2} \zeta_{p}^{p-2} \mid a_{0}, \ldots, a_{p-2} \in \mathbb{Z}\right\}
$$

sending x to ζ_{p} ．In particular $\mathbb{Z}\left[\zeta_{p}\right]$ is an integral domain．
（3）Show that if n is an integer such that $\zeta_{p}-1$ divides n in $\mathbb{Z}\left[\zeta_{p}\right]$ ，then n is divisible by p ．
（You are not allowed to use heavy tools from algebraic number theory．Just manipulate with the polynomial ring and its quotients．）

证明．（1）Note that $\Phi_{p}(x+1)=\frac{(x+1)^{p}-1}{x}=x^{p-1}+p x^{p-2}+\cdots+p$ ．By Eisenstein criterion， p divides all the non－leading coefficients and p^{2} does not divide the constant coefficient；so $\Phi_{p}(x+1)$ is irreducible in $\mathbb{Z}[x]$ ，and thus $\Phi_{p}(x)$ is irreducible in $\mathbb{Z}[x]$ ．By Gauss＇lemma， $\Phi_{p}(x)$ is also irreducible over $\mathbb{Z}[x]$ ．
（2）The natural homomorphism

$$
\varphi: \mathbb{Z}[x] \rightarrow \mathbb{Z}\left[\zeta_{p}\right]
$$

sending x to ζ_{p} clearly has the property that $\operatorname{ker} \varphi$ contains $\Phi_{p}(x)$ ．So we have a homomor－ phism

$$
\bar{\varphi}: \mathbb{Z}[x] /\left(\Phi_{p}(x)\right) \rightarrow \mathbb{Z}\left[\zeta_{p}\right] .
$$

For the quotient $\mathbb{Z}[x] /\left(\Phi_{p}(x)\right)$, each coset can be represented by a polynomial $a_{0}+a_{1} x+$ $\cdots+a_{p-2} x^{p-2}$ (as any terms that have degree $\geq p-1$ can be substituted into lower degree terms using $\left.\Phi_{p}(x)\right)$. From this, it is clear that $\bar{\varphi}$ is an isomorphism.
(3) If n is divisible by $\zeta_{p}-1$, then $n=\left(\zeta_{p}-1\right) g\left(\zeta_{p}\right)$ for some polynomial $g(x) \in \mathbb{Z}[x]$. Using the isomorphism from (2), we see that

$$
n+\left(\Phi_{p}(x)\right)=(x-1) g(x)+\left(\Phi_{p}(x)\right) .
$$

So there exists some polynomial $h(x) \in \mathbb{Z}[x]$ such that

$$
n-(x-1) g(x)=\Phi_{p}(x) h(x)
$$

Evaluating this equality at $x=1$ gives $n=\Phi_{p}(1) h(1)$. But $\Phi_{p}(1)=p$ so n is divisible by p.

解答题七（10 分）对素数 p, G 是一个 p－群。设 A 是一个 G 中的极大正规交换群。证明：A 是 G 中的极大交换群。

Let p be a prime，let G be a finite p－group．Let A be a maximal normal abelian subgroup of G ．Prove that A is also a maximal abelian subgroup of G ．

证明．Suppose that A is strictly contained in another abelian group A^{\prime} ．Let H be the subgroup of G generated by $g A^{\prime} g^{-1}$ for all $g \in G$ ；clearly H is a normal subgroup of G and contains A ．

We claim that H centralize A ．For this，it is enough to check that for every $a^{\prime} \in A^{\prime}$ and $g \in G, g a^{\prime} g^{-1}$ commutes with every element $a \in A$ ．Indeed，

$$
g a^{\prime} g^{-1} \cdot a \cdot g a^{\prime-1} g^{-1}=g a^{\prime} \cdot g^{-1} a g \cdot a^{\prime-1} g^{-1}
$$

But A is normal，so $g^{-1} a g \in A$ ；so a^{\prime} commutes with $g^{-1} a g$ ，and thus the above is equal to

$$
g \cdot g^{-1} a g \cdot a^{\prime} \cdot a^{\prime-1} g^{-1}=a
$$

Now consider $\bar{G}:=G / A$ and let $\pi: G \rightarrow \bar{G}$ be the projection．Write \bar{H} for the image of H ，which is a nontrivial p－group．By a proposition we have proved in class， \bar{H} intersects nontrivially with the center $Z(\bar{G})$ ．Pick any element $\bar{n} \in \bar{H} \cap Z(\bar{G})$ ，and set $\bar{N}:=\langle\bar{n}\rangle \subseteq \bar{G}$ ． Since $\bar{N} \subseteq Z(\bar{G}), \bar{N}$ is a normal subgroup of \bar{G} ，and thus N is a normal subgroup of G ．

In addition，if we pick a preimage $n \in H$ of $\bar{n} \in \bar{H}$ ，then n centralizes A and thus N is abelian．

This then gives a normal abelian subgroup N strictly containing A ，we arrive at a contradiction．

An alternative proof is to take the centralizer $Z_{G}(A)$ of A inside G ．Since A is normal， $Z_{G}(A)$ is a normal subgroup of G ：for any $z \in Z_{G}(A), g \in G$ ，we want to show that $g z g^{-1} \in Z_{G}(A)$ ，i．e．for $a \in A$ ，

$$
g z g^{-1} \cdot a \cdot g z^{-1} g^{-1}=g z \cdot g^{-1} a g \cdot z^{-1} g^{-1}=g\left(g^{-1} a g\right) z z^{-1} g^{-1}=a
$$

where we used that $g^{-1} a g \in A$ by normality of A ．So $g z g^{-1} \in Z_{G}(A)$ and thus $Z_{G}(A) \triangleleft G$ ．
If A is not a maximal abelian subgroup，then $A \subsetneq Z_{G}(A)$ is a strict inclusion．
Consider the subgroup $Z_{G}(A) / A \subseteq G / A$ ；it is a normal subgroup．We note that $\left(Z_{G}(A) / A\right) \cap Z(G / A)$ is nontrivial．Picking an element from this intersection，and the rest of the argument is similar to above．

