
HONORS ABSTRACT ALGEBRA AT PEKING UNIVERSITY

FALL 2023

This is an ongoing project to develop a series of lecture notes for the Honors Abstract
Algebra course at Peking University.

0. Basic structures in algebra

The purpose of this section is to collect and review basic definitions of some algebraic
concepts that we assume the students have seen prior to the course, for example, fields,
vector spaces, and etc. These will be reintroduced throughout the course, but before that,
we might need to refer to them from time to time for the purpose of examples.

Notation 0.0.1. The following notations will be used without definition:

• Z denotes the set/group/ring of integers.
• Q denotes the set/field of rational numbers.
• R denotes the set/field of real numbers.
• C denotes the set/field of complex numbers.
• For a set S, |S| denotes its cardinality.

One big difference in notation from calculus is that we often use g′ to denote the derivative
of g in calculus. We NEVER do that in abstract algebra. Often g′ denotes just another
element, often one that shares similar properties as g.

0.1. Binary operations and groups.

Definition 0.1.1. Let S be a set, a binary operation on S is a map ∗ : S × S → S. For
a, b ∈ S, instead of writing ∗(a, b), we write a ∗ b instead.

Example 0.1.2. Let S denote all continuous functions from R to R. Then we have the
following binary operations: for f, g ∈ S,

• addition: f + g given by (f + g)(x) = f(x) + g(x) for x ∈ R;
• subtraction: f − g given by (f − g)(x) = f(x)− g(x) for x ∈ R;
• multiplication: f · g given by (f · g)(x) = f(x) · g(x) for x ∈ R;
• composition: f ◦ g given by (f ◦ g)(x) = f(g(x)) for x ∈ R.

Definition 0.1.3. A group is a pair of a nonempty set G and a binary operation ∗ on G
such that

(1) (associativity) (a ∗ b) ∗ c = a ∗ (b ∗ c) for a, b, c ∈ G;
(2) (identity) there exists an element e ∈ G, called the identity, such that

∀ a ∈ G, a ∗ e = a = e ∗ a;
(3) (inverse) for each a ∈ G, there exists a−1 ∈ G, called an inverse of a, such that

a ∗ a−1 = e = a−1 ∗ a.
The group G is called abelian or commutative if a ∗ b = b ∗ a for all a, b ∈ G.
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Remark 0.1.4. When G is commutative, we often write a+ b for the binary operation.

Definition 0.1.5. A subgroup of a group (G, ∗) is a subset H such that for every a, b ∈ H

ab−1 ∈ H.

See later in Section 1 for a more detailed introduction of the concept of groups and
subgroups.

0.2. Rings and fields.

Definition 0.2.1. A ring R is a nonempty set together with two binary operations + and
·, satisfying

(1) (R,+) is an abelian group (with additive identity denoted by 0);
(2) the operator · is associative, i.e. (a · b) · c = a · (b · c) for a, b, c ∈ R;
(3) the distributive law holds in R, i.e. for all a, b, c ∈ R,

(a+ b) · c = a · c+ b · c, and a · (b+ c) = a · b+ a · c;

(4) there exists an element 1 ∈ R such that 0 ̸= 1, called unity, such that for any a ∈ R,

1 · a = a = a · 1.

In particular, throughout this course, all rings are assumed to have 1 and we
will always assume that 0 ̸= 1. This is slightly different from some other references.

We say a ring R is commutative if a · b = b · a for any a, b ∈ R.

Notation 0.2.2. Let R be a ring. An element r ∈ R is called a unit if there exists s ∈ R
such that r · s = s · r = 1. The set of all units in R, denoted by R×, is a group under the
multiplication with 1 as the identity element.

The following example will be frequently used later.

Example 0.2.3. Fix a positive integer n. Let Zn = {0̄, 1̄, . . . , n− 1} denote the full set of
residual classes modulo n, where ī is short for i mod n. In general, for i ∈ N, we write ī = ī0
for the unique number i0 ∈ {0, . . . , n− 1} such that i ≡ i0 mod n. One can add or multiply
two residual classes, writing +n for this addition and ×n for this multiplication, namely

ā+n b̄ = a+ b, ā×n b̄ = ab.

This defines an commutative ring (Zn,+n,×n).
The set of units in Zn is Z×

n = {̄i | gcd(i, n) = 1}. Its order, denoted by φ(n), is called the
Euler function.

Note: we will try to distinguish Zn from Zn; this is because writing Zp with p a prime
number often means p-adic numbers in number theory.

Definition 0.2.4. A commutative ring is called a field if every nonzero element a ∈ R has
a multiplicative inverse.

Example 0.2.5. The set of integers Z with the natural addition and multiplication is a
commutative ring.

The set of rational numbers Q, real numbers R, and complex numbers C are fields and
are in particular commutative rings.
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Example 0.2.6. The ring Zn introduced in Example 0.2.3 is in fact a field when n = p is a
prime number. In this case, we write Fp for it instead (to emphasize that this is a field). We
will prove later in this book that for each power of a prime pn, there exists exactly one finite
field, which we denote by Fpn . Finite fields provide a large source of examples in abstract
algebra.

0.3. Modules.

Definition 0.3.1. Let R be a ring. A left R-module is an abelian group M with a map
(called the left R-action)

(0.3.1.1)
R×M M

(a,m) a ·m,

satisfying the following conditions: for r, s ∈ R and m,n ∈M ,

(1) 1 ·m = m;
(2) (r + s) ·m = r ·m+ s ·m;
(3) r · (m+ n) = r ·m+ r · n;
(4) r · (s ·m) = (r · s) ·m.

When R is a field, a left R-module M is called a vector space.

Example 0.3.2. Let R be a ring, R maybe viewed as a left R-module when the left R-action
(0.3.1.1) is given by left multiplication.

More generally, for r ∈ N, let M denote {(m1, . . . ,mr) |m1, . . . ,mr ∈ R}, the set of
r-tuples in R, equipped with an abelian group structure given by termwise addition, namely

(m1, . . . ,mr) + (m′
1, . . . ,m

′
r) = (m1 +m′

1, . . . ,mr +m′
r).

Then M admits a left R-module structure given by

a · (m1, . . . ,mr) = (a ·m1, . . . , a ·mr).
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1. Groups and subgroups

Before we start the journey to the abstract world, we hope the students keep in mind of
one thing: before diving into an abstract mathematical concept, we should ask: why should
we care about such a concept? What are important examples, typical examples, and also
counterexamples? Making things abstract for the purpose of making them abstract is not
mathematics.

1.1. Why do we study groups? Loosely speaking, the concept of groups originated in:

• describing “symmetry”, uniformly for different situations, and
• comparing symmetries in different context, abstractly.

We only give two examples here, and we will see more later in this course.

Example 1.1.1. In the first example, we discuss the five platonic solids:

Tetrahedron, Hexahedron, Octahedron, Dodecahedron, and Isocahedron.

The symmetry of each platonic solid is the set of ways to rotate (and possibly reflect) the
space at the center of the solid yet keeping the solid stable. For example, if we label the four
vertices of the tetrahedron as 1, 2, 3, and 4, then each such symmetry will induce a way to
permute these numbers {1, 2, 3, 4}, establishing relations between symmetries of the solids
and permutations of its vertices.

By giving our three dimensional space a Cartesian coordinate system centered at the
center of a platonic solid, we may represent each symmetry as a 3 × 3 real matrix, and all
symmetries form a finite group in GL3(R). In some sense, the classification of platonic solids
comes hand-in-hand with the classification of finite subgroups of GL3(R).

Going towards higher dimensional situations when our three-dimensional intuition presents
limitations, abstract group theory will play a much stronger role.

Example 1.1.2. The second example comes from Diophantine equations. Let D > 1 be a
square free integer. It is a classical number theory theorem that the set of integer solutions
to the Pell’s equation:

(1.1.2.1) x2 −Dy2 = 1

can be described as follows: there exists a “fundamental solution” (x0, y0) ∈ Z2, and then
all other solutions to (1.1.2.1) can be deduced by writing for n ∈ Z,

(x0 +
√
Dy0)

n = xn +
√
Dyn, with xn, yn ∈ Z.

Then {±(xn, yn) ∈ Z2 |n ∈ Z} are all the integer solutions to (1.1.2.1). In other words,
the integer solutions to the Pell’s equation admit some addition structure that “looks like”
{±} × Z.

If we summarize the above discussion as: solution sets of certain Diophantine equations
have additional structure, we may seek for more examples. Another typical example is the
case of elliptic curves. For example, the integer solutions to y2 = x3 − Dx with D ∈ N
have a structure of abelian groups. In fact, one can show that this subgroup looks like
(some finite group)× Zr for some r ∈ Z≥0. The r is called the rank of this equation, and is
an important mathematical invariant.

Now, one may imagine that, as the two equations, albeit different, have a similar struc-
ture on their solutions, there should be other aspects of the equations that can be dealt
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analogously; and precisely this observation inspired mathematicians to transport techniques
studying Pell’s equation to study the equation y2 = x3−Dx (which of course is considerably
more difficult).

1.2. Definition of groups.

Definition 1.2.1. A group is a pair of a nonempty set G and a binary operation ∗ on G
such that

(1) (associativity) (a ∗ b) ∗ c = a ∗ (b ∗ c) for a, b, c ∈ G;
(2) (identity) there exists an element e ∈ G, called the identity such that

∀ a ∈ G, a ∗ e = a = e ∗ a;

(3) (inverse) for each a ∈ G, there exists a−1 ∈ G, called an inverse of a such that

a ∗ a−1 = e = a−1 ∗ a.

The group G is called abelian1 or commutative if a ∗ b = b ∗ a for all a, b ∈ G.
We call |G| the order of the group G, (which is possibility infinite).

Remark 1.2.2. Due to the associativity condition, we shall freely remove or add parenthesis
when multiplying elements in a group.

Example 1.2.3. (1) (Z,+) with identity 0. (Remark: many algebra concepts are built to
imitate the algebraic structure on Z.)
(2) (Q\{0}, ·) with identity 1.
(3) GLn(R) = {n× n invertible matrices in R}.
(4) There can be cases that are not immediately clear to form a group: (Q\{−1}, ∗) with

operation given by a ∗ b = ab + a + b. In fact, this is the same as (2) but with numbers
shifted by 1.

Example 1.2.4. Fix a positive integer n. Let Zn = {0̄, 1̄, . . . , n− 1} denotes the full set of
residual classes modulo n, where ī is short for i mod n. One can add two residual classes,
writing +n for this addition. Explicitly, for a, b ∈ {0, 1, . . . , n− 1} set

ā+n b̄ =

{
a+ b if a+ b ≤ n− 1

a+ b− n if a+ b ≥ n.

This defines a group (Zn,+n). See also Example 0.2.3.

Definition 1.2.5. Let (G, ∗) and (H, ◦) be groups. Then we may form a new group structure
on G×H with group operation given by

(g, h) ⋆ (g′, h′) := (g ∗ g′, h ◦ h′).

This is called the direct product of G and H.

1This is named after Norwegian mathematician Niels Henrik Abel by Camille Jordan, because Abel had
found that the commutativity of the group of a polynomial implies that the roots of the polynomial can be
calculated by using radicals.
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1.3. Basic properties of groups. We list a few basic properties of groups as follows. Let
G be a group.

(1) The identity element of a group G is unique.
(If both e and e′ are identity elements, e = e ∗ e′ = e′.)

(2) The inverse of an element a ∈ G is unique. Better: if an element b ∈ G satisfies
either b ∗ a = e or a ∗ b = e, then we have b = a−1.

(If b∗a = e, then we have b = b∗e = b∗ (a∗a−1) = a−1. The other case is similar.)
(3) (a−1)−1 = a.

(This follows from a−1 · (a−1)−1 = e and the uniqueness of inverse of a−1 by (2).)
(4) (a ∗ b)−1 = b−1 ∗ a−1.

(This follows from (b−1 ∗ a−1) ∗ (a ∗ b) = e and (2).)
(5) a ∗ u = a ∗ v implies u = v. Similarly, u ∗ b = v ∗ b implies u = v.

(For the first implication, multiply on the left by a−1 gives a−1 ∗ a ∗u = a−1 ∗ a ∗ v,
which further implies e ∗ u = e ∗ v, i.e. u = v.)

Convention 1.3.1. When writing operations in a group, there are often two conventions:

• Multiplicative convention: we typically choose this convention when we do not
know whether G is abelian. We write a · b (or simply ab) for the group operation and
1 for the identity. For example:

(a1a2 · · · an)−1 = a−1
n a−1

n−1 · · · a−1
1 , gn = g · g · · · g︸ ︷︷ ︸

n times

.

• Additive convention: we typically adopt this convention when we want to empha-
size that G is abelian. We write + for the group operation, 0 for the identity, and
−a for the inverse of a. For example,

a+ b = b+ a, n · a := a+ a+ · · ·+ a︸ ︷︷ ︸
n times

.

1.4. Important examples of groups I: Dihedral groups. A first important example of
groups is the dihedral groups

D2n = symmetry group of a regular n-gon.

Since it is non-abelian, we use multiplicative convention for this.

1

2

34

5
ℓ1
ℓ2
ℓ3
ℓ4

ℓ5

Symmetry of a pentagon

r
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We may list elements of D2n as follows:

D2n =

{
e = identity, r = rotation clockwise 2π

n
, r2, . . . , rn−1

s = s1 = reflection about ℓ1, s2 = reflection about ℓ2, . . . , sn

}

=

{
e, r, r2, . . . , rn−1

s, rs, r2s, . . . , . . . , rn−1s

}
.

Here rs = s2, r
2s = s3, . . . . To see this (using the example n = 5), we note that vertex

1 1 2s r . So it must be the reflection about ℓ2. In particular, |D2n| = 2n.
We may rewrite this group in a more efficient form:

D2n =

〈
r, s

∣∣∣∣ rn = 1, s2 = 1

srs = r−1

〉
.

This means: D2n consists of the set of words in r, s, r
−1, s−1 but subject to the given relations.

(The relation srs = r−1 maybe seen as: drawing this regular n-gon on a piece of paper, then
srs is to first flip the paper, then rotation, and then flip back; this is the same as rotating
backwards r−1.)

A fun exercise to see is that: srs = r−1 implies:

sris = srs · srs · · · srs︸ ︷︷ ︸
i copies of srs

= r−1 · · · r−1 = r−i.

The first equality comes from inserting many pairs of s · s−1 = s · s in the middle of the
expression. (This is a standard trick that we will frequently use in group theory.)

Definition 1.4.1. A subset S = {s1, . . . , sn} of a group G is called a set of generators if
every element of G can be written as a product of s1, . . . , sn, s

−1
1 , . . . , s−1

n .
An equality consisting of generators and their inverses is called a relation (e.g. srs = r−1)
We write G =

〈
s1, . . . , sn

∣∣R1, R2, . . .
〉
if all relations in G can be deduced from the

relations R1, R2, . . . .
2

Example 1.4.2. The group Z6 =
〈
t
∣∣ t6 = 1

〉
.

We may also write Z6 =
〈
r, s
∣∣ r3 = s2 = 1, rs = sr

〉
(if r represents 2̄ and s represents 3̄).

So there might be many ways to represent the same group using generators and relations.

1.5. Important examples of groups II: permutation groups. The second example of
groups is the permutation groups or symmetric groups.

Definition 1.5.1. Let Ω be a set. The set

SΩ :=
{
bijections σ : Ω

∼−→ Ω
}

admits a group structure:

• the group operation is composition: στ : Ω
τ−→ Ω

σ−→ Ω;
• the identity element is id : Ω→ Ω;
• the inverse of the element σ is the inverse map.

2This definition is not as rigorous as others, but it is more convenient in writing; we will avoid using it
too often.
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This SΩ is called the symmetry group or the permutation group of Ω.
When Ω = {1, 2, . . . , n}, we write Sn for SΩ instead.

Notation 1.5.2. There are two ways to represent elements in Sn:
Expression 1: For example, we write

σ =

(
1 2 3 4 5 6 7

7 5 1 3 2 6 4

)
to mean the bijection that sends 1 7→ 7, 2 7→ 5, 3 7→ 1, . . . (writing vertically).

We may alternatively express this using a diagram

1 2

3 7 6

4 5

σ

σ

σ

σ

σ

σ

σ

One sees that σ essentially permutes 1, 7, 4, 3 in order, and swaps 2 with 5. So we have the
following.

Expression 2: We rewrite σ as (1743)(25).
Here for distinct numbers a1, . . . , ar ∈ {1, . . . , n}, we call (a1a2 · · · ar) a cycle. It represents

the permutation of {1, . . . , n} that sends ai 7→ ai+1 and ar 7→ a1 yet keeping all other numbers
invariant.

Thus, σ = (1743)(25) can be viewed as a composition of two cycles:

(1743) : 1 7 4 3 and (25) : 2 5

Writing an element σ ∈ Sn as the product of disjoint cycles is called the cycle decom-
position of σ.

Properties 1.5.3. (1) Sn is a non-commutative group.
(2) Disjoint cycles commute with each other. This allows us to make effective computation

using cycle decompositions. Taking the σ above as an example:

σ2 = (1743)2(25)2 = (14)(37).

σ−1 = (1347)(25).

Exercise 1.5.4. Cycles of two elements, namely (ij) are called transpositions. Prove the
following statements in turn.

(1) The group Sn is generated by all transpositions (ij).
(2) The group Sn is generated by all “adjacent” transpositions (i, i+ 1).
(3) The group Sn is generated by {(12), (123 · · ·n)}.

(The relations for Sn with two generators (12) and (123 · · ·n) are somewhat difficult to write
down.)
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1.6. Isomorphism of groups. When there are two groups G and H, we often write eG
and eH for their identity elements, respectively.

Definition 1.6.1. Two groups (G, ∗) and (H, ⋆) are isomorphic if there exists a bijection

ϕ : G
∼−→ H such that, for any g, h ∈ G,

(1) ϕ(g ∗ h) = ϕ(g) ⋆ ϕ(h);
(2) ϕ(eG) = eH ;
(3) ϕ(g−1) = ϕ(g)−1.

We write G ≃ H or ϕ : G
≃−→ H; such a map ϕ is called an isomorphism. (In fact, we will

see in the next lecture that condition (1) implies (2) and (3).)

Example 1.6.2. (1) exp : (R,+)→ (R>0, ·) is an isomorphism.
(2) The following is an isomorphism.

Zn µn = {all nth roots of unity in C}

a ζan = e2πi
a
n .

∼=

Remark 1.6.3. In group theory, isomorphic groups are considered “same”.

Basic question in group theory: classify groups with certain properties.

For example, all groups of order 6 are either isomorphic to Z6 or to S3.
In particular, this says that D6 ≃ S3 (by identifying the symmetry of a regular triangle

with the symmetry of the three vertices). Yet Z6 ̸≃ S3 because S3 is not commutative.

1.7. Important examples of groups III: Cyclic groups.

Definition 1.7.1. A group H is called cyclic if it can be generated by one element, i.e.
there exists x ∈ H, such that H = {xn |n ∈ Z}. Sometimes we write H = ⟨x⟩.

The following is clear.

Lemma 1.7.2. There are two kinds of cyclic groups H = ⟨x⟩ (up to isomorphism):

(1) If there exists a positive integer n such that xn = e, then take n to be the minimal
such number. Then H = {1, x, x2, . . . , xn−1} and H is isomorphic to Zn through

ϕ : H
≃−→ Zn sending ϕ(xa) = a. In particular, |H| = n.

(2) Suppose there does not exist a positive integer n as in (1). Then H ≃ Z and in
particular, |H| =∞.

Example 1.7.3. The generators of the cyclic group Zn are precisely the elements in Z×
n =

{ā | gcd(a, n) = 1}.

1.8. Subgroups. We hope to express the development of the theory of groups parallel to
that of vector spaces:

Vector spaces Groups

Direct sums Direct products
√

Linear isomorphisms Isomorphisms
√

Subspaces Subgroups

Definition 1.8.1. A subset H of a group G is called a subgroup, denoted by H < G, if
9



(1) e ∈ H;
(2) for any a, b ∈ H, ab ∈ H;
(3) for any a ∈ H, a−1 ∈ H.

There is an alternative definition: a nonempty subset H ⊆ G is a subgroup if and only if

for any a, b ∈ H ⇒ ab−1 ∈ H.

(Note that taking a = b implies e ∈ H; then taking a = 1 implies that b−1 ∈ H, and finally
a(b−1)−1 = ab ∈ H.)
The subset {e} and the entire group G are subgroups of G; they are called the trivial

subgroups of G.

1.9. Representing subgroups.

Definition 1.9.1. Let G be a group and A a subset. Write
〈
A⟩ for the subgroup of G

generated by A. Explicitly〈
A
〉

=
{
aϵ11 a

ϵ2
2 · · · aϵrr

∣∣ a1, . . . , ar ∈ A, ϵ1, . . . , ϵr ∈ {±1}}
It is also the same as the intersection of those subgroups H of G containing A.

Remark 1.9.2. When G abelian and A = {a1, . . . , ar}, we have〈
A
〉
=
{
ad11 · · · adrr

∣∣ d1, . . . , dr ∈ Z
}
.

Definition 1.9.3. Let G be a group and x ∈ G be an element. Define the order of x in G,
denoted by |x|, as follows

• if there exists integers a ̸= b such that xa = xb, pick a pair a > b with n = a − b
minimal, then xn = 1 and ⟨x⟩ = {1, x, x2, . . . , xn−1}; define |x| := |⟨x⟩| = n;
• if there is no such integers a and b, then ⟨x⟩ = {1, x, x2, . . . , x−1, x−2, . . . } ≃ Z; define
|x| =∞.

In all cases, |x| = |⟨x⟩|.

1.9.4. Lattices of subgroups. Sometimes, it is helpful to enlist subgroups of a group in a
diagram encoding their inclusion relations by linking a line between them (with subgroups
at below). For example: (p is a prime number)

Zpn

⟨p⟩

⟨p2⟩

...

⟨pn⟩ = {0}

Z12

⟨2⟩ ⟨3⟩

⟨4⟩ ⟨6⟩

{0}

D6

⟨r⟩

⟨s⟩ ⟨rs⟩ ⟨r2s⟩

{0}
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Extended readings after Section 1

1.1 Matrix groups. Let F be a field (or just think of F = Q,R,C or a finite field Fp with
p a prime number). We may define the general linear group with coefficients in F :

GLn(F ) :=
{
A ∈ Mn×n(F )

∣∣A is an invertible matrix
}
.

The group structure is given by matrix multiplication.
This group admits natural (interesting) subgroups.

Bn(F ) :=
{
A ∈ GLn(F )

∣∣A is upper triangular
}
;

Nn(F ) :=
{
A ∈ GLn(F )

∣∣A is strictly upper triangular
}
.

(Strictly upper triangular matrices are the those upper triangular matrices that have all 1
on the diagonal entries.

It is an interesting exercise to see that when F = Fp,

|GLn(Fp)| = (pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1), 3 |Bn(Fp)| = (p− 1)np(n
2−n)/2.

(We will see later in Lagrange theorem that the order of a subgroup always divides the order
of the big group. In this case, |Bn(Fp)| divides |GLn(Fp)|, in a quite non-trivial way.)

1.2 The quaternion group. The quaternion group Q8 is the group given by

Q8 =
{
1,−1, i,−i, j,−j, k,−k

}
.

subject to relations:

i · i = j · j = k · k = −1, i · j = k, j · k = i, k · i = j.

The name comes from the quaternion algebra (or the Hamiltonian algebra):

H := R⊕ R · i⊕ R · j ⊕ R · k.
subject to the above same relation. ThisH is a non-commutative ring, in which every nonzero
element admits an inverse. (Such rings are called division rings or skew fields.)

The quaternion group embeds into H× as a subgroup.

1.3 Subgroups of cyclic groups. We show that every subgroup of a cyclic group is cyclic.
More precisely, let G = ⟨x⟩ be a cyclic group. Assume that n is the minimal positive integer
such that xn = e if such n exists, and n = 0 otherwise.
Let H be a subgroup of G. Assume that H ̸= {eG} (otherwise the statement is trivial.)

Let m be the minimal positive integer such that xm ∈ H. We claim that H = ⟨xm⟩, namely,
every element of H is of the form xmr for some r ∈ Z.
Suppose not, say xa ∈ H with a ∈ Z not divisible by m. Write a = mr + s with r, s ∈ Z

and s ∈ {0, . . . ,m− 1}. Then xs = xa(xm)−r ∈ H, contradicting with the minimality of m.
This completes the proof of: every subgroup of a cyclic group is cyclic. More precisely,

(1) When H ≃ Zn, any subgroup is generated by ⟨xm⟩ for some minimal m. It is not
hard to see that xgcd{m,n} ∈ H; so such m must be a divisor of n. Any for any divisor
m of n, ⟨xm⟩ is a subgroup of Zn, of order

n
m
.

(2) When H ≃ Z, any subgroup is of the form ⟨xm⟩ for some m ∈ N; it is cyclic and
infinite.

3One can prove this as follows: the first column of the matrix must be nonzero, so there are pn−1 choices;
then the second column cannot be a scalar multiple of the first column, so there are pn − p choices; . . .

11



2. Cosets, Lagrange theorem, quotient groups

We continue with parallel development of vector spaces versus groups.

Vector spaces Groups

Direct sums Direct products
√

Linear isomorphisms Isomorphisms
√

Subspaces Subgroups
√

Affine subsets v +W Cosets

Quotient spaces Quotient groups

Linear maps Homomorphisms

2.1. Cosets. Cosets may be viewed as analogues of affine subsets in linear algebra.

Definition 2.1.1. Let H be a subgroup of G. A left coset is a set of the form (for some
g ∈ G)

gH := {gh |h ∈ H}.
Note that g always belongs to gH, so we say that g is a representative for the coset gH.
In particular, if g ∈ H, then gH = H.
A right coset is a set of the form (for some g ∈ G)

Hg := {hg |h ∈ H}.
Remark 2.1.2. Occasionally, people may abbreviate left cosets to simply cosets. (We will
mostly work with left cosets throughout, but similar statement should also hold for right
cosets.)

When G is abelian, left cosets and right cosets are the same.

Convention 2.1.3. In what follows, we will frequently use the notation of gH or HK for an
element g ∈ G and subsets H,K ⊆ G. By writing this, we meant just simply element-wise
multiplication

gH = {gh | h ∈ H} and HK = {hk | h ∈ H, k ∈ K}.
This somewhat simplifies our discussion, as we frequently encounter the situation that g1H =
g2H with g1 ̸= g2. But viewing this as a subset circumvent the discussion of choosing a coset
representative.

Proposition 2.1.4. Two (left) cosets g1H and g2H are

• either equal (which is equivalent to g−1
1 g2 ∈ H);

• or disjoint (which is equivalent to g−1
1 g2 /∈ H).

In particular, G is the disjoint union of left cosets for H.

Proof. We will prove that

g1H ∩ g2H ̸= ∅ g−1
1 g2 ∈ H g1H = g2H

(B) (A)

obvious

(A) If g−1
1 g2 ∈ H, then g1H = g1(g

−1
1 g2 ·H) = g2H (as for any element h ∈ H, h ·H = H

as sets).
12



(B) If g1H∩g2H ̸= ∅, say x = g1h1 = g2h2 for h1, h2 ∈ H. Then g1 = xh−1
1 and g2 = xh−1

2 .
So

g−1
1 g2 = (xh−1

1 )−1 · xh−1
2 = h1x

−1xh−1
2 = h1h

−1
2 ∈ H.

Finally, the equivalence above shows the equivalence of first bullet point of the proposition,
and also at the same time the equivalence to the negative of the second bullet point. □

2.2. Lagrange Theorem. The first big theorem in group theory is Lagrange’s theorem.

Definition 2.2.1. Write G/H := {gH | g ∈ G} for the set of left cosets. Similarly, H\G :=
{Hg | g ∈ G} for the right cosets.

The above proposition says G =
∐

gH∈G/H
gH is a disjoint union.

We call [G : H] := |G/H| the index of H as a subgroup of G (possibly infinite).

Theorem 2.2.2 (Lagrange). If G is a finite group and H < G is a subgroup, then |H|
divides |G|.

Proof. As each coset for H has exactly |H| elements, we have |G| = [G : H] · |H|. □

Corollary 2.2.3. (1) If G is a finite group, then |x| divides |G|.
(2) For every element x ∈ G, x|G| = e.

Proof. (1) This follows from Lagrange theorem because |x| = |⟨x⟩| and ⟨x⟩ is a subgroup of
G.

(2) follows from (1) immediately. □

Example 2.2.4. Following Example 0.2.3, fix a positive integer n. Consider G = Z×
n :=

{ā = a mod n | gcd(a, n) = 1}, the group of modulo n residual classes that are coprime to n.
The operation for the group G is the multiplication. We know that |G| = φ(n) is the Euler
function.

Then Lagrange theorem for G says that, if gcd(a, n) = 1, āφ(n) = 1̄; or equivalently,

gcd(a, n) = 1 =⇒ aφ(n) ≡ 1 (mod n).

This is known as the Euler’s theorem generalizing Fermat’s Little Theorem.

Corollary 2.2.5. If a group G has p elements with p a prime, then G is cyclic (and in
particular abelian).

Proof. Take an element x ∈ G such that x ̸= e. Then |x| divides |G| = p. Yet |x| ≠ 1; so
|x| = p, i.e. |⟨x⟩| = p. So G = ⟨x⟩ is cyclic. □

2.3. Conjugation, normal subgroups, and quotient groups.

Definition 2.3.1. Let G be a group and a, g ∈ G. We call gag−1 the conjugate of a by g.

Lemma 2.3.2. If H is a subgroup of G and g ∈ G, then gHg−1 := {ghg−1 |h ∈ H} is a
subgroup, called the conjugate of H by g.

Proof. Given gag−1, gbg−1 ∈ gHg−1,

(gag−1)(gbg−1)−1 = gag−1 · gb−1g−1 = gab−1g−1 ∈ gHg−1.

So gHg−1 is a subgroup of G. □
13



Definition 2.3.3. A subgroup H ⩽ G is normal if for any g ∈ G, H = gHg−1; namely, all
conjugates of H are just H itself. Note that this condition is also equivalent to gH = Hg
(as subsets) for any g ∈ G, namely the left coset of g is the same as right coset of g for each
g.
We write H ⊴G to denote normal subgroups. For example, {1}⊴G and G⊴G.

Definition 2.3.4. Let H ⊴G be a normal subgroup. For a, b ∈ G, we have

aH · bH := {kℓ | k ∈ aH, ℓ ∈ bH} = abH ·H = abH

as subsets of G. (Note that, we used that Hb = bH in the second equality; this avoids the
discussion of whether the product is well-defined.) This defines a group structure on G/H.
The identity is eH = H; and the inverse of aH is a−1H.
We call G/H the quotient group or the factor group of G by H.

Example 2.3.5. (1) Every subgroup of an abelian group is normal, because gHg−1 = H
automatically holds.

(2) A positive integer n defines a (normal) subgroup of (Z,+) given by ⟨n⟩ = {x ∈
Z |n divides x}. The quotient group Z/⟨n⟩ has elements a + ⟨n⟩ for a = 0, 1, . . . , n − 1.
Then we have a natural isomorphism

Z/⟨n⟩ Zn

a+ ⟨n⟩ ā

∼=

We often write this quotient as Z/nZ and thus Zn ∼= Z/nZ (this may be viewed as the
definition of Zn).

2.4. Some technical results.

Proposition 2.4.1. Let H and K be subgroups of a group G. Define HK := {hk |h ∈
H, k ∈ K}. When G is finite, we have

|HK| = |H| · |K|
|H ∩K|

Proof. By Proposition 2.1.4, HK is a disjoint union of left cosets of K, namely

HK = h1K ⊔ h2K ⊔ · · · ⊔ hmK.

We claim that for the same h1, . . . , hm,

H = h1(H ∩K) ⊔ · · · ⊔ hm(H ∩K).

The claim implies the proposition as

|HK|
|K|

= m =
|H|

|H ∩K|
.

Now, we prove the claim: for every h, h′ ∈ H,

(2.4.1.1) hK = h′K ⇔ h−1h′ ∈ K ⇔ h−1h′ ∈ H ∩K ⇔ h(H ∩K) = h′(H ∩K).
14



So we deduce that

HK =
⋃
h∈H

hK = h1K ⊔ · · · ⊔ hmK

H =
⋃
h∈H

h(H ∩K) = h1(H ∩K) ⊔ · · · ⊔ hm(H ∩K).

Here, the equalities mean to first write tautologically HK as the union of all left K-cosets
(parameterized by h ∈ H) and in a parallel way write H as the union of all left H ∩ K-
cosets (parameterized by h ∈ H). Then (2.4.1.1) tells us that two left K-cosets are the same
if and only if the corresponding left H ∩ K-cosets are the same. Thus, in the next step
writing union of cosets into disjoint union of cosets, both equalities may use the same set of
representatives. □

A more “fancy” proof. In fact, we prove a much stronger statement: there is a canonical
bijection between coset spaces:

φ : H/(H ∩K) HK/K

h(H ∩K) hK.

At first glance, one needs to verify that φ is well-defined; but we may rewrite φ as φ
(
h(H ∩

K)
)
:= h(H ∩K)K as product of subsets of G in the sense of Convention 2.1.3. But then

h(H ∩K)K = hK for trivial reasons. So φ is well-defined.
Now we note that φ is clearly surjective, as every cosets in HK/K takes the form of hkK

with h ∈ H and k ∈ K, which is the same as hK = φ(h(H ∩K)).
Finally, we show that φ is injective, i.e. for two cosets h1(H ∩ K) and h2(H ∩ K) with

h1, h2 ∈ H, if they have the same image under φ, then h1K = h2K; then h−1
2 h1 ∈ K. But

h−1
2 h1 ∈ H for trivial reasons, so h−1

2 h1 ∈ H ∩K and thus h1(H ∩K) = h2(H ∩K).
This completes the proof of that φ is bijective. The proposition is clear from this. □

Caveat 2.4.2. The set HK above need not be a group. For example, in G = D6, H = ⟨s1⟩
and K = ⟨s2⟩, then |HK| = |H| · |K| = 4. But HK cannot be a subgroup of D6 because
4 ∤ 6.

Lemma 2.4.3. Let H and K be subgroups of G. If HK = KH as sets (meaning every
product kh with k ∈ K and h ∈ H can be rewritten as h′k′ with k′ ∈ K ′ and h′ ∈ H ′), then
HK is a subgroup of G.
In particular, if K is a normal subgroup, then hK = Kh for any h ∈ H, and thus

HK = KH is a subgroup of G.

Proof. For h1, h2 ∈ H and k1, k2 ∈ K, we need to check that

h1k1 · (h2k2)−1 = h1k1k
−1
2 h−1

2

belongs to HK. Yet the condition says that k1k
−1
2 ·h−1

2 = h′k′ for some h′ ∈ H ′ and k′ ∈ K ′.
Thus

h1k1 · (h2k2)−1 = h1k1k
−1
2 h−1

2 = h1h
′k′ ∈ HK.

□

Lemma 2.4.4. If H and K are both normal subgroups of G, then HK is also a normal
subgroup of G.

15



Proof. We have checked that HK is a subgroup. For any g ∈ G, we check

gHK = HgK = HKg.

So HK is a normal subgroup of G. □

2.5. Group homomorphisms. The concept of group homomorphisms may be viewed as
a way to relate two groups.

Definition 2.5.1. Let (G, ∗) and (H, ⋆) be two groups. A map ϕ : G → H is called a
homomorphism if for any x, y ∈ G, we have

ϕ(x ∗ y) = ϕ(x) ⋆ ϕ(y).

Remark 2.5.2. (1) For a group homomorphism ϕ : G→ H,

ϕ(eG) = eH , and ϕ(g−1) = ϕ(g)−1.

Indeed, ϕ(eG) = ϕ(eG ∗ eG) = ϕ(eG) ⋆ ϕ(eG). Thus eH = ϕ(eG) by cancellation. For each
g ∈ G, we have eH = ϕ(eG) = ϕ(g ∗ g−1) = ϕ(g) ⋆ ϕ(g−1). So ϕ(g−1) = ϕ(g)−1.

(2) A bijective group homomorphism is a group isomorphism.

Example 2.5.3. (1) ϕ : Z→ Zn given by ϕ(m) = m mod n is a homomorphism.
(2) When H is a normal subgroup of G, there is a natural surjective homomorphism

G G/H

a π(a) = aH.

π

For this, we check that π(ab) = abH = aH · bH = π(a) · π(b).
Lemma 2.5.4. If ϕ : (G, ∗) → (H, ⋆) and ψ : (H, ⋆) → (K, •) are two homomorphisms,
then the composition ψ ◦ ϕ : (G, ∗)→ (K, •) is a homomorphism.

Proof. We simply check that for x, y ∈ G, we have

ψ ◦ ϕ(x ∗ y) = ψ(ϕ(x) ⋆ ϕ(y)) = ψ(ϕ(x)) • ψ(ϕ(y)).
□

2.6. Kernel of a group homomorphism.

Definition 2.6.1. For a homomorphism ϕ : G→ H of groups, the kernel is

kerϕ := {g ∈ G |ϕ(g) = eH}.
Lemma 2.6.2. Let ϕ : G→ H be a group homomorphism.

(1) The image ϕ(G) is a subgroup of H.
(2) The kernel kerϕ is a normal subgroup of G.

Proof. (1) It follows from that ϕ(g1)ϕ(g2)
−1 = ϕ(g1)ϕ(g

−1
2 ) = ϕ(g1g

−1
2 ) ∈ ϕ(G).

(2) If g1, g2 ∈ kerϕ, then

ϕ(g1g
−1
2 ) = ϕ(g1)ϕ(g2)

−1 = eHe
−1
H = eH .

So g1g
−1
2 ∈ kerϕ. Thus kerϕ is a subgroup.

For any g′ ∈ G and any g ∈ kerϕ,

ϕ(g′gg′−1) = ϕ(g′)ϕ(g)ϕ(g′)−1 = ϕ(g′)eHϕ(g
′)−1 = eH .

So g′gg′−1 ∈ kerϕ. This implies that kerϕ is a normal subgroup of G. □
16



The triviality of the kernel indicates the injectivity of a homomorphism.

Lemma 2.6.3. A homomorphism ϕ : G → H of groups is injective if and only if kerϕ =
{eG}.

Proof. The injectivity ⇒ kerϕ = {eG} is clear as ϕ(eG) = eH .
Conversely, suppose that kerϕ = {eG}, we need to show that ϕ is injective.
Suppose that ϕ(g1) = ϕ(g2) for some g1, g2 ∈ G. Then

ϕ(g1g
−1
2 ) = ϕ(g1)ϕ(g2)

−1 = eH .

Thus g1g
−1
2 ∈ kerϕ = {eG}. So g1g

−1
2 = eG, and thus g1 = g2. This proves that ϕ is

injective. □

Extended readings after Section 2

2.1 Describing a homomorphism. If a group G is given by generators and relations as
⟨s1, . . . , sn |R1, R2, . . . ⟩, to specify a homomorphism ϕ : G → H to another group H is
equivalent to specify the images ϕ(s1), . . . , ϕ(sn) of the generators (as elements in H), such
that the relation ϕ(Rj) still hold.

Instead of giving a proof of the above statement, we illustrate it through an example.
Let us compute all homomorphisms ϕ : D2n → C×. Recall that D2n =

〈
r, s
∣∣ rn = s2 =

1, srs = r−1
〉
. To describe such a homomorphism ϕ, we just need to give two numbers

ϕ(r), ϕ(s) ∈ C× such that

ϕ(r)n = ϕ(s)2 = 1 and ϕ(s)ϕ(r)ϕ(s) = ϕ(r)−1.

The second relation says ϕ(r)ϕ(s)2 = ϕ(r)−1. Yet ϕ(s)2 = 1, so ϕ(r)2 = 1. From this, we
can easily deduce that

• when n is odd, ϕ(s) ∈ {±1} and ϕ(r) = 1;
• when n is even, ϕ(s) ∈ {±1} and ϕ(r) ∈ {±1}.

Continued with this, we may try to understand index 2 subgroups of D2n. It is an exercise
to show that every subgroup of index 2 is normal. So we have a bijection{

index 2 subgroups
} {

nontrivial homomorphisms ϕ : D2n → {±1}
}

H ϕ : G↠ G/H ≃ {±1}

ker(ϕ) π

This allows us to enlist all index 2 subgroups as follows.

• When n is odd, the only nontrivial homomorphism ϕ is given so that ϕ(s) = −1 and
ϕ(r) = 1. So ker(ϕ) = ⟨r⟩ is the only index 2 subgroup of D2n.
• When n is even, there are three nontrivial homomorphisms

ϕ(s) ϕ(r) ker(ϕ)

1 −1 ⟨s, r2⟩
−1 1 ⟨r⟩
−1 −1 ⟨sr, r2⟩

17



3. Isomorphism theorems, composition series, statement of Hölder theorem

In this lecture, we will introduce a series of isomorphism theorems to relate the source
and target groups of a homomorphism. After this, we explain Hölder’s program to classify
all groups.

3.1. The isomorphism theorems.

Theorem 3.1.1 (The first isomorphism theorem). If ϕ : G → H is a homomorphism of
groups, then kerϕ⊴G and

G/ kerϕ ∼= ϕ(G).

Proof. It may help to visualize the situation of the theorem as follows:

g

ϕ(g) e

ϕ(G)

g kerϕ
G

H

We define the needed map

ψ : G/ kerϕ ϕ(G)

g kerϕ ϕ(g).

We need to prove the following:

(1) ψ is well-defined. Suppose g1 kerϕ = g2 kerϕ. Then g
−1
2 g1 ∈ kerϕ, and thus

ϕ(g1) = ϕ(g2 · g−1
2 g1) = ϕ(g2) · ϕ(g−1

2 g1) = ϕ(g2) · eH = ϕ(g2).

(2) ψ is surjective. This is because every element of ϕ(G) takes the form of f(g); and it
is the image of g kerϕ.

(3) ψ is injective. It is enough to check that kerψ = {kerϕ}.
This is because if ψ(g kerϕ) = ϕ(g) = eH , then g ∈ kerϕ. Thus g kerϕ = kerϕ. So

kerψ = {kerϕ}.
(4) ψ is a homomorphism. One checks this as:

ψ
(
g1 kerϕ · g2 kerϕ) ψ(g1g2 kerϕ) ϕ(g1g2)

ψ(g1 kerϕ) · ψ(g2 kerϕ) ϕ(g1)ψ(g2).

□
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Theorem 3.1.2 (The second isomorphism theorem). Let G be a group, and let A ≤ G be a
subgroup and B ⊴G a normal subgroup. Then AB is a subgroup of G, B ⊴AB, A∩B ⊴A,
and

AB/B ∼= A/(A ∩B).

Proof. We have shown in Lemma 2.4.3 that AB ≤ G.
We first prove that B ⊴ AB: indeed, since B ⊴ G, we have for any g ∈ G, gBg−1 = B.

The same equality certainly holds for g ∈ AB ⊆ G. So B ⊴ AB and hence the quotient
AB/B makes sense.
Now define a homomorphism

ϕ : A AB AB/B

a a aB.

We will show:

• ϕ is clearly surjective, because abB = aB = ϕ(a).
• kerϕ = {a ∈ A | aB = B}. (the condition aB = B implies a ∈ B.) So kerϕ = A∩B.
In particular, as a kernel, A ∩B is a normal subgroup of A.

Now, by the first isomorphism theorem, we deduce

A
/
(A ∩B)

∼=−−→ AB
/
B.

□

Remark 3.1.3. A naive way to prove two groups G and H are isomorphic is to establish
a bijection between G and H and show that this is a homomorphism. A “more advanced
way” is to first establish a homomorphism between some groups G′ and H ′ “closely related”
to G and H. Then we use isomorphism theorems to try to relate G with H.

In the particular case of proving some statement like G/H ∼= G′. One may first construct
a surjective homomorphism ϕ : G→ G′ and compute the kernel of ϕ to be H.

Remark 3.1.4. We have the following diagram of subgroups.

{1}

A ∩B

AB

G

A B

same quotient

Remark 3.1.5. The statement of the theorem is slightly weaker than the one from the book.
Instead of requiring B to be a normal subgroup of G, it suffices to require that A normalizes
B, i.e. ∀a ∈ A, aBa−1 = B. The only place where we need some modification is where we
prove B ⊴ AB. Indeed, given a ∈ A and b ∈ B, we have

abB(ab)−1 = abBb−1a−1 = aBa−1 = B.
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Theorem 3.1.6 (The third isomorphism theorem). Let G be a group and H and K be
normal subgroups with H ≤ K. Then K/H ⊴G/H, and

(G/H)
/
(K/H) ∼= G/K.

(If we denote the quotient by H using a bar, then this says that G/K ∼= G/K.

One can alternatively write this in terms of a diagram:

G

K

H

G/K∼=(G/H)/(K/H)

G/H

K/H

Proof. Consider the map

ϕ : G/H G/K

gH gK.

• ϕ is well-defined. We can simply redefine ϕ as ϕ(gH) = gH ·K = gK as product of
subsets of G.
• ϕ is a homomorphism. This is because

ϕ(g1H · g2H) ϕ(g1g2H) g1g2K

ϕ(g1H) · ϕ(g2H) g1K · g2K.

• ϕ is surjective. This is clear.
• kerϕ is equal to

kerϕ =
{
gH
∣∣ gK = K

}
=
{
gH | g ∈ K

}
= K/H.

In particular, (as a kernel), K/H is a normal subgroup of G/H.

Using the first isomorphism theorem, we deduce that

(G/H)
/
(K/H) ∼= G/K.

□

Theorem 3.1.7 (The fourth isomorphism theorem / Lattice isomorphism theorem). Let G
be a group and N ⊴G a normal subgroup. Then there is a bijection{

subgroups of G containing N
} {

subgroups of G/N
}

A A/N

π−1(A) A

where π : G→ G/N is the natural projection.
This bijection preserves

• inclusions of groups,
• index of subgroups,
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• intersections,
• normality of subgroups, and
• quotients of subgroups.

Visually, we have

Lattice of subgroups of G containning N ←→ Lattice of subgroups of G/N.

3.2. Universal property of quotient groups. Consider the following situation ϕ : G →
H is a group homomorphism and let N ⊴G be a normal subgroup. We hope to define

Φ : G/N H

gN ϕ(g).

Lemma 3.2.1. Such map Φ is well-defined if and only if N ⊆ kerϕ. In this case, Φ is a
homomorphism.

Proof. This is because if g1N = g2N , then g1 = g2n for some n ∈ N . Thus we need to see
whether

ϕ(g1) = ϕ(g2n) = ϕ(g2)ϕ(n) =? ϕ(g2).

This happens if and only if ϕ(n) = eH (i.e. n ∈ kerϕ). From this, it is clear that Φ is
well-defined if and only if N ⊆ kerϕ (as n may be taken to be any element in N .)

Moreover, it is clear that in this case Φ is a homomorphism. □

Example 3.2.2. We explain how this lemma is used. Consider a homomorphism ϕ : Z→ C×

(such a homomorphism is in fact determined by the value λ := ϕ(1) ∈ C×. Then we ask the
question: which ϕ induces a well-defined homomorphism Z/⟨n⟩ → C×? For this, we need
ϕ(⟨n⟩) = 1. This is equivalent to requiring ϕ(n) = 1, or in other words, λn = 1.

Notation 3.2.3. When N ⊆ kerϕ, we say that ϕ : G → H factors through G/N ,
graphically,

G H g ϕ(g)

G/N gN.

ϕ

π
Φ

this says that there exists a unique Φ that makes the diagram commute.

Remark 3.2.4. This is the first time that we introduce a diagrammatic description of a
statement. In future study of abstract algebra or commutative algebra, we will, with some
frequency, find that such diagrammatic description helpful to clarify the situation.

Remark 3.2.5. One may view the lemma above as: when we consider the homomorphism
ϕ : G → H, one may to do this in two steps: first “group together” the information in N ,
and then map to H.
Another way to think of this is that: if we consider all possible homomorphisms out of G to

some group H such that the kernel contains N , this is equivalent to consider homomorphism
(first to G/N and then) out of G/N to H. This is the “universal property” of the quotient
G/N . (In other words, if we want to consider homomorphisms out of G whose kernel contains
N , it suffices to look at G/N .)

21



3.3. Hölder’s program.

Ultimate goal of group theorists: classify all finite groups.

One observation we get from above is that, if N ◁ G is a proper normal subgroup (i.e.
N ̸= {1}, G). Then roughly, we may obtain some information of G from that of N and of
G/N .

Definition 3.3.1. A (finite or infinite) group G is called simple if |G| > 1 and the only
normal subgroups of G are {1} and G.

Example 3.3.2. (1) Zp for a prime number p. (This is all abelian simple groups.)
(2) Alternating group An for n ≥ 5 (a subgroup of Sn we introduce later).
(3) There are infinite simple groups, but not so easy to define.

So the Hölder program consists of two steps:

• Step I: classify all finite simple groups;
• Step II: Find all ways of “putting simple groups together” to form other groups.

The following is considered the most important achievement of group theory.

Theorem 3.3.3 (Classification of finite simple groups). Every finite simple group is isomor-
phic to one in

• 18 (infinite) families of simple groups, or
• 26 sporadic simple groups.

The list of family of finite groups includes

• Zp with p a prime;
• An (n ≥ 5);
• PSLn(F) = SLn(F)/Z(SLn(F)) with n ≥ 2 and F a finite field (e.g. Fp). (Here
Z(SLn(F)) is the scalar matrices with coefficients in F× and whose determinant is 1.)

There are other lists of finite groups mostly associated to a family of “Lie groups of finite
type”.

For the interest of readers, we only on mention the following.

Theorem 3.3.4 (Feit–Thompson theorem). If G is a simple group of odd order, then G ∼= Zp
for some odd prime p.

Remark 3.3.5. In fact, the original Feit–Thompson theorem states that every finite group
of odd order is solvable! (See the definition of solvable groups below in Definition 3.4.4.)

Certainly, in this abstract algebra course, we will only touch the very basics of group theory.
We hope to learn some tools that frequently appears in applications to future questions in
algebra.

3.4. Composition series. Inspired by the Hölder’s program, we make the following.

Definition 3.4.1. In a group G, a sequence of subgroups

{1} = N0 ≤ N1 ≤ · · · ≤ Nk = G

is called a composition series if Ni−1⊴Ni and Ni/Ni−1 is a simple group for each 1 ≤ i ≤ k.
In this case, the factor groups Ni/Ni−1 are called composition factors or Jordan–

Hölder factors of G.
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Example 3.4.2. For the dihedral group D8 = ⟨r, s | r4 = s2 = 1, srs = r−1⟩, the following
are two composition series (and there are more):

• {1}◁ ⟨s⟩◁ ⟨s, r2⟩◁D8,
• {1}◁ ⟨r2⟩◁ ⟨r⟩◁D8.

Theorem 3.4.3 (Jordan–Hölder). Let G be a nontrivial finite group. Then

(1) G has a composition series, and
(2) the composition factors are unique up to permutation, i.e. if we have two composition

series

{1} = A0 ◁ A1 ◁ · · ·◁ Am = G and {1} = B0 ◁B1 ◁ · · ·◁Bn = G,

then m = n, and there exists a bijection σ : {1, . . . ,m} → {1, . . . , n = m} such that,
for i = 1, . . . ,m,

Ai/Ai−1 ≃ Bσ(i)/Bσ(i)−1.

Proof of (1). This is because if G is simple, then {1}◁ G itself forms a composition series.
If G has a nontrivial normal subgroup N , then we may immediately reduce to N and G/N
as follows: writing π : G→ G/N and giving composition series

{1} = C0 ◁ C1 ◁ · · ·◁ Cr = N and {N} = D0 ◁D1 ◁ · · ·◁Ds = G/N,

we may “combine” them using the Fourth Isomorphism Theorem as

{1} = C0 ◁ C1 ◁ · · ·◁ Cr = N = π−1(D0)◁ π
−1(D1)◁ · · ·◁ π−1(Ds) = G.

(Here we make essential use of the Fourth Isomorphism Theorem, in particular, π−1(Di)/π
−1(Di−1) ∼=

Di/Di−1 for i = 1, . . . , s.)
The proof of (2) will be given in the next lecture. □

Definition 3.4.4. A group G is called solvable if there exists a chain of subgroups

{1} = G0 ◁G1 ◁ · · ·◁Gs = G

such that Gi/Gi−1 is abelian for i = 1, . . . , s.

Corollary 3.4.5. For a finite group G, G is solvable if and only if all of the composition
factors of G are of the form Zp.

Example 3.4.6. The group of upper triangular invertible matrices is solvable.

G =

{∗ ∗ ∗0 ∗ ∗
0 0 ∗

 ∈ GL3(C)
}
⊇ N =

{1 ∗ ∗
0 1 ∗
0 0 1

 ∈ GL3(C)
}
⊇ N ′ =

{1 0 ∗
0 1 0

0 0 1

 ∈ GL3(C)
}
.

The subquotients are

G/N ∼= (C×, ·)3, N/N ∼= (C,+)2, N ′ ∼= (C,+).

An interesting deep theorem for solvable group is the following.

Theorem 3.4.7 (Philip Hall). The finite group G is solvable if and only if for every divisor

n of |G| such that gcd
(
n,
|G|
n

)
= 1, G has a subgroup of order n.
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4. Jordan–Hölder theorem, simplicity of An, and direct product groups

4.1. Jordan–Hölder theorem.

Theorem 4.1.1 (Jordan–Hölder). Assume that a group G has the following two composition
series

{1} = A0 ◁ A1 ◁ · · ·◁ Am = G and {1} = B0 ◁B1 ◁ · · ·◁Bn = G,

then m = n, and there exists a bijection σ : {1, . . . ,m} → {1, . . . , n = m} such that

Aσ(i)/Aσ(i)−1 ≃ Bi/Bi−1.

4.1.2. Toy model. A set theoretic version.
Let X be a set with two filtrations.

∅ = A0 ⊆ A1 ⊆ · · · ⊆ Am = X, ∅ = B0 ⊆ B1 ⊆ · · · ⊆ Bn = X.

We use the following picture to explain the situation.

Am

A2

A1

B1

B2

Bn

Then we must have for every i, j,
(4.1.2.1)(

Ai−1 ∪ (Ai ∩Bj)
)∖(

Ai−1 ∪ (Ai ∩Bj−1)
)
=
(
Bj−1 ∪ (Ai ∩Bj)

)∖(
Bj−1 ∪ (Ai−1 ∩Bj)

)
.

Here Bj−1 ∪ (Ai−1 ∩ Bj) is the blue part and Ai−1 ∪ (Ai ∩ Bj−1) is the brown part. The
equality can be seen as both parts represent the shaded red area.

To make the proof a bit more effective, we can first show that both sides are the same as(
Ai ∩Bj

)∖(
(Ai ∩Bj−1) ∪ (Ai−1 ∩Bj)

)
,

where the latter set is the green shaded area. (Indeed, to identify the above complement
with the left hand side of (4.1.2.1), we may intersect both terms with Bj; and to identify
the above complement with the left hand side of (4.1.2.1), we may intersect both terms with
Ai.)
The above proof is of course trivial, but we will see quickly how that help us understand

the proof of Jordan–Hölder theorem.
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4.1.3. Proof of Theorem 4.1.1. We prove a slightly stronger version: let G be a group.
Suppose that we are given two chains of subgroups

{1} = A0 ⊴ A1 ⊴ · · ·⊴ Am = G, {1} = B0 ⊴B1 ⊴ · · ·⊴Bn = G.

Then we have

(1) Ai−1(Ai ∩Bj−1) is a normal subgroup of the group Ai−1(Ai ∩Bj);
(2) (Ai−1 ∩Bj)Bj−1 is a normal subgroup of the group (Ai ∩Bj)Bj−1;
(3) and we have an isomorphism

(4.1.3.1)
Ai−1(Ai ∩Bj)

Ai−1(Ai ∩Bj−1)
∼=

(Ai ∩Bj)Bj−1

(Ai−1 ∩Bj)Bj−1

.

This in particular shows that one may refine both chains of subgroups into (setting A′
ij =

Ai−1(Ai ∩Bj) and B
′
ij = (Ai ∩Bj)Bj−1)

{1} = A0 = A′
10⊴A

′
11⊴· · ·⊴A′

1n = A1 = A′
20⊴· · ·⊴A′

2n = A2 = A′
30⊴· · ·⊴A′

m−1,n = An = G,

{1} = B0 = B′
01⊴B

′
11⊴· · ·⊴B′

m1 = B1 = B′
02⊴· · ·⊴B′

m2 = B2 = B′
03⊴· · ·⊴B′

m,n−1 = Bn = G,

so that A′
ij/A

′
i,j−1
∼= B′

ij/B
′
i−1,j.

This means that in the special case of the theorem when Ai/Ai−1 and Bj/Bj−1 are
simple groups, Ai/Ai−1

∼= A′
i,σ(i)/A

′
i,σ(i)−1 for a unique σ(i) ∈ {1, . . . , n} and Bj/Bj−1

∼=
B′
σ(j),j/B

′
σ(j)−1,j for a unique τ(j) ∈ {1, . . . ,m}. It is clear that m = n, and σ and τ are

inverse of each other. Moreover, (4.1.3.1) implies that Ai/Ai−1
∼= Bσ(i)/Bσ(i)−1.

Now we return to prove the stronger version of the theorem above. We first check (1) and
(2). By symmetry, it suffices to prove (1). We first show that Ai−1(Ai ∩ Bj) is a subgroup
of G. Indeed, viewing both Ai−1 and Ai ∩ Bj as a subgroup of Ai, Ai−1 is normal; so
Ai−1(Ai ∩Bj) is a subgroup of Ai (and hence of G).

Next, we observe that Bj−1 ⊴ Bj implies that (Ai ∩ Bj−1) ⊴ (Ai ∩ Bj). To show that
Ai−1(Ai ∩ Bj−1)⊴ Ai−1(Ai ∩ Bj), take a ∈ Ai−1, b ∈ Ai ∩ Bj−1, α ∈ Ai−1, and β ∈ Ai ∩ Bj,
we have

(αβ)(ab)(αβ)−1 = αβabβ−1α−1 = α·βaβ−1︸ ︷︷ ︸
in Ai−1

· βbβ−1︸ ︷︷ ︸
in Ai∩Bj

α−1 ∈ Ai−1(Ai∩Bj)Ai−1 = Ai−1(Ai∩Bj).

(The last equality uses that Ai−1(Ai ∩Bj) is a group.) This completes the proof of (1), and
the two quotients in (4.1.3.1) makes sense.
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Am

A2

A1

B1

B2

Bn

As suggested by the proof in the toy model, we hope to prove the following:

(4.1.3.2)
Ai−1(Ai ∩Bj)

Ai−1(Ai ∩Bj−1)
∼=

Ai ∩Bj

(Ai−1 ∩Bj) · (Ai ∩Bj−1)
∼=

(Ai ∩Bj)Bj−1

(Ai−1 ∩Bj)Bj−1

.

By symmetry, it suffices to prove the left isomorphism. We construct a homomorphism

ϕ : Ai ∩Bj Ai−1(Ai ∩Bj)
Ai−1(Ai ∩Bj)

Ai−1(Ai ∩Bj−1)

a a aAi−1(Ai ∩Bj−1).

Such homomorphism is clearly surjective. It suffices to find its kernel.

kerϕ = (Ai ∩Bj) ∩
(
Ai−1(Ai ∩Bj−1)

)
.

Let a ∈ Ai−1 and β ∈ Ai ∩Bj−1. Then

aβ ∈ Bj ⇒ a ∈ Bj · β−1 = Bj.

So kerϕ ⊆ (Ai−1 ∩Bj)(Ai ∩Bj−1).
Conversely, we clearly have

(Ai−1 ∩Bj)(Ai ∩Bj−1) ⊆ Ai ∩Bj ∩
(
Ai−1(Ai ∩Bj−1)

)
.

Thus, we have kerϕ = (Ai−1∩Bj)(Ai∩Bj−1). By the first isomorphism theorem, we deduce

Ai ∩Bj

(Ai−1 ∩Bj) · (Ai ∩Bj−1)
∼=

Ai−1(Ai ∩Bj)

Ai−1(Ai ∩Bj−1)
.

This completes the proof of (3), and the Jordan–Hölder theorem. □

Remark 4.1.4. In fact, what we proved is Zassenhaus Lemma. Let H and K be subgroups
of a group G and let H∗ and K∗ be normal subgroups of H and K, respectively. Then

(1) H∗(H ∩K∗) is a normal subgroup of H∗(H ∩K).
(2) K∗(H∗ ∩K) is a normal subgroup of K∗(H ∩K).
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(3)
H∗(H ∩K)

H∗(H ∩K∗)
∼=

H ∩K
(H∗ ∩K)(H ∩K∗)

∼=
K∗(H ∩K)

K∗(H∗ ∩K)
.

4.2. Alternating groups. One important example of composition series is (n ≥ 5)

{1} ≤ An
2

⊴ Sn.

Definition 4.2.1. In the permutation group Sn, recall that for distinct numbers a1, . . . , am ∈
{1, . . . , n}, one has an m-cycle σ = (a1a2 · · · am):

a1 a2 · · · am
σ σ σ

σ

A 2-cycle (xy), for x, y ∈ {1, . . . , n} distinct, is called a transposition.

Remark 4.2.2. As (a1 . . . am) = (a1am)(a1am−1) · · · (a1a2), every element of Sn is a product
of transpositions.

Properties 4.2.3. Before proceeding, we point out a key observation: for σ ∈ Sn, we have

(4.2.3.1) σ(a1, . . . , am)σ
−1 = (σ(a1), . . . , σ(am)).

This can be proved by noting:

σ(ai) ai ai+1 σ(ai+1).
σ−1 (a1,...,am) σ

Definition 4.2.4. Define the following for σ ∈ Sn

∆ :=
∏

1≤i<j≤n

(xi − xj), σ(∆) :=
∏

1≤i<j≤n

(xσ(i) − xσ(j)) ∈ {±∆}.

For each σ ∈ Sn, define sgn(σ) ∈ {±1} so that σ(∆) = sgn(σ)∆.
We call sgn(σ) the sign of σ.

Proposition 4.2.5. The map sgn : Sn → {±1} is a homomorphism.

Proof. By definition, for σ, τ ∈ Sn, we have

sgn(στ) =

∏
1≤i<j≤n

(xστ(i) − xστ(j))∏
1≤i<j≤n

(xi − xj)
.

sgn(σ) · sgn(τ)
∏

1≤i′<j′≤n

(xσ(i′) − xσ(j′))
(xi′ − xj′)

∏
1≤i<j≤n

(xτ(i) − xτ(j))∏
1≤i<j≤n

(xi − xj)

∏
1≤i<j≤n

(xστ(i) − xστ(j))
(xτ(i) − xτ(j))

= ·

i′=τ(i), j′=τ(j)
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Here the vertical equality holds (or rather we are allowed to make the substitution i′ = τ(i)

and j′ = τ(j)) because in the product of
(xσ(i′) − xσ(j′))
(xi′ − xj′)

, we can swap the order of i′ and j′

(and thus release the constraint that i′ < j′).
From above, we may cancel the terms

∏
1≤i<j≤n

(
xτ(i) − xτ(j)

)
and thus get sgn(στ) =

sgn(σ)sgn(τ). □

Definition 4.2.6. The normal subgroup An := ker
(
sgn : Sn → {±1}

)
is called the alter-

nating group.

Properties 4.2.7. (1) An ◁ Sn and Sn/An ∼= {±1}. In particular,

|An| = |Sn|
/
|{±1}| = n!

2
.

(2) We claim that sgn(transpotion) = −1. Indeed, sgn((12)) = −1 because for σ = (12),

σ(∆) =
∏

1≤i<j≤n

(xσ(i) − xσ(j)) = (x2 − x1)
∏

1≤i<j≤n
j≥3

(xi − xj) = −∆.

For a general transposition (ab), fix τ ∈ Sn, such that τ(1) = a and τ(2) = b. Then (4.2.3.1)
implies that τ(12)τ−1 = (ab). Thus,

sgn((ab)) = sgn(τ) · sgn((12)) · sgn(τ)−1 = sgn((12)) = −1.
Definition 4.2.8. From the discussion above, we see that for σ ∈ Sn,

sgn(σ) = (−1)number of transpositions in the factorization of σ.

So we call such σ

• an even permutation if sgn(σ) = 1,
• an odd permutation if sgn(σ) = −1.

In particular, An = {σ ∈ Sn |σ is an even permutation}.
Theorem 4.2.9. When n ≥ 5, An is a simple group.

Remark 4.2.10. (1) A3 = ⟨(123)⟩ is a cyclic group of order 3.
(2) A4 ⊵

{
1, (12)(34), (14)(23), (13)(24)

} ∼= Z2
2.

(3) It is known that a simple group of order 60 is isomorphic to A5. (It is the smallest
non-commutative simple group.)

Proof of Theorem 4.2.9. Recall that a 3-cycle (ijk) always belong to An. We will prove three
statements, together they prove Theorem 4.2.9.

(1) An is generated by all 3-cycles (true with n ≥ 3).
Indeed, (a, b)(c, d) = (a, c, b)(a, c, d) and (a, c)(a, b) = (a, b, c).

(2) If a normal subgroup N ⊴ An contains a 3-cycle, then it contains all 3-cycles (true
for n ≥ 3).

Indeed, Assume that N contains the 3-cycle (i, j, k). Note that, for every σ ∈ Sn,
either σ ∈ An or σ(i, j) ∈ An. Then (4.2.3.1) implies that
• either σ(i, j, k)σ−1 = (σ(i), σ(j), σ(k)) ∈ N , or
• σ(i, j)(i, j, k)(σ(i, j))−1 = σ(j, i, k)σ−1 = (σ(j), σ(i), σ(k)) ∈ N (but then we
have (σ(j), σ(i), σ(k))2 = (σ(i), σ(j), σ(k)) ∈ N).
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So N always contains (σ(i), σ(j), σ(k)) for every σ ∈ Sn, and thus N contains all
3-cycles.

(3) If {1} ≠ N ◁ An is a nontrivial normal subgroup, then N contains all 3-cycles.
Take a nontrivial element σ ∈ N . We separate several cases:

(a) If σ is a product of disjoint cycles, at least one cycle has length > 3, i.e. σ =
µ(a1, a2, . . . , ar) with r > 3, then we have

(a1, a2, a3)σ(a1, a2, a3)
−1 = µ(a2, a3, a1, a4, a5, . . . , ar) ∈ N.

So σ−1 ◦ (a1, a2, a3)σ(a1, a2, a3)−1 sends

a1 a2 a3 a4 · · · ar−1 ar

a4 a3 a1 a5 · · · ar a2

a3 a2 ar a4 · · · ar−1 a1.

It is equal to (a1, a3, ar), a 3-cycle.
(b) Suppose that (a) does not hold, and then σ is a product of disjoint 3-cycles and

2-cycles. It then follows that σ3 is a product of disjoint 2-cycles and σ2 is a
product of disjoint 3-cycles (and they cannot be both 1). So (by considering σ3

or σ2 instead of σ, we are reduced to the case when σ is purely a product of
disjoint 3-cycles or a product of disjoint 2-cycles.

(c) If σ is a product of one 3-cycles, we are already done. If σ is a product of more
than one disjoint 3-cycles, we write σ = µ(a4, a5, a6)(a1, a2, a3). Then

(a1, a2, a4)σ(a1, a2, a4)
−1σ−1 ∈ N,

and we compute it as:

a1 a2 a3 a4 a5 a6

a3 a1 a2 a6 a4 a5

a2 a5 a4 a1 a3 a6

σ−1

(a1,a2,a4)σ(a1,a2,a4)−1

=µ(a2,a4,a3)(a1,a5,a6)

This is (a1, a2, a5, a3, a4), a 5-cycle, and we are reduced to case (a).
(d) If σ is a product of (necessarily even number) of disjoint transpositions, we write

σ = µ(a1, a2)(a3, a4). Then

(a1, a2, a3)σ(a1, a2, a3)
−1σ−1 = (a1, a3)(a2, a4) ∈ N.

(This step “removes” the extra transpositions µ.) Write σ′ := (a1, a3)(a2, a4).
After this, we use the condition n ≥ 5 to take another number a5 ∈ {1, . . . , n}.
Explicit computation shows again that

(a1, a2, a5)σ(a1, a2, a5)
−1σ−1 = (a1, a2, a5, a4, a3) ∈ N,

producing a 5-cycle and hence reduces to case (a).

□
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4.3. Direct products.

Definition 4.3.1. Let I be an index set and let Gi (for i ∈ I) be a group with operator ⋆i
and identity ei.

Define the direct product of (Gi)i∈I , denoted by
∏
i∈I
Gi (or G1 × G2 × · · · × Gn if I =

{1, 2, . . . , n}), to be the group with underlying set G =
∏
i∈I
Gi, with operation

(gi)i∈I ⋆ (hi)i∈I := (gi ⋆i hi)i∈I .

The identity element is {ei}i∈I and the inverse of (gi)i∈I is (g
−1
i )i∈I .

For each j ∈ I, there is a natural embedding (= injective homomorphism)

Gj G =
∏
i∈I
Gi

gj (1, . . . , 1, gj, 1, . . . , 1)

jth place

This realizes Gj as a normal subgroup of
∏
i∈I
Gi and we have(∏

i∈I

Gi

)/
Gj
∼=

∏
i∈I\{j}

Gi.

“Dually”, there is a natural projection (= surjective homomorphism)

πj : G Gj

(gi)i∈I gj

We have ker πj ∼=
∏

i∈I\{j}
Gi.

Finally, when Gi’s are all isomorphic to a group H and i = {1, . . . , r}, we write Hr for∏
i∈I Gi.

4.4. Finitely generated abelian groups. Recall that a group G is finitely generated if
there exist a finite subset A of G such that G = ⟨A⟩.

Theorem 4.4.1 (Fundamental theorem of finitely generated abelian groups). Let G be a
finitely generated abelian group. Then

G ≃ Zr × Zn1 × Zn2 × · · · × Zns

for some integers r ≥ 0, 2 ≤ n1 ≤ n2 ≤ · · · ≤ ns satisfying ni|ni+1. Moreover these integers
r, n1, . . . , ns are unique.

The integer r is called the rank of the abelian group G.

We will explain later in the semester that abelian groups = Z-modules. So this theorem
will follow from the classification of modules over a PID (Theorem 13.3.4).

The goal in this lecture is to see how to characterize finitely generated abelian groups.

Lemma 4.4.2. If m,n ∈ N≥2 satisfying gcd(m,n) = 1, then

Zmn ∼= Zm × Zn.
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Proof. Consider the group homomorphism

Zmn Zm × Zn

a
(
a mod m, a mod n

)
.

ϕ

We compute the kernel of ϕ:

kerϕ =

{
a mod mn

∣∣∣∣ a ≡ 0 mod m

a ≡ 0 mod n

}
= {0 mod mn}.

So ϕ is injective. But |Zmn| = |Zm|·|Zn|. So ϕmust be a bijection and hence an isomorphism.
□

Corollary 4.4.3. Every finitely generated abelian group is of the form

G = Zr ×
(
Zpr111

× · · ·Z
p
r1s1
1

)
×
(
Zpr212

× · · ·Z
p
r2s1
2

)
× · · ·

Here, r, p1, p2, . . . , r11, . . . , r1s1 , r21, . . . are unique up to permutation.

Example 4.4.4. Determine whether Z30 × Z100 is isomorphic to Z60 × Z50. We write

Z30 × Z100 ≃ Z2 × Z3 × Z5 × Z4 × Z25,

Z60 × Z50 ≃ Z3 × Z4 × Z5 × Z2 × Z25.

So they are isomorphic.

Example 4.4.5. List all abelian groups of order 72 = 8×9. We list them using the following
table:

Z3
2 Z2 × Z4 Z8

Z2
3 Z2

3 × Z3
2 Z2

3 × Z2 × Z4 Z2
3 × Z8

Z9 Z9 × Z3
2 Z9 × Z2 × Z4 Z9 × Z8

(We explain why Z2 × Z4 is not isomorphic to Z8: for every element (a, b) ∈ Z2 × Z4, then
4 · (a, b) = 0; yet not every element in Z8 is killed by 4.)

Remark 4.4.6. We explain a general method to determine the factors at p. Suppose that
G is an abelian group of order pn. We would like to determine the numbers r1, . . . , rt such
that

G = Zpr1 × · · · × Zprt .

Consider the number of elements in G killed by p:

G[p] =
{
x
∣∣ p · x = 0

}
=
{
(x1, . . . , xt)

∣∣xi is divisible by pri−1
}
.

Then
∣∣G[p]∣∣ = pt. Next we consider G[p2]:

G[p2] =
{
x
∣∣ p2 · x = 0

}
=

{
(x1, . . . , xt)

∣∣∣∣ xi is divisible by pri−2 ri ≥ 2

xi arbitrary ri = 1

}
.

Then we have ∣∣G[p2]∣∣ = p2|{i|ri≥2}|+|{i|ri=1}| = p2t−|{i|ri=1}|.

Similarly, we can deduce that∣∣G[p3]∣∣ = p3|{i|ri≥3}|+2|{i|ri=2}|+|{i|ri=1}| = p3t−2|{i|ri=1}|−|{i|ri=2}|.
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Continue this, we may recover the numbers ri from
∣∣G[pn]∣∣’s.
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5. Recognizing direct produces, group actions, semi-direct products

5.1. Recognizing direct products. We prove a theorem that “recognize” when a group
is a direct product (of its subgroups).

Theorem 5.1.1 (Criterion of direct product group). Suppose that G is a group with sub-
groups H and K such that

(1) H and K are normal subgroups of G, and
(2) H ∩K = {1}.

Then HK ∼= H ×K (as groups).

Proof. Since both H and K are normal subgroups of G, HK is a normal subgroup of G.
Consider the natural map

ϕ : H ×K HK

(h, k) hk

• ϕ is a homomorphism. For this, we need to check that, for h1, h2 ∈ H and k1, k2 ∈ K,
we have

ϕ
(
(h1, k1)(h2, k2)

)
ϕ(h1h2, k1k2) h1h2k1k2

ϕ(h1, k1)ϕ(h2, k2) h1k1h2k2.

?

It suffices to show that

h2k1 = k1h2, or equivalently k1h2k
−1
1 h−1

2 = 1.

But the normality of K and H implies that

k1h2k
−1
1︸ ︷︷ ︸

in H

h−1
2 ∈ H and k1 h2k

−1
1 h−1

2︸ ︷︷ ︸
in K

∈ K.

So k1h2k
−1
1 h−1

2 ∈ H ∩K = {1}.
• ϕ is clearly surjective.
• kerϕ =

{
(k, h) ∈ K × H

∣∣ kh = 1
}
. But this condition implies that k = h−1 ∈

K ∩H = {1}. So kerϕ = {1}.
Summing up above, we deduce that ϕ is an isomorphism. □

5.2. Concept of group actions. Next, we will discuss a very important concept: group
actions. The basic example is Sn “permuting” numbers in {1, 2, . . . , n}. We say that Sn acts
on the set {1, 2, . . . , n}. We hope to generalize this notion of a group “acting” or “permuting”
elements in another set.

Definition 5.2.1. Let G be a group and X a set. A left G-action on X is a map

G×X X

(g, x) g · x

satisfying the following conditions:

(1) for any x ∈ X, e · x = x,
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(2) for any g, h ∈ G and x ∈ X, we have

g · (h · x) = (gh) · x.

Sometimes, we write G X.

Later, unless otherwise specified, we will always consider left group actions as opposed to
right group actions defined later.

Remark 5.2.2. The condition implies that for any g ∈ G, X → X given by x 7→ g · x is a

bijection (because the inverse is given by x 7→ g−1x as x g · x g−1 · g · x = x.
g g−1

Example 5.2.3. (1) Sn acts on X = {1, 2, . . . , n}; we verify Definition 5.2.1(2) as
σ(τ(i)) = (σ · τ)(i) for each i ∈ X.

(2) D2n acts on a regular n-gon, by taking the symmetry, where

r = rotation clockwise
2π

n
and s = reflection about ℓ1.

1

2

34

5 ℓ1
Symmetry of a pentagon

r

(3) Let G be a group acting on a set X and H a subgroup of G, then we may restrict
the G-action on X to an H-action on X.

For example, we may restrict the D2n-action on a regular n-gon to the subgroup
⟨r⟩, which will only rotate the regular n-gon.

(4) G-action on itself:
• left translation action: for g ∈ G, consider

ℓg : G −→ G

ℓg(x) := gx.

This is an action because ℓg ◦ ℓh = ℓgh.
• right translation action: for g ∈ G, consider

rg : G −→ G

rg(x) := xg−1.

Why do we use g−1? This is because we need rg ◦rh = rgh to define a left action.
We check: for x ∈ G,

rg ◦ rh(x) rg(xh
−1) xh−1g−1

rgh(x) x(gh)−1 xh−1g−1

?

(If we had defined r′g(x) = xg, then r′g ◦ r′h(x) = r′g(xh) = xhg ̸= xgh = r′gh(x).)
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• conjugation action: for g ∈ G, consider
Adg : G −→ G

Adg(x) := gxg−1.

This is a “better” action because the map Adg is in fact a homomorphism (and
also an isomorphism):

Adg(x) · Adg(y) = gxg−1 · gyg−1 = gxyg−1 = Adg(xy).

There is also a version of right group action.

Definition 5.2.4. Let G be a group and let X be a set. A right action of G on X is a
map

X ×G X

(x, g) x · g.

such that x · e = x and (x · g) · h = x · (gh) for any x ∈ X and g, h ∈ G.
For example, right translation by g is a right action:

r′g : G −→ G

r′g(x) := xg.

Proposition 5.2.5. Let G be a group acting on a set X. Then we have a natural homo-
morphism from G to the permutation group of X:

Φ : G SX

g (ϕg : x 7→ g · x).

In fact, given a group action of G on X is equivalent to give a homomorphism Φ : G→ SX .

Proof. We need to check that ϕg ◦ ϕh = ϕgh for every g, h ∈ G. Indeed, for x ∈ X,

ϕg ◦ ϕh(x) = ϕg(h · x) = g · (h · x) = (gh) · x = ϕgh(x).

□

Definition 5.2.6. (1) If this homomorphism Φ is injective, we say this action is faithful.
In this case, we may identify G with a subgroup of SX .

This is equivalent to require kerΦ = {1}, meaning no nontrivial element of G fixes
all elements of X.

(2) If this homomorphism Φ is trivial, i.e. ϕg = id for every g ∈ G, we say that the
action is trivial.

Theorem 5.2.7 (Cayley). Every group is isomorphic to a subgroup of some symmetry group.
If |G| = n, then G is isomorphic to a subgroup of Sn.

Proof. Consider the left translation action; by Proposition 5.2.5, it induces a homomorphism
G ↪→ SG. This action is clearly faithful, and thus identify G as a subgroup of SG. □

Remark 5.2.8. (1) This theorem has historical meaning because groups are first defined
as subgroups of Sn. Cayley’s theorem says that our abstract definition agrees with
the old definition.
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(2) Cayley’s theorem also suggests: given an abstract group, if we want to understand
G on the element level, it is better to let G act on some set X and represent G as a
subgroup of SX . (We will see more examples of this sort in the next lecture.)

5.3. Automorphism groups. As we explained earlier, conjugation action is a “better”
action of G on itself.

Definition 5.3.1. An automorphism of a group G is an isomorphism σ : G
≃−→ G. Then

Aut(G) :=
{
automorphisms of G

}
forms a group, with

• identity being id : G→ G;
• group action being composition; and
• inverse being the inverse isomorphism.

It is a subgroup of SG = permutation group of elements of G.

Remark 5.3.2. If we consider the conjugation action of G on itself. It induces a homomor-
phism

Ad : G Aut(G) ⊆ SG

g (Adg : x 7→ gxg−1).

Note that we have seen that each Adg is a homomorphism.

5.3.3. Group acting on a group through automorphism. More generally, we may consider the
case when X is also a group, carrying an action of another group G which preserves the group
structure on X, namely, for each g ∈ G, the action ϕg : X → X is in fact a homomorphism
(and hence an isomorphism); or equivalently, the natural homomorphism Φ : G → SX has
image in Aut(X). In this case, we say that G acts on the group X by automorphisms.
One may image to generalize this to future situations when X is a set with additional al-

gebraic structure; we may require the G-action on X to preserve the corresponding algebraic
structure.

5.4. Semi-direct products.

5.4.1. A prototype of semidirect product. Consider the situation:

(a) N ⊴G and H ≤ G;
(b) N ∩H = {1}.

Then NH = {nh |n ∈ N, h ∈ H} is a subgroup of G.
Note that if H is also a normal subgroup, Theorem 5.1.1 implies that NH ∼= N ×H and

N and H commutes.
In general, every element of NH can be written uniquely as nh with n ∈ N and h ∈ H.

If we compute the product of n1h1 and n2h2:

n1h1 · n2h2 = n1 h1n2h
−1
1︸ ︷︷ ︸

in N

·h1h2.

We see that the “H-coordinate” is multiplicative, but not the “N -coordinate”.

The following “partially reverses” the above discussion.
36



Definition 5.4.2. Let N and H be groups, and let ϕ : H → Aut(N) be a homomorphism.
(Then H acts on N preserving the group structure; see § 5.3.3). For h ∈ H, we write
ϕh = ϕ(h) : N → N for the corresponding automorphism.

We define the semi-direct product N ⋊H = N ⋊ϕ H to be

N ⋊H :=
{
(n, h)

∣∣n ∈ N, h ∈ H}
(n1, h1) · (n2, h2) = (n1 · ϕh1(n2), h1h2).

(We see that the H-coordinate is the usual multiplication, but the multiplication in the
N -coordinate is “twisted by ϕ”.)
We now check the group action is associative and that it has inverses.(

(n1, h1)(n2, h2)
)
(n3, h3) (n1, h1)

(
(n2, h2)(n3, h3)

)
(n1ϕh1(n2), h1h2)(n3, h3) (n1, h1)(n2ϕh2(n3), h2h3)

(n1ϕh1(n2)ϕh1h2(n3), h1h2h3)
(
n1 · ϕh1

(
n2ϕh2(n3)

)
, h1h2h3

)
(n1ϕh1(n2) · ϕh1 ◦ ϕh2(n3), h1h2h3)

(
n1ϕh1(n2) · ϕh1(ϕh2(n3)), h1h2h3

)
.

?

computing first multiplication computing second multiplication

definition of multiplication definition of multiplication

ϕh1h2=ϕh1◦ϕh2 ϕh1 is a homomorphism

(n, h)(ϕh−1(n), h−1) = (n · ϕh(ϕh−1(n)), hh−1) = (n · n−1, 1) = (1, 1).

The sets {(n, 1) |n ∈ N} ⊆ N ⋊ H and {(1, h) |h ∈ H} ⊆ N ⋊ H are subgroups. They
may be viewed as the groups N and H naturally embedded in N ⋊H.
There is a surjective homomorphism

π : N ⋊H H

(n, h) h

and ker π is the subgroup N ; so in particular, N is a normal subgroup

Remark 5.4.3. There are two ways to remember the notation N ⋊H.
(1) In the notation N ⋊H, the triangle part is towards H; so H is the normal subgroup.

(2) Recall that we denote the group action as G X . We may think the symbol ⋊ as

a “twisted” way of writing the action: N H

Convention 5.4.4. Another way to think of the definition of semidirect product is to define
N ⋊H as the set of formal products

{
nh
∣∣n ∈ N, h ∈ H} subject to the rule that

n1h1 · n2h2 = n1h1n2h
−1
1 h1h2 = (n1ϕh1(n2)) · (h1h2).

One can see that this agrees with the original definition of N ⋊H.
We can use a different convention to write H ⋉ N instead, to mean exactly the same

semidirect product. Except now, we may write the elements in H ⋉ N as formal products{
hn
∣∣h ∈ H, n ∈ N} subject to the product rule that

h1n1 · h2n2 = h1h2 · (h−1
2 n1h2 · n2) = h1h2 · (ϕh−1

2
(n1)n2).
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In other words, if we choose to write the elements in H⋉N as pairs (h, n), then the product
rule is

(h1, n1) · (h2, n2) = (h1h2, ϕh−1
2
(n1)n2).

Proposition 5.4.5 (Recognizing semidirect products). Let G be a group, and let N ⊴ G
a normal subgroup and H ≤ G a subgroup. Suppose that N ∩ H = {1}. Then NH is a
subgroup of G and NH ∼= N ⋊H is a semidirect product.

Proof. We have proved that NH is a subgroup of G. As N is a normal subgroup of G,
the conjugation action for each h ∈ H defines an automorphism Adh : N → N given by
Adh(n) = hnh−1. Collectively, this defines a homomorphism Ad : H → Aut(N). □

The following proposition is left as an exercise.

Proposition 5.4.6. Let N and H be groups and let ϕ : H → Aut(N) be a homomorphism.
The following are equivalent (TFAE):

• The identity map between N ⋊ϕH and N ×H is a group homomorphism (and hence
an isomorphism);
• ϕ is the trivial homomorphism from H → Aut(N);
• N is a normal subgroup of N ⋊H.

Example 5.4.7. A typical example of semi-direct product comes from the following.
Recall that Zn is the group of modulo n residual classes. Then Aut(Zn,+) ∼= Z×

n ={
a mod n

∣∣ gcd(a, n) = 1
}
. Here, for a mod n ∈ Z×

n , the corresponding automorphism of Zn
is given by

ϕa : Zn Zn

x ax mod n

This gives rise to a semi-direct product Zn ⋊ Z×
n .

We can visualize the group Zn ⋊ Z×
n as

Zn ⋊ Z×
n
∼=
{(

a b

0 1

)
∈ M2×2(Zn)

∣∣∣∣ a ∈ Z×
n

}
.

One checks

(
a1 b1
0 1

)
·

(
a2 b2
0 1

)
=

(
a1a2 a1b2 + b1
0 1

)
, comparing to our convention (b1, a1)(b2, a2) =

(b1 + a1b2, a1a2). (Note that the normal subgroup is on the left here.)
We can also consider subgroups of Z×

n . For example, {±1} ∈ Z×
n = Aut(Zn). We have

Zn ⋊ {±1} D2n

(a, 1) ra

(a,−1) ras.

∼=

(Note that the relation srs = r−1 in D2n corresponds to semidirect product relation of
ϕ-action on Zn.)
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Example 5.4.8. Another class of semidirect product is the block upper-triangular matrices.
Take for example three positive integers ℓ,m, n and consider the following groups

P =

GLℓ(C) Matℓ×m(C) Matℓ×n(C)
0 GLm(C) Matm×n(C)
0 0 GLn(C)

 L =

GLℓ(C) 0 0

0 GLm(C) 0

0 0 GLn(C)



U =

Iℓ Matℓ×m(C) Matℓ×n(C)
0 Im Matm×n(C)
0 0 In


Here P is usually called a parabolic subgroup, U is called its unipotent radical, and L is
called the Levi subgroup of P . These types of groups can be generalized to the situations
of other “algebraic groups”, and are very important constructions in algebraic groups and
representations.

Taking our concrete example at hand, one can see that U is a normal subgroup of P , but
L is not. So we have a semi-direct product

P = U ⋊ L.

Example 5.4.9. Let p and q be distinct primes such that p | (q − 1). We may use Exam-
ple 5.4.7 construct nonabelian groups of order pq which are semidirect products.

It is known (will be proved later) that Z×
q is a cyclic group of order q−1. So it must contain

a unique subgroup of order p. This in particular gives a homomorphism Zp ↪→ Z×
q = Aut(Zq)

(the homomorphism is not unique but see Fact 5.4.10) By definition of semidirect product,
this gives a semidirect product group Zq ⋊ Zp of order pq.
For example, we describe Z7 ⋊ Z3 as follows. Consider the homomorphisms

ϕ1, ϕ2 : Z3 Z×
7

ϕ1 : 0, 1, 2 1, 2, 4

ϕ2 : 0, 1, 2 1, 4, 2.

(The reason that we have these two homomorphisms is that 3 is a primitive element modulo
7, and ϕi needs to map 1 to either 32 or to 34.) Then the corresponding semi-direct product
has group structure:

(a1, b1)(a2, b2) = (a1 + a2 · 2b1 , b1 + b2) or (a1 + a2 · 4b1 , b1 + b2)

in either cases.

Fact 5.4.10. Let p and q be distinct primes as above.

(1) For two different nontrivial homomorphisms ϕ1, ϕ2 : Zp → Z×
q , the semi-direct prod-

ucts Zq ⋊ϕi Zp with i = 1, 2 are isomorphic.
(2) All groups of order pq are either isomorphic to Zpq (abelian case) or to Zq ⋊ Zp

(nonabelian case).

(This fact is specific to the group Zq ⋊ Zp, and is not true in general.)
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We illustrate this using the example above. We can construct an isomorphism

Z7 ⋊ϕ1 Z3 Z7 ⋊ϕ2 Z3

(a, b) (a, 2b).

∼=

We need to check that ψ is a homomorphism, namely:

ψ((a, b)(c, d)) ψ((a, b)) · ψ((c, d))

ψ(a+ 2b · c, b+ d) (a, 2b)(c, 2d)

(a+ 2b · c, 2b+ 2d) (a+ 42bc, 2b+ 2d).

?

Here the bottom equality uses that 42b = 16b ≡ 2b mod 7.
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6. Stablizers, orbits of group actions, class equations

6.1. Stabilizers and orbits of group actions.

Definition 6.1.1. Let G be a group acting on a set X. For each x ∈ X,

• define the stabilizer subgroup at x to be StabG(x) := {g ∈ G | g · x = x}; and
• define the orbit of x to be OrbG(x) := G · x = {g · x | g ∈ G} ⊆ X.

We sometimes write G\X for the set of orbits for the G-action. (In the literature, it might
be written as X/G instead. I slightly prefer G\X because the action is from the left.)

Properties 6.1.2. Let G be a group acting on a set X and x ∈ X.

(1) Then StabG(x) is a subgroup of G.
(2) For x, y ∈ X, either OrbG(x) = OrbG(y) or OrbG(x) ∩ OrbG(y) = ∅. As a corollary,

X may be written as the disjoint union of orbits for the G-action:

X =
∐

orbits O

O.

(3) If y ∈ OrbG(x), i.e. y = g · x for some g ∈ G, then StabG(y) = gStabG(x)g
−1.

Namely, the stabilizers at different points of an orbit are conjugate to each other.

Proof. (1) If g, h ∈ StabG(x), we need to prove that gh−1 ∈ StabG(x), namely gh−1 · x = x.
As x = hx, applying h−1 to this we deduce that h−1x = h−1hx = x. Now applying g to both
sides of the equality gives gh−1x = gx = x. This verifies that StabG(x) is a subgroup of G.
(2) Suppose that OrbG(x) ∩ OrbG(y) ̸= ∅, say both sets contain z. Then we have z =

g · x = h · y for some g, h ∈ G. This implies that for every element w = kx ∈ OrbG(x)
(k ∈ G), we have

w = kx = kg−1z = kg−1hy ∈ OrbG(y).

This proves that OrbG(x) ⊆ OrbG(y). A symmetric argument shows that OrbG(y) ⊆
OrbG(x).

(3) This can be shown as follows.

h ∈ StabG(y) ⇐⇒ hy = y

⇐⇒ hgx = gx

⇐⇒ g−1hgx = x

⇐⇒ g−1hg ∈ StabG(x)

⇐⇒ h ∈ gStabG(x)g−1.

□

An important particular case of group action is the conjugation action of a group on itself.

Definition 6.1.3. Consider the group G acting on itself by conjugation: for g ∈ G, Adg :
G→ G given by Adg(x) = gxg−1.

(1) Two elements a, b ∈ G are called conjugate if a = gbg−1 for some g ∈ G. In other
words, a ∈ OrbG(b) or equivalently b ∈ OrbG(a).

(2) The orbits of G under the conjugation action are called conjugacy classes.

Example 6.1.4. (1) If G is abelian, the conjugacy class of an element a ∈ G is just {a}.
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(2) For G = GLn(C), every matrix can be conjugated into a Jordan block. So there is a
bijection{

Conjugacy classes of G
}
←→

{
Jordan canonical form (with nonzero eigenvalues up to permutation)

}
.

(3) G = Sn, the conjugacy classes are in one-to-one correspondence with partitions of
n into sums of positive integers. More precisely, a partition n = n1 + n2 + · · · + nt
corresponds to the conjugacy class of

τn = (1, 2, . . . , n1)(n1 + 1, n1 + 2, . . . , n1 + n2) · · · (n1 + · · ·+ nt−1 + 1, . . . , n1 + · · ·+ nt).

For each σ ∈ Sn, στnσ−1 is the same as

(σ(1), . . . , σ(n1))(σ(n1 + 1), . . . , σ(n1 + n2)) · · · (σ(n1 + · · ·+ nt−1 + 1), . . . , σ(n1 + · · ·+ nt)).

Such elements run through all elements of Sn, which is the product of disjoint cycles
of length n1, n2, . . . , nt.

Definition 6.1.5. Let G be a group, H a subgroup, and S ⊆ G a subset.

(1) The subgroup CG(S) :=
{
g ∈ G

∣∣ for every s ∈ S, gsg−1 = s
}
is called the central-

izer of S in G.
(2) The subgroup Z(G) =

{
g ∈ G

∣∣ for all h ∈ G, ghg−1 = h
}
= CG(G) is called the

center of G.
(3) The subgroup NG(H) =

{
g ∈ G

∣∣ gHg−1 = H
}
is called the normalizer of H in G.

Properties 6.1.6. (1) When S = {g}, we write CG(g) for CG({g}). If we consider the
conjugation of G on G, then StabG(g) = CG(g). (In particular, this is a subgroup.)
Moreover, we have CG(S) =

⋂
g∈S CG(g); so it is also a subgroup.

(2) The conjugation action induces a homomorphism Ad : G → Aut(G). Then Z(G) =
ker(Ad). (In particular, Z(G) is a normal subgroup of G.)

(3) A subgroup H of G is normal if and only if NG(H) = G.
(4) If we consider the conjugation action of G on the set

{
all subgroups of G

}
, given by

Adg : H 7→ gHg−1.

Then NG(H) = StabG(H); so in particular a subgroup.
(5) NG(H) contains H as a subgroup, and H is normal in NG(H).

6.2. Description of orbits of group actions.

Definition 6.2.1. Let G be a group acting on two sets X and Y . We say a map ϕ : X → Y
is G-equivariant if

for all g ∈ G, x ∈ X, we have ϕ(g · x) = g · ϕ(x).

Remark 6.2.2. To better understand the above definition of G-equivariant maps, we note
that, in the development of mathematical theory, we often have the following process

Algebraic structure on a set ⇝ Maps between sets with algebraic structure
that preserves the algebraic structures

Vector spaces ⇝ linear maps

Groups ⇝ Homomorphisms

Sets with group actions ⇝ G-equivariant maps
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Definition 6.2.3. Let G be a group acting on a set X. We say that the action is transitive
if

for any x, y ∈ X, there exists g ∈ G, such that x = gy.

Proposition 6.2.4. If a group G acts transitively on a set X, for every element x ∈ X, put
H := StabG(x). Then there is a G-equivariant bijection

ϕ : G/H X

gH gx.

∼=

Proof. First, ϕ is well-defined because if g1H = g2H, then g1 = g2h for some h ∈ H. Thus

g1x = g2hx = g2x.

Second, ϕ is surjective because the G-action on X is transitive.
Third, ϕ is injective because if ϕ(g1H) = ϕ(g2H) form some g1, g2 ∈ G,

g1x = g2x =⇒ g−1
2 g1x = x =⇒ g−1

2 g1 ∈ StabG(x) = H =⇒ g1H = g2H.

Lastly, ϕ is G-equivariant because for g, g′ ∈ G,
g′ϕ(gH) = g′gx = ϕ(g′gH).

□

Corollary 6.2.5. Let G be a group acting on a set X. Then G ∼=
∐

orbits O
O (as sets with

G-action).
For each x ∈ X, G acts transitively on OrbG(x), we have

OrbG(x) = G
/
StabG(x).

Summing up this, we have

X ≃
∐

G-orbits G·x

G
/
StabG(x).

6.3. Class equations.

Theorem 6.3.1. Let G be a finite group (acting on itself by conjugation).

(1) For each g ∈ G, the number of elements in its conjugacy class is∣∣AdG(g)∣∣ = |G|/|CG(g)| = [G : CG(g)].

(2) (Class equation) If g1, g2, . . . , gr are representatives of conjugacy classes of G that are
not contained in Z(G), then

(6.3.1.1) |G| = |Z(G)|+
r∑
i=1

[
G : CG(gi)

]
.

Moreover,
[
G : CG(gi)

]
≥ 2 for each i.

Proof. (1) is clear from Proposition 6.2.4: AdG(g) = G/CG(g).
(2) Consider the conjugation action of G on itself. By Corollary 6.2.5, we have

|G| =
∑

conjugacy
classes AdG(x)

∣∣AdG(x)∣∣.
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There are two types of orbits.

• If AdG(x) consists of only one element, namely x, then gxg−1 = x for every g ∈ G,
i.e. x ∈ Z(G).
• If AdG(x) consists of more than one element, we just have

∣∣AdG(x)∣∣ = [G : CG(gi)
]
.

Combining these two cases proves (6.3.1.1). □

Example 6.3.2. Let G = S5. Then Z(G) = {1}. The class equation reads

Partition type representative stabilizer size of conjugacy class

1 + 1 + 1 + 1 + 1 (1) S5
120

120
= 1

1 + 1 + 1 + 2 (12) S2 × S3
120

2× 6
= 10

1 + 1 + 3 (123) Z3 × S2
120

3× 2
= 20

1 + 2 + 2 (12)(34) (Z2)
2 ⋊ Z2

120

4× 2
= 15

1 + 4 (1234) Z4
120

4
= 30

2 + 3 (12)(345) S2 × Z3
120

2× 3
= 20

5 (12345) Z5
120

5
= 24

The following is an immediate application of class equation.

Definition 6.3.3. Let p be a prime number. A finite group G is called a p-group if |G| is
a power of p.

Proposition 6.3.4. For a nontrivial p-group G, Z(G) is nontrivial.

Proof. We use class formation for the p-group G:

|G| |Z(G)|
t∑
i=1

[
G : CG(gi)

]
p-power nontrivial p-power

= +

From this, we see that p divides |Z(G)|. But {e} ∈ Z(G), so Z(G) is nontrivial. □

6.4. Automorphisms of a group. Let G be a group. Recall that

Aut(G) =
{
ϕ : G

≃−→ G isomorphism
}

Recall that the conjugation gives a homomorphism

Ad : G Aut(G)

g
(
Adg : h 7→ ghg−1

)
.

We have shown in Properties 6.1.6(2) that ker(Ad) = Z(G).
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Definition 6.4.1. The subgroup Ad(G) ⊆ Aut(G), denoted by Inn(G), are called the group
of inner automorphisms.

The following lemma will show that Inn(G) is a normal subgroup of Aut(G). The quotient

Out(G) := Aut(G)/Inn(G)

is called the group of outer automorphisms of G.

Lemma 6.4.2. For a group G, Inn(G)◁ Aut(G) is a normal subgroup.

Proof. We need to show that, if σ : G
≃−→ G is an automorphism, then σInn(G)σ−1 = Inn(G).

(In fact, it suffices to prove “⊆”, and “⊇” follows from the inclusion “⊆ for σ−1”.)
For this, take Adg ∈ Inn(G) for g ∈ G. We claim that

σ ◦ Adg ◦ σ−1 : G→ G

as an automorphism is equal to Adσ(g), so it belongs to Inn(G); and thus proving σInn(G)σ−1 ⊆
Inn(G). Indeed, we have

σ ◦ Adg ◦ σ−1(h) = σ
(
Adg(σ

−1(h))
)
= σ

(
gσ−1(h)g−1

)
= σ(g)σ(σ−1(h))σ(g)−1 = σ(g)hσ(g)−1 = Adσ(g)(h).

□

Example 6.4.3. Consider G = GLn(Q), the conjugation action gives Ad : GLn(Q) →
Aut(G), then

ker(Ad) = Z(GLn(Q)) =
{
A ∈ GLn(Q)

∣∣AB = BA, for all B ∈ GLn(Q)
}

=
{
a · In

∣∣ a ∈ Q×} ∼= Q×.

Thus we have Inn(G) ∼= GLn(Q)/Q× =: PGLn(Q) (the projective general linear group).
What about automorphisms that are not inner? The automorphism

ψ : GLn(Q) GLn(Q)

A tA−1

satisfies ψ(AB) = ψ(A)ψ(B). This gives an action by automorphism

PGLn(Q)⋊ {1, ψ} GLn(Q)

Remark 6.4.4. Write SLn(Q) := {A ∈ GLn(Q) | detA = 1}. Then it is known that

Aut(SLn(Q)) ∼= Aut(PGLn(Q)) ∼=

{
PGLn(Q)⋊ {1, ψ} when n ≥ 3

PGL2(Q) when n = 2.

Here the reason that we do not have ψ when n = 2 is that in this case ψ :
(
a b
c d

)
7→ t
(
a b
c d

)−1
=(

d −c
−b a

)
is the same as conjugation by

(
0 1
−1 0

)
. (One way to explain this is that: there are

two ways to think of the projective space Pn−1, a line in Qn or a hyperplane in Qn; there
is some kind of duality to take one version into the other; this is reflected by ψ. But when
n = 2, the two types of view are the same; so ψ is an inner automorphism.)

What is Aut(GLn(Q))? The issue is the center Q×. Abstractly Q× ∼= {±1}×
∏

p prime

pZ; so it

is a huge infinite product, and has very large automorphisms. Of course, such automorphisms
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are not very interesting, if we confine to automorphisms of G that are “given by polynomials
maps”, then (when n ≥ 3)

Aut(GLn(Q))alg ∼= PGLn(Q)⋊ {1, ψ}.

Example 6.4.5. For G = Sn, the conjugation action Ad : Sn → Aut(Sn) is injective. Here
is an interesting fact:

If n ̸= 6, Ad : Sn → Aut(Sn) is an isomorphism, i.e. all automorphisms of Sn are “inner”.

When n = 6, there exists an automorphism ψ : S6
≃−→ S6 that is not inner, given by

ψ((12)) = (12)(34)(56), ψ((23)) = (14)(25)(36), ψ((34)) = (13)(24)(56),

ψ((45)) = (12)(36)(45), and ψ((56)) = (14)(23)(56).

In fact, one can prove that Aut(S6) = S6 ⋊ {1, ψ}.

Extended Readings after Section 6

6.5. Characteristic subgroups.

Definition 6.5.1. Let G be a group. We say that a subgroup H is characteristic, denoted
as H charG, if for any automorphism σ of G, σ(H) = H.

Properties 6.5.2. (1) If H ≤ G is the unique subgroup of that order, then H is char-
acteristic.

For example, in Zn, for every d|n, ⟨d⟩ ⊆ Zn is characteristic.
(2) Characteristic subgroups are normal.

Indeed, if H charG and g ∈ G, Adg : G → G is an automorphism. The definition
of characteristic subgroups gives:

Adg(H) = H ⇒ H ⊴G.

(3) If K charH and H ⊴G, then K ⊴G.
Moreover, if K charH and H charG, then K charG, i.e. characteristic subgroup

is transitive.
(Proving the first statement: given any g ∈ G, as H ⊴ G, we have gHg−1 = H.

Thus
Adg : H H

h ghg−1

is an automorphism. The property of characteristic subgroups implies that Adg(K) =
K.) The proof of the second statement is left to the readers.
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7. Sylow’s theorems

In this lecture, we focus on one of the most important tools in the study of finite groups:
Sylow’s theorems. In some sense, the main motivation of Sylow’s theorem is to find abstract
ways to

• study groups in a way similar to, for n = pα1
1 · · · pαr

r , having Zn = Zpα1
1
× · · · × Zpαr

r
,

and hence reducing the study of Zn to each of prime p; (namely to separating the
structure to the part for each prime p) and
• consider the group G acting on some natural set X (as a way to re-present the group).

7.1. Statement of Sylow’s theorems.

Definition 7.1.1. Fix a prime number p.

(1) A p-group is a finite group whose order is a power of p.
(2) If G is a finite group of order |G| = prm with r,m ∈ N and p ∤ m, a subgroup H of

G of order exactly pr is called a Sylow p-subgroup or p-Sylow subgroup. Write

Sylp(G) := {Sylow p-subgroups of G} and np :=
∣∣Sylp(G)∣∣.

Theorem 7.1.2 (Sylow’s theorem). Let G be a finite group with |G| = prm with r,m ∈ N
and p ∤ m.

• (First Sylow Theorem) Sylow p-subgroups exist.
• (Second Sylow Theorem) If P is a Sylow p-subgroup of G, and Q ≤ G is a subgroup
of p-power order, then there exists g ∈ G such that Q ≤ gPg−1 (note gPg−1 is also
a Sylow p-subgroup).

In other words, we have
– all Sylow p-subgroups are conjugate; and
– all subgroups of p-power order is contained in a Sylow p-subgroup.

• (Third Sylow Theorem) The number np =
∣∣Sylp(G)∣∣ satisfies

(1) np ≡ 1 mod p, and
(2) np|m.

7.2. Proof of Sylow’s theorems and their corollaries.

7.2.1. Proof of First Sylow Theorem. (There are a few proofs of this theorem. The one we
include here can be found in Dummit–Foote’s book, which in my opinion requires some “high-
level thinking” but less trickier; we hope to give the readers a sense of how a “structured
proof” might look like as opposed to a proof only involves tricks. In the extended material,
we include another proof.)

We use an induction on |G|. When |G| = 1, there is nothing to prove.
Suppose that the First Sylow Theorem is proved for finite groups of order < n. Let G be

a finite group of order n = prm with r,m ∈ N and p ∤ m.
Case 1: p ∤ |G|, i.e. r = 0. Then {1} ⊆ G is the Sylow p-subgroup of G.
Case 2: If p divides |Z(G)|, then Z(G) is a finitely generated abelian group; so

Z(G) = Zpr1 × · · · × Zprs︸ ︷︷ ︸
p-part

× · · ·

We write Z(G)p for the p-part of Z(G); then |Z(G)p| = pr
′
for some r′ ≥ 1.
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Now, we consider the quotient homomorphism G G
/
Z(G)p := G,π where the quotient

G has order n/pr
′
= pr−r

′
m < n. By inductive hypothesis, G contains a Sylow p-subgroup

H of order pr−r
′
. Then π−1(H) is a subgroup of G of order

|H| · | kerπ| = pr−r
′ · pr′ = pr.

So H is a Sylow p-subgroup of G.
Case 3: If p does not divide |Z(G)| but p divides |G| (thus r ≥ 1).
We use the class equation for the conjugation of G on itself proved in the previous lecture

(Theorem 6.3.1), to deduce that

|G| |Z(G)|
t∑
i=1

[
G : CG(gi)

]
div. by p not div. by p sum over representatives of conjugacy classes

= +

It follows that there exists one i such that [G : CG(gi)] is not divisible by p. Thus CG(gi)
has order prm′ for some m′|m and m′ ̸= m.
By inductive hypothesis applied to CG(gi), there exists a subgroup H of CG(gi) of order

pr. This H is also a Sylow p-subgroup of G.
This completes the inductive proof of First Sylow Theorem. □

7.2.2. Proof of Second Sylow Theorem. Now let P ≤ G be a Sylow p-subgroup, and Q ≤ G
a subgroup of p-power order.
When |Q| = 1, i.e. Q = {1}, clearly, Q ≤ P , we are done.
Now we assume that |Q| = pr

′
with r′ ≥ 1. Consider the left translation action of Q on

G/P :

Q G/P
{
gP
∣∣ g ∈ G}.=

More precisely, q · gP := qgP , for q ∈ Q and gP ∈ G/P .
Then we must have

∣∣G/P ∣∣ t∑
i=1

∣∣Orbitsi
∣∣ t∑

i=1

∣∣Q/Stabi∣∣
not divisible by p

= =

Thus, there exists one orbit, say the orbit of gP such that the number of elements in the
orbit is not divisible by p. Let

Q′ :=
{
q ∈ Q

∣∣ qgP = gP
}
= StabQ(gP ) ≤ Q

be the stabilizer group. It follows that |Q/Q′| is the same as the size of the orbit, and is
thus not divisible by p.
Yet |Q| = pr

′
is a power of p, we must have Q = Q′. In particular, this says that for any

q ∈ Q, we have
qgP = gP ⇒ qg ∈ gP ⇒ q ∈ gPg−1.

So we deduce that Q ≤ gPg−1.
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Corollary 7.2.3. All Sylow subgroups are conjugate.

Proof. Let P and Q be two Sylow p-subgroups. The Second Sylow Theorem implies that
there exists g ∈ G such that Q ≤ gPg−1. But |Q| = |gPg−1|. So Q = gPg−1. □

Corollary 7.2.4. There is only one Sylow p-subgroup if and only if one Sylow p-subgroup
P ≤ G is normal.

Proof. “⇒”: for any g ∈ G, gPg−1 is also a Sylow p-subgroup. So the uniqueness implies
that P = gPg−1. Thus P is normal.
“⇐”: Since all Sylow p-subgroups are conjugate by the above Corollary and all conjugates

gPg−1 are the same as P , there is only one Sylow p-subgroup, namely P . □

Remark 7.2.5. Usually, when quoting Corollaries 7.2.3 and 7.2.4, we will just say Second
Sylow Theorem.

Corollary 7.2.6. If P is a Sylow p-subgroup, then NG(NG(P )) = NG(P ), and NG(P )
contains a unique Sylow p-subgroup, which is P .

Proof. Note that P ⊴ NG(P ) tautologically holds; so P is a normal Sylow p-subgroup of
NG(P ). By the above Corollary, P is the unique Sylow p-subgroup of NG(P ). (This proves
the second statement.)

It is clear that NG(P ) ⊆ NG(NG(P )). Conversely, for n ∈ NG(NG(P )), we have

nNG(P )n
−1 NG(P )

nPn−1 P

=⋃ ⋃
But we have just shown that NG(P ) has a unique Sylow p-subgroup. So nPn−1 = P , i.e.
n ∈ NG(P ). □

7.2.7. Proof of Third Sylow Theorem. Recall that |G| = n = prm with r ∈ Z≥0 and p ∤ m.
Put np :=

∣∣Sylp(G)∣∣.
(1) Consider the conjugation of G on Sylp(G): g ⋆ P := gPg−1 for g ∈ G and P a Sylow

p-subgroup of G.
By Second Sylow Theorem, all Sylow p-subgroups are conjugate and thus the conjugation

G-action on Sylp(G) is transitive. From this, we deduce

np =
∣∣Sylp(G)∣∣ = ∣∣G/NG(P )

∣∣ = |G|
|NG(P )|

=
pr ·m

pr · [NG(P ) : P ]
.

It is clear from this that np|m.
(2) Consider P acting on Sylp(G) by conjugation. Then we have

(7.2.7.1) np =
∣∣Sylp(G)∣∣ = ∑

orbits AdP (Pi)

∣∣P/StabP (Pi)∣∣.
• If StabP (Pi) ̸= P , then StabP (Pi) is a subgroup of P ; Lagrange theorem implies that∣∣P/StabP (Pi)∣∣ is a nontrivial p-power and in particular divisible by p.
• If StabP (Pi) = P , then P ⊆ NG(Pi). But Corollary 7.2.6 implies thatNG(Pi) contains
a unique Sylow p-subgroup, i.e. P = Pi. So there is a unique such orbit.

It follows from the above discussion that np ≡ 1 (mod p).
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7.3. Applications of Sylow’s Theorem.

7.3.1. Classification of groups of order pq. Assume that G is a group of order pq, where
p < q are prime numbers.

Let Q denote a Sylow q-subgroup of G. By Sylow’s Third Theorem, we have

nq
∣∣ p, and nq ≡ 1 (mod q) ⇒ nq = 1.

So Q is a normal subgroup (and it is unique).
Let P be a Sylow p-subgroup. The Sylow’s Third Theorem says that

np
∣∣ q and np ≡ 1 (mod p).

Thus np = 1 or q. We will separate two cases, but in either case, we must have P ≃ Zp and
Q ≃ Zq.

Case 1 : np = 1. Then P is a normal subgroup. By Theorem 5.1.1, we have G = P ×Q.
Case 2 : np = q ≡ 1 (mod p). In this case, G = QP (because P ∩ Q = {1}). As Q is a

normal subgroup and P ∩Q = {1}, Proposition 5.4.5 implies that G = Q⋊ P . This
corresponds to a homomorphism

(7.3.1.1)
Zp ≃ P Aut(Q) ∼= Aut(Zq) Z×

q

y (x 7→ yxy−1 = ya) a.

η ∼=

Then G ≃ Q⋊η P .
Next, we claim that, up to isomorphism, there is only one such semidirect product.
We use the fact that Z×

q is a cyclic group of order φ(q) = q − 1, i.e. Z×
q ≃ Zq−1.

Then there is a unique subgroup or order p of Zq−1. Written as a subgroup of Z×
q , it

takes the form of

{1, a, . . . , ap−1}.
Fix a generator σ ∈ P of P . Then all possible such homomorphism (7.3.1.1) is of the
form (for i = 1, . . . , p− 1):

ηi : P = Zp Z×
q

σ ai.

We then define an isomorphism:

Q⋊η1 Zp Q⋊ηi Zp

(y, c) (y, ic).

≃

7.3.2. A group of order 132 cannot be a simple group. (This is a typical application of Sylow’s
theorem.)

We factor 132 = 11 × 3 × 4. Suppose that G is simple, then G would not have any
nontrivial normal subgroups. In particular, n2, n3, and n11 are not 1. In any case, the Sylow
p-subgroup Pp for p = 3, 11 has order p, and hence is isomorphic to Zp.

• Consider n11. n11 ≡ 1 mod 11 and n11|12. So n11 = 12. As each pair of Sylow
11-subgroups have only trivial intersection, there are at least 12 · 10 = 120 elements
of order 11.

50



• Consider n3. n3 ≡ 1 mod 3 and n3|44. So n3 = 4, 22. Using the same argument as
above, we see that there are at least 2× 4 = 8 elements of order exactly 3.
• Consider n2 ≥ 2. The intersection of two Sylow 2-subgroup has at most 2 elements.
So there are at least 4 + 4− 2− 1 = 7 elements whose order is 2-power.

In total, there are at least 120 + 8 + 7 = 135 elements in G. This is a contradiction.

7.3.3. Sylow groups for normal subgroups and quotient groups. Consider the case of a finite
group G and a normal subgroup N . Let π : G ↠ G/N denote the projection (with kernel
kerπ = N).

We claim that, for a Sylow p-subgroup H of G,

(1) the image π(H) is a Sylow p-subgroup of G/N ; and
(2) the intersection N ∩H is a Sylow p-subgroup of N .

We make the following observation: restricting π to the subgroup H, we obtain a map

π|H : H ↠ π(H).

The kernel is ker(π|H) = N ∩H. By First Isomorphism Theorem, we have

π(H) ∼= H
/
(N ∩H).

Recall our convention: |G| = prm with r ∈ Z≥0 and p ∤ m. Put |N | = pr
′
m′ with r′ ∈ Z≥0,

r′ ≤ r, and m′|m. Then |G/N | = pr−r
′ m
m′ .

Yet, N ∩H is a subgroup of N and π(H) is a subgroup of G/N . Lagrange theorem gives:

|N ∩H| divides |N | = pr
′
m′

pr = |H| = |N ∩H| · |π(H)|
|π(H)| divides |G/N | = pr−r

′ m
m′ .

From this, we see that we are forced to have |N ∩H| = pr
′
and |π(H)| = pr−r

′
. This shows

that π(H) is a Sylow p-subgroup of G/N and N ∩H is a Sylow p-subgroup of N .

7.3.4. Group of order 105. Let G be a group of order 105 containing a normal Sylow 3-
subgroup P3. We will show that G ≃ Z105.
We start by considering Sylow 5-subgroups and Sylow 7-subgroups.
Sylow’s Third Theorem says that

n5

∣∣ 3 · 7 = 21, n5 ≡ 1 (mod 5) =⇒ n5 = 1, 21.

n7

∣∣ 3 · 5 = 15, n7 ≡ 1 (mod 7) =⇒ n7 = 1, 15.

We need some additional input to proceed (in particular, using the normality of P3.)
Since P3 is a normal subgroup of G, the conjugation action of G on P3 defines a homo-

morphism

ϕ : G Aut(P3) ≃ Z×
3 ≃ Z2

g (Adg : x 7→ gxg−1)

In particular, ϕ(G) ⊆ Z2 is a subgroup (so ϕ(G) = {1} or ϕ(G) = Z2. Yet ϕ(G) is a quotient
of G, which has odd order; so |ϕ(G)| is odd, and thus ϕ(G) = 1.

In other words, for any g ∈ G, x = gxg−1 for any x ∈ P3; this means that P3 ⊆ Z(G).
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Now, we need to go back to the proof of Sylow Third Theorem (1), letting G acting on
{Sylow p-subgroups} (for p = 5, 7). Now P3 acts trivially under conjugation; so n5 is a factor
of |G/(P3P5)| = 7. So n5 = 1. Similar argument shows that n7 = 1. So both P5 and P7 are
normal subgroups.

Now, all P3, P5, and P7 are normal; G = P3 × P5 × P7 ≃ Z105.

Extended reading material

7.4. An alternative proof of first Sylow’s theorem. We need the following.

Notation 7.4.1. For a positive integer n and a prime p, we write vp(n) for the maximal
nonnegative integer m such that pm divides n.

If we write n = a0 + a1p + a2p
2 + · · · , put Digp(n) := a0 + a1 + a2 + · · · for the sum of

digits when writing n as a p-based number.
A general fact is that

vp(n!) =
⌊n
p

⌋
+
⌊ n
p2

⌋
+
⌊ n
p3

⌋
+ · · · =

n−Digp(n)

p− 1
.

The last equality can be checked as follows: it is enough to prove this for n = aip
i, for which

it reads ai(p
i−1 + pi−2 + · · ·+ 1) =

aip
i − ai
p− 1

.

Lemma 7.4.2. Let p be a prime number and let n = prm with p ∤ m. Then for any
0 ≤ k ≤ r, we have

vp

((n
pk

))
= r − k.

Proof. We compute this as follows:

vp

((n
pk

))
=

(
n−Digp(n)

)
−
(
pk −Digp(p

k)
)
−
(
n− pk −Digp(n− pk)

)
p− 1

=
Digp(n− pk)−+Digp(p

k)−Dig(n)

p− 1
= r − k

where the last equality is because it computes the number of times that we take over a p to
the next digit when computing (n− pk) + pk. □

Theorem 7.4.3. Let G be a group of order n = prm with p ∤ m and r ∈ Z≥0. Then G
contains a Sylow p-subgroup.

Proof. Let Ω denote the set of subsets of G of pk elements, i.e. an element A of Ω is a subset
{a1, a2, . . . , apk}. We define a G-action on Ω by, for g ∈ G,

g ⋆ A := {ga1, ga2, . . . , gapk}.
We may write Ω as the disjoint union of orbits, so

|Ω| =
∑

orbits O

|O|.

Using Lemma 7.4.2, we see that

pr−k+1 ∤ |Ω| =
(
n

pk

)
.
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So there exists at least one orbit O = G · A such that pr−k+1 ∤ |O|.
We claim that StabG(A) is a Sylow p-subgroup. Indeed, we note that

|O| = |G|
|StabG(A)|

=
prm

|StabG(A)|
.

But pr−k+1 ∤ |O|; so pk | |StabG(A)|.
On the other hand, pick any element a ∈ A,

{ga | g ∈ StabG(A)} ⊆ A

and the elements ga are pairwise distinct. So |StabG(A)| ≤ |A| = pk. Combining this with
above shows that |StabG(A)| = pk. So StabG(A) is a Sylow p-subgroup. □
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8. Commutator subgroups, nilpotent groups, and p-groups

8.1. Commutator subgroups.

Definition 8.1.1. For x, y ∈ G, define [x, y] := x−1y−1xy, the commutator of x and y.
Let Gder = G′ :=

〈
[x, y] |x, y ∈ G

〉
be the subgroup of G generated by all commutators;

this is called the commutator subgroup or the derived subgroup of G.
Note: It is NOT true that every element of G′ is a commutator itself.

Properties 8.1.2. The commutator of x, y ∈ G enjoy the following properties:

(1) xy = yx if and only if [x, y] = 1;
(2) for g ∈ G, we have g[x, y]g−1 = [gxg−1, gyg−1];
(3) G′ is a normal subgroup of G and G/G′ is abelian.

Proof. (1) is clear. For (2), we compute directly

g[x, y]g−1 = gx−1y−1xyg−1 = gx−1g−1 · gy−1g−1 · gxg−1 · gyg−1 = [gxg−1, gyg−1].

(3) For g ∈ G, gG′g−1 is generated by elements of the form g[x, y]g−1, which are the same
as [gxg−1, gyg−1] by (2). So gG′g−1 = G′.

Moreover, for x, y ∈ G, we have

xG′ · yG′ = yG′ · xG′ ⇔ x−1y−1xyG′ = G′.

So xG′ and yG′ commute with each other in G/G′; it is abelian. □

Proposition 8.1.3. If A is an abelian group and ϕ : G → A is a homomorphism, then
G′ ⊆ kerϕ. Moreover, ϕ factors as the composition of

(8.1.3.1)
G G/G′ A

g gG′ ϕ(g).

π ϕ̄

In particular, we have a bijection for every abelian group A:

Homgp(G,A) Homgp(G/G
′, A)

ϕ
(
ϕ̄ : gG′ 7→ ϕ(g)

)
.

∼=

In other words, if we want to Hom a group out to an abelian group, it is enough to Hom
out from G/G′.

Proof. Note that for any x, y ∈ G, ϕ([x, y]) = ϕ(x−1y−1xy) = ϕ(x)−1ϕ(y)−1ϕ(x)ϕ(y) = 1
because A is abelian. So G′ ⊆ kerϕ. It follows that G must factor through G/G′ as shown in
(8.1.3.1). In particular this gives the map Homgp(G,A) → Homgp(G/G

′, A). The converse
map is easier and it follows from sending a homomorphism ψ : G/G′ → A to the composition

G G/G′ A.π ψ

□

Example 8.1.4. For G = D2n =
〈
r, s
∣∣ rn = s2 = 1, srs = r−1

〉
, compute all homomor-

phisms Homgp(G,C×).
First note that G′ contains srs−1r−1 = r−2. We separate two cases.
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• If n is odd, then ⟨r⟩ = ⟨r−2⟩ ⊆ G′. We claim that G′ = ⟨r⟩. Instead of checking
every pair of elements, we use the following argument: construct a map

ψ : G {±1}

ri 1

sri −1.

One checks that ψ(r)n = ψ(s)2 = 1 and ψ(s)ψ(r)ψ(s) = ψ(r)−1; so ψ is a homomor-
phism.

By Proposition 8.1.3 above, we have G′ ⊆ kerψ = ⟨r⟩. So G′ = ⟨r⟩ and G/G′ ∼=
{±1}.
• If n is even, then ⟨r−2⟩ = ⟨r2⟩ ⊆ G′. Similar to above, we define

ψ : G {±1} × ±1}

ri
(
(−1)i, 1

)
s

(
1, −1

)
.

Once again, we check the relations ψ(r)n = ((−1)n, 1) = (1, 1) as n is even, ψ(s)2 =
(1, 1), and ψ(s)ψ(r)ψ(s) = (−1, 1) = ψ(r)−1. So ψ is a well-defined homomorphism.
Now Proposition 8.1.3 implies that G′ ⊆ kerψ = ⟨r2⟩. This implies that G′ = ⟨r2⟩
and G/G′ ∼= {±1} × {±1}.

Now, we apply Proposition 8.1.3, to get:

• when n is odd,

Homgp(D2n,C×) ∼= Homgp({±1},C×) ∼=
{
tr, ψ

}
.

There are two such homomorphisms: the trivial one, and the ψ above, given by
sending r to 1 and s to −1.
• when n is even,

Homgp(G,C×) Homgp

(
{±1} × {±1},C×)

ψ : G→ C×

ψ(r) = λ, ψ(s) = µ

ψ̄(−1, 1) = λ ∈ {±1} ⊂ C×

ψ̄(1,−1) = µ ∈ {±1} ⊂ C×

∼=

8.2. Solvable groups. We recall from Definition 3.4.4 that a group G is called solvable if
there exists a chain of subgroups 1 = G0 ≤ G1 ≤ · · · ≤ Gr = G such that Gi−1 ⊴ Gi and
Gi/Gi−1 is abelian, for every i = 1, . . . , r. (When G is finite, this is equivalent to existing
such a chain of subgroups such that each Gi/Gi−1 is isomorphic to Zpi for some prime number
pi.)
In particular, all abelian groups are solvable.
A good way to test solvable groups is through the following.

Definition 8.2.1. For any group G, define the following sequence of subgroups inductively.

G(0) = G, G(1) = [G,G], G(i+1) = [G(i), G(i)] for any i.

This is called the derived or commutator series of G.
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An interesting typical example of commutator series is the following.

Example 8.2.2. Consider

G =

C× C C
0 C× C
0 0 C×

 ⊇ G(1) =

1 C C
0 1 C
0 0 1

 ⊇ G(2) =

1 0 C
0 1 0

0 0 1

 ⊇ G(3) = {I3}.

Proposition 8.2.3. A group is solvable if and only if G(n) = {1} for some finite n ∈ N.

Proof. “⇐” Note that each G(i) is a normal subgroup of G(i−1) and the quotient G(i−1)/G(i)

is abelian. So
{1} = G(n) ⊴G(n−1) ⊴ · · ·⊴G(1) ⊴G

is the required chain of subgroups with abelian subquotients.
“⇒” As G is solvable, there exists a chain of subgroups

{1} = H0 ≤ H1 ≤ H2 ≤ · · · ≤ Hr = G

such that Hi−1 ⊴Hi and Hi/Hi−1 is abelian.
It follows that [Hi, Hi] ⊆ Hi−1. This implies that

G(1) = [G,G] ⊆ Hr−1,

G(2) = [G(1), G(1)] ⊆ [Hr−1, Hr−1] ⊆ Hr−2,

· · · · · ·
G(i) ⊆ Hr+1−i, · · ·

Eventually, we prove G(r+1) ⊆ H0 = {1}. □

Remark 8.2.4. (1) The derived series is the “fastest-decreasing” series so that the sub-
quotients are abelian.

(2) The smallest n ∈ Z≥0 for which G(n) = {1} is called the solvable length of G.

Lemma 8.2.5. All G(i) are normal subgroups of G. In fact, they are characteristic subgroups
of G.

Proof. Recall that G(1) = [G,G] =
〈
x−1y−1xy

∣∣x, y ∈ G〉. If ϕ : G→ G is an automorphism,
we have

ϕ(G(1)) =
〈
ϕ(x−1y−1xy)

∣∣x, y ∈ G〉
=

〈
ϕ(x)−1ϕ(y)−1ϕ(x)ϕ(y)

∣∣x, y ∈ G〉 = G(1).

Inductively, we prove that

ϕ(G(i)) = ϕ([G(i−1), G(i−1)]) =
[
ϕ(G(i−1)), ϕ(G(i−1))

]
=
[
G(i−1), G(i−1)

]
= G(i).

Thus G(i) is characteristic and thus normal. □

Properties 8.2.6. (1) If H ≤ G, we must have H(i) ≤ G(i). So if G is solvable, then H
is solvable.

(2) Let ϕ : G → K be a surjective homomorphism. Then ϕ(G(i)) = K(i). So if G is
solvable, then K is solvable.

(3) If N ⊴ G is a normal subgroup and both N and G/N are solvable, then G is also
solvable.
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8.3. Nilpotent subgroups. We introduce a notion of nilpotent group, which sits in the
following list of groups with properties.{
cyclic groups

}
⊆
{
abelian groups

}
⊆
{
nilpotent groups

}
⊆
{
solvable groups

}
⊆
{
all groups

}
Definition 8.3.1. For a group G, define the following subgroups

G0 = G, G1 = [G,G], Gi+1 = [G,Gi] for i,

Then we have a chain of subgroups G0 ≥ G1 ≥ G2 ≥ · · · . This is called the lower central
series of G.

Similar to Lemma 8.2.5, we may prove that each Gi is a normal subgroup of G. It is also
clear that Gi ≥ G(i).
The group G is called nilpotent if Gc = {1} for some c ∈ N. The smallest such c is called

the nilpotence class of G.

Remark 8.3.2. The construction of lower central series commutes with passing to quotients,
i.e. if π : G → H = G/N is the homomorphism given by taking quotient by a normal
subgroup N , then π(Gi) = H i.

Corollary 8.3.3. If G is nilpotent, then G is solvable.

Proof. If Gc = {1} for some c ∈ N, then G(c) ≤ Gc = {1}. So G(c) = 1. □

Example 8.3.4. Going back to Example 8.2.2 For the groups

G =

C× C C
0 C× C
0 0 C×

 ⊇ G(1) =

1 C C
0 1 C
0 0 1

 ⊇ G(2) =

1 0 C
0 1 0

0 0 1

 ⊇ G(3) = {I3},

G is NOT nilpotent, because a direct computation shows that G(1) = G1 but G2 = [G,G1] =
G1 and all Gc = G1 for c ≥ 1.
On the other hand, G(1) and G(2) are nilpotent groups.

We also introduce a “dual picture”.

Definition 8.3.5. For any group G, define the following subgroups

Z0(G) = 1, Z1(G) = Z(G).

Consider the following quotient

G G/Z(G)

Z2(G) Z
(
G/Z(G)

)
π⋃ ⋃

where Z2(G) is defined to be π−1(Z(G/Z(G))). Since Z(G/Z(G)) is a normal subgroup of
G/Z(G), Z2(G) is a normal subgroup of G.

Now, inductively let Zi+1(G) be the subgroup ofG containing Zi(G) such that Zi+1(G)/Zi(G) ∼=
Z
(
G/Zi(G)

)
.

G G/Zi(G)

Zi+1(G) Z
(
G/Zi(G)

)
π⋃ ⋃
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(In particular, here, we always have inductively Zi(G) ⊴ G is a normal subgroup. Suppose
that Zi(G) is a normal subgroup. Yet Z

(
G/Zi(G)

)
is a normal subgroup of G/Zi(G); so its

preimage Zi+1(G) := π−1
(
Z
(
G/Zi(G)

))
is a normal subgroup of G.

The sequence {1} = Z0(G) ≤ Z1(G) ≤ · · · is called the upper central series of G.

Remark 8.3.6. We remark on the convention in choosing superscript versus subscript:
typically, the convention is

• indexing by subscript for increasing filtration,
• indexing by superscript for decreasing filtration.

Theorem 8.3.7. A group G is nilpotent if and only if Zc(G) = G for some c ∈ N.
More precisely, for some c ∈ N, Gc = {1} if and only if Zc(G) = G, and in this case, for

every i = 0, 1, . . . , c

(8.3.7.1) Gc−i ≤ Zi(G).

Proof. We prove this by induction on the minimal c such that either Gc = {1} or Zc(G) = G.
When c = 1, either conditions G1 = {1} and Z1(G) = G is equivalent to the condition that
G is abelian. The statement is clear.

Now suppose the theorem has been proved for smaller c, and we treat the case when either
Gc = {1} or Zc(G) = G for this c ∈ N. Let π : G→ G/Z(G) =: G. For a subgroup H of G,
denote its image under π by H ⊆ G.

We first show that inductive hypothesis may be applied toG (whenever one of the condition
of the theorem holds). In fact we will prove

Gc = {1} Zc(G) = G

(G)c−1 = {1} Zc−1(G) = G.

(1) (2)

inductive hypothesis

Indeed, for (1), Gc = {1} is equivalent to [G,Gc−1] = {1}, i.e. all elements in Gc−1 commutes
with all elements of G. So this is further equivalent to Gc−1 ≤ Z(G). As the construction
of lower central series is compatible with passing to quotients, this is further equivalent to
(G)c−1 = {1}.

For statement (2), we simply note that the construction of upper central series implies

inductively that Zi(G) = Zi−1(G). More precisely, we have the following picture that explains
this.

G Z1(G) Z2(G) Z3(G)

G/Z1(G) G Z1(G) Z2(G)

G/Z2(G) G/Z1(G) G Z
(
G/Z1(G)

)
.

π1

⊇

π2

π1 π1

π̄1

⊇

π̄1

⊇

By definition Z2(G) is the pullback of Z1(G) along π1, namely Z2(G) = π−1
1 (Z1(G)). After

this, we consider G/Z2(G) ∼= G/Z1(G). Inside of this, we will pullback Z(G/Z2(G)) =
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Z(G/Z1(G)). The pullback to G gives Z2(G) = π̄−1
1

(
Z(G/Z1(G))

)
. This implies that

Z3(G) = π−1
2

(
Z(G/Z1(G))

)
= π−1

1 π̄−1
1

(
Z(G/Z1(G))

)
= π−1

1

(
Z2(G)

)
.

We may continue this way, and (2) is a special case of this results.

Finally, we prove Gc−i ≤ Zi(G) from the inductive hypothesis G
c−i ≤ Zi−1(G). Indeed,

(8.3.7.2) Gc−i ≤ π−1(G
c−i

) ≤ π−1(Zi−1(G)) = Zi(G).

□

Remark 8.3.8. It is not true that Zi(G) ≤ Gc−i−1; this is an error in Dummit–Foote’s

book on page 194 Theorem 8. The essential reason is that Gc−i ≤ π−1(G
c−i

) in (8.3.7.2)
need not be an equality, i.e. it is not true in general that the preimage of a commutator is
a commutator.

Remark 8.3.9. One way to philosophically understand the lower or upper central series is
that:

(1) abelian groups are easy to understand.
(2) If H is a nonabelian simple finite group, then [H,H] = H and Z(H) = 1 (because H

has no nontrivial normal subgroups). So lower and upper central series is trivial for
simple finite groups.

The following visualize the lower and upper central series as follows.

Complicated

close to
simple groups

{1} G

Z1(G)

Z2(G)

Z3(G)

G1

G2

G3

Coming from the upper central series, we will never reach the Jordan–Hölder factors that
“look like” simple groups. This is indicated on the left. “Dually”, coming from the lower
central series, the subgroup Gi will always contain the Jordan–Hölder factors taht “look like”
simple groups. This filtration “shrinks” the group from the right of the picture.
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8.4. Structure theorem of nilpotent groups. In fact, nilpotent groups have a very nice
structure theorem.

Proposition 8.4.1. All p-groups are nilpotent.

Proof. This is because for every p-group P , Z(P ) is nontrivial by Proposition 6.3.4. □

Proposition 8.4.2. Let P be a p-group.

(1) We have Z(P ) ̸= {1} (proved earlier).
(2) If H ⊴ P is a nontrivial normal subgroup, then H ∩ Z(P ) ̸= {1}.
(3) If H ⪇ P , then H ⪇ NP (H).

Proof. (1) is proved in Proposition 6.3.4.
(2) Consider the conjugation action of P on H:

P H, Adp(h) = php−1.
Ad

For this action, we write H as the disjoint union of orbits:

H =
∐
i

P
/
StabP (ai),

for representatives a1, a2, . . . , ar of orbits.
We note that StabP (ai) = P if and only if ai ∈ Z(P ), namely ai ∈ Z(P )∩H. So we have

the following

0 ≡ |H| =
∑
i

|P |
/∣∣StabP (ai)∣∣ ≡ ∣∣Z(P ) ∩H∣∣ (mod p).

This implies that Z(P ) ∩H ̸= {1}.
(3) We use induction on |P |. There are two cases:

Case 1 If Z(P ) ⊈ H, yet Z(P ) ⊂ NP (H). So H ⪇ NP (H).

Case 2 If Z(P ) ⊆ H, consider H = H/Z(P ) and P = P/Z(P ). By inductive hypothesis,

H ⪇ NP (H) ⇒ H ⪇ NP (H).

□

Corollary 8.4.3. If P is a p-group and if H < P has index p, then H is a normal subgroup.

Theorem 8.4.4 (Classification theorem for nilpotent groups). Let G be a finite group of
order n = pα1

1 p
α2
2 · · · pαr

r and Pi ∈ Sylpi(G). The following are equivalent.

(1) G is nilpotent.
(2) If H ⪇ G, then H ⪇ NG(H).
(3) All Sylow subgroups Pi are normal.
(4) G ∼= P1 × P2 × · · · × Pr.

Proof. (3) ⇒ (4) By criterion of direct products:

P1P2 = P1 × P2, P1P2P3 = P1P2 × P3 = P1 × P2 × P3, . . .

(4) ⇒ (1) as each Pi is nilpotent.
(2)⇒ (3) Recall that for each Pi, NG(NG(Pi)) = NG(Pi) by Corollary 7.2.6. So NG(Pi) =

G, which implies Pi is normal.
(1) ⇒ (2) Using the same argument as in the theorem above, noting that G is nilpotent
⇒ G/Z(G) is nilpotent. □
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Extended reading material

8.5. Schur–Zassenhaus theorem. One may consult online resources on this topic, such
as

https://kconrad.math.uconn.edu/blurbs/grouptheory/schurzass.pdf

We have learned in the Hölder program that, if N is a normal subgroup of G, then the
study of G, philosophically, may be reduced to the study of N and G/N . The Schur–
Zassenhaus theorem concerns how to “reconstruct” G from N and G/N . This is in general
difficult. For example, if N and G/N are both isomorphic to Zp, then G can be either Zp2
or Zp × Zp. The case of Zp × Zp is considered a little “better” because the quotient map
π : G→ G/N admits a “partial inverse” or a section i : G/N → G such that π ◦ i = idG/N .
What Schur and Zassenhaus proved is that when |N | and |G/N | are relatively prime, then

there is always such a section i.

Theorem 8.5.1 (Schur–Zassenhaus). Let G be a finite group and N ⊴G a normal subgroup
such that |N | and |G/N | are relatively prime. Let π : G ↠ G/N be the natural surjective
homomorphism.

(1) There exists a subgroup H ≤ G such that

π|H : H → G/N

is an isomorphism. (Such H’s are called complements of N in G.) As a corollary, G is
isomorphic to a semidirect product N ⋊ (G/N).

(2) When either N or G/N is solvable, all complement subgroups H in (1) are conjugate
to each other.

Remark 8.5.2. Using the difficult theorem of Feit–Thompson (Remark 3.3.5), the condition
in (2) is always satisfied: because either N or G/N must have odd cardinality.

The proof of Schur–Zassenhaus theorem is divided into two parts:

• Step I: Prove Schur–Zassenhaus theorem in the case when N is an abelian group.
• Step II: Reduce to the case when N is an abelian group.

The proof of Step I makes use of the so-called group cohomology which is beyond the
scope of abstract algebra. Essentially, constructing G from N and G/N is governed by a
cohomological class in H2(G/N,N). Since |N | and |G/N | are relatively prime, H2(G/N,N)
is trivial. This can be directly interpreted as the existence of a complement group. The
fact that all complement groups are conjugate follows from the vanishing of H1(G/N,N).
(Although we do not cover these in our honors algebra course, group cohomology is a very
foundamental mathematical objects in algebra with many applications.)

In this supplementary material, we focus on the proof of Step II (of the existence part).
We start with a lemma.

Lemma 8.5.3. If N ⊴G and P ∈ Sylp(N), then G = N ·NG(P ). In particular, if P ⊴N ,
then P ⊴G.

Proof. Pick g ∈ G, gPg−1 ⊴ gNg−1 = N . So gPg−1 is a Sylow p-subgroup of N . By
2nd Sylow Theorem, there exists n ∈ N such that gPg−1 = nPn−1. It then follows that
n−1gPg−1n = P , i.e. n−1g ∈ NG(P ). So g ∈ nNG(P ) ⊆ N ·NG(P ).
To see the second statement under the condition P ⊴ N , we note that in this case N ⊆

NG(P ), so G = N ·NG(P ) = NG(P ), i.e. P ⊴G. □
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Proof of Step II of existence in Schur–Zassenhaus theorem. By induction on the order of the
group G, we can assume that Theorem 8.5.1(1) holds for smaller groups.

(a) If N strictly contains a nontrivial subgroup N ′ that is normal in G, let G := G/N ′

and N := N/N ′. Then G/N ∼= G/N . Applying inductive hypothesis to G, there exists a
complement M ≤ G (that is isomorphic to G/N ∼= G/N).
If π : G → G/N ′ denote the projection, let M := π−1(M), and then N ′ is a normal

subgroup of M such that M/N ′ ∼= M . Applying inductive hypothesis again to M shows
that N ′ has a complement H in M , namely a subgroup H ≤M ≤ G such that

H → H → G/N

is an isomorphism.
(b) Suppose now that N is a minimal normal subgroup of G.
Let P be a Sylow subgroup of N (for some prime number p). Lemma 8.5.3 implies that

G = N ·NG(P ). By 2nd Isomorphism Theorem,

G/N ∼= NG(P )
/
(NG(P ) ∩N).

If NG(P ) ̸= G, the inductive hypothesis may be applied to NG(P ) to obtain a complement
of NG(P ) ∩N in NG(P ), which may be also served as a complement of N in G.
If NG(P ) = G, then P is a normal subgroup of G. By minimality of N , N = P . By

normality of N , N = P is the unique Sylow p-subgroup of G. Since Z(P ) is a characteristic
subgroup of P , Z(P ) is normal in G. By minimality of N again, N = Z(P ) is an abelian
group. This reduces to the case where we can handle by Galois cohomology. □
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9. Rings, ideals, quotients rings

9.1. Rings.

Definition 9.1.1. A ring R is a set together with two binary operations + and ·, satisfying
(1) (R,+) is an abelian group under “addition” (with 0 as the additive unit);
(2) the “multiplication” · is associative, i.e. (a · b) · c = a · (b · c) for any a, b, c ∈ R;
(3) the distributive law holds in R, i.e., for all a, b, c ∈ R,

(a+ b) · c = a · c+ b · c and a · (b+ c) = a · b+ a · c;
(4) R is unital, i.e. there exists an element 1 ∈ R such that 1 ̸= 0 and that

1 · a = a · 1 = a, for all a ∈ R.
In this course, all rings are assumed to be unital and 1 ̸= 0, i.e. condition (4)

above holds.
We say that a ring R is commutative if a · b = b · a for all a, b ∈ R.

Definition 9.1.2. A ring is called a division ring or a skew field if every nonzero element
a ∈ R has a multiplicative inverse.

A commutative division ring is called a field.

Example 9.1.3. (1) (Z,+, ·) and (Zn,+, ·) are rings.
(2) Q, R, and C are fields.
(3) Z[ 1

N
] =

{
a
Nr

∣∣ a ∈ Z, r ∈ Z≥0

}
is a subring of Q.

(4) If R is a ring, then R[x] =
{ ∑
n≥0

anx
n
∣∣∣ an ∈ R

}
is a ring, called the polynomial

ring over R. More generally, we may define R[x1, . . . , xn] similarly as the ring of
multivariable polynomial rings with coefficients in R.

In this construction, we often require R to be commutative.
(5) If R is a ring, then the set of all n× n matrices Matn×n(R) in R is a ring.
(6) H :=

{
a+ bi+ ci+ dk

∣∣ a, b, c, d ∈ R
}
is called the ring of Hamilton quaternions.

The multiplication is given by the rules:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

There are additional structures, for z = a+ bi+ cj + dk ∈ H,
• Conjugations: z̄ = a+ bi+ cj + dk := a− bi− cj − dk;
• z · w = w̄ · z̄;
• Norm map Nm(z) := zz̄ = a2 + b2 + c2 + d2 ∈ R≥0.

It can be seen that if z ̸= 0, then z−1 = z̄/Nm(z) is a multiplicative inverse. So H is
a division ring. (See extended reasons for more discussion.)

(7) (Group rings) Let R be a commutative and G a group. Define the associated group
ring of G over R to be

R[G] :=
{
finite sums

∑
g∈G

agg
∣∣∣ ag ∈ R}.

The multiplication is given by(∑
g∈G

agg
)(∑

h∈G

bhh
)
=
∑
g,h∈G

agbhgh.
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The multiplicative unit in R[G] is 1 · eG (where eG is the unit in G).
For example, when G = Zn = ⟨σ|σn = 1⟩, we have

R[G] =
{
a0 + a1σ + · · ·+ an−1σ

n−1
∣∣ ai ∈ R},

subject to the rule that σn = 1.
For another example, G = Z = ⟨σ⟩, then

R[G] = R[x±1] =
{
finite sum

∑
n∈Z

anx
n
∣∣∣ an ∈ R}.

Definition 9.1.4. Let R and S be rings.

(1) A ring homomorphism is a map ϕ : R→ S satisfying
(a) ϕ(a+b) = ϕ(a)+ϕ(b) for all a, b ∈ R (which in particular implies that ϕ(0) = 0),
(b) ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R,
(c) ϕ(1) = 1.

(2) The kernel of ϕ is kerϕ = ϕ−1(0). In particular, ϕ is injective if and only if kerϕ =
{0}.

(3) A homomorphism ϕ is called an isomorphism if it is bijective.

Remark 9.1.5. In some books, a ring is not assumed to contain 1 and a ring homomorphism
needs not to send 1 to 1. We impose both conditions, as this is the case we almost always
encounter in the future.

In particular, if R1 and R2 are two rings, the natural map R1 → R1×R2 given by a 7→ (a, 0)
is NOT a homomorphism, because it does not send 1 to 1. This is actually quite reasonable;
see our later discussion on the prime spectrum of a commutative ring.

Example 9.1.6. (1) ϕ : Z→ Zn sending a to a mod n is a homomorphism.
(2) ϕ : R → S sending all elements of R to 0 ∈ S is not a homomorphism (under our

definition).
(3) ϕ : Z→ Z sending ϕ(x) = nx is not a homomorphism unless n = 1.
(4) If R is a commutative ring, then for any r ∈ R, there is a natural evaluation

homomorphism:

ϕr : R[x] R

f(x) f(r).

Note that it is crucial to assume R to be commutative here!

Definition 9.1.7. Let R be a ring.

(1) A nonzero element a ∈ R is called a zero-divisor if there exists a nonzero element
b ∈ R such that either ab = 0 or ba = 0.

(2) u ∈ R is called a unit in R if there exists v ∈ R such that

uv = vu = 1.

The set of units in R is R×. They form a group under multiplication.

A commutative ring R containing no zero-divisor is called an integral domain.

Remark 9.1.8. A key property of an integral domain is the following cancellation law : if
a ∈ R and a ̸= 0, then for any b, c ∈ R,

a · b = a · c ⇒ b = c.
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Example 9.1.9. (1) Z×
n =

{
a mod n

∣∣ gcd(a, n) = 1
}
. The zero divisors in Zn are{

a mod n ̸= 0 mod n
∣∣ gcd(a, n) ̸= 1

}
.

(2) If R is an integral domain, then so is R[x].
This is because if one has two nonzero polynomials f(x) = amx

m + · · · + a0 and
g(x) = bnx

n + · · · + b0 (with am ̸= 0 and bn ̸= 0), then f(x)g(x) has leading term
ambnx

m+n. But ambn ̸= 0, so f(x)g(x) ̸= 0. This shows that R[x] is an integral
domain.

Lemma 9.1.10. A finite integral domain R is a field.

Proof. For any nonzero element a ∈ R, we need to find its inverse. Consider the following
homomorphism of additive groups

ϕa : (R,+) (R,+)

x ax

Then kerϕa = {x ∈ R | ax = 0} = {0} as R is an integral domain. Thus ϕa is injective, and
hence an isomorphism by counting the number of elements.

In particular, a−1 := ϕ−1
a (1) is a multiplicative inverse of a. □

Definition 9.1.11. For an integral domain R, we define its fraction field or the quotient
field to be

Frac(R) :=
{
(a, b) ∈ R×

(
R\{0}

)}/(
(a, b) ∼ (c, d) if and only if ad = bc

)
.

In particular, R is a field.

Example 9.1.12. (1) Frac(Z) = Q.
(2) For a field k, Frac(k[x]) = k(x) the field of rational functions in x (with coefficients

in k).

9.2. Ideals. To develop the story for rings in a parallel way to that of groups, we now
introduce the analogue of normal groups in the theory of rings.

Definition 9.2.1. A subset I ⊆ R is called a left ideal if

(1) for any a, b ∈ I, a− b ∈ I (so that I is a subgroup of (R,+));
(2) for any a ∈ I and x ∈ R, we have xa ∈ I.
We say that I is a right ideal if it satisfies the above conditions with (2) replaced by

ax ∈ I.
We say that I is an ideal (or a two-sided ideal) if it is a left ideal and a right ideal as

the same time.
We say that I is a proper ideal if I ̸= R.
For commutative rings, there is no difference between left, right, or two-sided ideals. So

when R is not known to be commutative, we will always say two-sided ideals, but if R is
commutative, we will simply say ideals.

Remark 9.2.2. An ideal of a ring is (usually) not a ring, because 1 /∈ I. (1 ∈ I implies that
I = R.)

We represent ideals using the following notation
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Notation 9.2.3. Let R be a commutative ring, and let a1, . . . , as ∈ R. Define(
a1, . . . , as

)
=
{ s∑

i=1

xiai

∣∣∣xi ∈ R} ⊆ R.

(This definition also works for infinite sets {ai|i ∈ J} when we allow only finite sums.)
We call this ideal the ideal generated by a1, . . . , as. It is the minimal ideal that contains

all of a1, . . . , as.

Example 9.2.4. In R = Z,
(4, 6) = {4x+ 6y |x, y ∈ Z} = 2Z = (2).

In general, (a1, . . . , as) =
(
gcd(a1, . . . , as)

)
.

Definition 9.2.5. Let R be a ring and I a two-sided ideal such that I ̸= R. We define the
quotient ring R/I := {x+ I |x ∈ R} (quotient as an additive group) with operations:

(x+ I) + (y + I) = (x+ y) + I and (x+ I) · (y + I) = (xy) + I.

We check that the multiplication is well-defined: if x′ = x+ a and y′ = y+ b with a, b ∈ I,
then

x′y′ + I = (x+ a)(y + b) + I = xy + xb+ ay + ab︸ ︷︷ ︸
each term∈I

+I = xy + I.

There is a natural surjective quotient homomorphism

π : R R/I

x x+ I =: x̄

with ker π = I.

This following is the analogue of isomorphism theorems for rings.

Theorem 9.2.6 (Isomorphism Theorems). (1) If ϕ : R → S is a ring homomorphism,
then kerϕ is a two-sided ideal and ϕ(R) is a subring of S.

Moreover, ϕ induces an isomorphism

R/ kerϕ ϕ(R)

x+ kerϕ ϕ(x)

∼=

(2) Let I ⊆ J be proper ideals of R, then J/I ⊆ R/I is a proper ideal and

(R/I)
/
(J/I) ∼= R/J.

(3) Let I be a proper ideal of R. Then there is a 1-1 correspondence{
left/right/two-sided ideals J containing I

} {
left/right/two-sided ideals J̄ of R/I

}
J J/I

π−1(J̄) J̄

preserving inclusion orders, sums, intersections, and quotients. (Sum of ideals will
soon be defined.)
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Example 9.2.7. (1) For the homomorphism ϕ : Z → Zn given by modulo n, kerϕ =
nZ = (n). So Zn ∼= Z/nZ.

(2) For a commutative ring R and a ∈ R, we have an evaluation homomorphism

ϕa : R[x] R

f(x) f(a).

The kernel kerϕa =
{
f(x) ∈ R[x]

∣∣ f(a) = 0
}
= (x − a). (This is because one can

always write every f(x) ∈ R[x] as f(x) = g(x)(x− a) + f(a). So R[x]/(x− a) ∼= R.
(3) Let R be a ring and G a group, there is a natural homomorphism from the group

ring R[G]:

ϕ : R[G] R∑
g∈G

ag[g]
∑
g∈G

ag.

The kernel kerϕ = (g − 1; g ∈ G) is called the augmentation ideal of R[G].
(4) For R = R1 × R2 a direct product of rings, both R1 × {0} and {0} × R2 are ideals.

They cay be alternatively written as

R1 × {0} = ((1, 0)) and {0} ×R2 = ((0, 1)).

Caveat: the map

R1 R1 ×R2

a (a, 0)

does not take 1R1 to 1R1×R2 ; so it is NOT a homomorphism in our convention.

We have the following operations of ideals.

Definition 9.2.8. Let I and J be two-sided ideals of a ring R.

(1) Define the sum of ideals to be

I + J =
{
a+ b

∣∣ a ∈ I, b ∈ J}.
(2) Define the product of ideals to be

IJ =
{
finite sums of elements ab for a ∈ I, b ∈ J

}
.

Caveat 9.2.9. In general, it is not true that all elements of IJ can be written as a pure
product ab for a ∈ I and b ∈ J . For example, R = Z[x] and I = (2, x) =

{
f(x) ∈

Z[x]
∣∣ f(0) = 2

}
. Then x2 + 4 ∈ I2 yet it cannot be written in the form of ab with a, b ∈ I.

Remark 9.2.10. By the property of ideals, IJ ⊆ I and IJ ⊆ J , so

IJ ⊆ I ∩ J.

Example 9.2.11. If R is a commutative ring and I = (a1, . . . , as) and J = (b1, . . . , bt), then

I + J = (a1, . . . , as, b1, . . . , bt), IJ = (a1b1, . . . , a1bt, . . . , aibj, . . . , asbt).
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Remark 9.2.12. It is important to explain the practical meaning of taking quotient rings:
it is to imposing relations among generators. We explain this through an example: for
k a field, we show that

k[x, y, z]
/
(x− y2, y − z3) ∼= k[z].

Indeed, for example, the element x2y can be written as

x2y = (x− y2 + y2)2y = (x− y2) · ∗+ y4y = (x− y2) · ∗+ (y − z3 + z3)5

= (x− y2) · ∗+ (y − z3) · ∗+ z15.

So x2y is equivalent to z15 in the quotient.
For another example, consider a homomorphism

ϕi : R[x] C

f(x) f(i)

The kernel kerϕi = (x2 + 1). So

R[x]/(x2 + 1) ∼= C.
(namely, we are imposing the relation x2 +1 = 0 in the ring.) We also point out that this is
the prototype for field extension later, describing C in terms R.

Extended readings after Section 11

9.3. Quaternions over Q. In fact, in the constructions of Hamilton quaternions, we do
not really need it to have coefficients in R. In fact, for nonzero numbers A,B ∈ Q, we may
define a quaternion ring over Q:

DA,B :=
{
a+ bi+ cj + dij

∣∣ a, b, c, d ∈ Q
}

where the multiplications are Q-linear and are governed by

i2 = A, j2 = B, ij = −ji.
When A = B = −1 and if we change the coefficients from Q to R, then we recover the
Hamilton quaternions.

It is an interesting fact (which is also important in number theory) that such DA,B is
either isomorphic to the matrix ring Mat2×2(Q) or is a division ring. (For example, if both
A and B are negative then DA,B is a division ring for the “same” reason as in for H. Yet for
each p, if A is exactly divisible by p and B is an integer whose reduction modulo p is not a
square, then DA,B is a division ring “for reasons at p”.)
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10. Chinese remainder theorem, Euclidean domains, and PIDs

10.1. Chinese remainder theorem. Recall that the classical Chinese remainder theorem
can be restated as follows: if n1, . . . , nr are pair-wise coprime integers, then

Z −→ Z/n1Z× · · ·Z/nrZ
is surjective and its kernel is n1Z ∩ · · · ∩ nrZ = n1 · · ·nrZ.

Definition 10.1.1. Let R be a two commutative ring. We say two ideals I and J of R are
comaximal if I + J = R, i.e. 1 ∈ R can be written as 1 = a+ b with a ∈ I and b ∈ J .
(Note that in the case R = Z,m,n ∈ Z are coprime if and only if (m)+(n) = (gcd(m,n)) =

(1).)

Theorem 10.1.2. Let I1, . . . , Ik be ideals of a commutative ring R. Then the natural map

ϕ : R R/I1 × · · · ×R/Ik
x (x mod I1, . . . , x mod Ik)

is a ring homomorphism with kernel I1 ∩ · · · ∩ Ik.
If I1, . . . , Ik are pairwise comaximal, then

(1) ϕ is surjective, and
(2) I1 ∩ · · · ∩ Ik = I1 · · · Ik.

In particular, this implies that

ϕ : R
/
I1 · · · Ik ∼= R

/
I1 ∩ · · · ∩ Ik

≃−−→ R/I1 × · · · ×R/Ik.

Proof. The first claim on ϕ being a homomorphism with kernel I1∩ · · · ∩ Ik is clear. We now
prove (1) and (2).

We first assume that k = 2. As I1I2 ⊆ I1 and I1I2 ⊆ I2, we have I1I2 ⊆ I1 ∩ I2. Now, if
R = I1 + I2, we may write 1 = a1 + a2 with a1 ∈ I1 and a2 ∈ I2. Then for b ∈ I1 ∩ I2,

b = ba1︸︷︷︸
in I2I1

+ ba2︸︷︷︸
in I1I2

∈ I1I2.

This implies that I1I2 = I1 ∩ I2.
To see that ϕ is surjective in this case, we note that

ϕ(a1) =
(
a1 mod I1, a1 = 1− a2 mod I2

)
= (0, 1);

ϕ(a2) =
(
a2 = 1− a1 mod I1, a2 mod I2

)
= (1, 0);

Thus, for any (x1 mod I1, x2 mod I2) ∈ A/I1 × A/I2, it is ϕ(a1x2 + a2 + x1).
In general, we use induction to show

ϕ : R −→ R/I1 ×R/I2 · · · Ik ↠ R/I1 × · · · ×R/Ik.
For this, we need to check I1 and I2 · · · Ik are comaximal, i.e. I1 + I2 · · · Ik = R. This is
because for each i = 2, . . . , k, 1 = ai + bi for ai ∈ I1 and bi ∈ Ii. Thus

1 = (a2 + b2) · · · (ak + bk) = a2 · · · ak + product with some ai︸ ︷︷ ︸
in I1

+ b1 · · · bk︸ ︷︷ ︸
in I2···Ik

.

□
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10.2. A digression in logic.

Definition 10.2.1. A partial order on a nonempty set A is a relation ⪯ on A satisfying
for all x, y, z ∈ A,

(1) (reflexive) x ⪯ x;
(2) (antisymmetric) if x ⪯ y and y ⪯ x, then x = y;
(3) (transitive) if x ⪯ y and y ⪯ z, then x ⪯ z.

(Some times we say A is a poset.)
A chain is a subset B ⊆ A where for any x, y ∈ B, either x ⪯ y or y ⪯ x.

Axiom 10.2.2 (Zorn’s Lemma). If A is a partially ordered set in which every chain B has
an upper bound, i.e. an element m ∈ A such that m ⪰ b for every b ∈ B, then A has a
maximal element x, i.e. an element such that no y ≻ x.

Zorn’s Lemma is independent of the Zermelo–Fraenkel axiom system and is equivalent
to the Axiom of Choice and the Well-ordering Principle. See for example Dummit–Foote’s
Appendix A.2 or Munkres’ Topology for more discussion.

In this lecture, we assume that Zorn’s lemma holds.

10.3. Maximal ideals.

Definition 10.3.1. If R is a ring, a (two-sided) ideal m ⊆ R is called maximal if m ̸= R
and the only (two-sided) ideals containing m are m and R.

The existence of such maximal ideals relies on the Zorn’s lemma.

Proposition 10.3.2. Every proper (two-sided) ideal I ⊊ R is contained in a maximal ideal
of R.

Proof. Put S := {proper ideals of R containing I}. I claim that it is a partially ordered set
for inclusion. For this, we need to check that every increasing chain Ji ⊆ · · · of ideals has an
upper bound. Indeed, J =

⋃
i∈S Ii is an ideal; yet 1 ̸= J ; so J is a proper ideal containing I.

So by Zorn’s lemma, S admits a maximal element, namely, the maximal ideal needed. □

The following is an important criterion for maximal ideals.

Proposition 10.3.3. Let R be a commutative ring. An ideal m ⊆ R is maximal if and only
if the quotient R/m is a field.

Proof. By lattice isomorphism theorem, m ⊆ R if and only if R̄ := R/m has only two ideals
(0) and (1). We claim that the latter statement is equivalent to that R̄ is a field.

If R̄ is a field, then clearly it has only two ideals (0) and (1). Conversely, if R̄ has only two
ideals (0) and (1), then for any nonzero element a ∈ R̄, the ideal (a) ̸= (0). Thus (a) = (1),
namely there exists a′ ∈ R̄ such that aa′ = 1. This implies that a ∈ R̄×. So R̄ is a field. □

Remark 10.3.4. If R is non-commutative, then R/m being a skew field implies that m
is maximal. But the converse is not correct. For example, R = Matn×n(C) has only two
two-sided ideals: (0) and R. Yet R is not a skew field.

Example 10.3.5. (1) When R = Z, for each prime number p, (p) = pZ is a maximal
ideal of Z.
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(2) For R = Z[x], (p) = pZ[x] is not a maximal ideal. But (p, x), or (p, x+1), or (p, f(x))
for any polynomial irreducible modulo p, is a maximal ideal.

(3) For G a finite group and R = C[G] the group ring, the augmentation ideal IG =〈
[g]− 1

∣∣ g ∈ G〉 is a maximal (two-sided) ideal, and we have C[G]/IG ∼= C.

10.4. Prime ideals. Assume from now on that R is commutative.

Definition 10.4.1. A proper ideal p ⊊ R is called a prime ideal if

for any a, b ∈ R, ab ∈ p⇒ a ∈ p or b ∈ p.

This is equivalent to
a /∈ p and b /∈ p ⇒ ab /∈ p.

Example 10.4.2. For p a prime number, pZ is a prime ideal of Z and pZ[x] ⊂ Z[x] is also
a prime ideal.

The following is an analogue of Proposition 10.3.3 for prime ideals. This is also quite
useful in application.

Proposition 10.4.3. An ideal p ⊂ R is a prime ideal if and only if R/p is an integral
domain.

Proof. Consider the natural quotient

π : R R/p

a ā.

If R/p is an integral domain, then for a, b ∈ R with ab ∈ p, we must have ab = 0, or
equivalently āb̄ = 0. This means that either ā = 0 or b̄ = 0, i.e. either a ∈ p or b ∈ p.

Conversely, suppose that R/p is not an integral domain, then there exists nonzero elements
ā, b̄ ∈ R/p such that āb̄ = 0. This is equivalent to say that there exists a, b ∈ R\p such that
ab ∈ p. Thus p is not a prime ideal in this case. □

Corollary 10.4.4. A maximal ideal is always a prime ideal.

The concepts of maximal ideals and prime ideals are extremely important in the study of
commutative algebra.

The following is an interesting property of prime ideals. The method of proof is typical in
commutative algebra.

Proposition 10.4.5. (1) Let a1, . . . , an be ideals and let p be a prime ideal containing
n⋂
i=1

ai. Then p ⊇ ai for some i. If p =
⋂
ai, then p = ai for some i.

(2) Let p1, . . . , pn be prime ideals and let a be an ideal contained in
n⋃
i=1

pi. Then a ⊆ pi

for some i.

Proof. (1) Suppose not. Then we may take elements xi ∈ ai\p for each i. Yet since p is a
prime ideal,

x1x2 · · ·xn /∈ p but x1x2 · · ·xn ∈
n⋂
i=1

ai.
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Thus p ⊃ ai for some i.

If moreover p =
n⋂
j=1

aj, then p ⊆ aj for each j, and thus p = ai for the i above.

(2) We prove by induction on n that

(10.4.5.1) a ̸⊆ pi for i = 1, . . . , n =⇒ a ̸⊆
n⋃
i=1

pi.

The base case n = 1 is clear, and suppose that we have proved (10.4.5.1) for n− 1, and now
we prove this for n. By inductive hypothesis, for each i = 1, . . . , n, we may find xi ∈ a such
that

xi /∈ p1 ∪ · · · ∪ pi−1 ∪ pi+1 ∪ · · · ∪ pn.

If for some xi, xi /∈ pi, we have already verified (10.4.5.1) using this element xi. Now, it
suffices to treat the case when xi ∈ pi for every i = 1, . . . , n. Then consider the element

y =
n∑
i=1

x1 · · ·xi−1xi+1 · · ·xn.

Clearly y ∈ a. We show that y /∈ pi for every i. Indeed, all elements in the sum except
the ith term x1 · · ·xi−1xi+1 · · ·xn belongs to pi. But as pi is a prime ideal, this product
x1 · · ·xi−1xi+1 · · ·xn does not belong to pi. So y /∈ pi. This completes the inductive proof. □

10.5. Moving ideals along homomorphism of rings.

Notation 10.5.1. Let f : R→ S be a homomorphism of commutative rings.

(1) If J ⊆ S is an ideal, then f−1(J) is an ideal, sometimes called the contraction of J .
(2) If I ⊆ R is an ideal of R, then f(I)S is an ideal of S, sometimes called the extension

of the ideal I. (Note that f(I) need not to be an ideal of S.)

Proposition 10.5.2. If J ⊆ S is a prime ideal, then f−1(J) is a prime ideal of R.

Proof. We consider the natural homomorphism

φ : R
f−−→ S ↠ S/J.

It is easy to see that kerφ = f−1(J). By 1st isomorphism theorem, we obtain an injective
homomorphism

φ̄ : R/f−1(J) ↪→ S/J.

Now, by Proposition 10.4.3, J being a prime implies that S/J is an integral domain. So
R/f−1(J), realized as a subring of S/J , is automatically an integral domain. So f−1(J) is a
prime ideal. □

10.6. Principal ideal domains. Initial study of rings is modeled on properties of Z, trying
to generalize various aspects of Z to other rings, such as certain quadratic rings, e.g. Z[i] =
{a+ bi | a, b ∈ Z}.

Definition 10.6.1. A principal ideal domain, writing PID for short, is an integral
domain in which every ideal is principal.

Example 10.6.2. (1) The ring of integers, Z, is a PID. All of its ideals are of the form
nZ for some n.
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(2) For k a field, the ring of polynomials in one variable k[x] is a PID.
(3) We will prove later that the ring Z[i] is a PID. This is a very important example.
(4) (Non-example) The ring Z[

√
−5] is not a principal ideal domain. For example, (3, 1+

2
√
−5) is not a principal ideal.

Proposition 10.6.3. Every nonzero prime ideal in a PID is a maximal ideal.

Proof. Let (p) be a prime ideal in a PID R. If m = (m) ⊇ (p) is a maximal ideal containing
(p). Then p = mn for some n ∈ R. Using the property of prime ideals, we see that either m
or n belongs to (p).

• If m ∈ (p), then (m) ⊆ (p). This says that (p) = (m).
• If n ∈ (p), then n = ps for some s ∈ R. Thus we have p = mn = mps, and thus
1 = ms. This implies that m is a unit. So m = (1) contradicting with that m is a
maximal ideal.

□

10.7. Quadratic integer rings.

10.7.1. Quadratic integer rings. Fix a square-free integer D (positive or negative), i.e. D =
± product of distinct primes, and D ̸= 1. Let

Q(
√
D) =

{
x+ y

√
D
∣∣x, y ∈ Q

}
be the “quadratic field” (it is a two-dimensional Q-vector space).

The “correct” analogue of Z inside Q(
√
D) is

O = OQ(
√
D) :=

{
Z[
√
D] if D ≡ 2, 3 mod 4;

Z[1+
√
D

2
] if D ≡ 1 mod 4.

This is because for z =
√
D or 1+

√
D

2
, it is a zero of z2 − D or z2 − z + 1−D

4
∈ Z[z] in two

cases.
One sometimes write this in a diagram as:

Q(
√
D) OQ(

√
D)

Q Z.

⊃

⊃

Notation 10.7.2. On Q(
√
D), we define a conjugation map: x+ y

√
D := x − y

√
D.

Clearly, it preserves the subring OQ(
√
D), and satisfies

a · b = ā · b̄.
(In fact a 7→ ā is an automorphism of Q(

√
D) and of OQ(

√
D).) When D < 0, this is nothing

but just the complex conjugation. But when D > 0, this makes sense purely because of
algebraic structure we have on O.

Define the following norm map:

Nm : Q(
√
D) −→ Q

Nm(x+ y
√
D) := (x+ y

√
D)(x− y

√
D) = x2 −Dy2.
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(If D < 0, Nm(a) ≥ 0 for any a ∈ Q(
√
D).)

Properties 10.7.3. (1) If x+ y
√
D ∈ O, then Nm(x+ y

√
D) ∈ Z.

(2) Nm(a) = aā for any a ∈ Q(
√
D).

(3) Nm is multiplicative, i.e. Nm(ab) = Nm(a)Nm(b) for a, b ∈ OQ(
√
D). (Again, this is

clear when D < 0 from the usual story of complex numbers, but when D > 0, this
follows from the purely algebraic argument.

Proof. We leave (1) and (2) as exercises. For (3), we use (2) to note that Nm(ab) = abab =
aā · bb̄ = Nm(a)Nm(b). □

Lemma 10.7.4. For an element u ∈ O, u ∈ O× if and only if Nm(u) = ±1.

Proof. “⇐” As Nm(u) = uū = ±1, we have u ∈ O×.
“⇒” If uv = 1 for some v ∈ O, then

Nm(u)Nm(v) = Nm(uv) = Nm(1) = 1.

We must have Nm(u) ∈ {±1}. □

10.7.5. Pell’s equation. When D ≡ 2, 3 mod 4, we have

x± y
√
D ∈ O× ⇔ Nm(x± y

√
D) = ±1 ⇔ x2 −Dy2 = ±1.

Thus, solutions of Pell’s equation form the group O×!

Fact 10.7.6. (1) When D > 0, O× =
{
± (x0 + y0

√
D)Z

}
for a “fundamental” unit

x0 + y0
√
D ∈ O×.

(2) When D < 0, we have O× = {±1} unless
• when D = −1, Z[i]× = {±1,±i};
• when D = −3, Z[ζ3]× = {±1,±ζ3,±ζ23} with ζ3 = e2πi/3 is a nontrivial third
root of unity.
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11. Unique factorization domains

For this entire lecture, R will be an integral domain. Our goal is summarized into the
following picture

Rings

Integral domains

UFDs

PIDs

EDs

Fields

I maximal ideal ⇔ R/I field ⇒ R/I integral domain ⇔ I prime ideal

p prime element ⇒ p irreducible element
Non-UFD example: Z[

√
−5]

p prime element ⇔ p irreducible element

R UFD ⇒ R[x] UFD

e.g. k[x1, . . . , xn]

I maximal ideal ⇔ I prime ideal

Classification of
finitely generated

modules over a PID

e.g. Z[i], k[x]

Here the purple colored statements were proved in previous lectures; we will prove the blue
colored statements in this lecture, and the red colored statements in the following lectures.

11.1. Euclidean domains. There is a question we hope to answer: how to prove that an
integral domain is a PID? In classical theory of rings, one verifies this by checking a certain
algorithm of finding generators of ideals on R.

Definition 11.1.1. An integral domain R is said to be an Euclidean domain if there is a
norm Nm : R→ Z+ ∪ {0} such that

(1) Nm(0) = 0;
(2) for any a, b ∈ R with b ̸= 0, there exists “quotient” q ∈ R and “remainder” r ∈ R

such that

a = bq + r and either r = 0 or Nm(r) < Nm(b).

It is important to point out that we do not require q and r to be unique.

Remark 11.1.2. Recall that this Euclidean algorithm can be used to find the gcd of two
integers. Euclidean domain is a ring in which such an algorithm is valid.

Example 11.1.3. (1) For any field F , we may take N : F → Z≥0 by N(a) = 0.
(2) For a field F and R = F [x] a polynomial ring, define Nm(f(x)) = deg(f).
(3) The ring of Gaussian integers R = Z[i] admits a norm

Nm(x+ yi) = x2 + y2 = |x+ yi|2.
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When a, b ∈ Z[i] with b ̸= 0, let q ∈ Z[i] is taken so that
∣∣Re(q − a

b
)
∣∣ ≤ 1

2
and∣∣Im(q − a

b
)
∣∣ ≤ 1

2
, then

Nm(a− bq) = |b|2 ·
∣∣∣a
b
− q
∣∣∣2 ≤ |b|2 · (1

4
+

1

4

)
< |b|2.

(4) For R = Z[ζ3] with ζ3 = e2πi/3, using the quadratic norm Nm : R → Z≥0 given by
Nm(z) = zz̄, R is also an Euclidean domain.

Proposition 11.1.4. A Euclidean domain R is a PID.

Proof. Let I ⊆ R be a nonzero ideal. Let b be an element of I\{0} with minimal possible
norm. We claim that I = (b). It is clear that (b) ⊆ I. Now we focus on the other inclusion.
If a ∈ I, by Euclidean algorithm, a = bq+ r with r = 0 or Nm(r) < Nm(b). If r ̸= 0, then

r = a − bq ∈ I contradicting that b has minimal norm. Thus r = 0 and thus a ∈ (b). The
theorem is proved. □

Remark 11.1.5. Unfortunately, beyond the examples above, there are only a few more
examples of Euclidean domains. This concept is historically very important, but to establish
more general PID properties, one needs more commutative algebra tools which we will learn
in later courses.

11.2. Generalization of prime number to a general integral domain. As we explained
earlier, our initial study of rings is to imitate what happens in Z (and maybe test that in
the ring Z[i].

In Z, prime numbers play an important role; we hope to generalize that here.

Definition 11.2.1. (1) For a, b ∈ R with a ̸= 0, we write a | b if b = ac for some c ∈ R.
This is equivalent to say that b ∈ (a).

(2) A nonzero element p ∈ R is called a prime element if (p) is a prime ideal, or
equivalently,

if p | ab, then p | a or p | b.
(3) Suppose that r ∈ R is nonzero and not a unit. Then r is called an irreducible

element if
whenever r = ab, then a or b is a unit.

(4) Two elements a, b ∈ R are said to be associated if a = bu for some unit u ∈ R×.
(This of course implies that b = au−1 with u−1 ∈ R× a unit.)

Proposition 11.2.2. (1) Prime elements are always irreducible.
(2) If R is a PID, then irreducible elements are prime elements.

Proof. (1) Let p ∈ R be a prime element. Then if p = uv for some u, v ∈ R, then
uv ∈ (p) ⇒ u ∈ (p) or v ∈ (p).

WLOG, u = ps for some s ∈ R, then p = uv = psv. Thus 1 = sv and thus v is a unit. So p
is irreducible.

(2) If p is irreducible, we hope to show that (p) is a prime ideal; in fact we will show that
(p) is a maximal ideal.

Indeed, if (p) ⊆ (m) for another ideal with m ∈ R, then p = r ·m for some r ∈ R. By the
property of irreducible elements,
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• either r is a unit, which implies that (p) = (m);
• or m is a unit, which implies that (m) = (1).

So (p) is a maximal ideal and hence a prime ideal. So p is a prime element.
□

Definition 11.2.3. A unique factorization domain (UFD for short) is an integral do-
main R in which every nonzero and non-unit element r ∈ R satisfies that

(1) r is a product of irreducibles, namely r = p1p2 . . . pn with pi ∈ R irreducible elements;
and

(2) the decomposition in (1) is unique up to associates, namely, if r = q1 · · · qm is
another factorization of r into product of irreducible elements, then m = n and there
exists σ ∈ Sn such that pn and qσ(n) are associates.

Example 11.2.4. The rings Z and k[x1, . . . , xn] for a field k are UFDs.
A typical non-UFD integral domain is R = Z[

√
−5] = {x+y

√
−5 |x, y ∈ Z}. We will give

more discussion in § 11.5.

Remark 11.2.5. Why do we need to require factors to be unique up to associates? This
already happens in Z, for example, 6 = 2 · 3 = (−2) · (−3). They are essentially the same
factorization if one redistribute the unit factor −1 among the irreducible factors.

Two main theorem we will prove later in this lecture is:

(1) PID ⇒ UFD, and
(2) If R is a UFD, so is R[x1, . . . , xn].

Proposition 11.2.6. In a UFD R, for a nonzero element p ∈ R, p is a prime element ⇔
p is an irreducible element.

Proof. “⇒” This is true in any integral domain by Proposition 11.2.2(1).
“⇐” If p | ab, then ab = pc for some c ∈ R. Writing a and b as product of irreducible

elements, we must find an associate of p in the product of such expression by the uniqueness
of factorization. Thus a = pr or b = pr for some r ∈ R. This means that p | a or p | b. □

Proposition 11.2.7. In a UFD, the gcd of nonzero element exists. Namely, for two nonzero
element a, b ∈ R, there exists an element d = gcd(a, b) ∈ R such that if d′ ∈ R satisfies d′ | a
and d′ | b, then d′ | d.
Explicitly, if a and b factor as

a = upc11 · · · pcrr and b = vpd11 · · · pdrr

with p1, . . . , pr irreducible and pairwise non-associate, and u, v ∈ R×, ci, di ∈ Z≥0, then

d = p
min(c1,d1)
1 · · · pmin(cr,dr)

r

is a gcd of a and b.

Remark 11.2.8. The gcd of two elements of R is unique up to associates.
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11.3. PID ⇒ UFD.

Theorem 11.3.1. If R is a PID, then R is a UFD.

Proof. Existence of factorization. Let r ∈ R be a nonzero element that is not a unit.

• If r is irreducible, then we are done.
• Otherwise, r = a1 · b1 for a1 and b1 non-unit.

We may continue this process for a1 and b1, respectively.
Suppose that this process does not terminate. Then we may keep writing

r = a1b1 = a1a2b2 = a1a2a3b3 = · · ·

Thus, we have

(r) ⊆ (b1) ⊆ (b2) ⊆ · · ·
We need to use axiom of choice in this step.4 Taking the union⋃

n≥0

(bn) = some ideal (b).

But this element b must be contained in one of (bn) and thus (bn) = (bn+1) = · · · .
In particular, bn = an+1bn+1 and (bn) = (bn+1) implies that an+1 is a unit. This is a

contradiction.

Uniqueness of the decomposition. We make induction on the number of irreducible factors.
If n = 0, then r is a unit. If r = qc for some irreducible element q, then q | 1 and hence q is
a unit, giving a contradiction. So in the factorization of r, there cannot be any irreducible
element.

Now suppose that n ≥ 1 and r = p1p2 · · · pn = q1 · · · qm with m ≥ n and pi and qj
irreducible elements. Then p1 divides q1 · · · qm and hence divides one of them (because by
Proposition 11.2.2(2), p1 is a prime element).
WLOG, we have p1 | q1. This implies that q1 = p1u for u a unit (because q1 is irreducible).

This implies that

(u−1p2) · p3 · · · pn = q2 · · · qm.
By inductive hypothesis, we are done. □

We emphasize again the implications: Euclidean domain ⇒ PID ⇒ UFD.

Lemma 11.3.2. Let R be a PID and a, b be nonzero elements in R. Then (a, b) = (gcd(a, b)).

Proof. Since R is a PID, the ideal (a, b) is principal, so equals to (d) for some d ∈ R. This
in particular says that a, b ∈ (d), i.e. d|a and d|b. So d| gcd(a, b). On the other hand, by
definition, d = xa+ yb for some x, y ∈ R. Yet gcd(a, b) divides a and b, so gcd(a, b) divides
d. So d and gcd(a, b) are associates. The lemma is proved. □

4At least, we need an axiom of countably infinite dependent choice. A homogeneous relation R on X is
called a total relation if for every a ∈ X, there exists some b ∈ X such that aR b is true. The axiom of
(countably infinite) dependent choice is: for every nonempty set X and every total relation R on X, there
exists a sequence (xn)n∈N in X such that xn Rxn+1 for all n ∈ N.
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11.4. Application to Gaussian integers. Take R = Z[i]. It is an Euclidean domain and
hence a PID and a UFD. Consider the norm map

Nm : Z[i] −→ Z≥0,

Nm(x+ yi) = x2 + y2 = |x+ iy|2.
The group of units in Z[i] is Z[i]× = {a ∈ Z[i] |Nm(a) = 1} = {±1,±i}.

Theorem 11.4.1. (1) (Fermat’s theorem on sums of squares) A prime p is the sum
of two square of integers (i.e. p = x2 + y2 for x, y ∈ Z) if and only if p = 2 or
p ≡ 1 mod 4.

Moreover, such x and y’s are unique up to swapping x with y and changing signs.
(2) Irreducible elements in Z[i] are as follows (up to associates):

(a) 1 + i (with norm 2);
(b) the primes p ∈ Z such that p ≡ 3 mod 4 (with norm p2); and
(c) x + yi and x − yi, if p = x2 + y2 for x, y ∈ Z, for a prime p ≡ 1 mod 4, (with

norm p).

Proof. Step 1: If π ∈ Z[i] is so that Nm(π) is a prime number p, then π is irreducible.
Indeed, if π = ab, then p = Nm(π) = Nm(a)Nm(b). So either Nm(a) = 1 or Nm(b) = 1;

by Lemma 10.7.4, we have either a or b is a unit.
Step 2: For every irreducible element π ∈ Z[i], Nm(π) = p or p2 for some prime p.
We look at the intersection (π) ∩ Z. It is a prime ideal in Z because if a, b ∈ Z satisfies

ab ∈ (π) ∈ Z, then either a ∈ (π) or b ∈ (π) as (π) is a prime ideal. Thus a ∈ (π) ∩ Z or
b ∈ (π) ∩ Z. So (π) ∩ Z is a prime ideal and thus (π) ∩ Z = (p) for some prime p.

This implies that p = πa for some a ∈ Z[i]. Yet

p2 = Nm(p) = Nm(π)Nm(a).

We separate two possibilities.

• If Nm(π) = p2, then Nm(a) = 1 and thus a ∈ {±1,±i}. So π is associated to p.
• If Nm(π) = p, then p = ππ̄ and both π and π̄ are irreducible elements in Z[i].

Step 3: We study the two possibilities above in terms of p mod 4.

• If p = 2, 2 = (1 + i)(1− i). Yet 1− i = −i(1 + i) is associated to 1 + i.
• If p ≡ 3 mod 4, p is irreducible in Z[i], otherwise, p = Nm(π) = a2 + b2 for some
a, b ∈ Z. But a2 + b2 ≡ 0, 1, 2 mod 4. This is a contradiction.
• If p ≡ 1 mod 4, we hope to show that p = ππ̄ for some π = a + bi irreducible, and
thus p = (a + bi)(a − bi) = a2 + b2, proving the theorem. Thus, it suffices to show
that p is not irreducible in Z[i].

We make use of a fact that Z×
p is a cyclic group of order p− 1 (which is a multiple

of 4). This fact will be proved later in this semester. Admitting this fact, we see that
there exists a ∈ Z×

p such that

a4 ≡ 1 mod p yet a2 ̸≡ 1 mod p.

This implies that a2 + 1 ≡ 0 mod p.
If p was irreducible in Z[i], then p | a2 + 1 = (a + i)(a − i). Thus either p | a + i

or p | a− i. But clearly the “coefficients on i is 1 and is not divisible by p. This is a
contradiction, and thus p is not irreducible in Z[i].
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□

Extended readings after Section 13

11.5. Beyond PIDs and UFDs. We shortly investigate what happens if the unique fac-
torization property fails, and hopefully points to how this issue was handled later, mostly in
number theory.

Let us take an example R = Z[
√
−5], equipped with a norm map

Nm : R→ Z≥0, Nm(x+ y
√
−5) = x2 + 5y2.

In particular, by judging from the formula of the norm, we see that there is no element in R
with norm 2, 3, 7, and etc.

Now, consider

(11.5.0.1) 21 = 3× 7 = (1 + 2
√
−5)(1− 2

√
−5).

We claim that each of 3, 7, and 1± 2
√
−5 is an irreducible element.

Indeed, Nm(3) = 9, Nm(7) = 49 and Nm(1±2
√
−5) = 21. But we always have Nm(ab) =

Nm(a)Nm(b), yet no elements of R have norm 3 or 7.
Thus, R is not a UFD and hence not a PID.

11.6. Replacement of UFD properties. In number theory, instead of requiring unique
factorization into irreducible elements, we require unique factorization into nonzero prime
ideals.

An integral domain R is called a Dedekind domain if every nonzero ideal a unique
factorization into a product of prime ideals.

A major class of examples of Dedekind domains are “ring of integers” OK , namely the
analogue of Z ⊂ Q for a finite extension of Q.

K = Q(α) OK

Q Z

finite extension

Here is one of the most famous example of such Dedekind domain. Consider an odd prime
p, and set ζp = e2πi/p. Then

K = Q(ζp) OK Z[ζp] =
{
a0 + a1ζp + · · ·+ ap−2ζ

p−2
p

∣∣ ai ∈ Z
}

Q Z.

⊃ =

⊃

Here is a “failed” approach to Fermat’s Last Theorem: for a prime p ≥ 3, the equation

xp + yp = zp

has no nontrivial solutions. Suppose that there is a solution with gcd(x, y, z) = 1, then

xp = zp − yp = (z − y)(z − ζpy) · · · (z − ζp−1
p y).

80



If Z[ζp] is a PID (which is true when p = 3), then it is a UFD. We then essentially proved
that

z − y, z − ζpy, · · · are all relatively prime except possible at prime factors at p.

So each of above is almost a pth power. One can imagine that this will provide many new
information and a solution by infinite descent to Fermat’s Last Theorem is within reach.

Unfortunately, the ring Z[ζp] is not a UFD in general (and probably not a UFD for all
primes p ≥ 5). The good news is that Z[ζp] is a Dedekind domain, which means that we may
still deduce that the ideal generated by each of z − ζ ipy is almost a pth power of an ideal.
In algebraic number theory, there is a concept called ideal class group Cl(OK) to measure
how far OK is from being a PID. It is a finite abelian group. One can prove that when
p ∤ |Cl(Z[ζp]), the Fermat’s Last Theorem holds for p. Primes satisfying this condition are
called regular primes. The first several irregular primes are p = 37, 59, 67, 101, . . . . Although
this did not solve Fermat’s Last Theorem for all p, it has made a significant step forward.
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12. UFD properties of polynomial rings

12.1. Polynomial rings over a UFD. In this section, we prove the following main result.

Theorem 12.1.1. An integral domain R is a UFD if and only if R[x] is a UFD.

Corollary 12.1.2. If R is a UFD, then R[x1, . . . , xn] is a UFD.

Example 12.1.3. For example, starting with R = Z or Z[i] or a field k being a UFD, we
deduce that Z[x1, . . . , xn], Z[i][x1, . . . , xn], and k[x1, . . . , xn] are UFDs.

12.1.4. Proof of Theorem 12.1.1. Write F = Frac(R). Then F [x] is an ED ⇒ PID ⇒ UFD.
Step 0: It is clear that a constant a ∈ R
• is a unit in R if and only if a is a unit in R[x];
• is irreducible in R if and only if a is irreducible in R[x]. (This is because if a = bc
then b and c are constant polynomials.)

From this, we see that R[x] is a UFD ⇒ R is a UFD. We will prove that R UFD ⇒ R[x]
UFD. In below, we will assume that R is a UFD, and will show that R[x] is a UFD.

The constant functions are already treated. We now consider polynomials of degree ≥ 1.
The key is to relate this with the situation in F [x].

Step 1: (Gauss’ Lemma) Let p(x) ∈ R[x] be a nonzero polynomial. If p(x) is reducible
in F [x], then p(x) is reducible in R[x], i.e. if p(x) = A(x)B(x) for nonconstant polynomials
A(x), B(x) ∈ F [x], then there exists r ∈ F× such that a(x) = rA(x) and b(x) = r−1B(x)
are both in R[x].
Proof of Gauss’ lemma: Let d be a l.c.m. of the denominators of coefficients of A(x) and

B(x). This implies that

d · p(x) = a1(x)b1(x) for a1(x), b1(x) ∈ R[x].

• If d is a unit in R, then p(x) = (d−1a1(x)) · b1(x). We are done.
• Otherwise, take a prime factor q of d. Then R[x]/(q) = (R/qR)[x] is an integral
domain. (Using overline to denote the reduction modulo q,) note that

0 = d · p(x) = a1(x) · b1(x).

WLOG, assume that a1(x) = 0. This implies that all coefficients of a1(x) are divisible
by q. So write

d = qd2, a2(x) = q−1a1(x) ∈ R[x], and b2(x) = b1(x).

This says that

d2p(x) = a2(x)b2(x)

and we may continue with the discussion.

Step 2: Prove that the irreducible elements in R[x] consists of

• constants a ∈ R such that a is irreducible in R;
• polynomials a(x) ∈ R[x] of degree ≥ 1, such that

(i) gcd
(
coefficients of a(x)

)
= 1, and

(ii) a(x) is irreducible in F [x].

Proof: The case of constants follow from Step 0. Now, for a(x) ∈ R[x] of degree ≥ 1,
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• if gcd
(
coefficients of a(x)

)
= g is not a unit, then a(x) = g · (g−1a(x)) is not irre-

ducible;
• if a(x) = A(x)B(x) is reducible in F [x], then Step 1 implies that a(x) is reducible in
R[x].

Conversely, if a(x) satisfies (i) and (ii) and a(x) = b(x)c(x) in R[x], then

• if deg b(x) ≥ 1 and deg c(x) ≥ 1, then (ii) does not hold, and
• if otherwise, WLOG deg b(x) = 0. But if b ∈ R is not a unit, then (i) does not hold.
Thus b is a unit in R. We are done.

Step 3: Existence of the factorization in R[x].
Given a(x) ∈ R[x], if a(x) is a constant, then we are reduced to the UFD property of R.
Now deg a(x) ≥ 1. Put d := gcd

(
coefficients of a(x)

)
. Thus,

a(x) = da1(x) for some a1(x) ∈ R[x],
where d may be factored into products of irreducibles.

On the other hand, we may factor a1(x) = A1(x) · · ·Ar(x) in F [x]. By Gauss’ lemma, we
may adjust these factors so that eachAi(x) ∈ R[x]. Moreover, for each i, gcd

(
coefficients of Ai(x)

)
=

1, otherwise gcd
(
coefficients of a1(x)

)
̸= 1, contradiction!

Thus, all Ai(x) are irreducible elements.

Step 4 Uniqueness of the factorization.
Suppose that a(x) = p1(x) · · · pr(x) = q1(x) · · · qs(x) are two factorizations into irre-

ducibles.
We first view this factorization in F [x]. Each pi(x) with degree ≥ 1 must be associated to

a qj(x) in F [x], namely

pi(x) = r · qj(x) for some r =
a

b
∈ F× with gcd(a, b) = 1.

This implies that
bpi(x) = aqj(x).

• gcd
(
coefficients of qj(x)

)
is divisible by b. Thus b must be a unit;

• gcd
(
coefficients of pi(x)

)
is divisible by a. Thus a must be a unit.

From this discussion, we deduce that pi(x) = c · qi(x) for some unit c ∈ R.
Removing this pair of factors from the factorizations of a(x), we are reduced to two

factorizations of a(x)
pi(x)

. Repeating this process, we are reduced to the case when a(x) ∈ R ⊆
R[x]. Now, the uniqueness of factorization follows from that of R. □.

12.2. Irreducible criterion for polynomials. In this subsection, we discuss criteria to
test whether a polynomial is irreducible or not.

Lemma 12.2.1. (1) If F is a field, a polynomial f ∈ F [x] of degree 2 or 3 is irreducible
if and only if it has a root in F .

(2) If p(x) = anx
n + an−1x

n−1 + · · · + a0 ∈ Z[x] is a polynomial such that p( r
s
) = 0 for

r, s ∈ Z with gcd(r, s) = 1, then r|a0 and s|an.

Proof. (1) is clear. We prove (2). Suppose that

an

(r
s

)n
+ an−1

(r
s

)n−1

+ · · ·+ a0 = 0.
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anr
n + an−1r

n−1s+ · · · a0sn = 0

This implies that

r
∣∣ a0sn and s

∥∥ anrn.
Thus, we deduce that r|a0 and s|an. □

Example 12.2.2. The polynomial f(x) = x3 − x− 2 ∈ Z[x] is irreducible because ±1 and
±2 are not zeros of f(x).

Proposition 12.2.3 (Eisenstein’s criterion). Let p be a prime ideal of an integral domain
R, and let f(x) = xn + cn−1x

n−1 + · · ·+ c0 ∈ R[x]. Suppose that

(1) c0, c1, . . . , cn−1 ∈ p, and
(2) c0 /∈ p2.

Then f(x) is irreducible.

Proof. We may assume that deg f(x) ≥ 2. Suppose that f(x) = a(x)b(x) with deg a ≥ 1 and
deg b ≥ 1. Then the leading coefficients of a(x) and b(x) are both units. So we may rescale
a(x) and b(x) so that both polynomials are monic.
Taking the equation f(x) = a(x)b(x) modulo p, we get

xn = f̄(x) = ā(x) · b̄(x)

in R/p[x].
We claim that the constant terms ā0 and b̄0 of a(x) and b(x) are zero. Indeed, if ā0 ̸= 0

and i is the minimal number such that b̄i ̸= 0. Then in the product ā(x)b̄(x) we have a term
ā0b̄ix

i, contradicting with xn = ā(x)b̄(x).
Thus ā0 = b̄0 = 0. It follows that a0, b0 ∈ p. Thus the constant coefficient c0 ∈ p2,

contradicting to (2). □

Example 12.2.4. The typical application of Eisenstein’s criterion is to the cyclotomic poly-
nomial. Let p be a prime number, the pth cyclotomic polynomial is

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1.

We claim that Φp(x) is irreducible in Z[x]. This is because we consider Φp(x+ 1) instead:

Φp(x+ 1) =
(x+ 1)p − 1

(x+ 1)− 1
= xp + pxp−1 +

(
p

2

)
xp−2 + · · ·+ p︸ ︷︷ ︸

all terms divisible by p

By Eisenstein’s criterion, Φp(x+ 1) is irreducible, and hence Φp(x) is irreducible.
We remark that the above argument is related to the ideal identity

pZ[ζp] = (ζp − 1)p−1 in Z[ζp].

We say that “the prime p is totally ramified in Z[ζp].”
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12.3. Factorization of polynomial ring quotient by a polynomial.

Lemma 12.3.1. Let F be a field. A polynomial f(x) is irreducible if and only if F [x]/(f(x))
is a field.

Proof. This follows from the following equivalences.

f(x) is an irreducible polynomial
F [x] UFD⇐⇒ f(x) is a prime element in F [x]

⇐⇒ (f(x)) is a prime ideal in F [x]
F [x] is a PID⇐⇒ (f(x)) is a maximal ideal in F [x]

⇐⇒ F [x]/(f(x)) is a field.

□

Example 12.3.2. This lemma will be useful later when we construct field extensions.
For example, the polynomial x3 + 2x− 1 is irreducible in F3[x] (think about why?) then

F3[x]/(x
3 + 2x− 1) ∼=

{
a+ bx+ cx2

∣∣ a, b, c ∈ F3

}
is a field of 27 elements. (Will prove that there is a unique such field, up to isomorphism.)

Lemma 12.3.3. Let F be a field. If f(x) = p1(x)
n1 · · · pr(x)nr is the factorization of f(x)

in F [x], then
F [x]

(f(x))
∼=

F [x]

(p1(x)n1)
× · · · × F [x]

(pr(x)nr)
.

Proof. As the pi(x)
ni ’s are pairwise coprime, i.e. (pi(x)

ni , pj(x)
nj) =

(
gcd(pi(x)

ni , pj(x)
nj)
)
=

(1), this follows from Chinese remainder theorem. □

Lemma 12.3.4. Let F be a field. If f(x) ∈ F [x] has distinct zeros α1, . . . , αn, then f(x) is
divisible by (x− α1) · · · (x− αn) in F [x].
In particular, a degree n polynomial can have at most n zeros.

Corollary 12.3.5. If F is a field and G a finite subgroup of F , then G is cyclic.
In particular, if F is a finite group, then F× is cyclic.

Proof. Assume that |G| = n. By classification of finite abelian groups, we may write

G = Zn1 × Zn2 × · · · × Znr with integers n1 |n2 | · · · |nr and n = n1 · · ·nr.
If G is not cyclic, all elements would have order dividing nr < n, i.e. for any g ∈ G,
gnr = 1. But this would mean that the polynomial xnr − 1 has n zeros in F . This is a
contradiction! □

12.3.6. Structure of (Z/nZ)×. We determine the structure of (Z/nZ)× as follows.
Step 1: Assume that n factors as n = pα1

1 p
α2
2 · · · pαr

r . The Chinese remainder theorem
implies an isomorphism

Z/nZ ∼= (Z/pα1
1 Z)× · · · × (Z/pαr

r Z)

as rings. Taking the units in these two rings, we obtain an isomorphism of abelian groups.(
Z/nZ

)× ∼= (Z/pα1
1 Z
)× × · · · × (Z/pαr

r Z
)×
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(Note that a simple counting gives the usual formula for Euler’s function ϕ(n) = ϕ(n1) · · ·ϕ(nr)
when n1, . . . , nr are pairwise coprime.)

Step 2 Fix a prime p, we show that

(1) for p an odd prime, (Z/pαZ)× is a cyclic group of order pα−1(p− 1);
(2) for p = 2, (Z/2Z)× = {1} and when α ≥ 2, (Z/2αZ)× ∼= Z2 × Z2α−2 .

To show this, we first note that there is a surjective homomorphism

(12.3.6.1)
ϕ : (Z/pαZ)× (Z/pZ)×

a a mod p.

mod p

The target (Z/pZ)× is a cyclic group of order p − 1. The kernel kerϕ =
{
a ∈ Z/pαZ

∣∣ a ≡
1 mod p

}
has order pα−1.

We claim that kerϕ is a cyclic group of order pα−1. Consider the following “exponential
map” and the “logarithmic map”
(12.3.6.2)

kerϕ =
(
1 + pZ/pαZ, ·

)
Zpα−1

1 + px 1
p
log(1 + px) = 1

p

(
px− (px)2

2
+ (px)3

3
− · · ·

)
exp(py) = 1 + py + p2y2

2!
+ · · · y

1
p
log(−)

exp(p−)

One can easily check that these two maps are homomorphisms and are inverses of each other,
giving rise to an isomorphism between kerϕ and Zpα−1 .
Now, by the classification of finitely generated abelian groups, we may write

(Z/pαZ)× = kerφ×Gp

for some group Gp that has order prime-to-p. Since φ of (12.3.6.1) maps kerψ to 1 ∈
(Z/pZ)×, φ must induces an isomorphism between Gp with (Z/pZ)× ≃ Zp−1. From this, we
see that

(Z/pαZ)× ∼= kerϕ×Gp ≃ Zpα−1 × Zp−1 ≃ Z(p−1)pα−1 .

The case when p = 2 can be treated similarly, except that (12.3.6.2) should be replaced
by

kerϕ =
(
1 + 4Z/2αZ, ·

)
Z2α−2

1 + 4x 1
4
log(1 + 4x) = 1

4

(
4x− (4x)2

2
+ (4x)3

3
− · · ·

)
exp(4y) = 1 + 4y + 42y2

2!
+ · · · y

1
4
log(−)

exp(4−)

Here we need 4 instead of 2 so that exp(−) “converges”. We may similarly deduce that,
when α ≥ 2,

(Z/4αZ)× ∼= {±1} ×
(
1 + 4Z/2αZ, ·

) ∼= {±1} × Z2α−2 .

We leave the details of the argument to the readers to fill in.
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13. Modules and classification of finitely generated modules over PID

13.1. Definition of modules. Modules are analogues of vector spaces. We have learned
that a vector space is an abelian group on which a field acts. A module is an abelian group
on which a ring acts.

Definition 13.1.1. Let R be a ring (with 1R ̸= 0R). A left R-omdule is an abelian group
M equipped with an R-action on M :

R×M M

(a,m) a ·m

satisfying the following conditions (where m,n ∈M and r, s ∈ R)
(0) 1R ·m = m,
(1) (r + s) ·m = r ·m+ s ·m,
(2) r · (m+ n) = r ·m+ r · n,
(3) r · (s ·m) = (rs) ·m.

An R-submodule N ⊆M is an abelian subgroup N of M such that

∀r ∈ R, r ·N ⊆ N.

A right R-module is an abelian group M with a right R-action

M ×R M

(m, a) m · a

satisfying analogues of (0), (1), and (2) above and

(3)R (m · s) · r = m · (sr).

Remark 13.1.2. If R is commutative, then there is no difference between left and right
R-modules.

Example 13.1.3. (1) If R = F is a field, then F -modules are the same as F -vector
spaces.

(2) The free modules R⊕n = {(a1, . . . , an) | ai ∈ R} with operations

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn) and r · (a1, . . . , an) = (ra1, . . . , ran).

(3) If I ⊆ R is a left ideal, then I is a left R-submodule of R. This is because for any
r ∈ R, r · I ⊆ I.

Conversely, a left R-submodule of R is a left ideal.
(4) A Z-module is just an abelian group G. The operation is given by

∀n ∈ N, n · g = g + · · ·+ g︸ ︷︷ ︸
n times

∈ G and (−n) · g = −n · g.

Similarly, a Z-submodule is an abelian subgroup of G.
(5) If Mi (i ∈ I) are left R-modules, define their direct product to be∏

i∈I

Mi =
{
(mi)i∈I

∣∣∣mi ∈Mi

}
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and their direct sum to be⊕
i∈I

Mi =
{
(mi)i∈I

∣∣∣mi ∈Mi, all but finitely many mi’s are zero
}
.

The module operation is defined to be

r · (mi)i∈I = (r ·mi)i∈I .

We sometimes write the elements in
⊕

i∈IMi as
∑

i∈I mi instead. When this is a
finite sum (i.e. I = {1, . . . , n}), we write M1 ⊕ · · · ⊕Mn instead.

(6) If ϕ : S → R is a ring homomorphism, then we may naturally view an R-module M
as an S-module by

s ·m = ϕ(s) ·m.

Definition 13.1.4. Let R be a ring and let M and N be left R-modules.

(1) An R-modules homomorphism is a map ϕ :M → N satisfying
• for all x, y ∈M , ϕ(x+ y) = ϕ(x) + ϕ(y), and
• for any r ∈ R and any x ∈M , we have rϕ(x) = ϕ(rx).

Write HomR(M,N) for the set of R-module homomorphisms from M to N .
(2) We say that ϕ is an R-module isomorphism if it is a homomorphism and a bijec-

tion.
(3) If ϕ :M → N is an R-module homomorphism, then

• kerϕ := {m ∈M, |ϕ(m) = 0} is the kernel of ϕ; it is an R-submodule of M ,
• Im(ϕ) := ϕ(M) is the image of ϕ; it is an R-submodule of N .

We have ϕ is injective if and only if kerϕ = {0} (or just write kerϕ = 0).
As an example, Z-module homomorphisms are the same as homomorphisms be-

tween abelian groups.
(4) If N ⊆M is an R-submodule, we define the quotient R-module to be

M/N := {m+N |m ∈M}

and the operation is given by r · (m+N) = rm+N .
(5) An R-module M is called irreducible, if the only R-submodule of M is 0 and M

itself.

Similarly, we have isomorphism theorems for R-modules, which we leave the statements
to the readers. But we mention an analogue of Jordan–Hölder theorem for modules here.

Theorem 13.1.5 (Jordan–Hölder theorem for modules). Let R be a ring and M an R-
module. Assume that we are given two chains of R-submodules

0 = A0 ⊆ A1 ⊆ · · · ⊆ Am =M and 0 = B0 ⊆ B1 ⊆ · · · ⊆ Bn = N.

Then setting A′
ij := Ai−1 + (Ai ∩ Bj) and B

′
ij := Bj−1 + (Ai ∩ Bj), we may refine the above

two chains by A′
ij and B

′
ij, and that

A′
ij/A

′
i,j−1
∼= B′

ij/B
′
i−1,j.

In case each subquotients Ai/Ai−1 and Bj/Bj−1 are irreducible, there exists a permutation σ
of {1, . . . , n} such that Ai/Ai−1 = Bσ(i)/Bσ(i)−1.
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13.1.6. Homomorphisms of R-modules. When R is a commutative ring, the set of homomor-
phisms between two R-modulesM and N itself admits a structure of R-modules. Explicitly,
for ϕ ∈ HomR(M,N) and a ∈ R, we define a · ϕ ∈ HomR(M,N) by

(a · ϕ)(m) := a · ϕ(m) = ϕ(a ·m).

One easily checks the standard axioms of R-module structures on HomR(M,N).
Caveat: If R is not commutative, HomR(M,N) is only an abelian group.

13.2. Finitely generated modules.

Definition 13.2.1. Let M be a left R-module and X ⊆M a subset. Define

RX :=
{
a1x1 + · · ·+ anxn

∣∣ for some n ∈ N, a1, . . . , an ∈ R, x1, . . . , xn ∈ X
}

to be the submodule of M generated by X. When X = {x1, . . . , xn}, we have

RX = Image

(
ϕ : R⊕n M

(a1, . . . , an) a1x1 + · · ·+ anxn.

)
(1) We call a submodule N ⊆M (possibly N =M) is finitely generated if there exists

a finite set X such that N = RX.
(2) We call a submodule N ⊆M (possibly N =M) is cyclic if there exists m ∈M such

that N = Rm = {am | a ∈ R}.
(3) We say that M is free of rank n if there exists x1, . . . , xn ∈ M such that every

m ∈M can be written uniquely as m = a1x1 + · · ·+ anxn with a1, . . . , an ∈ R.
This is equivalent to M ≃ R⊕n.

Remark 13.2.2. If an R-module M is finitely generated by x1, . . . , xn ∈ M , then we get a
surjective R-module homomorphism

ϕ : R⊕n M

(a1, . . . , an) a1x1 + · · ·+ anxn.

We are interested in “relations among x1, . . . , xn”, e.g. elements b1, . . . , bn ∈ R such that
b1x1 + · · ·+ bnxn = 0, or equivalently kerϕ.

To specify an R-module homomorphism ψ : M → L to some R-module L, it is enough
to specify the image ψ(xi) for each xi ∈ X, subject to the condition that b1ψ(x1) + · · · +
bnψ(xn) = 0 for each relation above.

(In nice situations, all relations are formed by taking R-linear combination of finitely many
such relations; we say that M is finitely presented in this case. This is equivalent to that
kerϕ above is also finitely generated.)

Example 13.2.3. We explain a key example of the theorem we prove later for classification
of finitely generated modules over a PID.

Let F be a field and V a vector space, equipped with an action by an F -linear operator
T . We define an F [x]-module structure on V by

(a0 + a1x+ · · ·+ anx
n) · v = a0 · v + a1x · v + · · ·+ anx

n · v := a0v + a1T (v) + · · ·+ anT
n(v).
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Conversely, if V is an F [x]-module, we may view V as an F -module (through F ⊆ F [x]) so
an F -vector space, then the action of x is an F -linear operator on V : for a ∈ F and v ∈ V ,
we have

a · x(v) = (ax) · v = x · a · v = x · (av).
In other words, we just explained a bijection:{

F [x]-modules V
}
←→

{
F -vector spaces V with an F -linear operator T

}
.

Similarly, an F [x]-submodule W of V corresponds to an F -vector space stable under the
T -action.

If the vector space V is finite dimensional, then V is a finitely generated F [x]-module (but
not necessarily conversely).

13.3. Classification of finitely generated R-modules where R is a PID. In this
subsection, R is a PID. (The approach in this subsection looks a little tricky, but it seems
to be a very “quick” approach.)

Lemma 13.3.1. Let R be an integral domain and let N be a free R-module of rank n. Then
any n+1 elements x1, . . . , xn+1 ∈ N are linearly dependent, i.e. there exist a1, . . . , an+1 ∈ R,
not all zero, such that a1x1 + · · ·+ an+1xn+1 = 0.

Proof. We may identify N with R⊕n. Let F denote the fraction field of R. Viewing each
xi as an element of R⊕n ⊆ F⊕n or even a column vector, it is well known that any n + 1
such column vectors are linearly dependent over F , i.e. there exists b1, . . . , bn+1 ∈ F such
that b1x1 + · · ·+ bn+1xn+1 = 0. Writing each bi as ci/di with ci, di ∈ R (just choose one such
presentation), and put d = d1 · · · dn ∈ R. Then multiply the linear relation above by d gives
the needed linear relation among x1, . . . , xn+1. □

Theorem 13.3.2. Let R be a PID. Let N be a free R-module of rank n and L a submodule
of N . Then

(1) L is free of rank ℓ (with ℓ ≤ n).
(2) There exists a basis y1, y2, . . . , yn of N so that a1y1, . . . , aℓyℓ is a basis of L and

a1, . . . , aℓ ∈ R\{0} satisfying a1|a2| · · · |aℓ.
Example 13.3.3. Before giving the proof, we give an example: R = Z, N = Z⊕3 and
L = Z⟨(8, 0, 4), (12, 6, 0)⟩. If we choose the basis of N to be e1 = (2, 0, 1), e2 = (2, 1, 0), and
e3 = (1, 0, 0). Then L = 4Ze1 ⊕ 6Ze2. But this does not satisfy the condition a1|a2 of the
theorem.

So we need to modify the above basis. If we put e′1 = 1
2
(e2 + e3) = (10, 3, 2), e′2 =

1
12
(3e2 + 2e3) = (4, 1, 1), and e′3 = (1, 0, 0), we have L = 2Ze′1 ⊕ 12Ze′2. The point here is

that we need to make a linear combination of the original coordinates, or rather choose a
new R-module homomorphisms to take new coordinates.

Theorem 13.3.2. If L = 0, the theorem is trivial. Now we assume that L ̸= 0. Our intention
is to run an induction on the rank of L, but the actual argument is slightly more complicated.
See later.

We first determine the value of a1. The basic idea is that we identify N with R⊕n and hence
write each x ∈ L as (x1, . . . , xn). Our goal is to find the “minimal possible” gcd(x1, . . . , xn).
Fix an isomorphism N ∼= R⊕n. Write πi : N → R for the homomorphism of taking the

ith coordinate. For each homomorphism ϕ : N → R, the image ϕ(L) is an R-submodule of
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R, and thus an ideal. (So in particular, πi(L) is the set of all ith coordinates of elements of
N ; but we also want to allow “linear combinations” of these πi’s.)

Consider the set {ϕ(L) | any homomorphism ϕ : N → R}. It contains a maximal possible
ideal (a1), say for ϕ1 : N → R with ϕ1(y) = a1 for some y ∈ L. Note that (a1) ̸= (0) because
there exists x ∈ L with nonzero coordinates.
We claim that, for anyR-module homomorphism ϕ′ : N → R, we have a1|ϕ′(y). Otherwise,

say d = gcd(a1, ϕ
′(y)) then d = r1a1+r2ϕ

′(y) = (r1ϕ+r2ϕ
′)(y), contradicting the maximality

of (a1).
Apply this claim to each of π1, . . . , πn, we deduce that πi(y) = a1bi for some bi ∈ R. In

other words, y = (a1b1, . . . , a1bn) (namely all coordinates of y are divisible by a1). Now we
observe

a1ϕ(b1, . . . , bn) = ϕ(a1b1, . . . , a1bn) = ϕ(y) = a1.

It follows that ϕ(b1, . . . , bn) = 1. We set y1 := (b1, . . . , bn) ∈ N .
Claim: (i) N ∼= Ry1 ⊕ kerϕ.
(ii) L = Ra1y1 ⊕ (L ∩ kerϕ) (compatibly with the direct sum decomposition of N).
Proof of (i): This is a very important typical type of argument. We are in the following

situation:

N R.
ϕ

·y1

(The following argument is general: whenever we have the above diagram with ϕ(y1) = 1,
(1) holds.) For any x ∈ N , we may write

x = ϕ(x) · y1︸ ︷︷ ︸
multiple of y1

+(x− ϕ(x)y1)︸ ︷︷ ︸
belongs to kerϕ

.

(To verify that x − ϕ(x)y1 ∈ kerϕ, we compute directly that ϕ
(
x − ϕ(x)y1

)
= ϕ(x) −

ϕ(x)ϕ(y1) = 0.) Yet Ry1 ∩ kerϕ = {ry1 |ϕ(ry1) = r = 0} = 0.
Proof of (ii): For any x ∈ L, we write

x = ϕ(x) · y1︸ ︷︷ ︸
ϕ(x)∈(a1)

+ (x− ϕ(x)y1)︸ ︷︷ ︸
belongs to L∩kerϕ

Here note that ϕ(x)y1 ∈ Ra1y1 ⊆ L, so x− ϕ(x)y1 ∈ L.
Thus, we may effectively reduce the discussion to L ∩ kerϕ.
The actual proof is a little twisted here. We need to first prove (1). Indeed, Claim (ii)

implies that we have L = Ra1y1 ⊕ (L ∩ kerϕ). Applying the same discussion to L1 :=
∩ kerϕ ⊆ N , we see that either L1 = 0 (in which case we stop the process) or L1 = a2y2⊕L2

for some other R-submodule L2. We need to show that this process stops before getting to
L = Ra1y1 ⊕ Ra2y2 ⊕ · · · ⊕ Ran+1yn+1. Indeed, this is guaranteed by Lemma 13.3.1 above
that the process stops at rank at most n. This proves (1).
Now we turn to prove (2), by induction on L, with a small subtlety that we reduce L ⊆ N

to the submodule L ∩ kerϕ ⊆ kerϕ. By (1), kerϕ is still a free R-module; so the induction
may proceed, and we get

L Ra1y1 ⊕Ra2y2 ⊕ · · · ⊕Raℓyℓ

N Ry1 ⊕Ry2 ⊕ · · · ⊕Ryn.

=⋂
=
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It remains to check that a1|a2. Suppose not, d = gcd(a1, a2) = a1r1 + a2r2. We consider the
R-module homomorphism

ϕ′ :M R

y1 r1
y2 r2

other yi 0.

This implies that ϕ′(a1y1 + a2y2) = a1r1 + a2r2 = d contradicting to the “minimality” of
ϕ(L). So a1|a2. □

Theorem 13.3.4 (Fundamental Theorem of finitely generated modules over PIDs). Let R
be a PID and L a finitely generated R-module. Then

(13.3.4.1) L ≃ R⊕r ⊕R/(a1)⊕ · · · ⊕R/(am)
with each ai ∈ R and a1|a2| · · · |am.

Moreover, such r, a1, . . . , am are unique (up to associates). In particular, L is torsion-free
if and only if L is free. (Here torsion-free means that for any nonzero element x ∈ L, ax ̸= 0
for any a ∈ R.)

Corollary 13.3.5. Classification of finitely generated abelian groups. (See Theorem 4.4.1
for the statement.)

Proof of Theorem 13.3.4. As L is finitely generated, say by elements x1, . . . , xn, there exists
a surjective homomorphism

ϕ : R⊕n M

(a1, . . . , an) a1x1 + · · ·+ anxn.

Then kerϕ ⊆ R⊕n is a submodule.
Applying Theorem 13.3.2 to the submodule kerϕ of the free module R⊕n, we see that

there exists a “new basis” y1, . . . , yn of R⊕n such that kerϕ = ⟨a1y1, . . . , amym⟩. Then

M ∼=
Ry1 ⊕ · · · ⊕Ryn

Ra1y1 ⊕ · · · ⊕Ramym
∼= R/(a1)y1 ⊕ · · ·R/(am)ym ⊕R⊕n−m.

To show the uniqueness of (13.3.4.1), we need a different (but equivalent) form of the
classification theorem. Recall that for a ∈ R (nonzero and nonunit), if it factors as a =
pα1
1 · · · pαr

r in R with each pi irreducible, then R/(a) = R/(pα1
1 ) × · · · × R/(pαr

r ) by Chinese
remainder theorem. Thus any finitely generated R-module M can be written as

(13.3.5.1) M ≃ R⊕r ⊕R/(pα1,1

1 )⊕ · · · ⊕R/(pα1,s1
1 )⊕R/(pα2,1

2 )⊕ · · ·
(Conversely, given (13.3.5.1), we may resemble them to (13.3.4.1) with

a1 = p
max{α1,1,...,α1,s1}
1 p

max{α2,1,...,α2,s2}
2 · · ·

a2 = p
2nd largest in {α1,1,...,α1,s1}
1 p

2nd largest in {α2,1,...,α2,s2}
2 · · · )

We will now prove r, p1, p2, . . . , α1,1, . . . , α1,s1 , α2,1, . . . are unique. We first prove a lemma.

Lemma 13.3.6. Let p and q be prime elements such that (p) ̸= (q) and m,n ∈ N. For an

R-module M , we put pmM := Image(M
pm·−−→M).
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(1) If M = R, then pmM ≃ pmR and pmM/pm+1M ≃ pmM/pm+1M ∼= R/(p).
(2) If M = R/(pn), then

pmM ≃

{
pmR/pnR if m < n

0 if m ≥ n
and pmM/pm+1M ≃

{
pmR/pm+1R ∼= R/(p) if m < n

0 if m ≥ n.

(3) If M = R/(qn), then pmM = 0 and pmM/pm+1M = 0.

Proof. We leave this as an exercise. For (3), we note that (pm, qn) = (1). Indeed, as
(p, q) = (1), we have 1 = ap+ bq and thus

1 = (ap+ bq)m+n−1 = pm · (∗) + qn · (∗) ∈ (pm, qn).

□

Using this lemma, we see that for each prime p (say p = p1) and everym ∈ N, pmM/pm+1M
is a vector space over R/(p). More precisely,

dimR/(p)(M/pM) = r +#{α1,1, . . . , α1,s1},
dimR/(p)(pM/p2M) = r +#{α1,j |α1,j ≥ 2},
dimR/(p)(p

2M/p3M) = r +#{α1,j |α1,j ≥ 3},
· · · · · ·

Letting p varying over all prime elements, and all m ∈ Z≥0, we may determine all the
numbers r, p1, p2, . . . , α1,1, . . . . □
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14. Field extensions

14.1. Characteristic of a field. To study fields, we take the following viewpoint:

• start with the prime fields, namely Fp and Q, the smallest possible fields,
• then build new fields from the known ones, e.g. Q(i), Q(α) for a root of an irreducible
polynomial α, or Q(x) = Frac(Q[x]).

Definition 14.1.1. The characteristic of a field F , denoted by char(F ), is

• the smallest positive integer p, such that 1 + · · ·+ 1︸ ︷︷ ︸
p

= 0 if such p exists, and

• 0, otherwise.

The former case is sometimes called positive characteristic case.

Remark 14.1.2. (1) If char(F ) > 0, it must be a prime number p. This is because if
char(F ) = m · n for m,n ∈ N, we have mn = 0 in F , and thus either m = 0 or n = 0 in F .
(2) We sometimes also use the letter K to denote field, this comes from the German word

for field: Körper (body).

Definition 14.1.3. The prime field of a field F is the smallest field of F containing 1F ; it
is

• Fp, if char(F ) = p > 0, or
• Q, if char(F ) = 0.

14.2. Field extensions.

Notation 14.2.1. If F ⊆ K is a subfield of a field, we say that K is a field extension of
F . Sometimes, we call F the base field.

Any field that sits as F ⊆ E ⊆ K is called intermediate fields. We often write K/E/F
(reads K over E and over F ), or draw as follows

K

E

F

Note also that F ⊆ K makes K an F -vector space.

Definition 14.2.2. The degree of the field extension K of F is [K : F ] = dimF K. The
extension is finite/infinite if [K : F ] is.

Theorem 14.2.3. Let F ⊆ E ⊆ K be field extensions. Then [K : F ] = [K : E][E : F ].
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Proof. We only prove this when both extensions are finite; the infinite case can be proved
similarly.

K

E

F

[K:E]=m

[K:F ]

[E:F ]=n

Set [K : E] = m and [E : F ] = n. Let {α1, . . . , αm} be a E-basis of K and {β1, . . . , βn} be
an F -basis of E. Then every element x of E can be written as a sum

c1α1 + · · ·+ cmαm with each ci ∈ E,
and in turn each ci can be written as a sum

ci = di1β1 + · · ·+ dinβn with each dij ∈ F.
Thus x can be written as

x =
m∑
i=1

n∑
j=1

dijαiβj.

This shows that {αiβj | i = 1, . . . ,m, j = 1, . . . , n} generate E as an F -vector space.
Next we show that these αiβj’s are F -linearly independent. Indeed, suppose that there

exists dij ∈ F for i = 1, . . . ,m and j = 1, . . . , n such that
m∑
i=1

n∑
j=1

dijαiβj = 0.

Then note that for each fixed i,
n∑
j=1

dijβj ∈ E. As α1, . . . , αm form an E-basis of K, we must

have

for every i, the coefficient of αi, namely
n∑
j=1

dijβj = 0.

Moreover, as β1, . . . , βn form an F -basis of E, we deduce that all dij = 0. □

Remark 14.2.4. A more condensed writing of the proof is:

K =
m⊕
i=1

Eαi =
m⊕
i=1

( n⊕
j=1

Fβj

)
αi =

m⊕
i=1

n⊕
j=1

Fαiβj.

Example 14.2.5.

Q( 6
√
2)

{
a0 + a1

6
√
2 + · · ·+ a52

5/6
∣∣ ai ∈ Q

}
Q(
√
2) ⇒

[
Q( 6
√
2) : Q(

√
2)
]
= 3.

Q

6

=

2
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14.3. Construction of field extensions. We start with an important fact.

Lemma 14.3.1. Let F and E be fields. A homomorphism ϕ : F → E must be injective.
This then realizes E as an extension of ϕ(F ) ≃ F .

Proof. As kerϕ is an ideal of F , namely {0} or F . But our convention of ring homomorphisms
require to send 1F to 1E ̸= 0E. So kerϕ ̸= F , and thus kerϕ = {0}, i.e. ϕ is injective. □

14.3.2. Construction of field extensions. Let F be a field and let p(x) ∈ F [x] be an irreducible
polynomial of degree n. Then (p(x)) is a prime ideal and hence a maximal ideal (as F [x] is
a PID). This implies that

K := F [x]/(p(x)) is a field.

We put θ := x mod (p(x)) ∈ K. Then

K =
{
a0 + a1θ + · · ·+ an−1θ

n−1
∣∣ a0, . . . , an−1 ∈ F

}
.

(This follows from the fact that every polynomial a(x) can be uniquely written as a(x) =
q(x)p(x) + r(x) with deg r(x) < n; then a(x) mod (p(x)) = r(x).)

So K is an F -vector space of dimension n. Moreover, F embeds in K as constant polyno-
mials.

We say that K is the extension of F of degree n determined by p(x).

Lemma 14.3.3. Equation p(x) = 0 has a zero in K.

Proof. Assume that p(x) = p0 + p1x+ · · ·+ pnx
n. Then

p(θ) = p0 + p1θ + · · ·+ pnθ
n = p0 + p1x+ · · ·+ pnx

n + (p(x)) = 0 + (p(x)).

So θ is a “tautological” zero of p(x) = 0 in K. □

Example 14.3.4. (1) Recall the natural isomorphism

R[x]/(x2 + 1) C

a+ bx a+ bi

≃

But from now on, we will try to distinguish these two: R[x]/(x2 +1) is an abstractly
constructed field extension of R. It is isomorphic to C. BUT there are TWO WAYS
of to make such an isomorphism

ϕ1, ϕ2 : R[x]/(x2 + 1)
≃−−→ C,

ϕ1(a+ bx) = a+ bi and ϕ2(a+ bx) = a− bi.
(2) For K = Q[x]/(x3 − 2), we have three realizations:

• Realization 1: given by

ι1 : K R

x 3
√
2.

So K ≃ ι1(K) is a subfield of R.
96



• Realizations 2 and 3: given by

ι2, ι3 : K R

x

{
ι2(x) = e2πi/3 3

√
2

ι3(x) = e4πi/3 3
√
2

So ι2(K) and ι3(K) are different fields from ι1(K). But they are abstractly
isomorphic (for the purpose of algebraic operations).

(3) F2[x]/(x
2 + x + 1) is a field extension of F2 of degree 2. This gives K a field of 4

elements.

Definition 14.3.5. Let K be an extension of F , and let α1, . . . , αn ∈ K.

(1) The field extension of F generated by α1, . . . , αn, denoted by F (α1, . . . , αn), is
the smallest subfield of K containing F .

(2) If K = F (α) for some α ∈ K, then we say that K is a simple extension of F .
(3) If K = F (α1, . . . , αn), we say that K is a finitely generated extension of F .

We remark that F (α1, α2) = (F (α1))(α2).

Theorem 14.3.6. Let K be a field extension of F and let α ∈ K. We have a dichotomy:

(1) either 1, α, α2, . . . are linearly independent over F , in which case F (α) ≃ F (x) =
Frac(F [x]),

(2) or 1, α, α2, . . . are linearly dependent over F , in which case, there exists a unique
monic polynomial mα(x) = mα,F (x), called the minimal polynomial of α over F ,
that is irreducible over F and mα(α) = 0.

Moreover, F (α) = F [x]/(mα(x)) and [F (α) : F ] = degmα(x).

Proof. Consider case (1): the condition implies that

ϕ : F [x] K

f(x) f(α)

is an injective homomorphism. This clearly extends to a homomorphism

ϕ : F (x) K

f(x)/g(x) f(α)/g(α)

as g(α) ̸= 0. This ϕ must be injective by Lemma 14.3.1. Its image is ϕ(F (x)) = F (α).
Consider case (2): In this case,

ϕ : F [x] K

f(x) f(α)

is not injective. Then kerϕ = (p(x)) is a prime ideal and hence a maximal ideal. We may
take p(x) to be monic.

This p(x) is the minimal polynomial of α, as it is the nonzero polynomial with minimal
degree in kerϕ. Thus

F (α) = Im(ϕ) ≃ F [x]/(p(x)).
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□

Definition 14.3.7. Keep the setup in the above theorem.

• In case (1), we call α transcendental over F .
• In case (2), we call α algebraic over F .

We say that the extension K over F is algebraic if every element α of K is algebraic over
F (or equivalently [F (α) : F ] is finite).

14.4. Finite versus algebraic extensions.

Example 14.4.1. A typical algebraic yet not finite field extension is Q(
√
2,
√
3,
√
5,
√
7, . . . )

over Q.

Theorem 14.4.2. The following are equivalent for a field extension K of F :

(1) K is a finite extension of F .
(2) K is finitely generated and algebraic over F .

Proof. (1)⇒ (2). If K is a finite extension of F , K is generated over F by the basis element
(of K over F ). For any α ∈ K, [F (α) : F ] ≤ [K : F ] is finite; so α is algebraic over F .

(2)⇒ (1). We will prove this after some preparation. □

Corollary 14.4.3. If K is a finite extension of F and α ∈ K, then [F (α) : F ]
∣∣ [K : F ].

Example 14.4.4. If K/F is a field extension of prime degree, then any element α ∈ K that
is not in F generates K over F .

Lemma 14.4.5. Given field extensions of K/E/F and α ∈ K, then

mα,E(x)
∣∣mα,F (x)

as polynomials in E[x]. In particular,

deg(mα,E(x)) ≤ deg(mα,F (x)).

Proof. This is because mα,F (α) = 0. So viewing this in the polynomial ring E[x], we have
mα,F (x) ∈ (mα,E(x)). This implies that mα,E(x) |mα,F (x) in E[x] and thus deg(mα,E(x)) ≤
deg(mα,F (x)). □

Corollary 14.4.6. Given field extensions of K/E/F and α ∈ K, then

[E(α) : E] ≤ [F (α) : F ].

Proof. This is because [E(α) : E] = degmα,E(x) and [F (α) : F ] = degmα,F (x). □

Definition 14.4.7. Let K be a finite extension of F and F ⊆ Ki ⊆ K for intermediate
fields K1 and K2. Define the composite of K1 and K2 to be

K1K2 := minimal field that contains both K1 and K2.

Example 14.4.8. Inside C, the composite of Q(
√
2) and Q(

√
3) is

Q(
√
2,
√
3) =

{
a+ b

√
2 + c

√
3 + d

√
6
∣∣ a, b, c, d ∈ Q

}
.

Corollary 14.4.9. Let K1 and K2 be two intermediate fields in the field extension K over
F such that [Ki : F ] < +∞. Then

[K1K2 : F ] ≤ [K1 : F ] · [K2 : F ].
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Proof. As K1 is a finite extension of F , we may write K1 = F (α1, . . . , αn). We consider the
following tower

K1K2

K1

...
...

K2(α1, α2)

F (α1, α2)

K2(α1)

F (α1)
K2

F

Applying Corollary 14.4.6 to each parallelogram, we have

[K2(α1) : K2] ≤ [F (α1) : F ]

[K2(α1, α2) : K2(α1)] ≤ [F (α1, α2) : F (α1)]

· · · · · ·
Taking the product of these inequalities gives [K1K2 : K2] ≤ [K1 : F ]. This implies the
inequality of this corollary. □

14.4.10. Continued with the proof of Theorem 14.4.2.
(2) ⇒ (1). Assume that K is finitely generated algebraic extension of F . We may then

write K = F (α1, . . . , αn) = F (α1)F (α2) · · ·F (αn) with each αi algebraic over F . Then
Corollary 14.4.9 implies that

[K : F ] ≤ [F (α1) : F ] · · · [F (αn) : F ]
is finite. □

Corollary 14.4.11. Let K be a field extension of F and let α, β ∈ K be elements algebraic
over F . Then α± β, αβ, and α/β (when β ̸= 0) are all algebraic over F .

Proof. This is because α ± β, αβ, and α/β all belong to the field F (α, β) which is a finite
extension of F . □

Definition 14.4.12. Let K be a field extension of F . It follows from the above corollary
that {

α ∈ K |α is algebraic over F
}

is a subfield of K, called the algebraic closure of F in K.

Example 14.4.13. Consider the field extension C of Q. We put

Q :=
{
α ∈ C

∣∣α is algebraic over Q
}

the algebraic closure of Q in C. Note that the condition α being algebraic over Q is equivalent
to the condition that α is a zero of a monic polynomial f(x) ∈ Q[x].

Theorem 14.4.14. If L/K and K/F are both algebraic extensions, then L/F is algebraic.
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Proof. Let α ∈ L. Its minimal polynomial mα(x) = xn+an−1x
n−1+ · · ·+a0 over K involves

only finitely many elements of K, each of them being algebraic over F . So we see that F (α)
is contained in the field extension

F (a0, a1, . . . , an−1)(α)

over F , which is finite. So L is algebraic over F . □
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15. Normal extensions

15.1. Splitting fields.

Definition 15.1.1. Given a field F and a polynomial f(x) ∈ F [x] of degree n (not necessarily
irreducible), a field extension K of F is called a splitting field of f(x) over F if

(1) f(x) splits completely in K[x]: f(x) = (x− α1) · · · (x− αn) for α1, . . . , αn ∈ K, and
(2) K = F (α1, . . . , αn).

Remark 15.1.2. If K is a splitting field of f(x) ∈ F [x] over F and E is an intermediate
field of K over F , then K is a splitting field of f(x) ∈ E[x] over E.

Theorem 15.1.3. For any field F and f(x) ∈ F [x] of degree n, a splitting field K of F
exists. Moreover, [K : F ] ≤ n!.

Proof. We use induction on deg f(x) = n. When n = 1, F itself is the splitting field of f(x)
over F . Suppose that the statement is proved for polynomials of strictly smaller degrees
(over any field).
Let p(x) be an irreducible factor of f(x). Then

L := F [x]/(p(x))

is a field extension of F of degree deg p(x) ≤ deg f(x) = n, over which p(x) has a zero. This
implies that

f(x) = (x− θ) · g(x).
By inductive hypothesis, g(x) over L admits a splitting field K of degree [K : L] ≤ (deg g)! =
(n− 1)!; this K is also a splitting field of f(x) over F . Thus,

[K : F ] = [K : L][L : F ] ≤ (n− 1)! · deg p(x) ≤ n!.

□

15.2. Uniqueness of splitting fields.

Lemma 15.2.1. If η : F
≃−→ F ′ is an isomorphism of fields and p(x) ∈ F [x] is irreducible,

then p′(x) := η(p(x)) ∈ F ′[x] is irreducible, and η induces a natural isomorphism

η : F [x]/(p(x))
≃−→ F ′[x]/(p′(x)).

Remark 15.2.2. In abstract algebra, we usually do not use p′(x) to denote the derivative
of a polynomial. Typically, p′(x) is just another polynomial.

Example 15.2.3. Lemma 15.2.1 seems to be trivial, but it can be used to prove the following
seemingly nontrivial statement. Consider the isomorphism

η : Q(
√
2) Q(

√
2)

a+ b
√
2 a− b

√
2.

≃

Then we have a natural isomorphism

Q
(√

5 +
√
2
)
≃ Q(

√
2)[x]

/
(x2 − 5−

√
2)

≃−→ Q(
√
2)[x]

/
(x2 − 5 +

√
2) ≃ Q

(√
5−
√
2
)
.
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Proposition 15.2.4. Let η : F
≃−→ F ′ be an isomorphism of fields and f(x) ∈ F [x]. Put

f ′(x) := η(f(x)) ∈ F ′[x]. If E is a splitting field of f(x) over F and E ′ is a splitting field

of f ′(x) over F ′, then there exists a (not necessarily unique) isomorphism σ : E
≃−→ E ′

restricting to η : F
≃−→ F ′, i.e.

E E ′

F F ′.

σ
≃

η

≃

⋃ ⋃
Proof. We will prove that for the splitting field K of f(x) over F constructed in Theo-
rem 15.1.3, we have the following commutative diagram with top row being isomorphisms.

E K E ′

F F F ′.

σ1
≃

σ′

≃⋃
η

≃

⋃ ⋃

(The upshot here is that we use an explicitly constructed splitting field to aid the construction
of σ.) We will construct the right diagram and the left diagram can be constructed similarly.
In fact, we will prove a slightly stronger statement.

Claim: If η : F
≃−→ F ′ is an isomorphism of fields and E ′ an extension of F ′ over which

η(f(x)) splits completely, then η extends to a homomorphism σ′ : K → E ′, making the
following diagram commute.

K E ′

F F ′.

σ′

η

≃

⋃ ⋃
The proposition follows immediately from the claim.

Proof of the claim: As in the proof of Theorem 15.1.3, we make an induction on deg(f).
At each step, we consider the following diagram

L = F [x]/(p(x)) E ′

F

??

η

where η : F ≃ F ′ ⊆ E ′ is the given embedding. As η(p(x)) = p′(x) has a zero in E ′, say
α ∈ E ′, we may define a homomorphism

σ′
L : L = F [x]/(p(x)) E ′

x+ (p(x)) α.

By induction, we eventually get an embedding σ′ : K ↪→ E ′ compatible with σ′
L : L → E ′

and hence with F ≃ F ′. This proves the claim and the proposition. □
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Lemma 15.2.5. If we have the following tower of field extensions

K

E E ′

F

such that both E and E ′ are splitting fields of some polynomial f(x) ∈ F [x]. Then E = E ′

(as an equality of subfields of K).

Proof. By the definition of splitting field, we may

• split f(x) over E as c(x− α1) · · · (x− αn) with c ∈ E× and α1, . . . , αn ∈ E, and
• split f(x) over E ′ as c(x− α′

1) · · · (x− α′
n) with c

′ ∈ E ′× and α′
1, . . . , α

′
n ∈ E ′.

But viewing these two factorizations in K[x], we must have {α1, . . . , αn} = {α′
1, . . . , α

′
n}.

This forces E = F (α1, . . . , αn) = F (α′
1, . . . , α

′
n) = E ′. □

Lemma 15.2.6. Consider a tower of extensions K/E/F . If E is a splitting field over F of

some polynomial f(x) ∈ F [x], then for any automorphism σ : K
≃−→ K such that σ|F = id,

we must have σ(E) = E.

Proof. This is because σ(E) is a splitting field of σ(f) = f . By the above lemma, we deduce
that σ(E) = E. □

15.3. Intrinsic definition of splitting fields.

Definition 15.3.1. An algebraic extension K of F is called normal if

• for any irreducible polynomial f(x) ∈ F [x] that has one zero in K, f(x) splits com-
pletely over K.

This definition of normal extension appears to be a very strong condition at first sight.
Yet we have the following.

Theorem 15.3.2. A finite extension K of F is normal if and only if it is the splitting field
of some f(x) ∈ F [x].
Proof. We first prove that a finite normal extension K of F is a splitting field. Indeed, write
K = F (α1, . . . , αr) for α1, . . . , αr ∈ K. For each αi, the minimal polynomial mαi

(x) ∈ F [x]
splits over K by normality. Thus, K is the splitting field of mα1(x) · · ·mαr(x) over F .

Conversely, we assume that K is a splitting field of f(x) ∈ F [x] over F . We aim to prove
that K is a normal extension of F .
If p(x) ∈ F [x] is an irreducible polynomial that has a zero α ∈ K, let L be the splitting

field of p(x) over K. We want to prove that L = K.

L

K

F

splitting field of p(x)

splitting field of f(x)
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Clearly, L is the splitting field of f(x)p(x) over F .
Let β be another zero of p(x) in L. Then there exists an isomorphism

η : F (α) F (β)

α β

≃

fixing the field F . By Theorem 15.2.4, this isomorphism extends to an isomorphism σ : L ≃ L
(as L is the splitting field of f(x)p(x) over F (α) and F (β)).

But by Lemma 15.2.6, we have σ(K) = K. Yet α ∈ K, we must have β = η(α) = σ(α) ∈
K. This means that all zeros of p(x) belong to K, or equivalently, p(x) splits completely
over K. So K is a normal extension of F . □

Corollary 15.3.3. If K is a finite and normal extension of F , for any intermediate field E,
the field K is a normal extension of E. (Note that E need not be a normal extension of F .)

Proof. By the theorem above, K is a splitting field of some f(x) ∈ F [x] over F . Hence K is
a splitting field of f(x) over E. The reverse implication of the above theorem implies that
K is normal over E. □

Exercise 15.3.4. Remove the finiteness hypothesis on the extension K/F in the previous
corollary. Namely only assume that K is a normal extension of F and E an intermediate
field, prove that K is normal over E.

Definition 15.3.5. If K is an algebraic extension of F , a normal closure of K over F is
a field extension L of K such that

(1) L is a normal extension of F , and
(2) L is the minimal such extension, i.e. if L ⊇ L′ ⊇ K is so that L′/F is normal, then

L = L′.

In particular, if K is finite over F , the normal closure L is also finite over F .

Lemma 15.3.6. A normal closure of a finite extension K over F exists and is unique up
to (some) isomorphism.

Proof. Existence: Assume that K = F (α1, . . . , αr). Put

f(x) :=
r∏
i=1

mαi,F (x) ∈ F [x].

Take L to be a splitting field of f(x) over K. This implies that L is a splitting field over F ,
showing that L is normal over F and is a normal closure of K over F .
Uniqueness: If L′ is another normal closure of K over F , then by the Claim in Proposi-

tion 15.2.4, there exists an embedding L ↪→ L′. But then f(x) already splits over L. This
implies by minimality that L = L′. □

Remark 15.3.7. (1) The isomorphism between two different normal closures is not unique
(this can be understood by later discussion of Galois groups).

(2) An infinite normal extension K/F is an increasing union of its normal subextensions
that finite over F . So by taking certain limit (and using an axiom of choice), the above
lemma implies that for any algebraic extension K/F , the normal closure exists and is unique
up to some isomorphism.
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Example 15.3.8. (1) The splitting field of x2 − 2 is Q(
√
2).

(2) The splitting field of x3 − 2 is

Q( 3
√
2, ζ3)

Q( 3
√
2) Q(ζ3

3
√
2) Q(ζ23

3
√
2)

Q(ζ3)

Q.
Here and later, for n ∈ N, ζn = e2πi/n is a primitive nth root of unity.

(3) The splitting field of xn−1 =
n−1∏
i=0

(x−ζ in) is Q(ζn). (We call Q(ζn) the nth cyclotomic

field.) We will see later that [Q(ζn) : Q] = φ(n).
For example, xp − 1 = (x − 1)(xp−1 + · · · + x + 1), where the latter factor is

irreducible. So [Q(ζp) : Q] = p− 1.
(4) The splitting field of xp − t over Fp(t) is Fp(t1/p):

L = Fp(t1/p)

Fp(t)

Over L, we have a factorization

xp − t = (x− t1/p)p.

This situation is very “strange” because the irreducible polynomial factors into a
polynomial where roots have multiplicity.

15.4. Perfect fields. We investigate the pathology appearing in Example 15.3.8(4). Let F
be a field. If char(F ) = 0, we will show that there is no pathology in the next lecture. For
now, we only discuss the positive characteristic situation.

Definition 15.4.1. If the characteristic of a field F is a prime number p, define the Frobe-
nius endomorphism of F to be

σ = σF : F → F, σ(x) = xp.

(Check: for x, y ∈ F , σ(xy) = σ(x)σ(y) and

σ(x+ y) = (x+ y)p = xp + pxp−1y +

(
p

2

)
xp−2y2 + · · ·+ yp = xp + yp = σ(x) + σ(y),

where we note that all the terms in the middle of the expression are multiples of p, which is
zero in F .)

We say that F is a perfect field if σ is an isomorphism, otherwise, we say that F is
imperfect. This is equivalent to say that every element a ∈ F is a pth power (of a unique
element in F ).
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Example 15.4.2. (1) F = Fp is a perfect field (so is any finite field). This is because
σ : F → F is always injective, so also surjective by counting elements.

(2) F = Fp(t) is not a perfect field. Explicitly, σ(Fp(t)) = Fp(tp) is a proper subfield of
Fp(t).

(3) F = Fp(t, t1/p, t1/p
n
;n ∈ N) is a perfect field.

Proposition 15.4.3. Algebraic extensions of perfect fields are still perfect.

Proof. Let K be an algebraic extension of F with F a perfect field of characteristic p. It
suffices to show that each α ∈ K admits a pth root in E := F (α) (E is a finite extension of
F ).

Consider the Frobenius endomorphism σ : E → E given by a 7→ ap (which is compatible
with the Frobenius endomorphism on F ). We view the images of the Frobenius endor-
mophisms as subfields σ(E) and σ(F ) of E and F , respectively, i.e. we have the following
field extensions:

E

σ(E)

F

σ(F )

This implies that
[E : σ(E)] · [σ(E) : σ(F )] = [E : F ] · [F : σ(F )].

As σ induces isomorphisms F
σ−→ σ(F ) and E

σ−→ σ(E), we must have [E : F ] = [σ(E) : σ(F )].
Plugging this back to the equation above gives that [E : σ(E)] = [F : σ(F )] which is 1 as F
is perfect. It follows that σ(E) = E and E is perfect. □

Remark 15.4.4. Carefully inspecting the above proposition, we see that, if one defines, for
a field F , the imperfect degree t ∈ N by [F : σ(F )] = pt, then if E is a finite extension of F ,
then E and F have the same imperfect degree. (We will see in the next lecture that F/σ(F )
is purely inseparable; so the degree is a power of p.)

However, imperfect degree may not be preserved under infinite algebraic extension. For
example Fp(t) has imperfect degree 1 yet Fp(t, t1/p

n
;n ∈ N) is perfect.

Remark 15.4.5. For a field F of characteristic p > 0, we may define its perfection:

F perf :=
⋃
n

σ−n(F ).

For example, the perfection of Fp(t) is just Fp(t, t1/p
n
;n ∈ N). Moreover, F is perfect if and

only if F = F perf .
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16. Separable extensions and finite fields

16.1. Separable polynomials. Recall from the previous lecture that a field F of charac-
teristic p > 0 is perfect if the Frobenius map σ : F → F , σ(a) = ap is an isomorphism.

Definition 16.1.1. If F is a field and f(x) = a0 + a1x+ · · ·+ anx
n ∈ F [x] is a polynomial,

define its formal derivative to be

D(f)(x) := a1 + 2a2x+ · · ·+ nanx
n−1 ∈ F [x].

If f(x) = c(x− α1)
e1 · · · (x− αr)er ∈ F [x] with αi pairwise distinct, we say that αi is a zero

of f(x) with multiplicity ei.

Theorem 16.1.2. Let f(x) ∈ F [x] be a polynomial of degree ≥ 1. Then f(x) has no repeated
roots in its splitting field K if and only if (f(x), D(f)(x)) = (1).

Proof. “⇐” If (f(x), D(f)(x)) = (1), we have

f(x)p(x) +D(f)(x)q(x) = 1

for some polynomials p(x), q(x) ∈ F [x] ⊆ K[x]. But if (x − α)2 | f(x) for some α ∈ K, we
have (x − α) |D(f)(x). So the above equality implies that (x − α) | 1. This is absurd! So
f(x) has no repeated root in K.

“⇒” Assume that f(x) = (x − α1) · · · (x − αn) for αi ∈ K is the factorization of f(x) in
K[x]. Assume that (d(x)) = (f(x), D(f)(x)) in F [x] with d(x) monic. Since the multiplicity
of each zero of f(x) is one, we must have

D(f)(αi) ̸= 0.

So d(x) |D(f)(x) implies that x−αi cannot divide d(x). Yet d(x) | f(x) = (x−α1) · · · (x−αn).
So d(x) = 1. □

Corollary 16.1.3. If f(x) is an irreducible polynomial in F [x], then f(x) has repeated roots
in its splitting field if and only if D(f)(x) = 0.

Proof. By Theorem 16.1.2, the polynomial f(x) has repeated zero if and only if (f(x), D(f)(x)) =
(1). As f(x) is irreducible, this is further equivalent to f(x) |D(f)(x), which is in turn equiv-
alent to D(f)(x) = 0 (because D(f) has lower degree than f(x)). □

Definition 16.1.4. Let f(x) be an irreducible polynomial in F [x].

• If f(x) has repeated roots in its splitting field (or equivalently D(f)(x) = 0), we say
that f is inseparable;
• If f(x) has only simple roots, we say f is separable.

Corollary 16.1.5. If char(F ) = 0, all irreducible polynomials are separable.

Proof. This is because when f(x) ̸= 0 and deg f ≥ 1, we have D(f)(x) ̸= 0. □

Corollary 16.1.6. If char(F ) = p > 0, and if f(x) is inseparable, then

f(x) = g(xp) for some g ∈ F [x] irreducible.

Moreover, this can only happen when F is imperfect.
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Proof. Let f(x) = a0 + a1x + · · · + anx
n be an irreducible polynomial with repeated roots.

Corollary 16.1.3 implies that

D(f)(x) = a1 + 2a2x+ · · ·+ nanx
n−1 = 0.

This means that iai = 0 and thus ai = 0 when p ∤ i. So
f(x) = a0 + apx

p + · · ·+ a2px
2p = · · · = g(xp) with g(x) = a0 + apx+ a2px

2 + · · · .
This polynomial g(x) is clearly irreducible.
Finally, we show that this cannot happen when F is perfect. Indeed, if F is perfect, then

every api = bpi for some bi ∈ F . Thus
f(x) = bp0 + bp1x

p + bp2x
2p + · · · = (b0 + b1x+ b2x

2 + · · · )p

is not irreducible, contradicting with our initial assumption. □

Corollary 16.1.7. If char(F ) = p > 0, an irreducible polynomial f(x) ∈ F [x] is of the form
f(x) = g(xp

e
) with g(x) ∈ F [x] is an irreducible and separable polynomial and e ∈ Z≥0. In

this case, f(x) has deg(g) distinct zeros in its splitting field.

Proof. The first statement follows from the previous corollary. For the second statement, we
note that, if g(x) =

∏
i

(x− αi) in a splitting field of F , then we have

f(x) =
∏
i

(xp
e − αi) =

∏
i

(
x− α1/pe

i

)pe
.

□

16.2. Separable extensions.

Definition 16.2.1. Let K be an algebraic extension of F .

• We say an element α ∈ K is separable or inseparable if its minimal polynomial
mα,F (x) is.
• We say that K is separable over F if every element α ∈ K is separable over F .
Otherwise, we say that K is an inseparable extension of F .

Remark 16.2.2. If E is an intermediate field of an algebraic extension K of F , and if α ∈ K
is separable over F , then α is separable over E. This is because mα,E(x) divides mα,F (x) in
E[x].

Theorem 16.2.3. (1) If α is separable over F , then F (α) is a separable extension of F .
(2) If K/E and E/F are separable extensions, then K/F is separable.

This theorem will be proved later, after we introduce some useful tools to study field
extensions.

Construction 16.2.4. Let K be a finite extension of F and M a normal extension of F
that contains K (e.g. M is the normal closure of K over F ). We consider all possible
homomorphisms ϕ : K → M (which is automatically injective) such that ϕ|F = id. We use
HomF (K,M) to denote this set. Graphically,

K M

F
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Example 16.2.5. We consider the case when F = Q, K = Q( 3
√
2) and M = Q( 3

√
2, ζ3).

M = Q( 3
√
2, ζ3)

K = Q( 3
√
2)

F = Q

The set HomQ(K,M) = HomQ(Q[x]/(x3 − 2),M) is given by

K = Q( 3
√
2) M = Q( 3

√
2, ζ3)

φ0 :
3
√
2 3

√
2

φ1 :
3
√
2 3

√
2 · ζ3

φ2 :
3
√
2 3

√
2 · ζ23 .

Note that in this example, #HomF (K,M) = [K : F ].

The following lemma generalized the above observation.

Lemma 16.2.6. If K = F (α) with mα,F (x) = g(xp
e
) for some g ∈ F [x] irreducible and

separable, then

#HomF (F (α),M) = deg g(x) ≤ [F (α) : F ]

with equality if and only if α is separable.

Proof. Such a ϕ ∈ HomF (F (α),M) is determined by where α goes.

K = F (α) M

F

ϕ

The constraint on ϕ(α) is that, it must be a zero of mα,F (x) inM . There are precisely deg(g)
of them. □

Remark 16.2.7. The lemma implies that #HomF (F (α),M) does NOT depend on M , as
long as it is normal over F .

Corollary 16.2.8. Let K be a finite extension of F and M a normal extension of F con-
taining K. Then

(16.2.8.1) #HomF (K,M) ≤ [K : F ].

Moreover, the following are equivalent:

(1) K = F (α1, . . . , αn) with each αi separable over F .
(2) The equality in (16.2.8.1) holds.
(3) The field extension K of F is separable, i.e. any α ∈ K is separable over F .

Note that the equivalence of conditions in the above corollary implies Theorem 16.2.3(1).
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Proof. We consider the following tower of extensions and their embeddings into M .

K

... M

F (α1, α2)

F (α1)

F

By Corollary 16.2.8, we have

#HomF (F (α1),M) ≤ [F (α1) : F ].

The equality holds if and only if α1 is separable over F .
For each embedding F (α1) ↪→M , we have

#HomF (α1)

(
F (α1, α2),M

)
≤
[
F (α1, α2) : F (α1)

]
.

In other words, the number of embeddings F (α1, α2) ↪→ M extending any embedding
F (α1) ↪→ M is at most [F (α1, α2), F (α1)]. The equality holds if and only if α2 is sepa-
rable over F (α1). Combining the above two inequalities gives that

#HomF

(
F (α1, α2),M

)
≤
[
F (α1, α2) : F

]
.

We see that, by induction, we may deduce (16.2.8.1).
Now we prove the equivalence among (1)–(3).
(3) ⇒ (1) is obvious.
(1)⇒ (2): by Remark 16.2.2, αi separable over F implies that αi separable over F (α1, . . . , αi−1).

By the argument above and note that each inequality above is an equality, so the equality
in (16.2.8.1) holds.

(2) ⇒ (3): if some α is not separable, then #HomF (F (α),M) < [F (α) : F ]. For each
embedding F (α) ↪→M , (16.2.8.1) implies that

#HomF (α)(K,M) ≤ [K : F (α)].

This implies that #HomF (K,M) < [K : F ], contradicting (2). □

16.2.9. Proof of Theorem 16.2.3(2). We need to show that if K is a separable extension of
E, and E is a separable extension of F , then K is a separable extension of F .

Without loss of generality, we may assume that K is a finite extension of F . (This in
fact requires some explanation: we need to show that every α ∈ K is separable over F .
Let mα,E(x) = xn + an−1x

n−1 + · · · + a0 be the minimal polynomial of α over E. Put
E ′ := F (a0, . . . , an−1); it is a finite separable extension over F . Then mα,E(x) = mα,E′(x) is
a separable polynomial. It follows from (1) that K ′ := E ′(α) is a finite separable extension
over K ′ and E ′ a finite separable extension of F . We are reduced to the tower of finite
extensions K ′/E ′/F .)
Take M a normal extension of F containing K. Then

#HomF (E,M) = [E : F ].
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For each given embedding E ↪→M , #HomE(K,M) = [K : E]. Thus, we have

#HomF (K,M) = [K : F ].

This follows from the equivalence relation in Corollary 16.2.8. □

In light of Theorem 16.2.3, we make the following definition.

Definition 16.2.10. If K is a finite extension of F , put

Ks :=
{
α ∈ K

∣∣α is separable over F
}
;

it is the maximal intermediate field that is separable over F (by Theorem 16.2.3).
Define

[K : F ]sep := [Ks : F ] and [K : F ]insep := [K : Ks].

Remark 16.2.11. It is an exercise to modify the above proof of Theorem 16.2.3 to show
that, if M is a normal extension of F containing K, then

[K : F ]sep = #HomF (K,M),

and [K : F ]insep is always a power of p.
Moreover, for a tower of finite extension K/E/F , we have

[K : F ]sep = [K : E]sep · [E : F ]sep and [K : F ]insep = [K : E]insep · [E : F ]insep.

16.3. Primitive element theorem.

Theorem 16.3.1. A finite separable extension of fields is generated by one element.
In fact, we have a stronger statement: if K = F (α, β) with α, β algebraic over F and β

separable over F . Then K = F (γ) for some γ ∈ K.

Example 16.3.2. A typical non-monogenic extension isK = Fp(x1/p, y1/p) over F = Fp(x, y)
of degree p2. Indeed, for any α ∈ K, αp ∈ F , so [F (α) : F ] ≤ p.

Remark 16.3.3. The stronger version of the theorem in fact implies that if F is a field with
imperfect degree ≤ 1, then any finite extension of F is generated by one element.

Proof of Theorem 16.3.1. The basic idea is that: most θ = α+ cβ for c ∈ F should generate
K over F ; we just need to avoid the “bad” c’s.

We will prove the case of finite fields by a separate argument (later in this lecture). Now
we assume that #F =∞.
Let f(x) and g(x) be minimal polynomials of α and β over F , respectively. Let E be a

splitting field of f(x)g(x) and α = α1, . . . , αr, β = β1, . . . , βs the distinct zeros of f(x) and
g(x).

We take c ∈ F such that αi+ cβ1 ̸= αk+ cβj for any i, k as long as j ̸= 1. (This only rules
out finitely many choices of c ∈ F .)

Set θ := α1 + cβ1. Then F (θ) ⊆ F (α, β). We want to prove that α, β ∈ F (θ) (and thus
F (α, β) = F (θ).

Consider the polynomials f(θ−cx) and g(x). They have common zero (in E) if and only if
for some x = βj, there exist indices i such that θ−cβj = αi, i.e. when α1+cβ1 = θ = αi+cβj.
By our choice of c, the only such choice is that x = β1. Thus, we deduce that in F (θ)[x], we
have gcd

(
f(θ − cx), g(x)

)
has only one zero.(

f(θ − cx), g(x)
)
= (x− β1)
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in E[x], and hence in F (θ)[x]. This in particular implies that β = β1 ∈ F (θ) and hence
α = cβ − θ ∈ F (θ). The theorem is proved. □

16.4. Finite fields.

Theorem 16.4.1. (1) If F is a finite field, then char(F ) = p > 0 for a prime p, and
#F = pn for n = [F : Fp].

(2) For each pn, there is a field F of pn elements. It is a splitting field of xp
n−x ∈ Fp[x],

so it is unique up to isomorphisms.

Proof. (1) is clear.
(2) If F is a finite field of pn elements, F× is a finite group. By Corollary 12.3.5, F× is

a cyclic group of order pn − 1. This implies that for any a ∈ F×, ap
n−1 − 1 = 0. Thus, all

elements in F are zeros of xp
n − x = 0, and they are exactly the pn zeros of xp

n − x. In
other words, F is the splitting field of xp

n − x over Fp. (Such splitting field is unique up to
isomorphisms.)

Conversely, if F is the splitting field of xp
n − x = 0 over Fp. Note that D(xp

n − x) =
pnxp

n−1− 1 = −1 in Fp[x] and thus (xp
n −x,D(xp

n −x)) = (1) in Fp[x]. So xp
n −x has only

simple zeros in F . This implies that xp
n − x has exactly pn zeros in F .

We claim that these pn zeros form a subfield of F (and thus it must be equal to F ). This
is because whenever α, β ∈ F (with β ̸= 0) satisfy αp

n
= α and βp

n
= β, we always have

α + β, α− β, αβ, and α/β are all zeros of xp
n − x. □

Definition 16.4.2. We write Fpn for a field of pn elements (which is unique up to isomor-
phisms).

Lemma 16.4.3. (1) The field Fpm can be viewed as a subfield of Fpn if and only if m|n.
In this case, as a subset, Fpm ⊆ Fpn is unique.

(2) The field Fpn = Fp(α) for some α with degmα,Fp(x) = n. In particular, finite exten-
sions of finite fields are monogenic.

Proof. (1) If Fpm is a subfield of Fpn , then Fpn is a vector space over Fpm . Thus, pn is a power
of pm. So m|n.

Conversely, if m|n, Fpm is a splitting field of xp
m − x. Yet Fpn splits

xp
n − x = (xp

m − x) · x
pn−1 − 1

xpm−1 − 1
.

Thus we have Fpm embeds in Fpn . Or more precisely, Fpm is the set of zeros of xp
m −x inside

Fpn .
(2) Take any α ∈ Fpn\

⋃
m|n,m ̸=n Fpm . The number of such element is: if n = pα1

1 . . . pαr
r ,

pn
(
1− 1

pp1

)
· · ·
(
1− 1

ppr

)
> 0.

This implies that [Fp(α) : Fp] = n (as α is not contained in any other subfields of Fpn). So
mα,Fp(x) has degree n. □
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17. Galois theory I

This and the next lecture are the high point of this semester where we discuss the Galois
theory of algebraic field extensions. This is a beautiful theory that describes algebraic field
extensions in a nice and clean way, and relates together with the group theory we learned
earlier.

17.1. Galois group. We first recall Corollary 16.2.8: let K be a finite extension of F and
let M be a normal extension of F containing K.

K M

F

ϕ

Then #HomF (K,M) ≤ [K : F ] and the equality holds if K is separable over F .

Definition 17.1.1. We say a algebraic extension K of F is Galois if it is separable and
normal. (We will mostly assume that K/F is finite in this lecture and discuss the case of
infinite extensions in a later lecture.)

(When K/F is finite,) we define Gal(K/F ) := AutF (K) to be the group of automorphisms
ϕ : K → K such that ϕ|F = id. It is called the Galois group of K over F .

Lemma 17.1.2. If K is a finite Galois extension of F , then #Gal(K/F ) = [K : F ].

Proof. Consider the above situation we recalled with K = M Galois over F , then each
ϕ ∈ HomF (K,K) is an automorphism of K fixing F . This is because ϕ : K → K is an
injective F -linear map between the same finite dimensional F -vector space; so ϕ must be
bijective. Thus, we have HomF (K,K) = AutF (K) and

#HomF (K,K) = [K : F ].

This means that #Gal(K/F ) = [K : F ]. □

The following will be a typical example for Galois theory to study the interplay between
Galois group and intermediate fields.

Example 17.1.3. Consider K = Q(
√
2,
√
3) as an extension of Q. The Galois group is

equal to Gal(K/Q) = {id, σ, τ, στ}, where
• id is the identity map;
• σ(a+ b

√
2 + c

√
3 + d

√
6) = a− b

√
2 + c

√
3− d

√
6;

• τ(a+ b
√
2 + c

√
3 + d

√
6) = a+ b

√
2− c

√
3− d

√
6;

• στ(a+ b
√
2 + c

√
3 + d

√
6) = a− b

√
2− c

√
3 + d

√
6.

We can compute the subfields that are invariant under these automorphisms:

Kσ=1 = {x ∈ K |σ(x) = x} = {a+ c
√
3 | a, c ∈ Q} = Q(

√
3),

Kτ=1 = {x ∈ K |σ(x) = x} = {a+ b
√
2 | a, b ∈ Q} = Q(

√
2),

Kστ=1 = {x ∈ K |σ(x) = x} = {a+ d
√
6 | a, d ∈ Q} = Q(

√
6).
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We may rearrange the field extensions by the following diagram

K = Q(
√
2,
√
3)

Kσ=1 = Q(
√
3) Kτ=1 = Q(

√
2) Kστ=1 = Q(

√
6)

Q

Remark 17.1.4. From this example, we can see that there is a general statement: if H is
a group acting on a field K by automorphisms, then

KH :=
{
x ∈ K

∣∣σ(x) = x for any σ ∈ H
}

is a subfield.

Theorem 17.1.5 (Galois theory). Let K be a finite Galois extension with G = Gal(K/F ).

(1) Then there is a one-to-one correspondence between{
subgroups H ≤ G

} {
intermediate fields E of K/F

}
H KH = {x ∈ K |h(x) = x for any h ∈ H}

Gal(K/E) = {g ∈ G | g|E = id|E} E

(2) The correspondence is inclusion-reversive, i.e.

H1 ⊆ H2 ⇐⇒ KH1 ⊆ KH2 .

(3) The correspondence turns degrees of field extensions into indices of subgroups, namely,
we have

#H = [K : KH ] and [G : H] = [KH : F ]

(4) If H ←→ E, then
gHg−1 ←→ g(E).

(5) H ≤ G is a normal subgroup ⇐⇒ KH is a normal extension of F . In this case,

Gal(KH/F ) ∼= G/H.

(6) If H1, H2 ←→ E1, E2, then

H1 ∩H2 ←→ E1E2 and ⟨H1, H2⟩ ←→ E1 ∩ E2.

The proof of part (1) is more complicated, which we leave to the next lecture. Assuming
(1), we prove (2)–(6) to give the readers some idea of how Galois theory works.

Proof of Theorem 17.1.5(2)–(6).
(2) H1 ⊆ H2 ⇒ KH1 ⊇ KH2 because if for any x ∈ K, H2x = x implies H1x = x.
E1 ⊆ E2 ⇒ Gal(K/E2) ⊆ Gal(K/E1) because for any h ∈ Gal(K/F ), h|E2 = id⇒ hE1 =

id.

(3) #H = [K : KH ] is proved in Lemma 17.1.2 above. The other equality follows from

#H · [G : H] = #G
K/F Galois

= [K : F ] = [K : KH ] · [KH : F ].
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(4) If E = KH , we need to show that g(E) = KgHg−1
. This is because, for x ∈ K,

ghg−1(x) = x for any h ∈ H
⇔ hg−1(x) = g−1(x) for any h ∈ H
⇔ g−1(x) ∈ E
⇔ x ∈ g(E).

(5) We prove that H ≤ G is a normal subgroup ⇔ KH is a normal extension of F .
Proof of “⇐”: if KH is a normal extension of F ,

K

KH

F

then any automorphism σ : K → K that fixes F must also stabilizers KH by Lemma 15.2.6.
In other words,

KH = σ(KH) = KσHσ−1 ⇒ H = σHσ−1.

So H is a normal subgroup of G.
Proof of “⇒”: if H ◁G is a normal subgroup, then we need to show that KH is a normal

extension of F , namely, if f(x) is an irreducible polynomial in F [x] that has a zero α in KH ,
then f(x) splits completely over K.
For this, we need a useful Lemma: if K is a Galois extension of F , and f(x) is an

irreducible polynomial that splits over K. If α is a root of f(x), then other zeros are exactly
{σ(α) |σ ∈ Gal(K/F )}.
The proof of Lemma: Clearly, each σ(α) is a zero of f(x). Write

g(x) :=
∏

g∈Gal(K/F )

(x− σ(α));

its coefficients are all invariant under Gal(K/F )-action and thus belong to F . In K[x], we
know that (f(x), g(x)) ̸= (1), so in F [x], (f(x), g(x)) ̸= (1). But f(x) is irreducible; we
must have f(x) | g(x). This means that all zeros of f(x) are of the form σ(α) for some
σ ∈ Gal(K/F ). The lemma is proved.
We come back to the proof of “⇒” of (5). The lemma implies that all zeros of f(x) are

σ(α)’s for some σ ∈ Gal(K/F ). Thus

α ∈ KH ⇒ σ(α) ∈ KσHσ−1

= KH

This means that f(x) splits over KH .

When both conditions of (5) are satisfied, each element g ∈ G fixesKH and thus defines an
automorphism in Gal(KH/F ). This defines a group homomorphism π : G → Gal(KH/F ).
The kernel of π is precisely

kerπ = {σ : K → K | σ|KH = id} = Gal(K/KH) = H.
115



By first isomorphism theorem of homomorphism, we have an embedding π̄ : G/H ↪→
Gal(KH/F ). There are two ways to see that π̄ is surjective.

Method 1: by counting, #G/H
(3)
= [KH : F ] = #Gal(KH/F ), π̄ must be an isomorphism.

Method 2: essentially by Proposition 15.2.4, any isomorphism KH → KH extends to an
isomorphism K → K. So π is surjective.

In any case, we have shown that Gal(KH/F ) ∼= G/H.

(6) If H1 and H2 correspond to intermediate fields E1 and E2, respectively. Then we have

Gal(K/E1E2) = {h ∈ Gal(K/F ) |h|E1E2 = id}
= {h ∈ Gal(K/F ) |h|E1 = id and h|E2 = id} = H1 ∩H2.

K⟨H1,H2⟩ = KH1 ∩KH2 = E1 ∩ E2.

□

Remark 17.1.6. One thing we observe during the proof of Theorem 17.1.5(2)–(6) is that,
we often encounter the situation where for some results, it is easier to start on the group
side and deduce results on the field extension side, but some other statement, it is easier
to start from the field side. The Galois correspondence allows us to always start from the
easy side. For a concrete example, when proving (6), suppose that we want to show that
KH1∩H2 = KH1KH2 directly, it would be very difficult.

Remark 17.1.7. We have encountered earlier multiple times of non-canonical isomorphisms.
For example, two normal closures L and L′ of a finite separable extensionK/F are isomorphic
but there is no canonical isomorphism. This can be seen as follows: if η : L → L′ is an
isomorphism that fixes K. Note that L is finite separable and normal over F , so it is Galois.
Then Gal(L/K) is a subgroup of Gal(L/F ). For any h ∈ Gal(L/K), we may modify the

isomorphism η : L ∼= L′ to L
h−→ L

η−→ L′. This gives rise to another isomorphism between L
and L′ that is identity on K. In fact, all isomorphisms between L and L′ that are identity
on K arise this way. Yet there is no distinguished choice among these isomorphisms.

17.2. Examples of Galois extensions.

Example 17.2.1. Corresponding to Example 17.1.3, we have the following corresponding
diagram

Q(
√
2,
√
3) {1}

Q(
√
2) Q(

√
3) Q(

√
6) {1, τ} {1, σ} {1, στ}

Q {1, σ, τ, στ} Z2 × Z2=
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Example 17.2.2.

Q( 3
√
2, ζ3) {1}

Q( 3
√
2) Q( 3

√
2ζ3) Q( 3

√
2ζ23 ) ⟨(12)⟩ ⟨(13)⟩ ⟨(23)⟩

Q(ζ3) ⟨(123)⟩

Q S3

Note that ⟨(123)⟩ is a normal subgroup; this corresponds to that Q(ζ3) is a Galois extension
of Q.

Remark 17.2.3. An alternative way to represent the field extensions and Galois correspon-
dences is the following:

K

KH

F

G

H

“G/H”

The advantage of such notation is that, in a self-explanatory way, #G = [K : F ] and
#H = [K : E]. When E is normal over F (or equivalently when H is a normal subgroup of
G, the Galois group of E/F is the quotient G/H.

Moreover, Theorem 17.1.5(6) can be graphically expressed (not proved) as

K

E1E2

E1 E2

E1 ∩ E2

F

H2H1

Graphic picture tells us that Gal(K/E1E2) should be contained in bothH1 andH2 and should
be the maximal subgroup of G with that property; so Gal(K/E1K2) = H1 ∩H2. Similarly,
Gal(K/E1 ∩ E2) should contain both H1 and H2 and should be the minimal subgroup of G
with that property, i.e. Gal(K/E1 ∩ E2) = ⟨H1, H2⟩.
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Example 17.2.4. We give a case of Galois group being D8, with θ = 4
√
2. The normal

closure of Q( 4
√
2) is Q( 4

√
2, i). There are obvious automorphisms of Q( 4

√
2) given by

s(i) = −i, s(
4
√
2) =

4
√
2,

r(
4
√
2) = i

4
√
2, r(i) = i.

One can check that

rsrs : 4
√
2 4

√
2 i 4

√
2 −i 4

√
2 4

√
2,

rsrs : i −i −i i i.

s r s r

s r s r

We have srs = r−1 and thus

D8 = ⟨r, s | r4 = s2 = 1, srs = r−1⟩.

Q(i, 4
√
2)

Q(i 4
√
2) Q( 4

√
2) Q(i,

√
2) Q((1− i) 4

√
2) Q((1 + i) 4

√
2)

Q(
√
2) Q(i) Q(

√
−2)

Q

{1}

⟨sr2⟩ ⟨s⟩ ⟨r2⟩ ⟨sr⟩ ⟨sr3⟩

⟨s, r2⟩ ⟨r⟩ ⟨r2, sr⟩

D8

Here, it is quite straightforward to obtain the left part if the diagram. To get the invariants
under ⟨sr⟩, we simply take the element 4

√
2 and consider its “trace” under the group action

of ⟨sr⟩ and ⟨sr3⟩, respectively:
4
√
2 + sr(

4
√
2) =

4
√
2− i

4
√
2 = (1− i)

4
√
2,

4
√
2 + sr3(

4
√
2) =

4
√
2 + i

4
√
2 = (1 + i)

4
√
2.

These are certainly elements contained in the corresponding invariant fields. On the other
hand, we can check the minimal polynomials of (1− i) 4

√
2 and (1 + i) 4

√
2 are both equal to

x4 − 8, so we are now clear about these fields.
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Remark 17.2.5. In general, if θ = n
√
a with n ∈ N and a ∈ Q such that for any divisor

m of n, m
√
a /∈ Q, then the normal closure of Q(θ) is K = Q(θ, ζn) (exercise!). The Galois

group Gal(K/Q) is always a subgroup of semidirect product Zn ⋊ Z×
n .

5

In “majority” cases, the Galois group Gal(K/Q) is isomorphic to Zn ⋊ Z×
n . A partial

picture of the intermediate fields is

Q( n
√
a, ζn) {1}

Q( n
√
a) Z×

n

Q(ζn) Zn

Q Zn ⋊ Z×
n

Note that Zn is a normal subgroup of Zn⋊Z×
n , which corresponds to that Q(ζn) is a Galois

extension of Q. On the other hand, Z×
n is a not a normal subgroup and thus Q( n

√
a) is not

normal over Q.

Corollary 17.2.6. If K is a Galois extension of F with Galois group G = Gal(K/F ) being
an abelian group, then any intermediate field E is Galois over F .

Proof. This is because any subgroup of an abelian group is normal. □

17.3. Finite fields. Let q = pr be a power of p. We have shown that there exists a unique
finite field of q elements: Fq. It is a perfect field.

We have shown that, for each n ∈ N, there is a finite extension Fqn of Fq, consisting of qn

elements; it is a normal and separable extension of Fq.

Fqn

Fq

Definition 17.3.1. The q-Frobenius automorphism of Fqn is the automorphism

ϕq : Fqn Fqn

a aq

(It is the same as composing the p-Frobenius r times.)

Lemma 17.3.2. The Galois group of Fqn over Fq is isomorphic to Zn, generated by ϕq.

Proof. For the q-Frobenius automorphism ϕq of Fqn , ϕnq (b) = b for any b ∈ Fqn . So ϕnq = id.
The rest is clear. □

5L.X. thanks Professor Jiangwei Xue for pointing out an error in an earlier version of this note. Indeed,
Gal(K/Q) could be a strict subgroup of Zn ⋊ Z×

n . For example, consider the case K = Q( 10
√
5, ζ10); it is

Galois extension of degree 20 over Q whereas #(Z10 ⋊ Z×
10) = 40. This is because Q(

√
5) is contained as a

subfield of Q(ζ10); so if an automorphism of K fixes 10
√
5, it also fixes

√
5 and can only sends ζ5 to ζ±1

5 . So
the Galois group Gal(K/Q) is a subgroup of Z10 ⋊ Z×

10.
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Example 17.3.3. We give an example of the Galois diagram for extensions of finite fields.

Fq12 {1}

Fq4 Fq6 ⟨ϕ4
q⟩ ⟨ϕ6

q⟩

Fq2 Fq3 ⟨ϕ2
q⟩ ⟨ϕ3

q⟩

Fq ⟨ϕq⟩ Z12

ϕq 1

∼=

17.4. Cyclotomic extension.

Definition 17.4.1. For a positive integer n ∈ N,
µn :=

{
nth roots of unity in C

}
= ⟨ζn⟩ ∼= Zn,

where ζn = e2πi/n.
Define Q(µn) = Q(ζn) ⊆ C; it is a finite field extension of Q, called the nth cyclotomic

extension of Q.
A primitive nth root of unity is a generator of µn; it is equal to ζ

a
n for some a ∈ Z×

n .
Define

Φn(x) :=
∏
a∈Z×

n

(
x− ζan

)
;

it is called the nth cyclotomic polynomial.

Example 17.4.2. We have Φ1(x) = x− 1, Φ2(x) = x+ 1, Φ3(x) = x2 + x+ 1.

Lemma 17.4.3. We have
xn − 1 =

∏
d|n

Φd(x).

Each Φn(x) is a polynomial of degree φ(n) with coefficients in Z.

Proof. The first equality is easy:

(17.4.3.1) xn − 1 =
∏
b∈Zn

(
x− ζbn

)
=
∏
d|n

∏
i∈Z×

d

(
x− ζdin

)
=
∏
d|n

Φd(x).

We will prove that Φn(x) has coefficients in Z and its coefficients have gcd = 1. Assume that
this has been proved for smaller n. Then (17.4.3.1) and Gauss’ lemma implies that Φn(x)
has coefficients in Z and has coefficients’ gcd = 1. □

Theorem 17.4.4. The polynomial Φn(x) is irreducible in Q[x]. So [Q(ζn) : Q] = φ(n).

Proof. It suffices to show that Φn(x) is irreducible in Z[x]. Let ζ be a primitive nth root of
unity in a splitting field of Φn(x). (We deliberately do not specify one here.)
We need to show that the minimal polynomial f(x) := mζ,Q(x) of ζ over Q is equal to

Φn(x); it is clear that f(x)|Φn(x). We will show that for any integer a relatively prime to n,
ζa is a zero of Φn(x).
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We take a prime p not dividing n.
Claim: ζp is also a zero of f(x).

This claim would imply that if a = pα1
1 · · · pαr

r is relatively prime to n, ζa = ζp
α1
1 ···pαr

r .
Iteratively, we can prove that ζ is a zero of f(x) implying ζa is a zero of f(x). From this, we
deduce that f(x) = Φn(x). (This is why we did not specify a primitive nth root of unity.)
Now, we prove the Claim. Suppose this is not true. Let g(x) = mζp,Q(x) be the minimal

polynomial of ζp over Q.
As f(x) ̸= g(x), we have gcd(f(x), g(x)) = 1 and thus

f(x)g(x) | Φn(x).

On the other hand, g(ζp) = 0 implies that ζ is a zero of g(xp). This implies that

f(x) | g(xp) ⇒ g(xp) = f(x)h(x) in Z[x],
for some h(x) ∈ Z[x]. Taking this equation modulo p, we have

ḡ(x)p = ḡ(xp) = f̄(x)h̄(x) in Fp[x].
This implies that f̄(x) and ḡ(x) have a common factor in Fp[x].

Yet f̄(x)ḡ(x) divides Φ̄n(x), which further divides xn − 1. This implies that xn − 1 has
repeated zeros in its splitting field over Fp. But(

xn − 1, D(xn − 1)
)
=
(
xn − 1, nxn−1

)
=
(
xn − 1, xn−1

)
= (1).

This contradicts with the properties of repeated zeros. The Claim is proved.
This completes the proof of irreducibility of Φn(x). □

The following is clear.

Corollary 17.4.5. The Galois group of Q(ζn)/Q is Z×
n . Explicitly, for a ∈ Z×

n , the associated
automorphism is

Q(ζn) Q[x]/(Φn(x)) Q(ζn)

ζn x+ Φn(x), ζan.

∼= ∼=

Corollary 17.4.6. For every finite abelian group G, there exists a finite Galois extension
K of Q with Galois group G.

Proof. Write G = Zn1 × · · · × Znr . For each ni, find a distinct odd prime number pi such
that pi ≡ 1 mod ni. Then G is a quotient of

Z×
p1
× · · · × Z×

pr ≃ Zp1−1 × · · · × Zpr−1.

Say the kernel of this quotient is H. Then we consider the field extensions:

Q(ζp1···pr)

K = Q(ζp1···pr)
H

Q

∏
i Z

×
pi

H

G

The field K = Q(ζp1···pr)
H is what we seek for. □
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Example 17.4.7. We illustrate the above proof by constructing a cyclic extension of Q or
degree 3. Write ζ = ζ7. Then we have

Z×
7 Z6 Z3

{1,−1} kerϕ = {0, 3}

∼=⋃ ϕ⋃
But we have to translate kerϕ in terms of Z×

7 , it is the subset {1,−1} (namely {x ∈ Z×
7 |x2 =

1 mod 7}). Taking trace, we have

θ := ζ + ζ−1 ∈ Q(ζ){1,−1}.

We may compute the minimal polynomial of θ as follows:

θ2 = ζ2 + ζ−2 + 2.

θ3 = ζ3 + ζ−3 + 3(ζ + ζ−1).

Using the fact that 1 + ζ + ζ2 + ζ3 + ζ−3 + ζ−2 + ζ−1 = 0, we deduce that

θ3 + θ2 = ζ3 + ζ−3 + ζ2 + ζ−2 + 3(ζ + ζ−1) + 2 = 2(ζ + ζ−1) + 1 = 2θ + 1.

So the minimal polynomial of θ is x3 + x2 − 2x− 1.

The following is a converse of Corollary 17.4.6. It is one of the first achievement in the
history of number theory, marking a starting point of the study fo abelian extensions of
number fields.

Theorem 17.4.8 (Kronecker–Weber). Every finite abelian extension K of Q is contained
in some Q(ζn).

Extended reading after Lecture 17

In Example 17.2.4, we in fact used a standard tool to produce elements in a fixed field,
called the “trace” map. We give a formal definition here.

Definition 17.4.9. For a finite extension K of F of degree n and a ∈ K, we define its trace
and norm over F as follows: viewing K as a finite dimensional F -vector space (and choose
a basis), then multiplication by a is a F -linear map Ta on K given by an n×n matrix (with
coefficients in F ). Then the trace and the norm of a over F is

Tr(a) = TrK/F (a) = Tr(Ta) and Nm(a) = NmK/F (a) = det(Ta).

As the traces and determinants of matrices do not depend on the choice of the basis, the
traces and the norms are well-defined.

Clearly, for α, β ∈ K, we have

TrK/F (α + β) = TrK/F (α) + TrK/F (β) and NmK/F (αβ) = NmK/F (α)NmK/F (β).

Lemma 17.4.10. If K is a finite extension of F and E an intermediate field, we have for
α ∈ K,

TrK/F (α) = TrE/F (TrK/E(α)) and NmK/F (α) = NmE/F (NmK/E(α)).

Proof. We leave this as an exercise. □
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Lemma 17.4.11. Let K be a finite extension over F of degree n, and let α ∈ K be an
element with minimal polynomial mα,F (x) = xm+ a1x

m−1+ · · ·+ am ∈ F [x] with m|n. Then

TrK/F (α) = −
n

m
a1 and NmK/F (α) = (−1)n(am)n/m.

Moreover, when K is Galois over F with Galois group G, we have

TrK/F (α) =
∑
g∈G

g(α) and NmK/F (α) =
∏
g∈G

g(α).

Proof. We first treat the case when K = F (α) (in this case m = n). In this case, K ∼=
F [x]/(mα,F (x)) with basis elements 1, x, . . . , xn−1, and multiplication by α is represented by
the matrix 

0 0 0 · · · 0 −an
1 0 0 · · · 0 −an−1

0 1 0 . . . 0 −an−2

...
...

...
. . .

...
...

0 0 0 . . . 1 −a1


It is clear that TrK/F (α) = −a1 and detK/F (α) = (−1)nan. In the case when K/F is Galois,
{g(α) | g ∈ G} are all zeros of mα,F (x). Thus, we have

TrK/F (α) =
∑
g∈G

g(α) and NmK/F (α) =
∏
g∈G

g(α).

In general, consider the tower of extensions

K

F (α)

F

We deduce immediately from Lemma 17.4.10 that

TrK/F (α) = TrF (α)/F

(
TrK/F (α)(α)

)
= TrF (α)/F

( n
m
α
)
= − n

m
a1,

NmK/F (α) = NmF (α)/F

(
NmK/F (α)(α)

)
= NmF (α)/F

(
αn/m

)
= (−1)nan/mm .

When K is a Galois extension over F with Galois group G, through Galois theory, F (α) =
KH for some subgroup H ≤ G, we have∑
g∈G

g(α) =
n

m

∑
gH∈G/H

g(α) =
n

m
· (−a1) and

∏
g∈G

g(α) =
( ∑
gH∈G/H

g(α)
)n/m

= (−1)nan/mm .

The lemma is proved. □
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18. Galois theory II: proof

The goal of this lecture is to prove the main theorem of Galois theory.

18.1. Proof of Galois theory. Before giving the proof, we quickly recall an important
result we proved earlier.

Proposition 18.1.1. Let K be a finite Galois (namely normal and separable) extension of
F , and let L be an extension of K normal over F .

K L

F

We have the following equalities

[K : F ] #HomF (K,L) #HomF (K,K) #Gal(K/F ).

K/F separable K/F normal
so can take K = L

= = =

We now give the proof of the main theorem of Galois theory.

Theorem 18.1.2 (Galois theory). Let K be a finite Galois extension with G = Gal(K/F ).

(1) Then there is a one-to-one correspondence between{
subgroups H ≤ G

} {
intermediate fields E of K/F

}
H KH = {x ∈ K |h(x) = x for any h ∈ H}

Gal(K/E) = {g ∈ G | g|E = id|E} E

Proof. (1) Since K is a finite normal extension of F , K is a splitting field for some f(x) ∈
F [x]. (This implies that K is also the splitting field of f(x) over an intermediate field E.)
It follows from Proposition 18.1.1 that we have

[K : E] = Gal(K/E).

(a) Given a subgroup H ≤ G, we need to show that Gal(K/KH) = H.
Clearly, for any h ∈ H, h fixes KH and thus H ⊆ Gal(K/KH). It remains to show that

(18.1.2.1) #H ≥ #Gal(K/KH) = [K : KH ].

Now we use the primitive element theorem (Theorem 16.3.1) to the separable extension
K/KH to see that K = KH(α) for some α ∈ K. Then for the minimal polynomial
mα,KH (x) ∈ KH [x] of α over KH , we have [K : KH ] = degmα,KH (x).
Yet we may consider another polynomial

f(x) =
∏
h∈H

(x− h(α)) ∈ K[x].

The coefficients can be seen to actually belong to KH . By basic properties of minimal
polynomial, mα,KH (x) divides f(x) and in particular,

[K : KH ] = degmα,KH (x) ≤ deg f(x) = #H.
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This completes the proof of Gal(K/KH) = H.
(b) Given intermediate field E of K over F , we need to show that KGal(K/E) = E. First

of all, E ⊆ KGal(K/E) because any h ∈ Gal(K/E) fixes E. Next, we count

[K : E] #Gal(K/E) [K : KGal(K/E)].

Proposition 18.1.1 proved in (a)

= =

This implies that E = KGal(K/E). □

Remark 18.1.3. In fact, if we inspect the proof of Galois theory, the only non-formal
argument is in (1)(a), we need to show that #H ≥ [K : KH ], namely (18.1.2.1). There are
typically two proofs for this; we presented the one using primitive element theorem. There is
another proof of this using a lemma of Artin, which we present here in the following lemma
(part (1)).

Lemma 18.1.4. Assume that a finite group G acts on a field K via automorphisms. Put
F = KG. Then

(1) #G ≥ [K : F ].
(2) K is a Galois extension of F with Galois group G. In particular, #G = [K : F ].

Proof. (1) Let n = #G and write G = {σ1 = id, σ2, . . . , σn}. To prove that [K : F ] ≤ n, we
need to show that every n+ 1 elements u1, . . . , un+1 of K are F -linearly dependent. Write

A :=

σ1(u1) · · · σ1(un+1)
...

. . .
...

σn(u1) · · · σn(un+1)

 ∈ Matn×(n+1)(K).

Automatically, the column vectors v⃗1, . . . , v⃗n+1 are K-linearly dependent. So there exists
some r such that v⃗1, . . . , v⃗r are K-linearly independent and v⃗1, . . . , v⃗r+1 are not. Then we
must have

(18.1.4.1) v⃗r+1 = α1v⃗1 + · · ·+ αrv⃗r.

We hope to show that each αi in fact belongs to F (or equivalently, σ(αi) = αi for every
σ ∈ G), then v⃗i’s are F -linearly dependent, which implies that ui’s are F -linearly dependent,
proving our result.

We apply σ ∈ Aut(K/F ) to (18.1.4.1) to get

σ(v⃗r+1) = σ(α1)σ(v⃗1) + · · ·+ σ(αr)σ(v⃗r).

But the column vector σ(v⃗i) is just

σ

σ1(ui)...

σn(ui)

 =

 σσ1(ui)
...

σσn(ui),


which simply permutes the entries. This then implies that

(18.1.4.2) v⃗r+1 = σ(α1)v⃗1 + · · ·+ σ(αr)v⃗r.
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But (18.1.4.1) and (18.1.4.2) must be the same relation!! This implies that

for each i, σ(αi) = αi.

As this works for all σ ∈ G, we deduce αi ∈ F , proving part (1).
(2) We show that K is a separable and normal extension of F . Let f(x) ∈ F [x] be an

irreducible polynomial that has a zero α in K. Write H = {g ∈ G | g(α) = α}. Then

h(x) :=
∏

gH∈G/H

(x− g(α)).

(Since Hα = α, this product makes sense.) The coefficients of h(x) are symmetric polyno-
mials in g(α) for all gH ∈ G/H; so they are invariant under the left action by any element
σ ∈ G. So h(x) ∈ KG[x] = F [x].
Moreover, since (h(x), f(x)) ̸= (1) when considered in K[x] (as they have a common zero

α), we have (h(x), f(x)) ̸= (1) in F [x]. As f(x) is irreducible, f(x) | h(x). In particular,
f(x) splits completely in K[x] and has only simple zeros, because h(x) has.

Thus, K is separable and normal over F , i.e. is Galois over F . In particular, G ⊆
Gal(K/F ), and thus

#G ≤ #Gal(K/F )
Lemma 18.1.1

= [K : F ].

Combining part (1) shows that #G = [K : F ].
□

18.2. Galois theory for composite of fields. We are interested in how Galois theory
behave under composite of fields.

Proposition 18.2.1. Consider the following diagram of field extensions.

KE

K E

K ∩ E

F

Assume that K is a finite Galois extension and E is an arbitrary field extension of F (not
even assume to be algebraic). Then KE is a Galois extension over E and

Gal(KE/E) ∼= Gal(K/K ∩ E).

As a corollary, if E is a finite extension over F , then we have

[KE : K ∩ E] = [K : K ∩ E] · [E : K ∩ E].

Caveat 18.2.2. We have seen earlier that this proposition would be false without the as-
sumption that K is Galois over F . One only has an inequality

[KE : K ∩ E] ≥ [K : K ∩ E] · [E : K ∩ E].
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A typical example is the following:

Q( 3
√
2, ζ3)

Q( 3
√
2) Q( 3

√
2ζ3)

Q

So what happened? Suppose that L := KE is a Galois extension of F with Galois group
G = Gal(L/F ) and that F = K ∩ E. We have the following diagram

L := KE

K E

F

H1H2

Set H1 = Gal(L/K) and H2 = Gal(L/E). Thus

F = K ∩ E = LH1 ∩ LH2 = L⟨H1,H2⟩ ⇒ ⟨H1, H2⟩ = G.

On the other hand, we have

KE = L ⇒ H1 ∩H2 = {1}.
The key here is that H1H2 ⊆ ⟨H1, H2⟩ = G and the first inclusion is typically strict, and

thus

#G ≥ #H1 ·#H2 ⇒ [L : F ] ≥ [L : K] · [L : E] ⇒ [E : F ] · [K : F ] ≥ [L : F ].

However, if one of Hi is a normal subgroup of G, ⟨H1, H2⟩ = H1H2 = G. The equalities
above hold.

Proof of Proposition 18.2.1. Since K is a finite Galois extension of F , K is the splitting field
of some separable polynomial f(x) over F . This further implies that KE is the splitting
field of the same polynomial f(x) over E. This implies that KE is a Galois extension of E.

Moreover, there is a natural homomorphism

Ψ : Gal(KE/E) Gal(K/K ∩ E).

σ σ|K

Here we used that K is normal over F ; so it is stable under the action of any element of
σ ∈ Gal(KE/E). We aim to show that Ψ is an isomorphism.
We compute the kernel of Ψ:

ker(Ψ) =
{
σ ∈ Gal(KE/E)

∣∣σ|K = id
}
.

But for such σ, σ|E = id and σ|K = id, so σ is trivial when restricted to KE and thus σ = 1.
This shows that Ψ is injective.

127



Now we prove the surjectivity of Ψ. Let H := Im(Ψ) ⊆ Gal(K/K ∩ E) be the subgroup.
Consider KH ⊇ K ∩ E.

KE

K E

KH

K ∩ E

F

If we can show that KH ⊆ E, then KH ⊆ K ∩E, and we are forced to have an equality, and
thus Ψ is surjective.

We note that, for any σ ∈ Gal(KE/E), we have σ|KH = id and σ|E = id and thus
σ|KHE = id. Thus KHE is fixed by Gal(KE/E). This means that KHE = E, which means
KH ⊆ E. The proposition is proved. □

Proposition 18.2.3. Suppose that we have a tower of extensions below, in which K1 and
K2 are Galois over F .

K1K2

K1 K2

K1 ∩K2

F

Then we have

(1) K1 ∩K2 is Galois over F .
(2) K1K2 is Galois over F and

Gal(K1K2/F ) =
{
(g1, g2) ∈ Gal(K1/F )×Gal(K2/F )

∣∣ g1|K1∩K2 = g2|K1∩K2

}
.

(In particular, if K1 ∩K2 = F , we have Gal(K1K2/F ) = Gal(K1/F )×Gal(K2/F ).)

Proof. (1) We need to show that K1 ∩K2 is normal over F . Suppose that f(x) ∈ F [x] is a
polynomial that has a zero in K1 ∩K2. Then by normality of f(x), all zeros of f(x) belong
to both K1 and K2 and thus f(x) splits over K1 ∩ K2. So K1 ∩ K2 is normal (and hence
Galois) over F .

(2) Let Ki be the splitting field of a separable polynomial fi(x) for i = 1, 2. This means
that K1K2 is a splitting field of f1(x)f2(x). So K1K2 is Galois over F .
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Consider the homomorphism

φ : Gal(K1K2/F ) Gal(K1/F )×Gal(K2/F ).

σ (σ|K1 , σ|K2)

(Note that σ stabilizes each Ki because Ki is normal over F .)
We compute the kernel and the image of φ as follows:

kerφ =
{
σ ∈ Gal(K1K2/F )

∣∣σ|K1 = id, σ|K2 = id
}
= {id},

Im(φ) ⊆
{
(σ1, σ2) ∈ Gal(K1/F )×Gal(K2/F )

∣∣σ1|K1∩K2 = σ2|K1∩K2

}
.

Write A for the latter group, which contains Gal(K1K2/F ) as as subgroup. Now we count.

#Gal(K1K2/F ) = [K1K2 : F ] = [K1K2 : K2] · [K2 : F ]

= [K1 : K1 ∩K2] · [K2 : F ] (by Proposition 18.2.1)

= [K1 : K1 ∩K2] · [K2 : K1 ∩K2] · [K1 ∩K2 : F ]

= #Gal(K1/K1 ∩K2) ·#Gal(K2/K1 ∩K2) ·#Gal(K1 ∩K2/F )

= #A.

The proposition is proved. □

Example 18.2.4. As an application, we see that Q(
√
2,
√
3,
√
5,
√
7) is a Galois extension

of Q with Galois group Z4
2.

18.3. Linear independence of characters. We end this section with a discussion on
Artin’s linear independence of characters theorem. This theorem has very interesting appli-
cations in number theory, and we will encounter one of them in the next lecture.

Definition 18.3.1. Let H be an abelian group and let L be a field. A character χ of H
with values in L is a group homomorphism

χ : H → L×

This is the same as “1-dimensional representations” of H with coefficients in L.

Definition 18.3.2. We say that characters χ1, . . . , χn are linearly independent over L if
they are linearly independent as functions on H, i.e. for any a1, . . . , an ∈ L, if a1χ1(h) +
· · ·+ anχn(h) = 0 for any h ∈ H, then a1 = · · · = an = 0.

Theorem 18.3.3 (Linearly independence of characters). If χ1, . . . , χn are distinct characters
of a group H with values in L, then they are linearly independent.

Proof. Suppose that these characters χ1, . . . , χn are linearly dependent. Then among all
(nonzero) linear relations, there is a unique one with minimal number of nonzero ai’s. With-
out loss of generality, we assume this is

a1χ1 + a2χ2 + · · ·+ arχr = 0 as functions on H.

In other words, for any h ∈ H,

(18.3.3.1) a1χ1(h) + · · ·+ arχr(h) = 0.
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Since χ1 ̸= χr, there exists h0 ∈ H such that χ1(h0) ̸= χr(h0). Applying (18.3.3.1) to hh0,
we have

a1χ1(h0h) + · · ·+ arχr(h0h) = 0,

a1χ1(h0)χ1(h) + · · ·+ arχr(h0)χr(h) = 0.

Taking the difference of this and χ1(h0) times (18.3.3.1), we deduce

a2(χ1(h0)− χ2(h0))︸ ︷︷ ︸
b2

χ2(h) + · · ·+ ar(χ1(h0)− χr(h0))︸ ︷︷ ︸
br

χr(h) = 0.

This gives another nontrivial linear relation among χi’s (noting that br ̸= 0) with smaller
number of nonzero coefficients. □

18.3.4. Application of Theorem 18.3.3 to Galois theory. We will apply the linear indepen-
dence result in the following way: let K be a finite extension of F and let L be another
extension of F . Suppose that σ1, . . . , σn ∈ HomF (K,L) be distinct embeddings.

K L

F

σi

If we write K = Fe1 ⊕ Fe2 ⊕ · · · ⊕ Fer for r = [K : F ], we consider the following matrix

A =

σ1(e1) · · · σ1(er)
...

. . .
...

σn(e1) · · · σn(er)

 ∈ Matn×r(L).

The linearly independence theorem implies that the rows of this matrix A is L-linearly
independent. This implies that r ≥ n.

Remark 18.3.5. This gives another proof of [K : F ] ≥ #HomF (K,L).

The following is a side result that is useful in many applications.

Lemma 18.3.6. Let K be a finite separable field extension of F so that K = F [x]/(f(x)) and
let L be normal extension of F containing K. Then we have an isomorphism of L-algebras.

L⊗F K := L[x]/(f(x))
∏

σ∈HomF (K,L) L

a⊗ f(x)
(
aσ(f(x))

)
σ
.

φ=(φσ)σ
∼=

(We did not get to properly define tensor product; so for this problem, we think of K ⊗F L
as just L[x]/(f(x)).)

Example 18.3.7.

R⊗Q Q(
√
2) ∼= R[x]/(x2 − 2) R× R

a+ b
√
2 (a+ b

√
2, a− b

√
2).

∼=
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Proof of Lemma 18.3.6. The map φ is clearly a well-defined homomorphism and L-linear.
Both sides are L-vector spaces of dimension [K : F ] = #HomF (K,L). It suffices to show
injectivity and this is exactly the linearly independence of characters above (for characters
of K×). □
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19. Galois group of polynomials and insolvability of quintics

19.1. Cyclic extensions and Kummer theory.

Definition 19.1.1. The extension K is called cyclic if K is a Galois extension over F and
Gal(K/F ) is cyclic.

Proposition 19.1.2. Assume that

(1) char(F ) does not divide n, and
(2) F contains all nth roots of unity.

Then K = F ( n
√
a) is a cyclic extension of degree dividing n.

Proof. We may factor

xn − a = (x− n
√
a)(x− ζn n

√
a) · · · (x− ζn−1

n
n
√
a)

SoK is the splitting field of xn−a over F . As (xn−a,D(xn−a)) = (xn−a, nxn−1) = (a) = (1),
xn − a is separable.

K = F ( n
√
a)

F

For each σ ∈ Gal(K/F ), σ( n
√
a) = ζ

λ(σ)
n

n
√
a for some λ(σ) ∈ Zn. This defines an injective

map

λ : Gal(K/F ) Zn = µn

σ λ(σ).

The injectivity follows from the fact that n
√
a generates K over F .

This λ is a homomorphism because for τ, σ ∈ Gal(K/F ),

ζλ(τσ)n
n
√
a = τσ( n

√
a) = τ(ζλ(σ)n

n
√
a) = ζλ(σ)n ζλ(τ)n

n
√
a.

So λ(τσ) = λ(τ) + λ(σ) mod n; it is a homomorphism.
Through λ, Gal(K/F ) may be viewed as a subgroup of Zn; in particular, Gal(K/F ) is a

cyclic group with order dividing n. □

In fact, when F contains nth roots of unity, all cyclic field extensions of F is of the form
above. This is so-called Kummer theory.

Proposition 19.1.3 (Kummer). Let F be a field such that char(F ) ∤ n and assume that F
contains all nth roots of unity. Then any cyclic field extension K of F of order n is of the
form K = F ( n

√
a) for some a ∈ F×.

Proof. Write Gal(K/F ) ∼= Zn = ⟨σ⟩. For each α ∈ K, we define

(19.1.3.1) b := α + ζnσ(α) + · · ·+ ζn−1
n σn−1(α).

(This is called the Lagrange resolvent.) By Theorem 18.3.3, 1, σ, σ2, . . . , σn−1 are linearly
independent characters, there exists α ∈ K such that b ̸= 0 (otherwise, the above expression
gives a linear relations among 1, σ, . . . , σn−1).
Note that, for such b, we have

σ(b) = σ(α) + ζnσ
2(α) + · · ·+ ζn−1

n σn(α) = ζ−1
n b.
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(In fact, this is why we give such a definition to b.) So we have

σ(bn) = (ζ−1
n b)n = bn.

Thus a = bn ∈ K, and b can be viewed as an n-th root of a in K.
Moreover, for any σi, σi(b) = ζ−in b; so b is not contained in any intermediate fields between

K and F . Thus K = F (b) = F ( n
√
a). □

19.2. Expressing algebraic numbers by radicals. From now on, we assume that char(F ) =
0.

Definition 19.2.1. We say that an element α algebraic over F can be expressed by
radicals or solved in terms of radicals over F if α belongs to some field K which is a
succession of simple extensions

(19.2.1.1) F = K0 ⊆ K1 ⊆ K1 ⊆ · · · ⊆ Ks = K,

such that Ki+1 = Ki( ni
√
ai) for some ni ∈ N and ai ∈ Ki. The extensions Ki+1/Ki are called

radical extensions.

Example 19.2.2. A typical such element α over Q is α =
5

√√
5 +
√
7 +

4
√√

13 +
√
17.

Proposition 19.2.3. An element α can be expressed by radicals over a field F if α is con-
tained in a Galois extension K of F which admits a tower of subfields of the form (19.2.1.1).

Proof. By definition of expressing elements by radicals, there exists a finite extension K ′ of
F which admits a tower of subfields of the form (19.2.1.1). Let K be the Galois closure of
K ′ over F . This implies that for each σ ∈ HomF (K

′, L),

K ′ = K ′
s σ(K ′

s)

...
...

K ′
1 σ(K ′

1)

F

the composite K ′
s · σ(K ′

s) is an extension of F filtered by radical extensions. Continue this
way proves the proposition. □

Theorem 19.2.4. An (irreducible) polynomial f(x) can be solved by radicals if and only if
its Galois group (meaning the Galois group of its splitting field) is a solvable group.

Proof. “⇒” As in the previous proposition, f(x) splits over some Galois field L of F such
that

F = K0 ⊆ K1 ⊆ · · · ⊆ Kr = L with Ki+1 = Ki( ni
√
ai).
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Define F ′ := F (ζn1 , . . . , ζnr), which is a Galois extension of F . Then we form extensions

F ′L

Kr = L
...

... F ′K1

K1 F ′

K0 = F.

Then F ′L is Galois over F and each F ′Ki+1 = F ′Ki( ni
√
ai) is Galois over F ′Ki.

On the group side, Put G = Gal(F ′L/F ), Hi = Gal(F ′L/F ′Ki), and H0 = Gal(F ′L/F ′).

F ′L

...

F ′K1

F ′

K0 = F

H1

H0G

As F ′ is a Galois extension of F , H0 is a normal subgroup of G and G/H0 is abelian.
Similarly, F ′K1/F

′ is Galois with cyclic Galois group by Proposition 19.1.2, then H1◁H0 is
a normal subgroup and H0/H1 is cyclic. We continue the discussion for each of F ′Ki+1/F

′Ki

to deduce that Hi+1 ◁Hi and Hi/Hi+1 is cyclic.
This implies that G is solvable, and hence Gal(L/F ) as a quotient of G is solvable.

“⇐” Let K be a splitting field f(x) over F . By Galois theory, we have a tower of
intermediate fields

F = K0 ⊆ K1 ⊆ · · · ⊆ Kr = K
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corresponding to subgroups G = H0 ⊇ H1 ⊇ · · · ⊇ Hr = {1} such that Hi+1 ▷ Hi and
Hi/Hi+1 is cyclic of order ni. Again, put F

′ = F (ζn1 , . . . , ζnr) and consider the composites

F ′Kr

K = Kr = L F ′Kr−1

Kr−1
...

... F ′

K0 = F.

Then by Kummer theory, we have F ′Ki+1 = F ′Ki( ni
√
ai) for some ni ∈ N and ai ∈ Ki, and

thus α is solvable by radicals. □

Corollary 19.2.5. If an equation has Galois group (in the sense of Definition 19.3.1 below)
isomorphic to Sn or An with n ≥ 5 (e.g. for a general irreducible polynomial of degree n),
then it is not solvable by radicals.

19.3. Galois group of a polynomial.

Definition 19.3.1. Let F be a field and f(x) ∈ F [x] a separable polynomial. Let K be a
splitting field of f(x) over F . Then the Galois group for f(x) is Gal(K/F ).

Example 19.3.2. The Galois group for x7 − 5 over Q (irreducible by Eisenstein criterion).
The splitting field is Q( 7

√
5, ζ7). The associated Galois group is Z7 ⋊ Z×

7 .

19.3.3. We ask a basic question: how to determine the Galois group of a polynomial f(x)?
Let us only focus on the case when f(x) is irreducible. Then in the splitting field K of

F , f(x) factors as f(x) = (x − α1) · · · (x − αn). The Galois group G = Gal(K/F ) acts on
{α1, . . . , αn}. This then gives an embedding G = Gal(K/F ) ↪→ Sn. The following is a simple
observation.

Lemma 19.3.4. The group G acts transitively on the set {α1, . . . , αn}.

Proof. Suppose now and suppose that {α1, . . . , αr} (with r < n) is an orbit under G, then
(x − α1) · · · (x − αr) ∈ F [x] is a factor of f(x). Yet f(x) is irreducible; so this cannot
happen. □

Before giving method of determining the Galois group, we study a “universal case”.

Notation 19.3.5. Let F be a field, then we can consider the function fieldM := F (x1, . . . , xn),
namely

M = F (x1, . . . , xn) =
{p(x)
q(x)

∣∣∣ p(x), q(x) ∈ F [x1, . . . , xn], , q(x) ̸= 0
}
,

where x1, . . . , xn are indeterminates. Define the elementary symmetric functions to be

s1 = x1 + · · ·+ xn, s2 =
∑
i<j

xixj, . . . , sn = x1x2 · · ·xn.
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Proposition 19.3.6. The fieldM = F (x1, . . . , xn) is a Galois extension over L = F (s1, . . . , sn)
with Galois group Sn.

Proof. Consider the polynomial

f(x) = (x− x1) · · · (x− xn) = xn − s1xn−1 + · · ·+ (−1)nsn ∈ L[x].

ThisM is the splitting field of f(x) over L. In particular, as xj’s are distinct, M is separable
and hence Galois over L.

Moreover, the Galois group Gal(M/L) permuting {x1, . . . , xn} defines a homomorphism
Gal(M/L) ↪→ Sn. But on the other hand, Sn acts on M as automorphism fixing L; so
Sn ⊆ Gal(M/L). Thus, we have Gal(M/L) ∼= Sn. □

Slogan 19.3.7. The way we solve equations is modeled on the “universal function field”
case.

The rest of this subsection aims to explain this slogan.

19.3.8. Discriminant. We first study the universal caseM = F (x1, . . . , xn) over L = F (s1, . . . , sn).
Consider the discriminant

D̃ =
∏

1≤i<j≤n

(xi − xj)2, and
√
D̃ =

∏
1≤i<j≤n

(xi − xj).

We know that σ ∈ Sn acts on M by sending σ(
√
D̃) = sgn(σ)

√
D̃, where sgn : Sn → {±1}

is the sign function with kernel ker(sgn) = An. (In fact, this is the definition of the sign
function.)

This shows the following diagram of Galois extensions.

M = F (x1, . . . , xn)

L(
√
D̃)

L = F (s1, . . . , sn)

Sn

An

Now, we discuss the number field version. Let K be a splitting field of an irreducible
polynomial f(x) = (x− α1) · · · (x− αn) ∈ F [x]. Define the discriminant of f to be

D =
∏

1≤i<j≤n

(αi − αj)2;

it belongs to F because it is invariant under all σ ∈ Gal(K/F ).
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Lemma 19.3.9. We have G = Gal(K/F ) ⊆ An if and only if D is a square in F . More
precisely, we have the following diagram of Galois extensions:

K = F (α1, . . . , αn)

F (
√
D)

F

G

G∩An

Proof. The second statement implies the first one because its shows that F (
√
D) = F if and

only if G ⊆ An.
Indeed, δ :=

∏
1≤i<j≤n

(αi − αj) ∈ K is a square root of D, and G ∩ An clearly stabilizes

δ and G\An does not. This implies that the Galois group of K over F (
√
D) is precisely

G ∩ An. □

19.3.10. Solving cubic polynomials over Q. We apply the discussion above to (1) determine
the Galois group of a cubic irreducible polynomial, and (2) give a general method to solve
such a polynomial in C (by roots). By simple change of variables, we may assume that the
polynomial is x3 + px+ q ∈ Q[x] (with zeros α, β, γ).
Similar to the above, we have the following diagram of intermediate fields.

K = Q(α, β, γ)

Q(
√
D)

Q

G

G∩A3

In this case, D = (α − β)2(β − γ)2(γ − α)2 = −4p3 − 27q2. Combining this with the fact
that Gal(K/Q) has to act transitively on the three roots, we deduce that

• if D is a square in Q, then Gal(K/Q) = A3 = Z3, and
• if D is not a square in Q, then Gal(K/Q) = S3.

To give a way to explicitly solve the equation x3+ px+ q = 0, we first of all compute
√
D.

Next, we want to solve α, β, γ through understanding the cyclic extension. This goes back
to the method of Kummer theory. We first adjoin ω := e2πi/3 to the field so that we may use
Kummer theory.

K(ω)

K = Q(α, β, γ)

Q(
√
D)(ω)

Q(
√
D)
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Indeed, using the Lagrange resolvent presented in (19.1.3.1), we put

θ1 := α + ωβ + ω2γ and θ2 := α + ω2β + ωγ.

Then we may directly compute

θ31 = · · · = −27
2
q + 3

2

√
−3D and θ31 = · · · = −27

2
q − 3

2

√
−3D.

From this, together with α + β + γ = 0, we may solve α, β, and γ by linear algebra.

19.3.11. Solving quartic polynomials over Q. We now turn to solve irreducible quartics and
determine the associated Galois groups. Since S4 is solvable, we consider the following chain
of subgroups

1◁ V ◁ A4 ◁ S4,

where V = {1, (12)(34), (13)(24), (14)(23)} is the Klein 4-group, and the subquotients of the
above chain are all abelian groups. (We are slightly lucky here that V is a normal subgroup
of S4; so there is no ambiguity in how V is embedded in S4.) Corresponding to this chain of
extensions, we have

M = F (x1, . . . , x4) {1}

MV = L(
√
D̃, θ̃1, θ̃2, θ̃3) V

L(
√
D̃) A4

L = F (s1, . . . , s4) S4,

4

3

2

where D̃ is the discriminant earlier and

θ̃1 = (x1 + x2)(x3 + x4), θ̃2 = (x1 + x3)(x2 + x4), θ̃3 = (x1 + x4)(x2 + x3).

Now, we consider the case of Galois extension of an irreducible quartic polynomial x4 +
ax2 + bx + c ∈ Q[x], which has zeros α1, α2, α3, α4 in the splitting field K. We look at a
similar tower

K

F (
√
D)(θ1, θ2, θ3)

F (
√
D)

F

G

G∩V

G∩A4
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where
√
D =

∏
1≤i<j≤4

(αi − αj) and

θ1 = (α1 + α2)(α3 + α4), θ2 = (α1 + α3)(α2 + α4), θ3 = (α1 + α4)(α2 + α3).

(In principal), may use similar Kummer theory to solve this tower, as follows. First, a
tedious computation shows that the discriminant is

D =
∏

1≤i<j≤4

(αi − αj)2 = 16a4c− 3a3b2 − 128a2c2 + 144ab2c− 12b4 + 256c3.

Then, to compute θ1, θ2, θ3, we adjoin the 3rd root of unity ω = e2πi/3 and put

η1 = θ1 + ωθ2 + ω2θ3 and η2 = θ1 + ω2θ2 + θ3.

It is expected that η31 and η32 can be expressed in terms of
√
D by Kummer theory. This

together with the fact that θ1 + θ2 + θ3 = a allow us to solve for θ1, θ2, and θ3. Here, we
remark that, in addition to the notation symmetry, we note that the quotient group A4/V is
the Galois group in the universal case is generated by the permutation (132) (for example), it
will take θ1 to θ2 and θ2 to θ3; so the above construction indeed follows the Kummer theory.
Next, we try to solve α1, . . . , α4 from knowing θ1, θ2, θ3. This corresponds to a biquadratic

extension. For example, we may first understand K(12)(34); this is generated by α1 + α2 and
α3 + α4. By we note that

α1 + α2 + α3 + α4 = 0 and (α1 + α2)(α3 + α4) = θ1.

This amounts to solve a quadratic equation. Similarly, we can get α1α2 and α3α4 by noting
that

α1α2 + α3α4 =
1
2
(θ1 + θ3 − θ2) and α1α2α3α4 = c.

One can immediately solve α1 and α2 from these.

Next, we move to the study of the Galois group G. As the Galois group G(K/F ) can be
viewed as a subfield of S4 which acts transitively on all roots, it must belong to the following
list:

S4, A4, V, C = ⟨(1234)⟩, and D8 = ⟨(1234), (12)(34)⟩
and their conjugates (only C and D8 are not normal).

We list all possible intersections of these groups with V and with A4.

G = S4 A4 V conjugates of C conjugates of D8

#G = 24 12 4 4 8

#(A4 ∩G) = 12 12 4 2 8

#(A4 ∩ V ) = 4 4 4 2 4

So our computation will be able to determine the Galois group of the quartic equation.
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20. Infinite Galois groups

20.1. A preliminary version of inverse limits.

Definition 20.1.1. Consider a sequence of surjective maps of sets

A1 A2 A3 · · ·f1 f2 f3

Define

lim←−
n

An :=
{
(a1, a2, . . . )

∣∣ ai ∈ Ai, fi(ai+1) = ai
}
.

This is called the inverse limit, projective limit, or just limit of the Ai’s.
When each An has a structure of groups/rings, and fn’s are homomorphisms, the inverse

limit is a group/ring.

Example 20.1.2. Let p be a prime number. Consider the inverse limit

Z/pZ Z/p2Z Z/p3Z · · ·f1 f2 f3

The inverse limit is Zp := lim←−n Z/p
nZ, the ring of p-adic numbers is

Zp :=
{
(x1, x2, . . . )

∣∣xi ∈ Z/piZ, xi+1 mod pi = xi
}
.

The ring Zp has very interesting properties. Take one example: for p = 7, we show that 2
is invertible in Z7 as follows:

2x1 ≡ 1 mod 7 ⇒ x1 ≡ 1 mod 7

2x2 ≡ 1 mod 49 ⇒ x2 ≡ 25 mod 49 (≡ 4 mod 7)

· · · · · ·

We can always solve 2xi ≡ 1 mod 7i. This implies that 2 is invertible in Z7.
The same argument shows that

Z×
p :=

{
(x1, x2, . . . ) ∈ Zp

∣∣x1 ̸= 0
}
.

We have Zp = Z×
p ⊔ pZp.

We have a natural map

Z Zp = lim←−n Z/p
nZ

a
(
a mod p, a mod p2, . . . ).

We can generalize the above construction as follows.

Lemma 20.1.3. If (Rn, fn) is an inverse system of rings and R = lim←−
n→∞

Rn, then R× =

lim←−
n→∞

R×
n .

Proof. By definition, we have

R× =
{
a = (a1, a2, . . . ) ∈ R

∣∣ ∃ b = (b1, b2, . . . ) ∈ R, such that a · b = 1
}
.

The condition implies that for each a ∈ R×, an ∈ R×
n for every n.
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Conversely, for each a ∈ lim←−
n→∞

R×
n , the inverse a−1

n of each an is unique, so certainly, we

have
fn(a

−1
n+1) = a−1

n .

This implies that (a−1
n )n ∈ lim←−

n→∞
Rn is the inverse of a ∈ R. □

Example 20.1.4. Why did we call this a limit? We can see this by the following example:

CJxK := lim←−
n

C[x]/(xn).

Here CJxK is called the ring of formal power series. Given a smooth function f on near
0, the Taylor expansion at 0:

f(0) + xf ′(0) +
f ′′(0)

2
x2 + · · ·+ f (n)(0)

n!
xn + · · ·

defines an element in CJxK.

20.2. A general inverse limit.

Definition 20.2.1. A partially ordered set (poset) is a subset I such that for any two
elements i ̸= j ∈ J , either i < j, or j < i, or not comparable, satisfying

i < j, j < k ⇒ i < k.

We say that that I is filtered if for any i, j ∈ I, there exists k ∈ I such that i < k and
j < k.

Definition 20.2.2. Let I be a partially ordered set, and let (Ai)i∈I be an inverse system,
that is for each i ∈ I, we are given a set Ai; and if j > i, we have a map φji : Aj → Ai such
that if k > j > i, then φki = φji ◦ φkj, i.e. the following diagram commutes

Aj

Ak Ai.

φjiφkj

φki

Then we define the inverse limit to be

lim←−
i∈I

Ai :=
{
(ai)i∈I

∣∣ ai ∈ Ai, and if j > i, we have φji(aj) = ai
}
⊆
∏
i∈I

Ai.

If each Ai is a group/ring and each φji is a homomorphism, then lim←−
i∈I

Ai is a group/ring.

We have a natural map
πi : lim←−

i∈I
Ai → Ai.

Fact 20.2.3. If B is a set/group/ring with maps/homomorphisms λi : B → Ai such that,
for j > i, we have λi = φji ◦ λj, i.e. we hav the following commutative diagram

B Aj

Ai,

λj

λi
φji
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then we have a natural map λ : B → lim←−
i∈I

Ai.

Example 20.2.4. We define Ẑ := lim←−n Z/nZwhere the inverse system is given by divisibility

(i.e. for m|n, Z/nZ↠ Z/mZ).
It is fact that Ẑ ∼=

∏
p prime

Zp.

We give the following proof: for each prime p, we have

φp : Ẑ Zp
(an)n (apr)r.

This together give a map

φ =
∏
p

φp : Ẑ→
∏
p

Zp.

Conversely, to define a map
∏

p Zp → Ẑ, it is enough to give a compatible family of, for
each n ∈ N, ∏

p

Zp → Z/nZ.

For n = pα1
1 · · · pαs

s , this can be constructed as follows:∏
p

Zp → Zp1 × · · · × Zpr ↠ Z/pα1
1 Z× · · · × Z/pαr

r Z ∼= Z/nZ.

A similar example is that

GLN(Ẑ) ∼=
∏

p prime

GLN(Zp).

20.3. Topology on inverse limit.

Definition 20.3.1. Let I be a filtered poset. Let (Ai)i∈I be an inverse system of sets. If
each Ai carries a topology, we require the maps φji to be continuous. (But for most of the
case, we provide each Ai with discrete topology.)
We may define a topology on the inverse limit A = lim←−

i∈I
Ai as follows.

(1) (When each Ai is provided with discrete topology,) an open subset is the union of
basic opens : for each i ∈ I and each ai ∈ Ai, the subset π−1

i (ai) ⊆ A is a basic open
subset, where πi : A→ Ai is the projection.

(2) (For general Ai,) embed

lim←−
i∈I

Ai ⊆
∏
i∈I

Ai,

so that the right hand side is endowed with the product topology and the inverse
limit is defined by the subspace topology.

Lemma 20.3.2. When each Ai is provided discrete topology, the two above definitions of
topology on lim←−

i∈I
Ai are equivalent.
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Proof. Clearly, an open subset in (1) is open in the sense of (2). Conversely, we note that an
open subset as defined in (2) takes the form of π−1

i1
(ai1)∩ · · · ∩ π−1

in
(ain), where i1, . . . , in ∈ I

and aij ∈ Aij . We need to show that such set is open in the sense of (1).
By induction, it is enough to show that for i, j ∈ I, ai ∈ Ai, and aj ∈ Aj, the intersection

π−1
i (ai) ∩ π−1

j (aj) is open in topology defined in (1). As I is filtered, there exists k ∈ I such
that i < k and j < k.

Ai
Ak,

Aj

φki

φkj

Put Bk := φ−1
ki (ai) ∩ φ

−1
kj (aj). Then we have

π−1
i (ai) ∩ π−1

j (aj) =
⋃
b∈Bk

π−1
k (b).

The latter union is open in the topology defined in (1). □

Theorem 20.3.3. If each Ai is finite (with discrete topology), then lim←−
i∈I

Ai is compact and

Hausdorff. In this case, we say that lim←−
i∈I

Ai profinite.

Proof. We consider the subspace

lim←−
i∈I

Ai ⊆
∏
i∈I

Ai.

The latter space is compact and Hausdorff (as the product of compact spaces is compact by
Tychonoff theorem). The subspace is determined by taking the conditions φji(aj) = ai for
any j > i. This defined the left hand side as a closed subspace.

So lim←−
i∈I

Ai is compact and Hausdorff. □

Example 20.3.4. The topological rings Zp and Ẑ are profinite, and thus compact and

Hausdorff. The topological groups Z×
p and Ẑ× are also compact Hausdorff topological groups.

Definition 20.3.5. A topological group is a group G with a topology on the underlying
subset such that the two maps

ι : G G m : G×G G

g g−1 (g, h) gh

are continuous.
So if U ⊆ G is an open subset, then gUh ⊆ G is an open subset for any g, h ∈ G.

The following are interesting properties of topological groups.

Lemma 20.3.6. If H ≤ G is an open subset of a topological group G, then H is also closed!

Proof. Note that we have a disjoint union

G =
∐

gH∈G/H

gH
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of subsets. But each gH is open. It implies that

H = G
∖( ∐

gH ̸=H

gH
)

is closed. □

Lemma 20.3.7. If G is a compact topological group, then a subgroup H ≤ G is open if and
only if it is closed and of finite index in G.

Proof. “⇒” Lemma 20.3.6 implies that H is closed. To see that H has finite index in G, we
note that G =

∐
gH is an open disjoint cover. Yet G is compact, so the number of subsets

in the disjoint union is finite, i.e. [G : H] <∞.
“⇐” If H ≤ G is a closed subgroup of finite index, we write G =

∐
gH, then we have

H = G
∖( ⋃

gH ̸=H

gH
)
.

The union on the right hand side is a finite union, so the union is closed, and thus the
complement H is open. □

Definition 20.3.8. A profinite group is an inverse limit of finite groups, with the inverse
limit topology.

Lemma 20.3.9. For a profinite group G, we have

G := lim←−
N≤G open normal

G/N.

(Note that all such N ’s form a filtered system: given N1◁G and N2◁G, then N1∩N2◁G.)

Proof. There is an obvious map G→ lim←−N◁G open
G/N =: G′.

By definition, G = lim←−
i∈I

Gi. We want to construct the reserve arrow:

G′ = lim←−
N◁G open

G/N → lim←−
i∈I

Gi.

For this, it is enough to provide a compatible system of homomorphisms G′ → Gi for each
i. But note that the a natural map πi : G→ Gi has kernel kerπi◁G (which has finite index
since Gi is finite). Thus we can define the corresponding map

λi : G
′ = lim←−

N◁G open

G/N ↠
G

kerπi
→ Gi.

This defines the a compatible system of maps G′ → Gi (for each i ∈ I).
So far, we have not checked in any case the compatibility of the homomorphism (although

the reader can keep in faith that they should be compatible.) Let us do this here: suppose
that i′ > i is another index in I and we would like to check that the constructed maps
G′ → Gi and G

′ → Gi′ are compatible in the sense that the following diagram commutes

G′ Gi′

Gi

λi′

λi
φi′i

144



But this is clear because λi and λi′ expands to the following diagram

G′ G
kerπi′

Gi′

G
kerπi

Gi

∼=

φi′i

∼=

The commutativity of the left triangle comes from the construct of the inverse limit G′, and
the commutativity of the right square comes from the inverse limit construction of G.
Now by Fact 20.2.3, we get a map G′ → G. By tracing back the definition, we see that

this gives the inverse of the map G→ G′ we constructed above. □

Remark 20.3.10. In above lemma, we have written G as the inverse limit of G/N over all
open normal subgroups N . In fact, we may also take the inverse limit over a subcollection
of such N ’s, say (Nj)j∈J that is “cofinal” in the sense that for any open normal subgroup N
of G, there exists some Nj ≤ N . Then we would have

G ∼= lim←−
j∈J

G/Nj.

This is because we certainly have a homomorphism G→ lim←−
j∈J

G/Nj, to get the reverse arrow,

it suffices to produce a compatible family of maps lim←−
j∈J

G/Nj → G/N . Indeed, by our cofinal

condition, there exist some Nj0 ≤ N , we can therefore define

(20.3.10.1) λN : lim←−
j∈J

G/Nj → G/Nj0 → G/N.

Since the compatibility check here is a little more subtle (although the argument is still
standard), we spell it out for the convenience of the readers. Rather the issue comes from
the following: we need to first check that the definition of λN is independent of the choice
of Nj0 . Indeed, if Nj1 ≤ N is another open normal subgroup that is in the subcollection, we
can then define λN,1 : G → G/N similar to (20.3.10.1). We need to check that λN = λN,1.
For this, we use the filtered property of J (in fact implied by the cofinal condition): there
exists an open subgroup Nj2 in the collection such that Nj2 ≤ Nj0 ∩Nj1 . Now, we have the
following commutative diagram

G/Nj0

G = lim←−
j∈J

G/Nj G/Nj2 G/N

G/Nj1

λN

λN,1
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The commutativity of the diamond on the right is the natural one, and thus, we deduce that
λN = λN,1.

Now, we check that whenever N ′ ≤ N , the map defined above is compatible, namely, we
need to check the commutativity of the following diagram.

lim←−
j∈J

G/Nj G/Nj′0
G/N ′

G/Nj0 G/N

φN′N

Here, Nj′0
is an open subgroup in the subcollection such that Nj′0

≤ N ′. A small subtlety
here is that we do not know how to compare Nj′0

with Nj0 in general. But we have just
discussed earlier that we may replace the definition of λN ′ using a smaller open subgroup
Nj′1

that is contained in Nj0 . This way, we get an arrow downwards G/Nj′1
→ G/Nj0 and

proves that λN = φN ′N ◦ λN ′ .

20.4. Infinite Galois theory. Let us recall that a Galois extensionK over F is an extension
that is separable and normal, i.e.

(1) any intermediate field E that is finite over F is separable over F ,
(2) any irreducible polynomial f(x) ∈ F [x] having one root in K splits over K[x].

Remark 20.4.1. Such a field K is the union of intermediate field E such that E/F is finite
and Galois.

Definition 20.4.2. Let K be a Galois extension of F . Define its Galois group to be

Gal(K/F ) := lim←−
E/F finite Galois

Gal(E/F ).

The connecting map is, if E1 ⊇ E2 ⊃ F are finite extensions, we have Gal(E1/F ) ↠
Gal(E2/F ). Note that this defines Gal(K/F ) as a profinite group (with topology).

Example 20.4.3. (1) Write Q(µp∞) := Q(ζpn ;n ∈ N). We have

Gal
(
Q(µp∞)/Q

)
= lim←−

n

Gal
(
Q(ζpn)/Q

) ∼= lim←−
n

(
Z/pnZ

)×
= Z×

p .

(2) Write Q(µ∞) := Q(ζn;n ∈ N). We have

Gal
(
Q(µ∞)/Q

)
= lim←−

n

Gal
(
Q(ζn)/Q

) ∼= lim←−
n

(
Z/nZ

)×
= Z× ∼=

∏
p

Z×
p .

Lemma 20.4.4. If K is a Galois extension of F , then the Galois group Gal(K/F ) as an
abstract group is isomorphic to

(20.4.4.1) Gal(K/F ) ∼=
{
automorphism σ : K

≃−→ K
∣∣ σ|F = idF

}
.

Proof. Giving an automorphism σ : K
≃−→ K such that σ|F = idF is equivalent to giving,

for any finite normal intermediate field E/F , a compatible automorphism σE : E
≃−→ E such

that σE|F = idF . This is precisely the definition of Gal(K/F ) in Definition 20.4.2. □
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Remark 20.4.5. By Lemma 20.4.4, Gal(K/F ) is a profinite group; its topology is given by
the following: if E is an intermediate finite Galois extension of F and if aE ∈ Gal(E/F ) is
an element, then {

σ : K
≃−→ K

∣∣σ|E = aE
}

is a standard open subsets of Gal(K/F ).
The open subsets of Gal(K/F ) are unions of such standard opens.

Remark 20.4.6. The Galois group Gal(K/F ) acts on K continuously, this is to say that
the “action map”

act : Gal(K/F )×K → K

is continuous when K is endowed with discrete topology.
Indeed, to verify the continuity of act, we take any open subset, or rather just any element

α ∈ K, and consider the preimage act−1(α). This preimage consists of tuples (g, x) ∈
Gal(K/F ) × K such that g(x) = α. Note that the conjugates of α in K is finite, say
αi = σi(α) for i = 1, . . . , r with σ1 = id. Then explicitly,

act−1(α) =
r⊔
i=1

(
Gal(K/F (α))σ−1

i × {αi}
)
;

it is a finite union of open subsets.

Theorem 20.4.7 (Galois theory for infinite extensions). Let K be a Galois extension of F .
Then there is a one-to-one inclusive-reversing correspondence{

closed subgroups H of Gal(K/F )
}
←→

{
intermediate fields L of K/F

}
.

Moreover, we have the following.

(1) If H ←→ L, then H is open if and only if L/F is a finite extension.
(2) If H1, H2 ←→ L1, L2, then

H1 ∩H2 ←→ L1L2 and ⟨H1, H2⟩ ←→ L1 ∩ L2.

(3) If closed subgroups H1 ≤ H2 corresponds to L1 ≥ L2, then

[H2 : H1] = [L1 : L2].

(4) If H ←→ L and g ∈ Gal(K/F ), then

gHg−1 ←→ g(L).

(5) If H ←→ L, then H is a normal subgroup if and only if L is a normal extension of
F . In this case,

Gal(L/F ) ∼= G/H

as topological groups, where we equip G/H with the quotient topology, i.e. for the
natural projection π : G→ G/H, a subset V ⊆ G/H is open if and only if π−1(V ) is
open in G. (Note that G/H is also a profinite group.)

Proof. We will only prove the correspondence part, especially explaining the closedness con-
dition on the subgroup H. The rest part of the theorem should mostly follow from the same
argument as before, except (3), which we will make some remarks at the end. Before giving
the proof, we investigate the profinite inverse limit further.
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(A) (Profinite group side) LetG be a profinite group; soG = lim←−
N◁G open

G/N by Lemma 20.3.9.

Let H be a closed subgroup. For each N ◁G open normal, define

HN := Im(H → G/N).

Then for another open normal subgroup N ′ ◁G such that N ′ ≤ N , we have a natural map
HN ′ → HN . We use the following big diagram to represent the relevant groups.

G H

...
...

G/N ′ HN ′ Im(H → G/N ′)

G/N HN Im(H → G/N).

:=

:=

We claim that H, as a subgroup, is isomorphic to

(20.4.7.1) H ∼= lim←−
N◁G open

HN ⊆ G.

(We note that lim←−
N◁G open

HN = G∩
( ⋂
N◁G open

π−1
N (HN)

)
is a closed subgroup (where πN : G→

G/N is the projection); so we really need H to be a closed subgroup to start.)
Proof of the claim: Suppose that the inclusion H ⊆ lim←−N◁G open

HN is strict, then writing

Hc for the complement,

Hc ∩
(

lim←−
N◁G open

HN

)
̸= ∅.

So there exists a basic open subgroup gN0 ⊆ Hc (for some openN0◁G) such that gN0∩H = ∅
but gN0 ∩

(
lim←−N◁G open

HN

)
̸= ∅.

The first condition implies that g /∈ HN , yet the second condition implies that g ∈ HN .
This is a contradiction! So the isomorphism (20.4.7.1) holds.

(B) (Field extension side) Let L be an intermediate field of K/F . Consider the following
diagram of fields (where E and E ′ are intermediate fields of K/F that are finite and Galois
over F .

K

. . .

· · ·
E ′L

E ′

EL

E

L

F
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Recall that we have an inverse limit

(20.4.7.2) Gal(K/F ) := lim←−
E/F finite Galois

Gal(E/F ).

For an intermediate field L of K/F ,

Gal(K/L) := lim←−
L′/L finite Galois

Gal(L′/L).

Note that for each such L′, we may find a finite Galois extension E/F such that L′ ⊆ EL
(and automatically EL is Galois over L). So finite Galois extensions of L of the form EL
form a final system. This implies that

(20.4.7.3) Gal(K/L) ∼= lim←−
E/F finite Galois

Gal(EL/L)
Prop 18.2.1∼= lim←−

E/F finite Galois

Gal(E/(L ∩ E)).

As each Gal(E/(L ∩ E)) is a subgroup of Gal(E/F ), this in particularly implies that
Gal(K/L) is naturally a closed subgroup of Gal(K/F ).

Now, we are in position to prove the main correspondence.
First, we check that, for a closed subgroup H ≤ G, Gal(K/KH) = H. As discussed in

(B), we have

Gal(K/KH) = lim←−
E/F finite Galois

Gal(E/(E ∩KH)).

For each E/F finite Galois, N = Gal(K/E) is an open normal subgroup of G; so Gal(E/F ) ∼=
G/N . We have the following diagram of fields.

K

E KH

E ∩KH

F

N H

G/N

HN

Here, H acts on the field E via the restriction map

Gal(K/F ) Gal(E/F )

H G/N

So E ∩KH = EHN . This implies that

Gal(K/KH) = lim←−
E/F finite Galois

Gal
(
E/(E ∩KH)

)
= lim←−
E/F finite Galois

Gal(E/EHN ) ∼= lim←−
E/F finite Galois

HN
(A)
= H.

Here the second last isomorphism uses the finite Galois theory.
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Secondly, we need to check that for any intermediate field L of K/F , L = KGal(K/L). For
any finite Galois extension E/F , we need to check that

E ∩ L = KGal(K/L) ∩ E.
But we know that

E ∩KGal(K/L) = EIm(Gal(K/L)→Gal(E/F ) (B)
= EGal(E/E∩L) = E ∩ L.

Finally, we give a few remarks on (3). We will only discuss the case when [H2 : H1] and
[L1 : L2] are both finite. A modification of the argument handles the infinite case. There
are two aspects here that correspond to each other under the Galois correspondence.

(Group aspect) For two closed subgroups H1 ≤ H2, and an open normal subgroup N of
a profinite group G, we may consider NH1 ≤ NH2; their images in G/N defines subgroups
H1,N ≤ H2,N . When N ≤ N ′, there is a natural map of cosets:

H2,N/H1,N
∼= H2N/H1N → H2N

′/H1N
′ ∼= H2,N ′/H1,N ′ .

This map is clearly surjective. The inverse limit of H2,N/H1,N along such connecting map
is precisely H2/H1. In the special case when [H2 : H1] is finite, for N sufficiently small, the
natural map of cosets

(20.4.7.4) H2/H1 → NH2/NH1

is a bijection.
(Field aspect) We have two intermediate extensions K/L1/L2/F . In general, for another

intermediate extension E finite Galois over F , the field extension L1 ∩E over L2 ∩E can be
a “very small” extension. But we will take E very “large”. More precisely, when L1/L2 is a
finite (separable) extension, then it is generated by one element α with minimal polynomial
mα,L2(x) = xd + ad−1x

d−1 + · · · + a0. Then for any E containing the Galois closure of
F (a0, . . . , ad−1, α) over F inside K, we must have L1E = L2E. Consider the following
diagram

L1E = L2E

E L1

L1 ∩ E
L2

L2 ∩ E

F

As E/F is finite and Galois, Proposition 18.2.1 implies that

[L1E : L1] = [E : L1 ∩ E] and [L2E : L2] = [E : L2 ∩ E].
It then follows that

[L1 : L2] =
[L2E : L2]

[L1E : L1]
=

[E : L2 ∩ E]
[E : L1 ∩ E]

= [L1 ∩ E : L2 ∩ E].

So based on the above discussion, if we take an open normal subgroup N ◁ G such that
(20.4.7.4) holds and that N fixes the field E in the (Field aspect) so that L1E = L2E. Then
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we have

[H2 : H1] = [NH2 : NH1] = [H2,N : H1,N ] and [L1 : L2] = [L1 ∩ E : L2 ∩ E].
Now consider the finite Galois extension E/F , we have

[L1 ∩ E : L2 ∩ E] = [Gal(E/E ∩ L2) : Gal(E/E ∩ L1)] = [H2,N : H1,N ].

This completes the proof of (3) (at least when the two quantities are finite). □

20.5. Galois representation.

Definition 20.5.1. For a group G, an n-dimensional representation over a field L is a
homomorphism

ρ : G→ GLn(L).

This is equivalent to having G acting L-linearly on a n-dimensional vector space V over L;
namely,

ρ(g)(av) = aρ(g)(v) for a ∈ L.

It is a general philosophy that, to understand a group, it is “equivalent” to understand all
of its representations. For profinite groups, we have the following.

Proposition 20.5.2. If G is a profinite group, then any continuous representation ρ : G→
GLn(C) has finite image.

Proof. Take a very small open neighborhood U of In ∈ GLn(C). The preimage ρ−1(U) is an
open subset of G containing In. This implies that ρ−1(U) contains an open subgroup H of
G.

Note now that ρ(H) ⊂ U . But if U is a small neighborhood of In ∈ GLn(C), it cannot
contain a subgroup of GLn(C). This implies that ρ(H) = {In}. Thus ρ factors through
G/H. □

So in order to study more interesting representations, one needs to consider representations
of the kind ρ : Gal(Q/Q)→ GLn(Qp), where Q is the algebraic closure of Q inside C. This
general setting is the main object of the so-called Langlands program.
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21. Algebraic closures and transcendent extensions

21.1. Algebraic closure and separable closure.

Definition 21.1.1. A field extension K of F is called an algebraic closure if

(1) K/F is an algebraic extension;
(2) every polynomial f(x) ∈ F [x] splits completely over K.

A field extension K of F is called a separable closure if

(1) K/F is an algebraic separable extension;
(2) every separable polynomial f(x) ∈ F [x] splits completely over K.

Typically, we write F alg or F for an algebraic closure, and F sep for a separable closure.

Note that we have not discussed the existence of algebraic or separable closures, nor the
uniqueness of algebraic or separable closures yet. We will soon get to these topics.

Remark 21.1.2. If E/F is the splitting field of some polynomial f(x) ∈ F [x], then by the
claim in Proposition 15.2.4, there exists an embedding E ↪→ F alg.

If E/F is the splitting field of a separable polynomial f(x) ∈ F [x], then there exists an
embedding E ↪→ F sep.
So an algebraic closure contains any splitting field of F .

Definition 21.1.3. A fieldK is called algebraically closed if all polynomials inK[x] splits
completely. This is equivalent to that the only irreducible polynomial in K[x] are linear (or
constant) ones; which is in turn equivalent to that K has no nontrivial algebraic extension.

A field K is called separably closed if all nontrivial algebraic extensions are inseparable.

Proposition 21.1.4. (1) An algebraic closure of an algebraically closed field K is just
K.

(2) A separable closure of a separably closed field K is just K.
(3) If F is an algebraic closure of F , then F is algebraically closed.

Proof. (1) This is because if α ∈ Kalg is the zero of a polynomial in K[x], then α ∈ K
because K is algebraically closed. Thus, Kalg = K.
(2) This is the same as (1).
(3) Suppose that α is algebraic over F . We want to show that α ∈ F . Consider the

minimal polynomial of α over F :

mα,F (x) = xn + an−1x
n−1 + · · ·+ a0 ∈ F [x].

Consider the tower of extension

F (α, a0, . . . , an−1)

F (a0, . . . , an−1)

F

finite

finite

This implies that F (α, a0, . . . , an−1)/F is a finite extension. So α is the zero of a polynomial
in F ; so α ∈ F . □
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Theorem 21.1.5. (1) Any field F is contained in an algebraically closed field K.
(2) If K/F is a field with K algebraically closed, then

• F alg := {x ∈ K | x algebraic over F} is an algebraic closure of F ;
• F sep := {x ∈ K | x algebraic and separable over F} is a separable closure of F .

(3) The algebraic closure and separable closure of a field F are unique up to isomorphisms
(but not up to canonical isomorphisms).

Proof. (1) See the extended reading material after this lecture.
(2) By definition, F alg is algebraic over F . Each polynomial f(x) ∈ F [x] splits over K;

yet the zeros are algebraic over F ; so the zeros of f(x) belongs to F alg. Thus, f(x) splits
over F alg.

Moreover, the same argument shows that every separable polynomial f(x) ∈ F sep[x].
(3) If F ↪→ F alg and F ↪→ F alg′ are two embeddings, then Proposition 15.2.4 implies

that we have a natural (injective) homomorphism η : F alg → F alg′. Conversely, the subfield
η(F alg) ⊆ F alg′ gives an algebraic extension; so η(F alg) = F alg′ (as there is no nontrivial
algebraic extension of η(F alg)). This shows that F alg is isomorphic to F alg′.

The same argument works for separable closures. □

21.2. Transcendent extensions. So far, we have been focusing on algebraic extensions.
Now we come to studying “larger” extensions. Recall that in a field extension K/F , an
element α ∈ K is called transcendental over F if F [x]→ K sending x to α is an injection.

Definition 21.2.1. (1) Let K/F be a field extension. A subset {α1, . . . , αn} ⊆ K is called
algebraically independent over F , if there is no nonzero polynomial f(x1, . . . , xn) ∈
F [x1, . . . , xn] such that f(α1, . . . , αn) = 0.
This gives rise to an injective homomorphism

η : F (x1, . . . , xn) K

p(x)/q(x) p(α)/q(α).

An infinite subset A of K is called algebraically independent over F if any finite subset
of A is algebraically independent over F .

(2) A transcendence generator subset for a field extension K/F is a subset A ⊂ K
such that K is algebraic over F (A). (Note that this name is not standard; or rather, this
notation is rarely used in the literature.)

(3) A transcendence base for K/F is a subset A ⊂ K that is algebraically independent
and also a transcendence generator. This is equivalent to say A is a “maximal subset of K
that is algebraically independent over F .

Remark 21.2.2. For many proofs below, one may make the following analogy between field
extensions K/F with vectors spaces over F :

Field extensions ←→ Vector spaces

Algebraically independent subsets ←→ Linearly independent subsets

Transcendence generator subsets ←→ Generating subsets

Transcendence bases ←→ bases

Theorem 21.2.3. Any field extension K/F has a transcendence base and any two transcen-
dence bases of K/F have the same cardinality.
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Proof. The existence of transcendence bases follows from Zorn’s lemma.
We need to show that the cardinality of an algebraic independent set is always smaller

than or equal to that of a transcendence generator subset. We first treat the finite case,
with an algebraically independent subset {α1, . . . , αm} and a transcendence generator subset
{β1, . . . , βn}.

If {α1, . . . , αm} ⊆ {β1, . . . , βn}, we have m ≤ n, and we are done. Suppose not. WLOG,
we assume that α1 /∈ {β1, . . . , βn}. Since {β1, . . . , βn} is a transcendence generator sub-
set, F (α1, β1, . . . , βn) must be algebraic over F (β1, . . . , βn). Consider the minimal polyno-
mial mα1,F (β1,...,βn)(x). Clearing its denominators, we obtain an (irreducible) polynomial
f(x, y1, . . . , yn) ∈ F [x, y1, . . . , yn] such that f(α1, β1, . . . , βn) = 0. We claim that there is
some j (WLOG j = 1) such that

• βj /∈ {α1, . . . , αm}, and
• yj appears in some term in f(x, y1, . . . , yn).

Otherwise, the equality f(α1, β1, . . . , βn) = 0 is entirely algebraic relations among elements
in {α1, . . . , αm}, contradicting that αi’s form an algebraically independent subset.

Now, consider the following diagram

K

F (α1, β1, . . . , βn)

F (β1, . . . , βn) F (α1, β2, . . . , βn).

algebraic

finite

The field extension F (α1, β1, . . . , βn)/F (α1, β2, . . . , βn) is finite because β1 satisfies a non-
trivial relation f(α1, β1, . . . , βn) = 0. It then follows from this that K is algebraic over
F (α1, β2, . . . , βn), i.e. {α1, β2, . . . , βn} is a transcendence generator subset.

Continuing this way, each time we swap one element α1 into the set {β1, . . . , βn}, and
eventually, we get {α1, . . . , αm} ⊆ {β1, . . . , βn}. Thus, m ≤ n.
The infinite case is more subtle, using again the Zorn’s lemma. We omit the details. □

Definition 21.2.4. The cardinality of a transcendence base for a field extension K/F is
called the transcendence degree for K/F .

Remark 21.2.5. The field Q(π) is isomorphic to Q(t), which has transcendence degree 1.

Caveat 21.2.6. If {α1, . . . , αn} and {α′
1, . . . , α

′
n} are transcendence bases, in general, the

fields F (α1, . . . , αn) and F (α
′
1, . . . , α

′
n) may not be the same.

For example, x and x2 are both transcendence bases for the extension Q(x)/Q. But
Q(x2) ̸= Q(x).

Proposition 21.2.7. Let t be a transcendental variable over F . If p(t), q(t) ∈ F [t] are
relatively prime polynomials that are not both constant, then[

F (t) : F
(p(t)
q(t)

)]
= max

(
deg p(t), deg q(t)

)
.
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Proof. Writing y =
p(t)

q(t)
, the minimal polynomial of t over F (y) is

p(t)− yq(t) = 0, or q(t)− 1

y
p(t) = 0,

(depending on which of p(t) and q(t) has larger degree). The Proposition follows. □

Definition 21.2.8. An extensionK/F is called purely transcendent ifK = F (α1, . . . , αn).

Question 21.2.9. How to describe a general K/F? What about its integral version? Can
we “visualize” this?

For example, we have the following extension.

F (x)(
√
x3 + x) F [x, y]/(y2 − x3 − x)

F (x) F [x].

⊇

⊇

The general case might be trickier.

21.3. Basic ideas of algebraic geometry. A basic idea of algebraic geometry is to study
the relation between the space and the functions on such spaces, in the following sense:

U ⊆ Cn open O(U) := {holomorphic functions on U}

x ∈ U mx := {f ∈ O(U) | f(x) = 0}

O(U)/mx
∼= C, so mx is maximal

In the following, let k be an algebraically closed field (e.g. k = C). The general philosophy
is that there is a correspondence

space kn ←→ polynomial ring k[x1, . . . , xn].

This makes sense because a polynomial can be evaluated at every point (a1, . . . , an) ∈ kn.
Moreover, each point a = (a1, . . . , an) ∈ kn corresponds to the maximal ideal ma = (x1 −
a1, . . . , xn − an).

One of the most important theorems in algebraic geometry is the following.

Theorem 21.3.1 (Hilbert’s Nullstellensatz, weak form). Assume that k is algebraically
closed. Then every maximal ideal of k[x1, . . . , xn] is of the form (x1 − a1, . . . , xn − an) for
some (a1, . . . , an) ∈ kn. In other words, there is a one-to-one correspondence

kn ←→
{
maximal ideals of k[x1, . . . , xn]

}
.

We will also discuss what happens if k is not algebraically closed in the next lecture.

To proceed, we need to discuss some commutative algebra.

Definition 21.3.2. Let R be a commutative ring and I and ideal. Define the radical of I
to be the ideal √

I := {f ∈ R | fn ∈ I for some n ∈ N}.
Obviously, I ⊆

√
I and

√√
I =
√
I. We say that I is radical if I =

√
I.

We need to check that
√
I is indeed an ideal:
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• for f, g ∈
√
I, fm, gn ∈ I for some m,n ∈ N, then (f + g)m+n−1 = fm · a + gn · b for

some a, b ∈ R (which are some polynomial expressions in f and g), thus f + g ∈
√
I;

• for any a ∈ R, f ∈
√
I, we have fn ∈ I for some n ∈ N, and thus (af)n = anfn ∈ I;

so af ∈
√
I.

Lemma 21.3.3. If p is a prime ideal such that I ⊆ p, then
√
I ⊆ p. (In particular, this

holds for maximal ideals as well.)

Proof. If a ∈
√
I, then an ∈ I for some n ∈ N; so an ∈ p, which implies that a ∈ p as p is a

prime ideal. Thus,
√
I ⊆ p. □

Here is the picture for algebraic geometry: studying relations between “appropriate subsets
of kn” and rings that come from algebraic structures of k[x1, . . . , xn].

subsets of kn ideals of k[x1, . . . , xn]

Z I(Z) := {f ∈ k[x] | f(z) = 0, ∀z ∈ Z}

Z(f) := {a ∈ kn | f(a) = 0} (f)

Z(I) := {a ∈ kn | f(a) = 0,∀f ∈ I} I.

Definition 21.3.4. An algebraic subset is a subset of kn of the form Z(I) for some ideal
I ⊆ k[x1, . . . , xn].

Also note that Z(I) = Z(
√
I) because if fn(a) = 0, we must have f(a) = 0. So it is

natural to only consider radical ideals.

Theorem 21.3.5 (Hilbert’s Nullstellensatz, strong form). There is a one-to-one correspon-
dence between{

Algebraic subsets of kn
} {

radical ideals of k[x1, . . . , xn]
}

Z I(Z)

Z(I) I.

Remark 21.3.6. Algebraic subsets are considered “good spaces” in algebraic geometry:
they are defined by polynomial equations. We can also talk about “polynomial functions”
on an algebraic subset Z, defined by O(Z) := k[x1, . . . , xn]/I(Z). This makes sense because
any function in I(Z) vanishes on Z; so if two functions are differed by some functions in
I(Z), they would define the same function on Z.

Also, the maximal ideals of O(Z) are precisely of the form m/I for some maximal ideal
of k[x1, . . . , xn], which by weak form of Hilbert Nullstellensatz is the same as ma/I for some
a ∈ kn. The condition I ⊆ ma exactly implies that all functions in I vanishes at a. So, in
conclusion, the maximal ideals of O(Z) are exactly in one-to-one correspondence with the
points in Z.

Extended reading after Lecture 21

21.4. Construction of algebraic closure. We give the proof of Theorem 21.1.5(1), namely,
any field F is contained in an algebraically closed field K.
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(Follow the textbook by M. Artin) Consider the following ring

R = F
[
xf ; for each monic polynomial f(x) ∈ F [x]

]
.

In other words, this is to adjoin a free variable for every such polynomial. Put

I :=
(
f(xf ); f monic polynomial

)
.

We claim that I ̸= (1). Indeed, if there exist g1(x), . . . , gr(x) ∈ R such that

g1(x)f1(xf1) + · · · gr(x)fr(xfr) = 1.

These gi’s only involve variables x1, . . . , xm, where each xi = xfi for i = 1, . . . , r. So we have

(21.4.0.1) g1(x1, . . . , xm)f1(x1) + · · ·+ gr(x1, . . . , xm)fr(xr) = 1.

Take a finite extension F ′ of F where each of fi(x) (with i = 1, . . . , r) has a root αi. Evaluate
(21.4.0.1) at x1 = α1, . . . , xr = αr, xr+1 = · · · = xm = 0. This gives 0 = 1. Contradiction!
By Zorn’s lemma, there exists a maximal ideal m1 of R containing I. Take K1 := R/m1.

Then each polynomial in F has one zero in K1. Continue this with F replaced by K1, we get
K2 = K1[· · · , xh, . . . ]/m2. Each polynomial in K1 has one zero in K2. Continue this way....
Define K =

⋃
n≥1

Kn. We claim that K is algebraically closed. This is because for any

f(x) = xn + · · · ∈ K[x], it belongs to some Km[x] for some m; then it splits in Km+n[x].
This K is an algebraically closed field containing F .
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22. Noether normalization and Hilbert Nullstellensatz

Today, all rings are commutative.

22.1. Integral ring extension. Recall from the field extensions, we have proved that for
a field extension K/F ,

K/F is a finite extension ⇐⇒ K/F is finitely generated and algebraic.

We develop the corresponding theory for rings.

Definition 22.1.1. Let A ⊆ B be a subring. An element x ∈ B is called integral over A
if it satisfies a monic equation

xn + an−1x
n−1 + · · ·+ a0 = 0

for some a0, . . . , an−1 ∈ A.

We point out that, since the polynomial ring over a general ring is no longer a PID, we
do not have the notion of “minimal polynomial” here.

Proposition 22.1.2. The following are equivalent.

(1) x ∈ B is integral over A;
(2) A[x] (= ring of all elements in B that can be expressed by a polynomial in x with

coefficients in A) is a finitely generated A-module;
(3) A[x] is contained in a subring C of B such that C is a finitely generated A-module.

Proof. (1) ⇒ (2). Assume that x satisfies xn + an−1x
n−1 + · · ·+ a0 = 0 for a0, . . . , an−1 ∈ A.

So each xn+r for r ∈ Z≥0 may be replaced by −an−1x
n+r−1 − · · · − a0xr. From this, we see

that A[x] is generated by 1, x, . . . , xn−1 as an A-module.
(2) ⇒ (3) Take C = A[x].
(3) ⇒ (1) Assume that C is generated by e1, . . . , en as an A-module (not necessarily a

basis; so there might be relations). We may write each xej (for j = 1, . . . , n) as an A-linear
combination of this set of generators, i.e.

xej = a1je1 + a2je2 + · · · anjen for a1j, . . . , anj ∈ A.

(There might be more than one way to write xej; we take any such expression.) Writing this
collectively, we have

(e1, . . . , en)x = (e1, . . . , en)

a11 · · · a1n
...

. . .
...

an1 · · · ann



(e1, . . . , en)

x− a11 −a12 · · · −a1n
...

...
. . .

...

−an1 −an2 · · · x− ann

 = 0.

Write S for the matrix on the right. By Cayley–Hamilton theorem, det(S) kills all elements
e1, . . . , en. But 1 is a linear combination of e1, . . . , en. So det(S) = 0; this shows that x is
integral over A. □
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Corollary 22.1.3. Let x1, . . . , xn be elements of B, each integral over A. Then A[x1, . . . , xn]
is a finitely generated A-module.

Proof. For each i, assume that xmi
i + ai,mi−1x

mi−1
i + · · · + ai,0 = 0 for some mi ∈ N and

ai,j ∈ A. Then A[x1, . . . , xm] is generated as an A-module by monomials xα1
1 · · ·xαn

n with
each αi ∈ {0, . . . ,mi − 1}. In particular A[x1, . . . , xn] is a finitely generated A-module. □

Corollary 22.1.4. The set C of elements of B which are integral over A is a subring of B
containing A.

Proof. Given x, y ∈ C, the previous corollary implies that A[x, y] is a finitely generated
A-module. By Proposition 22.1.2, x± y, xy ∈ A[x, y] are integral over A; so x± y, xy ∈ C.
Thus, C is a subring of B. □

Definition 22.1.5. This C in Corollary 22.1.4 is called the integral closure of A in B.

(1) If C = A, we say that A is integrally closed in B.
(2) If C = B, we say that B is integral over A.

Corollary 22.1.6. If A ⊆ B ⊆ C are rings and if B is integral over A and C is integral
over B, then C is integral over A.

Proof. (Compare with the proof of Theorem 14.4.14.) Let x ∈ C, the integrality implies that
xn+bn−1x

n−1+· · ·+b0 = 0 with b0, . . . , bn−1 ∈ B. Consider the subringB′ = A[b0, . . . , bn−1] ⊆
B. See the following diagram.

C B′[x]

B B′ = A[b1, . . . , bn]

A

⊇

⊇

This B′ is a finitely generated A-module as each b0, . . . , bn−1 is integral over A. Then B′[x]
is a finitely generated A-module, and hence x is integral over A. □

Corollary 22.1.7. Let A ⊆ B be rings and let C be the integral closure of A in B. Then C
is integrally closed in B.

Proof. If x ∈ C is integral over B, then x is integral over A by the previous corollary. Thus
x ∈ C. □

22.2. Noether normalization.

Definition 22.2.1. Let k be a field, a finitely generated k-algebra is a quotient R =
k[x1, . . . , xn]/I for some n ∈ N and some ideal I.
More generally, forA a ring, a finitely generated A-algebra is a quotient ofA[x1, . . . , xn].

Theorem 22.2.2 (Noether normalization). There exists some r ≤ n and an injective ho-
momorphism

φ : k[y] = k[y1, . . . , yr] ↪→ R

such that R is integral over k[y] (when we view k[y] as a subring of R).
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Proof by Nagata. We prove the theorem by induction on n. Suppose that the theorem was
proved when the ring R is generated by n−1 elements. Now if R is generated by n elements
x1, . . . , xn, i.e. R = k[x1, . . . , xn]/I. If I = (0), take r = n and yi = xi for i = 1, . . . , n; we
are done.

Now assume that I ̸= (0). Take a nonzero polynomial f(x) ∈ I. Take positive integers
r2, . . . , rn and put

z2 = x2 − xr21 , z3 = x3 − xr31 , . . . , zn = xn − xrn1 .
Consider the isomorphism

k[x1, . . . , xn] I f(x1, . . . , xn)

k[x1, z2, . . . , zn] Ĩ f̃(x1, z2, . . . , zn)

∼=

⊇ ∋
∼=

⊇ ∋

The vertical arrow takes f to f̃ . We will assume that 0≪ r2 ≪ r3 ≪ · · · ≪ rn. Then f̃ has
a unique leading term in x1, namely

f̃ = a · xN1 + lower degree terms.

So k[x1, . . . , xn]/(f̃) is integral over k[z2, . . . , zn].
Note that the natural map k[z2, . . . , zn]→ R = k[x1, z2, . . . , zn]/Ĩ has kernel Ĩ ∩ k[z]. We

put R′ = k[z2, . . . , zn]/(Ĩ ∩ k[z]), then we have a natural injection R′ ↪→ R, and may view
R′ as a subring of R. Consider the following diagram.

k[x1, z2, . . . , zn]/(f̃) k[x1, z2, . . . , zn]/Ĩ = R

k[z2, . . . , zn] k[z2, . . . , zn]/(Ĩ ∩ k[z]) = R′ k[y1, . . . , yr]

integral integral

integral

The left vertical arrow the integral extension we just proved; both rings naturally surject
to the middle column; the middle vertical arrow is then integral. This is because given any
element s of R, it can be lifted to an element of the quotient s̃ ∈ k[x1, z2, . . . , zn]/(f̃), which
then satisfies an equation s̃n + ãn−1s̃

n−1 + · · · + ã0 = 0 for some n ∈ N and ã0, . . . , ãn−1 ∈
k[z2, . . . , zn]. Taking the image of this equation in R′ shows that s is integral over R′. By
inductive hypothesis, R′ is generated over k by n−1 variables; so there exist some embedding
k[y1, . . . , yr] ↪→ R′ such that R′ is integral over k[y1, . . . , yr]. By transitivity of integrality, R
is integral over k[y1, . . . , yr]. This completes the inductive proof of the Noether normalization
theorem. □

Remark 22.2.3. The meaning of Noether normalization may be interpreted as: any finitely
generated k-algebra is integral over some free k-algebra.

22.3. Weak Hilbert Nullstellensatz. First recall the statement of weak form of Hilbert
Nullstellensatz theorem.

Theorem 22.3.1. Let k be an algebraically closed field. Every maximal ideal m of k[x1, . . . , xn]
is of the form ma = (x1 − a1, . . . , xn − an) for some a = (a1, . . . , an) ∈ kn.

We now discuss the case when k is not algebraically closed. We start with an example.
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Example 22.3.2. In R[x], (x2 + 1) is a maximal ideal. Factor x2 + 1 = (x+ i)(x− i); so it
corresponds to two points x = i and x = −i. But none of the points belong to R. Yet note
that these two points are conjugate.

In general, we get an map

M : (kalg)n
{
maximal ideals of k[x1, . . . , xn]

}
a = (a1, . . . , an) ma := ker

(
k[x1, . . . , xn]

eva−−→ k(a1, . . . , an) ⊆ kalg
)
.

Theorem 22.3.3 (weak Nullstellensatz for general fields). All maximal ideals of k[x1, . . . , xn]
arise this way.

This theorem will be proved soon.
ButM is not one-to-one. For each σ ∈ Gal(kalg/k) = Aut(kalg/k), we get another point

k[x1, . . . , xn] kalg kalg.
eva

evσ(a)

σ

Note that ker eva = ker evσ(a).

Theorem 22.3.4. The mapM induces a bijection{
Gal(kalg/k)-orbits of (kalg)n

}
←→

{
maximal ideals of k[x1, . . . , xn]

}
.

Proof. We have seen thatM is surjective and that ma = mσ(a).
Conversely, if ker eva = ker evb = m, then we have the following diagram.

k[x1, . . . , xn] k[x1, . . . , xn]/m k(a) kalg

k[x1, . . . , xn] k[x1, . . . , xn]/m k(b) kalg.

∼=
∼= η

⊆
∼= η̃

∼= ⊆

Here the isomorphism η : k(a) → k(b) is induced by that of the identifications with
k[x1, . . . , xn]/m. This isomorphism extends to an isomorphism η̃ : kalg ∼= kalg. So η̃(a) = b,
i.e. a and b lie in the same orbit. □

We need a lemma before proving the Nullstellensatz.

Lemma 22.3.5. Let R be a field and S ⊆ R be a subring wuch that R is intgral over S.
Then S is a field (and hence R is an algebraic extension of S).

Proof. Clearly, S is an integral domain. It suffices to prove that s ∈ S implies s−1 ∈ S.
Note s−1 ∈ R is integral over S. So

s−n + bn−1s
1−n + · · ·+ b1s

−1 + b0 = 0.

s−1 = −bn−1 − bn−2s− · · · − b0sn−1 ∈ S.
□

We now give the proof of Theorem 22.3.3.
161



Proof of weak Nullstellensatz Theorem 22.3.3. Let m be a maximal ideal. Consider the fol-
lowing diagram.

k[x1, . . . , xn] k[x1, . . . , xn]/m

k[y1, . . . , yr]

integral

By Noether normalization, k[x1, . . . , xn]/m is integral over some polynomial algebra k[y1, . . . , yr].
Yet k[x1, . . . , xn]/m is a field; Lemma 22.3.5 implies that k[y1, . . . , yr] is field; so r = 0.
Thus k[x1, . . . , xn]/m is a finite extension of k; so it is a finite extension. Put ℓ :=

k[x1, . . . , xn]/m. It embeds into kalg. Write ai for the image of xi in the quotient ℓ. So we
have

m ∼=
(
k[x1, . . . , xn] ℓ ⊆ kalg

)
xi ai.

□

22.4. Algebraic sets and Hilbert Nullstellensatz.

Theorem 22.4.1 (Strong form of Nullstellensatz). Let k be an algebraically closed field. For

an ideal I ⊆ k[x1, . . . , xn], we have I(Z(I)) =
√
I.

Proof. It is clear that
√
I ⊆ I(Z(I)): if f ∈

√
I, then fn ∈ Z(I); so fn vanishes on Z(I)

and thus f vanishes on Z(I). So f ∈ I(Z(I)).
Conversely, we want to show that I(Z(I)) ⊆

√
I, i.e. if I = (f1, . . . , fm) and if g ∈

k[x1, . . . , xn] satisfies

(22.4.1.1) ∀ a ∈ kn, f1(a) = · · · = fm(a) = 0 ⇒ g(a) = 0,

then there exist some ℓ ∈ N such that gℓ ∈ (f1, . . . , fm). (Here, we secretly assumed that I
is finitely generated; this is true, but we do not prove it here. The proof in fact does not
depend on this finite generation.)

Now we add one more variable and consider the ideal

J = I · k[x1, . . . , xn, xn+1] + (1− g · xn+1) ⊆ k[x1, . . . , xn+1].

Let us give this a bit more explanation: the condition (22.4.1.1) can be interpreted as

(22.4.1.2)
{
a ∈ kn

∣∣ f1(a) = · · · = fm(a) = 0, g(a) ̸= 0
}
= ∅.

The condition g(a) ̸= 0 is the same as: there exists an+1 ∈ k such that an+1 · g(a) = 1. So
(22.4.1.2) is equivalent to saying that:{

(a1, . . . , an+1) ∈ kn+1
∣∣ f1(a) = · · · = fm(a) = 0, an+1 · g(a) = 1

}
= ∅.

So it is expected that the ideal J is in fact the unit ideal.

Case 1: J ̸= (1). Then J is contained in a maximal ideal m ⊆ k[x1, . . . , xn+1]. By weak
Nullstellensatz, m = (x1 − a1, . . . , xn+1 − an+1) for some a1, . . . , an+1 ∈ k. Under the map

φ : k[x1, . . . , xn+1]↠ k[x1, . . . , xn+1]/m = k,

we have for any i,
0 = φ(fi) = fi(a1, . . . , an) as fi belongs to J .
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This implies by (22.4.1.1) that g(a) = 0. Yet as 1− xn+1g(x) ∈ J , we have

0 = φ(1− xn+1g(x)) = 1− an+1g(a).

This contradicts with g(a) = 0.
Case 2: J = (1). So there are polynomials h1, . . . , hm+1 ∈ k[x1, . . . , xn+1], such that

1 = h1f1 + · · ·+ hmfm + (1− xn+1g)hm+1 in k[x1, . . . , xn+1].

In k(x1, . . . , xn), we substitute xn+1 = g−1 to get

1 = (h1f1 + · · ·+ hmfm)(x1, . . . , xn, g
−1).

Clearing the g in the denominator shows that

gℓ = h∗1f1 + · · ·+ h∗mfm

for some new polynomial h∗i . This shows that g ∈
√
I. □

Theorem 22.4.2 (Full Nullstellensatz). Assume that k is a algebraically closed field. There
is a one-to-one bijection between{

Algebraic subsets of kn
} {

radical ideals of k[x1, . . . , xn]
}

Z I(Z)

Z(I) I

Moreover, we have the following properties.

(1) I1 ⊆ I2 ⇔ Z(I1) ⊇ Z(I2).
(2) Z(I1 + I2) = Z(I1) ∩ Z(I2).
(3) Z(I1 ∩ I2) = Z(I1) ∪ Z(I2).

Proof. We have just proved that, if I is radical, then I(Z(I)) =
√
I = I.

Conversely, for an algebraic set Z = Z(J), we may first assume that J is radical because

Z(J) = Z(
√
J). Now, we have

Z(I(Z)) = Z(I(Z(J)) = Z(J) = Z.

(1) and (2) are obvious.
(3) It is clear that Z(I1 ∩ I2) ⊇ Z(I1) ∪ Z(I2). We need to show that Z(I1 ∩ I2) ⊆

Z(I1) ∪ Z(I2). Suppose that z /∈ Z(I1) ∪ Z(I2), then there exists f1 ∈ I1 and f2 ∈ I2 such
that f1(z) ̸= 0 and f2(z) ̸= 0. Thus, f := f1f2 ∈ I1 ∩ I2 and f(z) ̸= 0. It then follows that
z /∈ Z(I1 ∩ I2). So Z(I1 ∩ I2) ⊆ Z(I1) ∪ Z(I2). □

Final note on page 163:

eπ
√
163 = 262 537 412 640 768 743.999 999 999 999 25 · · · ≈ 640 3203 + 744.
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