For submission of homework, please finish the 20 True/False problems, 5 examples/counterexample problems, and choose 7 problems from the standard ones and 5 problems from the more difficult ones. Mark the question numbers clearly.
$[\mathrm{A}]=$ Artin,$\quad[\mathrm{DF}]=$ Dummit and Foote,$\quad[\mathrm{DN}]=$ Ding and Nie (Chinese),$\quad[\mathrm{H}]=$ Hungerford.
6.1. True/False questions. (Only write T or F when submitting the solutions.)
(1) A field extension of degree 2 is always normal.
(2) A field extension of degree 2 is always separable.
(3) For a finite field extension K over F, one can find always find an element $\alpha \in K$ such that $K=F(\alpha)$.
(4) A finite extension of a perfect field can be generated by one element.
(5) If L / K is the splitting field of $f(x) \in K[x]$, then for any intermediate field E of L / K, L is a splitting field of $f(x)$ over E.
(6) Let p be a prime number. The additive group of a finite field of p^{n} elements is a cyclic group of order p^{n}.
(7) If p is a prime number, there exists an irreducible polynomial of degree p in $\mathbb{F}_{p}[x]$.
(8) Every finite extension of a finite field is separable.
(9) If all finite extensions of F are separable, then F is a perfect field.
(10) If F is a perfect field, then any field extension of F is a perfect field.
(11) Let K / F be a finite Galois extension of fields with Galois group G. Then G is a simple group if and only if there is no intermediate field E that is Galois over F (except for K and F themselves).
(12) Let K / F be a finite Galois extension of fields with Galois group G. Then G is a simple group if and only if there is no intermediate field E such that K is Galois over E (except for K and F themselves).
(13) The Galois group of a finite extension of finite fields is always abelian.
(14) The Galois group of the splitting field of $\Phi_{n}(x)$ over \mathbb{Q} is cyclic.
(15) Let K_{1} and K_{2} be two Galois extensions of F such that $\operatorname{Gal}\left(K_{1} / F\right) \cong \operatorname{Gal}\left(K_{2} / F\right)$, then $K_{1} \cong K_{2}$.
(16) Let K be a finite Galois extension of F. If two intermediate fields K_{1} and K_{2} satisfies $\operatorname{Gal}\left(K / K_{1}\right)$ is isomorphic to $\operatorname{Gal}\left(K / K_{2}\right)$, then $K_{1}=K_{2}$.
(17) Let K / F be a finite cyclic extension of fields of degree n. Then for each divisor d of n, there is a unique intermediate field of K / F that has degree d over F.
(18) $\mathbb{F}_{5}(y)$ is a separable extension of $\mathbb{F}_{5}\left(y^{10}\right)$.
(19) If $f(x) \in F[x]$ is an irreducible polynomial and if α is a simple zero of $f(x)$ in some field extension of F, then the splitting field of $f(x)$ over F is separable over F.
(20) Let K be a finite extension of degree n of a finite field F. Then for each positive integer $d \mid n$, there is a unique subfield E of K containing F such that E is a finite extension of F of degree d.
6.2. Warm-up questions. (Do not submit solutions for the following questions)

Problem 6.2.1. Prove that the cardinality of every finite field is a power of a prime.
Problem 6.2.2. List all subfields of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$.
List all subfields of $\mathbb{Q}\left(\sqrt[3]{2}, \zeta_{3}\right)$.
Write these fields as a tower of fields.
Problem 6.2.3. Determine the splitting field of $x^{6}+2 x^{3}+2$ over \mathbb{F}_{3}.
Problem 6.2.4 (DN, page 234, problem 6). Find a basis of the following field extensions:
(1) $K=\mathbb{Q}(\sqrt{2}, \sqrt{3})$
(2) $K=\mathbb{Q}(\sqrt{3}, \sqrt{-1}, \omega)$ with $\omega=\frac{1}{2}(-1+\sqrt{-3})$.

Problem 6.2.5. If F is a field that is not perfect, show that F has a nontrivial purely inseparable extension.

Problem 6.2.6. [DF, page 551, problem 6]
Let p be a prime number and $n \in \mathbb{N}$. Prove that $x^{p^{n}-1}-1=\prod_{\alpha \in \mathbb{F}_{p^{n}}^{\times}}(x-\alpha)$. Conclude that $\prod_{\alpha \in \mathbb{F}_{p^{n}}^{\times}} \alpha=(-1)^{p^{n}}$.

Derive from this the Wilson's Theorem: for odd prime $p,(p-1)!\equiv-1(\bmod p)$.
Problem 6.2.7. [H, page 268, problem 12]
Let $K / E / F$ be algebraic field extensions.
(1) If $u \in K$ is separable over F, then u is separable over E.
(2) If K is separable over F, then K is separable over E and E is separable over F.

Problem 6.2.8. Let F be a field of characteristic $p>0$. Prove that
(1) Let $f(x) \in F[x]$ be an irreducible polynomial with degree relatively prime to p. Then $f(x)$ is separable over F.
(2) Show that if an extension K / F has degree $[K: F$] relatively prime to p, then K / F is separable.
Problem 6.2.9. [DF, page 555, probem 6]
Prove that for n odd, $n>1, \Phi_{2 n}(x)=\Phi_{n}(-x)$.
Problem 6.2.10. Let K / F be a finite separable extension. Then a normal closure of K / F is also separable over F.
Problem 6.2.11. Let $\zeta=\zeta_{11}$. Show that $\alpha:=\zeta+\zeta^{3}+\zeta^{4}+\zeta^{5}+\zeta^{9}$ generates a field of degree 2 over \mathbb{Q} and find its equation.
(Is there a reason to understand why this sum of powers of ζ is special?)
6.3. Examples and counterexamples. (Answer all 5 problems below. Only give the examples; no need to explain why.)

Problem 6.3.1. Give an example of a perfect field of positive characteristic that is not finite.
Problem 6.3.2. Give an example of a field extension that is algebraic but not finite.
Problem 6.3.3. Give an example of an extension of degree 2 that is not separable.
Problem 6.3.4. Give an example of a field extension K over F and two intermediate fields K_{1} and K_{2} of F such that

$$
\left[K_{1} K_{2}: F\right] \neq\left[K_{1}: F\right] \cdot\left[K_{2}: F\right] .
$$

Problem 6.3.5. Give an example of a field F and two finite extensions K_{1} and K_{2} such that

- $\left[K_{1}: F\right] \neq\left[K_{2}: F\right]$
- K_{1} is abstractly isomorphic to K_{2}.
6.4. Standard questions. (Please choose 8 problems from the following questions)

Problem 6.4.1. [DF, page 545, problems 3, 4]
Determine the splitting field and its degree over \mathbb{Q} of $x^{4}+x^{2}+1$, and of $x^{6}-4$.
Problem 6.4.2. [DF, page 545, problems 5 and 6]
Let K be a finite extension of F and let K_{1} and K_{2} intermediate fields that are normal extensions of F. Given one-line argument to show that both $K_{1} K_{2}$ and $K_{1} \cap K_{2}$ are normal extensions of F.

Problem 6.4.3. [DN, page 234, problem 14]
If $F \subseteq K \subseteq L$ is a tower of field extensions and if K / F and L / K are normal extensions, is it true that L / F is normal? If true, prove it, otherwise, give a counterexample.

Problem 6.4.4. [DN, page 234, problems 17 and 18]
Let K and L be two intermediate fields of the field extension E / F. Show that
(1) if K / F is normal, then the composite $K L$ is normal over L; and
(2) if K / F and L / F are both normal, then the composite $K L$ and the intersection $K \cap L$ are both normal in F.

Problem 6.4.5. [DN, page 235, problem 19]
Let E / F be a finite normal extension and let $f(x) \in F[x]$ be an irreducible polynomial. Prove that $f(x)$ factors on E as the product

$$
f(x)=\left(f_{1}(x) f_{2}(x) \cdots f_{r}(x)\right)^{p^{e}}
$$

with $e \geq 0$ and all $f_{i}(x)$ having the same degree.
Problem 6.4.6. [DN, page 235, problem 22]
Let \mathbb{F}_{p} be the finite field of p elements (p a prime number), and $f(x) \in \mathbb{F}_{p}[x]$ an irreducible polynomial of degree n. Let $P_{d}(x)$ denote the product of all monic irreducible polynomials of degree d. Prove that
(1) $f(x) \mid x^{p^{m}}-x$ if and only if $n \mid m$;
(2) $\left(x^{p^{n}}-x\right) \mid\left(x^{p^{m}}-x\right)$ if and only if $n \mid m$;
(3) $x^{p^{n}}-x=\prod_{d \mid n} P_{d}(x)$;
(4) $P_{n}(x)=\prod_{d \mid n}\left(x^{p^{d}}-x\right)^{\mu(n / d)}$, where $\mu(n)$ is the Mobius function;
(5) Show that the number of irreducible monic polynomials of degree n is

$$
N_{n}=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) p^{d}
$$

Problem 6.4.7. [DN, page 236, problem 27]
Let F be a field of characteristic $p>0$ and let $a \in F$ but $a \notin F^{p}$. Then $x^{p^{e}}-a$ with $e \geq 1$ is irreducible over F.

Problem 6.4.8. Write $\zeta_{13}=e^{2 \pi i / 13}$.
(1) Find a generator for the unique cubic subfield of $\mathbb{Q}\left(\zeta_{13}\right)$.
(2) Find the minimal polynomial of that generator over \mathbb{Q}.

Problem 6.4.9. [DF, page 556, problem 8]
Let ℓ be a prime and let $\Phi_{\ell}(x)=\frac{x^{\ell}-1}{x-1}=x^{\ell-1}+x^{\ell-2}+\cdots+x+1 \in \mathbb{Z}[x]$ be the ℓ th cyclotomic polynomial, irreducible in $\mathbb{Z}[x]$. This exercise determines the factorization of $\Phi_{\ell}(x)$ modulo p for any prime p. Let ζ denote any fixed primitive ℓ th root of unity.
(1) Show that if $p=\ell$ then $\Phi_{\ell}(x)=(x-1)^{\ell-1} \in \mathbb{F}_{\ell}[x]$.
(2) Suppose $p \neq \ell$ and let f denote the order of $p \bmod \ell$, i.e., f is the smallest power of p with $p^{f}=1 \bmod \ell$. Show that $n=f$ is the smallest power p^{n} of p that contains a primitive ℓ th root of unity ζ, i.e. a zero of $\Phi_{\ell}(x) \bmod p$. Conclude that the minimal polynomial of ζ over \mathbb{F}_{p} has degree f.
(3) Show that $\mathbb{F}_{p}(\zeta)=\mathbb{F}_{p}\left(\zeta^{a}\right)$ for any integer a not divisible by ℓ. Conclude using (2) that, in $\mathbb{F}_{p}[x], \Phi_{\ell}(x)$ is the product of $\frac{\ell-1}{f}$ distinct irreducible polynomials of degree f.
(4) In particular, prove that, viewed in $\mathbb{F}_{p}[x], \Phi_{7}(x)=x^{6}+x^{5}+\cdots+1$ is $(x-1)^{6}$ for $p=7$, a product of distinct linear factors for $p \equiv 1 \bmod 7$, a product of 3 irreducible quadratics for $p \equiv 6 \bmod 7$, a product of 2 irreducible cubics for $p \equiv 2,4 \bmod 7$, and is irreducible for $p \equiv 3,5 \bmod 7$.

Problem 6.4.10. [DF, page 595, problem 3]
Let F be a field contained in the ring of $n \times n$ matrices over \mathbb{Q}. Prove that $[F: \mathbb{Q}] \leq n$. (Hint: Cayley-Hamilton theorem.)
Problem 6.4.11. [DF, page 603, problem 7]
Show that complex conjugation restricts to the automorphism $\sigma_{-1} \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ of the cyclotomic field of nth roots of unity. Show that the field $K^{+}=\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$ is the subfield of real elements in $K=\mathbb{Q}\left(\zeta_{n}\right)$, called the maximal real subfield of K.

Problem 6.4.12. [DF, page 603, problem 11]
Prove that the primitive $n^{\text {th }}$ roots of unity form a basis over \mathbb{Q} for the cyclotomic field of $n^{\text {th }}$ roots of unity if and only if n is squarefree.

Problem 6.4.13. [DF, page 617, problem 3]
Prove that for any $a, b \in \mathbb{F}_{p^{n}}$ that if $x^{3}+a x+b$ is irreducible then $-4 a^{3}-27 b^{2}$ is a square in $\mathbb{F}_{p^{n}}$.

Problem 6.4.14. Let $F \subseteq E$ be finite fields, where $|F|=q<\infty$ and $[E: F]=n$.
(1) Prove that every monic irreducible polynomial in $F[X]$ of degree dividing n is the minimal polynomial over F of some element of E.
(2) Compute the product of all the monic irreducible polynomials in $F[X]$ of degree dividing n.
(3) Suppose $|F|=2$. Determine the number of monic irreducible polynomials of degree 10 in $F[X]$.
Problem 6.4.15. Let k be a perfect field of characteristic $p>0$. Let $F=k(t)$ be the field of rational functions in one variable over k. Show that every finite extension E of F can be generated by one element, that is, there exists $\alpha \in E$ such that $E=F(\alpha)$.
6.5. More difficult questions. (Please choose 4 problems from the following questions)

Problem 6.5.1. [DN, page 220, Lemma 2]
Let F be a field of characteristic $p>0$ and $a \in F$. Then $x^{p}-a$ is either irreducible or it factors completely as $x^{p}-a=(x-b)^{p}$ for some $b \in F$.

Problem 6.5.2. Let K / F be a finite extension.
(1) Show that $K^{s}:=\{\alpha \in K$ separable over $F\}$ is the maximal intermediate field that is separable over F.

Define

$$
[K: F]_{s}:=\left[K^{s}: F\right] \quad \text { and } \quad[K: F]_{i}:=\left[K: K^{s}\right] .
$$

(2) Show that, if E is a normal extension of F that contains K, then

$$
\left|\operatorname{Hom}_{F}(K, E)\right|=\left|\operatorname{Hom}_{F}\left(K^{s}, E\right)\right|=[K: F]_{s}
$$

(The latter equality is a theorem from the class; so no need to prove.)
(3) Show that if $L / K / F$ be finite extensions, then

$$
[L: F]_{s}=[L: K]_{s} \cdot[K: F]_{s} \quad \text { and } \quad[L: F]_{i}=[L: K]_{i} \cdot[K: F]_{i}
$$

Challenge: What if we only assume K / F is algebraic? (Tricky part: even if an extension is infinite, the separable or the inseparable degrees could still be finite.)

Problem 6.5.3. [DF, page 551, problem 5] and Yau contest 2021
For any prime p and any nonzero $a \in \mathbb{F}_{p}$ prove that $x^{p}-x+a$ is irreducible and separable over \mathbb{F}_{p}.
(There are hints on the book.)
Problem 6.5.4. [H, page 282, problem 9]
If $n \geq 3$, then $x^{2^{n}}+x+1$ is reducible in \mathbb{F}_{2}.
Problem 6.5.5. [DN, page 237, problems 38 and 39]
(1) Let K / F be a simple algebraic extension. Let $K=F(\theta)$. Let L be an intermediate field of K / F. Show that the minimal polynomial of θ over $L: g(x)=x^{r}+\alpha_{1} x^{r-1}+\cdots+\alpha_{r}$, satisfies that $F\left(\alpha_{1}, \ldots, \alpha_{r}\right)=L$. From this, deduce that a simple algebraic extension can only have finitely many intermediate fields.
(2) Let F be an infinite field and K / F an algebraic extension. Show that if K / F has only finitely many intermediate field, then for every elements $\alpha, \beta \in K$, the composite of $F(\alpha)$ and $F(\beta)$ inside K is still a simple extension of F.

From this, deduce that if an algebraic extension K / F has only finitely many intermediate fields, then K / F is a simple extension.

Problem 6.5.6. [DF, page 556, problems 10 and 12]
Let φ denote the Frobenius map $x \mapsto x^{p}$ on the finite field $\mathbb{F}_{p^{n}}$. Prove that φ^{n} is the identity map and no lower power of φ is the identity.

Determine the Jordan canonical form over \mathbb{F}_{p} when viewing φ as an \mathbb{F}_{p}-linear operator on the n-dimensional \mathbb{F}_{p}-vector space $\mathbb{F}_{p^{n}}$. (What if $p \mid n$?) Here, by Jordan canonical form, we meant to first write φ in terms of an $n \times n$ matrix (with entries in \mathbb{F}_{p}) and then take the compute the canonical form in an extension $\mathbb{F}_{p^{N}}$ of \mathbb{F}_{p} (for N sufficiently divisible).

Problem 6.5.7. [DF, page 556, problem 13] (Wedderburn's Theorem on Finite Division Rings)

This exercises aim to prove Wedderburn's Theorem that a finite division ring D is a field (i.e. is commutative).
(1) Let Z denote the center of D. Prove that Z is a field containing \mathbb{F}_{p} for some prime p. If $Z=\mathbb{F}_{q}$, prove that D has order q^{n} for some integer n.
(2) The nonzero elements D^{\times}of D form a multiplicative group. For any $x \in D^{\times}$show that the elements of D which commute with x form a division ring which contains Z.

Show that this division ring is of order q^{m} for some integer m and that $m<n$ if x is not an element of Z.
Show that the class equation for the group D^{\times}is

$$
q^{n}-1=(q-1)+\sum_{i=1}^{r} \frac{q^{n}-1}{\left|C_{D \times}\left(x_{i}\right)\right|},
$$

where x_{1}, \ldots, x_{r} are representatives of the distinct conjugacy classes in D^{\times}not contained in the center of D^{\times}.

Conclude from (2) that for each $i,\left|C_{D^{\times}}\left(x_{i}\right)\right|=q^{m_{i}}-1$ for some $m_{i}<n$.
(4) Prove that since $\frac{q^{n}-1}{q^{m_{i}-1}}$ is an integer (being the index $\left[D^{\times}: C_{D \times}\left(x_{i}\right)\right]$), then m_{i} divides n.

Conclude that the integer $\Phi_{n}(q)$ divides $\left(q^{n}-1\right) /\left(q^{m_{i}}-1\right)$ for $i=1, \ldots, r$.
(5) Prove that (3) and (4) implies that $\Phi_{n}(q)=\prod_{\zeta \text { primitive }}(q-\zeta)$ divides $q-1$. Prove that $|q-\zeta|>q-1$ (in terms of complex absolute values) for any root of unity $\zeta \neq 1$. Conclude that $n-1$, i.e. $D=Z$ is a field.

Problem 6.5.8. (Transcendental degree, following [Ar, page 525-526]) Let K be a field extension of F. We say a set of elements $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset K$ is algebraically independent over F if there is a nonzero polynomial in n variables $f\left(x_{1}, \ldots, x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0
$$

If no such nonzero polynomial f exist, we say that $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is algebraically independent.
(1) Show that $\{\sqrt{\pi}, \sqrt[4]{\pi} \sqrt{\pi-1}\}$ is algebraically dependent over \mathbb{Q}.
(2) Show that if $\alpha_{1}, \ldots, \alpha_{n}$ are algebraically independent over F, then $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is isomorphic to $F\left(x_{1}, \ldots, x_{n}\right)$ of rational functions in x_{1}, \ldots, x_{n}.

We say that $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is a transcendental basis of K over F if $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is linearly independent over F, and K is an algebraic extension over $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
(3) Let $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ and $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ be elements in an extension K of a field F. Assume that K is algebraic over $F\left(\beta_{1}, \ldots, \beta_{n}\right)$ and that $\alpha_{1}, \ldots, \alpha_{m}$ are algebraically independent over F. Then $m \leq n$, and $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ can be completed into a transcendental basis for K by adding at most $(n-m)$ elements from $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$.
(Corollary of (3): when K has a (finite) transcendental basis over F, we may define its transcendental degree over F to be, $\operatorname{tr} \cdot \operatorname{deg}(K / F)$ the cardinality of a transcendental basis. By (3), such number does not depend on the choice of transcendental bases.)

Note: examples of transcendental extensions to keep in minds include $\mathbb{Q}(x)\left(\sqrt{x^{3}-x}\right)$ (having transcendental degree 1).

Problem 6.5.9 (Chevalley-Warning problem). Let \mathbb{F}_{q} be a finite field of cardinality $q=p^{r}$.
(a) Let $0 \leq a<q-1$ be an integer. Show that

$$
S\left(X^{a}\right):=\sum_{a \in \mathbb{F}} x^{a}
$$

is equal to 0 . Here we adopt the convention that $a^{0}=1$ in \mathbb{F}_{q} even for $x=0$.
(b) Let $f_{1}, \ldots, f_{m} \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$ be polynomials in n variables satisfying

$$
\sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)<n
$$

Show that $P=\prod_{i=1}^{m}\left(1-f_{i}^{q-1}\right)$ satisfies

$$
S(P):=\sum_{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}} P\left(x_{1}, \ldots, x_{n}\right)
$$

Deduce that p divides the cardinality of the set

$$
V=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n} \mid f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \forall i\right\} .
$$

(c) When f_{i} are homogeneous polynomials satisfying $f_{i}(0, \ldots, 0)=0$ for all i and $\sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)<$ n, show that f_{1}, \ldots, f_{n} has a common zero in the projective space $\mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$.

