2023 Fall Honors Algebra Exercise 5 (due on November 23 in recitation)
For submission of homework, please finish the 15 True/False problems, and choose 10 problems from the standard ones and 4 problems from the more difficult ones. Mark the question numbers clearly.
$[\mathrm{A}]=$ Artin,$\quad[\mathrm{DF}]=$ Dummit and Foote,$\quad[\mathrm{DN}]=$ Ding and Nie (Chinese),$\quad[\mathrm{H}]=$ Hungerford.
5.1. True/False questions. (Only write T or F when submitting the solutions.)
(1) If $\varphi: M \rightarrow N$ is an injective R-module homomorphism, then $\operatorname{ker}(\varphi)$ is empty.
(2) Viewing R as a left module over itself, any left R-module homomorphism $\phi: R \rightarrow R$ satisfies $\phi(a b)=\phi(a) \phi(b)$ for $a, b \in R$.
(3) Let R be a ring and let M and N be left R-modules. Then $\operatorname{Hom}_{R}(M, N)$ is a left R-module.
(4) If M is a finitely generated R-module that is generated by n elements then every quotient of M may be generated by n (or fewer) elements.
(5) If M is a left R-module and if there exists $r \in R^{\times}$such that $r m=0$ for every $m \in M$, then $M=0$.
(6) Let R be a ring. Any left R-module is also a \mathbb{Z}-module.
(7) Any ring R can be viewed as a left module over itself.
(8) Let M and N be two \mathbb{Q}-vector spaces and $\varphi: M \rightarrow N$ is a \mathbb{Z}-module homomorphism. Then φ is a \mathbb{Q}-linear map.
(9) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z})=0$.
(10) Let K / F be an extension and $\alpha \in K$ is an algebraic element over F. Then $\alpha^{2}+\alpha$ is algebraic over F.
(11) Every finite extension of fields is algebraic, and every algebraic extension of fields is finite.
(12) Let π be the usual ratio of a circle's circumference to its diameter. Then $\mathbb{Q}(\pi)$ is a normal extension of $\mathbb{Q}\left(\pi^{2}\right)$.
(13) If K / F is an algebraic extension, then for any intermediate field E, K is algebraic over E and E is algebraic over F.
(14) Let K / F be a finite field extension such that $[K: F]=p$ is a prime, then any element $\alpha \in K \backslash F$ generates K over F, i.e. $K=F(\alpha)$.
(15) Let K / F be a field extension and K_{1} and K_{2} intermediate fields. If K_{1} / F and K_{2} / F are algebraic, then $K_{1} K_{2} / F$ is also algebraic.
5.2. Warm-up questions. (Do not submit solutions for the following questions)

Problem 5.2.1. [DF, page 343, problem 4]
Let I_{1}, \ldots, I_{n} be left ideals of R and let

$$
M=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in I_{i}, \text { satisfiying } x_{1}+x_{2}+\cdots+x_{n}=0\right\}
$$

Show that this M is a left R-submodule of $R^{\oplus n}$. Can you realize it as a kernel of some R-module homomorphism?
Problem 5.2.2. [DF, page 356, problem 12]
Let R be a commutative ring and let A, B and M be R-modules. Prove the following isomorphisms of R-modules:
(1) $\operatorname{Hom}_{R}(A \oplus B, M) \cong \operatorname{Hom}_{R}(A, M) \oplus \operatorname{Hom}_{R}(B, M)$,
(2) $\operatorname{Hom}_{R}(M, A \oplus B) \cong \operatorname{Hom}_{R}(M, A) \oplus \operatorname{Hom}_{R}(M, B)$.

Problem 5.2.3. Let $\varphi: A \rightarrow B$ be a homomorphisms of left R-modules, and let A^{\prime} and B^{\prime} be left R-submodules of A and B, respectively. Show that $\varphi\left(A^{\prime}\right)$ is a left R-submodule of B and $\varphi^{-1}\left(B^{\prime}\right)$ is a left R-submodule of A.

Problem 5.2.4. Let A, B, C, D be left R-modules, let $\varphi: A \rightarrow B$ and $\psi: C \rightarrow D$ be R-module homomorphisms. Show that there are natural homomorphisms of abelian groups:

$$
\begin{array}{cc}
\operatorname{Hom}_{R}(B, C) \longrightarrow \operatorname{Hom}_{R}(A, C) & \operatorname{Hom}_{R}(B, C) \longrightarrow \operatorname{Hom}_{R}(B, D) \\
\eta \longmapsto \eta \circ \varphi & \eta \longmapsto \psi \circ \eta .
\end{array}
$$

Problem 5.2.5. Let R be a commutative ring and let M be an R-module. Show that $\operatorname{Hom}_{R}(M, M)$ is an R-algebra, that is, there is a natural homomorphism $R \rightarrow \operatorname{Hom}_{R}(M, M)$ and its image lies in the center of the endomorphism $\operatorname{ring} \operatorname{Hom}_{R}(M, M)$.
Problem 5.2.6. [DF, page 519, problem 2]
Show that $x^{3}-2 x-2$ is irreducible over \mathbb{Q} and let θ be a root (namely $x+\left(x^{3}-2 x-2\right)$ in $\mathbb{Q}(\theta)=\mathbb{Q}[x] /\left(x^{3}-2 x-2\right)$. Compute $(1+\theta)\left(1+\theta+\theta^{2}\right)$ and $\frac{1+\theta}{1+\theta+\theta^{2}}$ in $\mathbb{Q}(\theta)$.
Problem 5.2.7. Prove that the cardinality of every finite field is a power of a prime.
Problem 5.2.8. Give an example of a field extension that is algebraic but not finite.
Problem 5.2.9. Give an example of a field extension K over F and two intermediate fields K_{1} and K_{2} of F such that

$$
\left[K_{1} K_{2}: F\right] \neq\left[K_{1}: F\right] \cdot\left[K_{2}: F\right]
$$

Problem 5.2.10. Give an example of a field F and two finite extensions K_{1} and K_{2} such that

- $\left[K_{1}: F\right] \neq\left[K_{2}: F\right]$
- K_{1} is abstractly isomorphic to K_{2}.
5.3. Standard questions. (Please choose 10 problems from the following questions)

Problem 5.3.1. [DF, page 344, problem 8]
An element m of the R-module M is called a torsion element if $r m=0$ for some nonzero element $r \in R$. The set of torsion elements is denoted $M_{\text {tor }}=\{m \in M \mid r m=$ 0 for some nonzero $r \in R\}$.
(1) Prove that if R is an integral domain then $M_{\text {tor }}$ is a submodule of M (called the torsion submodule of M).
(2) Give an example of a ring R and an R-module M such that $M_{\text {tor }}$ is not a submodule.

Problem 5.3.2. [DF, page 344, problem 9]
If M is a left R-module, the annihilator of M in R is defined to be

$$
\operatorname{Ann}_{R}(M):=\{r \in R \mid r m=0 \text { for all } m \in M\} .
$$

Prove that $\operatorname{Ann}_{R}(M)$ is a 2 -sided ideal of R.
Problem 5.3.3. [DF, page 356, problem 7]
Let N be a submodule of M. Prove that if both M / N and N are finitely generated then so is M.

Problem 5.3.4. [DF, page 356, problems 9 and 10]
An R-module M is called irreducible if $M \neq 0$ and if 0 and M are the only submodules of M.
(1) Show that M is irreducible if and only if $M \neq 0$ and M is a cyclic module with any nonzero element as generator.
(2) Determine all the irreducible \mathbb{Z}-modules.
(3) Assume R is commutative. Show that an R-module M is irreducible if and only if M is isomorphic (as an R-module) to R / I where I is a maximal ideal of R.
Problem 5.3.5. Let R_{1} and R_{2} be rings and let $R:=R_{1} \times R_{2}$. Show that if M is an R-module, then we can canonically write $M \cong M_{1} \oplus M_{2}$ with M_{1} an R_{1}-module and M_{2} an R_{2}-module.

Explicitly, let $e_{1}=(1,0)$ and $e_{2}=(0,1)$ in R. Then $M_{i}=e_{i} M$.
Problem 5.3.6. Consider $R=\mathbb{Z}[x]$, and the ideal $I=(2, x)$. As an R-module, I is generated by two elements $2, x$. What's the relation? If we write this as a surjective R module homomorphism $R^{\oplus 2} \rightarrow I$ sending e_{1} to 2 and e_{2} to x, what is the kernel?

Problem 5.3.7. [A, page 487, problem 6.1]
Find a direct sum of cyclic groups which is isomorphic to the quotient

$$
\mathbb{Z}^{\oplus 3} / A \mathbb{Z}^{\oplus 3} \quad \text { with } \quad A=\left(\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 0 \\
2 & 0 & 2
\end{array}\right)
$$

Problem 5.3.8. [H, page 179, problems 9,10]
If $f: A \rightarrow A$ is a left R-module homomorphism such that $f \circ f=f$, then

$$
A=\operatorname{Ker}(f) \oplus \operatorname{Im}(f)
$$

More generally, Let A, A_{1}, \ldots, A_{n} be left R-modules. Then $A \cong A_{1} \oplus \cdots \oplus A_{n}$ if and only if for each $i=1, \ldots, n$ there is a left R-module homomorphism $\varphi_{i}: A \rightarrow A$ such that $\operatorname{Im}\left(\varphi_{i}\right) \cong A_{i} ; \varphi_{i} \varphi_{j}=0$ for $i \neq j$; and $\varphi_{1}+\varphi_{2}+\cdots+\varphi_{n}=1_{A}$.

Problem 5.3.9. [H, page 180, problem 15]
If $f: A \rightarrow B$ and $g: B \rightarrow A$ are R-module homomorphisms such that $g \circ f=1_{A}$, then $B=\operatorname{Im}(f) \oplus \operatorname{Ker}(g)$.

Problem 5.3.10. [DN, page 205, problem 1]
Let M be a finitely generated module over a PID R, and let x_{1}, \ldots, x_{n} be a set of generators. Suppose that $y_{1}=a_{1} x_{1}+\cdots+a_{n} x_{n}$. If $\left(a_{1}, \ldots, a_{n}\right)=1$, then there exist $y_{2}, \ldots, y_{n} \in M$ such that y_{1}, \ldots, y_{n} generate of M.
Problem 5.3.11. [DN, page 205, problem 4]
Prove that over a PID R, a finitely generated torsion nonzero module M cannot be written as the direct sum of two nonzero submodules if and only if $M \simeq R /\left(p^{e}\right)$ for p a prime element of R and $e \geq 1$.
Problem 5.3.12. [DN, page 206, problem 12]
Let R be a commutative ring. If all submodules of a free module over R are free over R, then R is a PID.

Problem 5.3.13. [DF, page 311, problem 8]
Prove that $K_{1}=\mathbb{F}_{11}[x] /\left(x^{2}+1\right)$ and $K_{2}=\mathbb{F}_{11}[y] /\left(y^{2}+2 y+2\right)$ are both fields with 121 elements. Prove that the map which sends the element $p(\bar{x})$ of K_{1} to the element $p(\bar{y}+1)$ of K_{2} (where p is any polynomial with coefficients in \mathbb{F}_{11}) is well defined and gives a ring (hence field) isomorphism from K_{1} to K_{2}.
Problem 5.3.14. Let L be a field extension of K of degree n and V a vector space of dimension m over L. Show that, viewing V as a vector space over K, it has dimension $m n$, namely

$$
\operatorname{dim}_{K}(V)=\operatorname{dim}_{L}(V) \cdot[L: K] .
$$

Problem 5.3.15. [DF, page 530, problems 7 and 8]
Prove that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Conclude that $[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}]=4$. Find the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}.

In general, let F be a field of characteristic $\neq 2$, and let D_{1}, D_{2} be nonzero elements in F that are not squares. Prove that $F\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)$ is of degree 4 over F if $D_{1} D_{2}$ is not a square in F and is of degree 2 over F if $D_{1} D_{2}$ is a square in F.

Remark: In the first case, we call $F\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)$ a biquadratic extension of F.
Problem 5.3.16. [DF, page 530, problem 13]
Prove that if $[F(\alpha): F]$ is odd, then $F(\alpha)=F\left(\alpha^{2}\right)$.
Problem 5.3.17. [DF, page 530, problem 16]
Let K / F be an algebraic extension and let R be a ring contained in K and containing F. Show that R is a subfield of K containing F.
Problem 5.3.18. [DF, page 530, problem 18]
Let k be a field and let $k(x)$ be the field of rational functions in x with coefficients from k. Let $t \in k(x)$ be the rational function $\frac{P(x)}{Q(x)}$ with relatively prime polynomials $P(x), Q(x) \in k[x]$, with $Q(x) \neq 0$. Then $k(x)$ is an extension of $k(t)$ and to compute its degree it is necessary to compute the minimal polynomial with coefficients in $k(t)$ satisfied by x.
(1) Show that the polynomial $P(X)-t Q(X)$ in the variable X and coefficients in $k(t)$ is irreducible over $k(t)$ and has x as a root. [By Gauss' Lemma this polynomial is
irreducible in $(k(t))[X]$ if and only if it is irreducible in $(k[t])[X]$. Then note that $(k[t])[X]=(k[X])[t]$.
(2) Show that the degree of $P(X)-t Q(X)$ as a polynomial in X with coefficients in $k(t)$ is the maximum of the degrees of $P(x)$ and $Q(x)$.
(3) Show that $[k(x): k(t)]=\left[k(x): k\left(\frac{P(x)}{Q(x)}\right)\right]=\max \{\operatorname{deg} P(x), \operatorname{deg} Q(x)\}$.

Problem 5.3.19. [H, page 241, problem 15]
In the field $\mathbb{C}(x)$, let $u=x^{3} /(x+1)$. Show that $\mathbb{C}(x)$ is a simple extension of the field $\mathbb{C}(u)$. What is $[\mathbb{C}(x): \mathbb{C}(u)]$?

Problem 5.3.20. [DN, page 234, problem 9]
Prove that if K / F is an algebraic extension of fields, then any homomorphism $\sigma: K \rightarrow K$ that is identity on F is an isomorphism.

Problem 5.3.21. [DF, page 531, problems 19 and 21]
Let K be an extension of F of degree n.
(1) For any $a \in K$ prove that a acting by left multiplication on K is an F-linear transformation of K.
(2) Prove that K is isomorphic to a subfield of the ring of $n \times n$ matrices over F, so the ring of $n \times n$ matrices over F contains an isomorphic copy of every extension of F of degree $\leq n$.
(3) Make explicit this embedding for $K=\mathbb{Q}(\sqrt{D})$ and $F=\mathbb{Q}$ by choosing a basis of K by $\{1, \sqrt{D}\}$.

Problem 5.3.22. [DN, page 234, problem 8]
Let K / F be a field extension and K_{1} and K_{2} are intermediate fields. Show that
(1) If $\left[K_{1}: F\right]$ and $\left[K_{2}: F\right]$ are coprime, then $\left[K_{1} K_{2}: F\right]=\left[K_{1}: F\right] \cdot\left[K_{2}: F\right]$.
(2) If K_{1} / F and K_{2} / F are algebraic, then so is $K_{1} K_{2} / F$.

Problem 5.3.23. [A, page 531, problem 3.7]
Decide whether or not i is in the field (a) $\mathbb{Q}(\sqrt{-2})$, (b) $\mathbb{Q}(\sqrt[4]{-2})$, (c) $\mathbb{Q}(\alpha)$, where $\alpha^{3}+\alpha+$ $1=0$.
5.4. More difficult questions. (Please choose 4 problems from the following questions)

Problem 5.4.1 (Chinese Remainder Theorem for modules). [DF, page 357, problems 16 and 17]

For any ideal I of R let $I M$ be the submodule of M consisting of elements of the form $\sum_{i=1}^{n} a_{i} m_{i}$ with $a_{i} \in I$ and $m_{i} \in M$. (Caveat: the linear combination is needed here, namely, not all elements in $I M$ can be written as $a m$ for $a \in I$ and $m \in M$.) Let A_{1}, \ldots, A_{k} be any left ideals in the ring R.
(1) Prove that the map

$$
M \rightarrow M / A_{1} M \times \cdots \times M / A_{k} M \quad \text { defined by } \quad m \mapsto\left(m+A_{1} M, \ldots, m+A_{k} M\right)
$$

is an R-module homomorphism with kernel $A_{1} M \cap A_{2} M \cap \cdots \cap A_{k} M$.
(2) Assume further that R is commutative and the ideals A_{1}, \ldots, A_{k} are pairwise comaximal (i.e. $A_{i}+A_{j}=R$ for all $i \neq j$). Prove that

$$
M /\left(A_{1} \cdots A_{k}\right) M \cong M / A_{1} M \times \cdots \times M / A_{k} M
$$

Problem 5.4.2. [DF, page 357, problems 18 and 19]
Let R be a Principal Ideal Domain and let M be an R-module that is annihilated by the nonzero, proper ideal (a). Let $a=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be the unique factorization of a into distinct prime powers in R. Let M_{i} be the annihilator of $p_{i}^{\alpha_{i}}$ in M, i.e., M_{i} is the set $\left\{m \in M \mid p_{i}^{\alpha_{i}} m=0\right\}$ - called the p_{i}-primary component of M.
(1) Prove that $M \cong M_{1} \oplus M_{2} \oplus \cdots \oplus M_{k}$.
(2) Show that if M is a finite abelian group of order $a=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{n}^{\alpha_{n}}$ then, considered as a \mathbb{Z}-module, M is annihilated by (a), the p_{i}-primary component of M is the unique Sylow p_{i}-subgroup of M and M is isomorphic to the direct product of its Sylow subgroups.
Problem 5.4.3. [DF, page 356, problem 11]
Show that if M_{1} and M_{2} are irreducible R-modules (see the above problem for the definition of "irreducible modules"), then any nonzero R-module homomorphism from M_{1} to M_{2} is an isomorphism. Deduce that if M is irreducible then $\operatorname{End}_{R}(M)$ is a division ring. (This result is the module version of Schur's Lemma.)

Problem 5.4.4. [A. page 486, problem 5.7]
Let S be a subring of the ring $R=\mathbb{C}[t]$ which contains \mathbb{C} and is not equal to \mathbb{C}. Prove that R is a finitely generated S-module. (Not difficult, just the way that it is phrased is a little confusing.)
Problem 5.4.5 (Jordan-Hölder theorem for modules). Let R be a ring and let M be a left R-module. Suppose that we have two increasing sequences of submodules of M :

$$
0=A_{0} \subseteq A_{1} \subseteq \cdots \subseteq A_{m}=M, \quad \text { and } \quad 0=B_{0} \subseteq B_{1} \subseteq \cdots \subseteq B_{n}=M
$$

Prove that we can refine each sequence (by adding more submodules to the sequence) into

$$
0=A_{0}^{\prime} \subseteq A_{1}^{\prime} \subseteq \cdots \subseteq A_{\ell}^{\prime}=M, \quad \text { and } \quad 0=B_{0}^{\prime} \subseteq B_{1}^{\prime} \subseteq \cdots \subseteq B_{\ell}^{\prime}=M
$$

so that there is a permutation $\sigma \in S_{\ell}$ such that $A_{i}^{\prime} / A_{i-1}^{\prime} \cong B_{\sigma(i)}^{\prime} / B_{\sigma(i)-1}^{\prime}$ as left R-modules for each i.

Remark: The interesting case is when M has finite length: that is, there exists a sequence as above with each A_{i} / A_{i-1} irreducible R-module. This problem then says that the subquotients
of any such increasing sequence of submodules are isomorphic, up to permutation. These subquotients are called the Jordan-Hölder factors of M.

Problem 5.4.6. [DN, page 206, problem 11]
Let R be a PID. Prove that every left ideal of $\operatorname{Mat}_{n \times n}(R)$ is principal.
Problem 5.4.7 (trace and norm). Let L / K be a finite extension of degree n. Pick a basis of L as an n-dimensional K-vector space. Then for an element $x \in L$, multiplication by x is represented by a matrix $A_{x} \in \mathrm{M}_{n}(K)$.
(1) Show that the trace of A_{x} and the determinant of A_{x} are independent of the choice of basis of L as a K-vector space. They are denoted by $\operatorname{Tr}_{L / K}(x)$ and $N_{L / K}(x)$, respectively.
(2) Show that $\operatorname{Tr}_{L / K}$ is additive and $N_{L / K}$ is multiplicative.
(3) If E is an intermediate field of L / K and $\alpha \in E$, show that

$$
\operatorname{Tr}_{L / K}(\alpha)=[L: E] \cdot \operatorname{Tr}_{E / K}(\alpha) \quad \text { and } \quad N_{L / K}(\alpha)=N_{L / K}(\alpha)^{[L: E]} .
$$

(4) For $\alpha \in L$, let $m_{K, \alpha}(x)=x^{h}-a_{1} x^{h-1}+\cdots+(-1)^{h} a_{h}$ be the minimal polynomial. Then $\operatorname{Tr}_{L / K}(\alpha)=\frac{n}{h} \cdot a_{1}$ and $N_{L / K}(\alpha)=a_{h}^{n / h}$.
Problem 5.4.8 (Bimodules). Let R and S be rings. An (R, S)-bimodule is an abelian group M that is equipped with a left R-module and a right S-module structure so that for $r \in R$, $s \in S$ and $m \in M$, we have

$$
r(m s)=(r m) s
$$

(1) Show that if R is a commutative ring, then any left R-module M naturally admits a (R, R)-bimodule structure.
(2) Let M be an (R, S)-bimodule and N an R-module. Show that $\operatorname{Hom}_{R}(M, N)$ has a natural left S-module structure. (Somehow, we "canceled" the R-action.) On the other hand, $\operatorname{Hom}_{R}(N, M)$ admits a natural right S-module structure.
(Be careful about the left/right S-actions.)

