For submission of homework, please finish the 20 True/False problems, and choose 10 problems from the standard ones and 5 problems from the more difficult ones. Mark the question numbers clearly.
$[\mathrm{A}]=$ Artin,$\quad[\mathrm{DF}]=$ Dummit and Foote,$\quad[\mathrm{DN}]=$ Ding and Nie (Chinese),$\quad[\mathrm{H}]=$ Hungerford.

All rings contain 1 and $1 \neq 0$ in these rings. Moreover, homomorphisms always take 1 to 1 .
4.1. True/False questions. (Only write T or F when submitting the solutions.)
(1) Let R be a commutative ring and let $f(x), g(x) \in R[x]$ be polynomials of degree 3 . Then $f(x) g(x)$ has degree 6 .
(2) The direct product of two integral domains is again an integral domain.
(3) In a commutative ring R, the intersection of two ideals I and J always contains $I J$.
(4) In a commutative ring $R, x^{2}-1$ has exactly two zeros: $x= \pm 1$.
(5) In a ring R, if $I_{1} \subseteq I_{2} \subseteq \cdots$ be an increasing sequence of proper ideals (meaning $I_{i} \neq R$ for each i), then $\cup_{i=1}^{\infty} I_{i}$ is a proper ideal of R.
(6) If R is a UFD, then every element $p(x) \in R[x]$ that is irreducible in $\operatorname{Frac}(R)[x]$ is irreducible in $R[x]$.
(7) If R is a PID, then $R[x]$ is a PID.
(8) If R is a PID, then for any ideal I of $R, R / I$ is a PID.
(9) Since $5=(1+2 i)(1-2 i)=(2-i)(2+i)$ are different factorizations of 5 in $\mathbb{Z}[i], \mathbb{Z}[i]$ is not a UFD.
(10) If P_{1} and P_{2} are prime ideals in a commutative ring R, then $P_{1}+P_{2}$ is a prime ideal.
(11) If p is a prime element in an integral domain D, then p is an irreducible element.
(12) $\mathbb{Z}[\sqrt{-5}]$ is an integral domain but not a PID.
(13) If R is a PID, then for every nonzero ideal (a), there are only finitely many ideals of R containing (a).
(14) In a UFD, every nonzero element can be uniquely written as products of prime elements.
(15) A gcd of 2 and 3 in \mathbb{Q} is $\frac{1}{2}$.
(16) For every prime p and every $r \in \mathbb{N}$, the group $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$is a cyclic group.
(17) Let F be a field, a nonconstant polynomial $f(x)$ is irreducible if and only if $F[x] /(f(x))$ is a field.
(18) The polynomial $x^{4}+2 x^{3}+2 x^{2}+2 x+2$ is irreducible in $\mathbb{Q}[x]$.
(19) A (nonconstant) polynomial $f(x)$ in $\mathbb{Z}[x]$ is irreducible in $\mathbb{Q}[x]$ if and only if $f(x)$ is irreducible in $\mathbb{Z}[x]$.
(20) If F is a field, the norm $N: F[x] \rightarrow \mathbb{Z}_{\geq 0}$ given by $N(0)=0$ and $N(f(x))=2^{\operatorname{deg}(f(x))}$ if $f(x) \neq 0$, defines a Euclidean domain structure on $F[x]$.
4.2. Warm-up questions. (Do not submit solutions for the following questions)

Problem 4.2.1. [DF, page 278, problem 7]
Find a generator for the ideal $(85,1+13 i)$ in $\mathbb{Z}[i]$, i.e. a greatest common divisor for 85 and $1+13 i$, by Euclidean Algorithm.
Problem 4.2.2. (Math behind Public Key Code: easy version)
[DF, page 279, problem 12]
Let N be a positive integer. Let M be an integer relatively prime to N and let d be an integer relatively prime to $\varphi(N)$, where φ denotes Euler's φ-function. Prove that if $M_{1}=M^{d}(\bmod N)$ then $M=M^{d^{\prime}}(\bmod N)$ where d^{\prime} is the inverse of $d \bmod \varphi(N): d d^{\prime}=1$ $(\bmod \varphi(N))$.

Remark: This result is the basis for a standard Public Key Code. Suppose $N=p q$ is the product of two distinct large primes (each on the order of 100 digits, for example). If M is a message, then $M_{1}=M^{d}(\bmod N)$ is a scrambled (encoded) version of M, which can be unscrambled (decoded) by computing $M_{1}^{d^{\prime}}(\bmod N)$ (these powers can be computed quite easily even for large values of M and N by successive squarings; not be directly checking one-by-one!). The values of N and d (but not p and q) are made publicly known (hence the name) and then anyone with a message M can send their encoded message $M^{d}(\bmod N)$. To decode the message it seems necessary to determine d^{\prime}, which requires the determination of the value $\varphi(N)=\varphi(p q)=(p-1)(q-1)$ (no one has as yet proved that there is no other decoding scheme, however). The success of this method as a code rests on the necessity of determining the factorization of N into primes, for which no sufficiently efficient algorithm exists (for example, the most naive method of checking all factors up to \sqrt{N} would here require on the order of 10^{100} computations, or approximately 300 years even at 10 billion computations per second, and of course one can always increase the size of p and q).

So one may view this as an application of the multiplication group $(\mathbb{Z} / p \mathbb{Z})^{\times}$. As modern mathematics progresses, there are analogous public key code schemes available. One typical way is to use so called "elliptic curves", solutions to equations like $y^{2}=x^{3}+a x+b$ modulo a large prime p, where $a, b \in \mathbb{Z} / p \mathbb{Z}$. Among many other benefits of this new type of coding system is that: people who wants to decode it needs to study much more beyond abstract algebra, :). Indeed, who understands higher mathematics may tend to have less motivation to do harmful things.
Problem 4.2.3. [DF, page 282, problem 3]
Prove that a quotient of a P.I.D. by a prime ideal is again a P.I.D.
Problem 4.2.4. [DF, page 256, problem 6]
Prove that R is a division ring if and only if its only left ideals are (0) and R. (The analogous result holds when "left" is replaced by "right.")
Problem 4.2.5 (DF, page 257, problem 11). Assume R is commutative. Let I and J be ideals of R and assume P is a prime ideal of R that contains $I J$ (for example, if P contains $I \cap J)$. Prove either I or J is contained in P.

Problem 4.2.6. [DF, page 293, problem 3]
Determine all representations of the integer $2130797=17^{2} \cdot 73 \cdot 101$ as a sum of two squares.
Problem 4.2.7. [DF, page 298, problem 5]
Prove that (x, y) and $(2, x, y)$ are prime ideals in $\mathbb{Z}[x, y]$ but only the latter ideal is a maximal ideal.

Problem 4.2.8. [DF, page 301, problem 5]
Exhibit all the ideals in the ring $F[x] /(p(x))$, where F is a field and $p(x)$ is a polynomial in $F[x]$ (describe them in terms of the factorization of $p(x)$).

Problem 4.2.9. [DF, page 311, problem 1]
Determine whether the following polynomials are irreducible in the rings indicated. For those that are reducible, determine their factorization into irreducibles. The notation \mathbb{F}_{p} denotes the finite field $\mathbb{Z} / p \mathbb{Z}$ for p a prime.
(1) $x^{2}+x+1$ in $\mathbb{F}_{p}[x]$.
(2) $x^{3}+x+1$ in $\mathbb{F}_{3}[x]$.
(3) $x^{4}+1$ in $\mathbb{F}_{5}[x]$.
(4) $x^{4}+10 x^{2}+1$ in $\mathbb{Z}[x]$.

Problem 4.2.10. [DF, page 312, problem 13]
Prove that $x^{3}+n x+2$ is irreducible over \mathbb{Z} for all integers $n \neq 1,-3,-5$.
Problem 4.2.11. Consider $\mathbb{Z}[x]$.
(1) Is $\mathbb{Z}[x]$ a UFD? Why?
(2) Show that $\{a+x f(x) \mid a \in 2 \mathbb{Z}, f(x) \in \mathbb{Z}[x]\}$ is an ideal in $\mathbb{Z}[x]$.
(3) Is $\mathbb{Z}[x]$ a PID?
(4) Is $\mathbb{Z}[x]$ a Euclidean domain? Why?

Problem 4.2.12. [F, page 253, problems 15 and 16]
List all prime ideals and maximal ideals of $\mathbb{Z} \times \mathbb{Z}$.
Problem 4.2.13. Given an isomorphism of rings between $\mathbb{C}\left[\mathbf{Z}_{n}\right]$ with $\underbrace{\mathbb{C} \times \cdots \times \mathbb{C}}_{n \text { times }}$
4.3. Standard questions. (Please choose 10 problems from the following questions)

Problem 4.3.1. [DF, page 283, problem 6]
Let R be an integral domain and suppose that every prime ideal in R is principal. This exercise proves that every ideal of R is principal. i.e., R is a P.I.D.
(1) Assume that the set of ideals of R that are not principal is nonempty and prove that this set has a maximal element under inclusion (which, by hypothesis, is not prime). [Use Zorn's Lemma.]
(2) Let I be an ideal which is maximal with respect to being nonprincipal, and let $a, b \in R$ with $a b \in I$ but $a \notin I$ and $b \notin I$. Let $I_{a}=(I, a)$ be the ideal generated by I and a, let $I_{b}=(I, b)$ be the ideal generated by I and b, and define $J=\left\{r \in R \mid r I_{a} \subseteq I\right\}$. Prove that $I_{a}=(\alpha)$ and $J=(\beta)$ are principal ideals in R with $I \subsetneq I_{b} \subseteq J$ and $I_{a} J=(\alpha \beta) \subseteq I$.
(3) If $x \in I$ show that $x=s \alpha$ for some $s \in J$. Deduce that $I=I_{a} J$ is principal, a contradiction, and conclude that R is a P.I.D.

Problem 4.3.2. [DF, page 258, problems 30 and 31]
(1) Let I be an ideal of the commutative ring R and define

$$
\operatorname{rad}(I)=\left\{r \in R \mid r^{n} \in I \text { for some } n \in \mathbb{Z}^{+}\right\}
$$

called the radical of I. (In many other references, we write \sqrt{I} instead.) Prove that $\operatorname{rad}(I)$ is an ideal containing I and that $\operatorname{rad}(I) / I$ is the nilradical of the quotient ring R / I, i.e., $(\operatorname{rad}(I)) / I=\mathfrak{N}(R / I)$ (see Problem 3.3.16).
(2) An ideal I of R is called a radical ideal if $\operatorname{rad}(I)=I$. Prove that every prime ideal of R is a radical ideal.

Problem 4.3.3. [DF, page 259, problem 37]
A commutative ring R is called a local ring if it has a unique maximal ideal. Prove that if R is a local ring with maximal ideal M then every element of $R-M$ is a unit. Prove conversely that if R is a commutative ring with 1 in which the set of nonunits forms an ideal M, then R is a local ring with unique maximal ideal M.
(Local rings are important concepts in commutative algebra. Without getting into much much detail, the idea is that, like we study one-prime-by-another when solving integer coefficient polynomial equations, we may study elements or properties of a ring by working with each prime ideal. There is a localization process that "zoom-in" the study at one prime and produce a local ring as above. The local ring, in some ways, is a best approximation of fields that is still a just a ring.)

Problem 4.3.4. [DF, page 283, problem 7] and [DF, page 294, problem 11]
An integral domain R in which every ideal generated by two elements is principal (i.e., for every $a, b \in R,(a, b)=(d)$ for some $d \in R)$ is called a Bezout Domain.
(1) Prove that the integral domain R is a Bezout Domain if and only if every pair of elements a, b of R has a g.c.d. $d \in R$ that can be written as an R-linear combination of a and b, i.e., $d=a x+b y$ for some $x, y \in R$.
(2) Prove that every finitely generated ideal of a Bezout Domain is principal. (In particular, a Bezout Domain is a non-noetherian version of P.I.D.)
(3) Let F be the fraction field of the Bezout Domain R. Prove that every element of F can be written in the form a / b with $a, b \in R$ and a and b relatively prime.
(4) Prove that R is a P.I.D. if and only if R is a U.F.D. that is also a Bezout Domain.

Problem 4.3.5. (continued with the previous problem)
Let $F\left[x, y_{1}, y_{2}, \ldots\right]$ be the polynomial ring in the infinite set of variables x, y_{1}, y_{2}, \ldots over the field F, and let I be the ideal $\left(x-y_{1}^{2}, y_{1}-y_{2}^{2}, \ldots, y_{i}-y_{i+1}^{2}, \ldots\right)$ in this ring. Define R to be the ring $F\left[x, y_{1}, y_{2}, \ldots\right] / I$, so that in R the square of each y_{i+1} is y_{i} and $y_{1}^{2}=x$ modulo I, i.e., x has a 2^{i} th root, for every i. Denote the image of y_{i} in R as $x^{1 / 2^{i}}$. Let R_{n} be the subring of R generated by F and $x^{1 / 2^{n}}$.
(1) Prove that $R_{1} \subseteq R_{2} \subseteq \cdots$ and that R is the union of all R_{n}, i.e., $R=\cup_{n=1}^{\infty} R_{n}$.
(2) Prove that R_{n} is isomorphic to a polynomial ring in one variable over F, so that R_{n} is a P.I.D. Deduce that R is a Bézout Domain. (There are hints on the book which I omitted here.)
(3) Prove that the ideal generated by $x, x^{1 / 2}, x^{1 / 4}, \ldots$ in R is not finitely generated (so R is not a P.I.D.).

Problem 4.3.6. (from a discussion with Junyi Xie)
Let p be a prime number. Consider the following subset of polynomials

$$
S=\left\{\sum_{n \geq 0} a_{n} x^{p^{n}} \mid a_{n} \in \mathbb{F}_{p}\right\}
$$

Show that S is closed under composition $f \circ g(x)$.
Prove that S together with the natural addition and composition (not the multiplication) is a ring, and isomorphic to the polynomial ring $\mathbb{F}_{p}[x]$.
(Can you construct a natural map from $\mathbb{F}_{p}[x] \rightarrow S$ that is easy to describe and contains the Frobenius map?)

Problem 4.3.7. [DF, page 257, problem 13]
Let $\varphi: R \rightarrow S$ be a homomorphism of commutative rings with $1\left(\right.$ and $\left.\varphi\left(1_{R}\right)=1_{S}\right)$.
(1) Prove that if P is a prime ideal of S then $\varphi^{-1}(P)$ is a prime ideal of R. In particular, if R is a subring of S, then intersection of a prime idea of S with R is a prime ideal of R.
(2) Prove that if M is a maximal ideal of S and φ is surjective then $\varphi^{-1}(M)$ is a maximal ideal of R. Give an example to show that this need not be the case if φ is not surjective.
(Remark: this is a very important exercise, I highly recommend you work out this problem.)
Problem 4.3.8. [DF, page 283, problem 5]
Let R be the quadratic integer ring $Z[\sqrt{-5}]$. Define the ideals $I_{2}=(2,1+\sqrt{-5}), I_{3}=$ $(3,1+\sqrt{-5})$, and $I_{3}^{\prime}=(3,1-\sqrt{-5})$.
(1) Prove that I_{2}, I_{3}, and I_{3}^{\prime} are non-principal ideals in R.
(2) Prove that the product of two non-principal ideals can be principal by showing that if is the principal ideal generated by 2 , i.e., $I_{2}^{2}=(2)$.
(3) Prove similarly that $I_{2} I_{3}=(1+\sqrt{-5})$ and $I_{2} I_{3}^{\prime}=(1-\sqrt{-5})$ are principal. Conclude that the principal ideal (6) is the product of 4 ideals: $(6)=I_{2}^{2} I_{3} I_{3}^{\prime}$.
Remark: In fact, one can show that nonzero ideals in R has two kinds: principal ones and non-principal ones, and the product of any two non-principal ideals is a principal ideal. This is a particular case that the "ideal class group of R is $\mathbb{Z} / 2 \mathbb{Z}$ ".

Problem 4.3.9. [DF, page 293, problem 6]
(1) Let $q \in \mathbb{Z}$ be a prime with $q \equiv 3 \bmod 4$. Prove that the quotient ring $\mathbb{Z}[i] /(q)$ is a field with q^{2} elements.
(2) Let $p \in \mathbb{Z}$ be a prime with $p \equiv 1 \bmod 4$ and write $p=\pi \bar{\pi}$ as its factorization into irreducible elements. Show that the hypotheses for the Chinese Remainder Theorem are satisfied and that $\mathbb{Z}[i] /(p) \cong \mathbb{Z}[i] /(\pi) \times \mathbb{Z}[i] /(\bar{\pi})$ as rings. Show that the quotient ring $\mathbb{Z}[i] /(p)$ has order p^{2} and conclude that $\mathbb{Z}[i] /(\pi)$ and $\mathbb{Z}[i] /(\bar{\pi})$ are both fields of order p.

Problem 4.3.10. [DF, page 298, problem 8]
Let F be a field and let $R=F\left[x, x^{2} y, x^{3} y^{2}, \ldots, x^{n} y^{n-1}, \ldots\right]$ be a subring of the polynomial ring $F[x, y]$.
(1) Prove that the fields of fractions of R and $F[x, y]$ are the same.
(2) Prove that R contains an ideal that is not finitely generated.

Problem 4.3.11. [DN, page 156, problem 22]
In the Gaussian integer ring $\mathbb{Z}[i]$, determine whether

$$
f(x)=x^{4}+(8+i) x^{3}+(3-4 i) x+5
$$

is irreducible or not.
Problem 4.3.12. [DF, page 299, problem 17]
Let R be a commutative ring. An ideal I in $R\left[x_{1}, \ldots, x_{n}\right]$ is called a homogeneous ideal if whenever $p \in I$ then each homogeneous component of p is also in I. Prove that an ideal is a homogeneous ideal if and only if it may be generated by homogeneous polynomials.

Problem 4.3.13. [DF, page 206, problem 4]
Let $R=\mathbb{Z}+x \mathbb{Q}[x] \subset \mathbb{Q}[x]$ be the set of polynomials in x with rational coefficients whose constant term is an integer.
(1) Prove that R is an integral domain and its units are ± 1.
(2) Show that the irreducibles in R are $\pm p$ where p is a prime in \mathbb{Z} and the polynomials $f(x)$ that are irreducible in $\mathbb{Q}[x]$ and have constant term ± 1. Prove that these irreducibles are prime in R.
(3) Show that x cannot be written as the product of irreducibles in R (in particular, x is not irreducible) and conclude that R is not a U.F.D.
(4) Show that x is not a prime in R and describe the quotient ring $R /(x)$.

Problem 4.3.14. [DF, page 311, problem 8]
Prove that $K_{1}=\mathbb{F}_{11}[x] /\left(x^{2}+1\right)$ and $K_{2}=\mathbb{F}_{11}[y] /\left(y^{2}+2 y+2\right)$ are both fields with 121 elements. Prove that the map which sends the element $p(\bar{x})$ of K_{1} to the element $p(\bar{y}+1)$ of K_{2} (where p is any polynomial with coefficients in \mathbb{F}_{11}) is well defined and gives a ring (hence field) isomorphism from K_{1} to K_{2}.

Problem 4.3.15. [DF, page 312, problem 11]
Prove that $x^{2}+y^{2}-1$ is irreducible in $\mathbb{Q}[x, y]$.
Problem 4.3.16. [DF, page 312, problem 16]
Let F be a field and let $f(x)$ be a polynomial of degree n in $F[x]$. The polynomial $g(x)=x^{n} f(1 / x)$ is called the reverse of $f(x)$.
(1) Describe the coefficients of g in terms of the coefficients of f.
(2) Prove that f is irreducible if and only if g is irreducible.

Remark: If A is an $n \times n$-matrix, how do you relate the characteristic polynomial $\operatorname{det}\left(x I_{n}-A\right)$ and the so-called characteristic power series $\operatorname{det}\left(I_{n}-x A\right)$?
Problem 4.3.17. [H, page 157, problem 8]
(1) The polynomial $x+1$ is a unit in the power series ring $\mathbb{Z}[[x]]$, but is not a unit in $\mathbb{Z}[x]$.
(2) $x^{2}+3 x+2$ is irreducible in $\mathbb{Z}[[x]]$ but not in $\mathbb{Z}[x]$.

Problem 4.3.18. [DF, page 315, problem 3]
Let p be an odd prime in \mathbb{Z} and let n be a positive integer. Prove that $x^{n}-p$ is irreducible over $\mathbb{Z}[i]$.
Problem 4.3.19 (Classical results). Let R be a commutative ring.
(1) Recall that the nil-radical \mathfrak{N} is the ideal of R consisting of elements x in R such that $x^{N}=0$ for some $N \in \mathbb{N}$. Show that \mathfrak{N} is the intersection of all prime ideals of R is contained in \mathfrak{N}. (Remark: it can be shown that the intersection of all prime ideals is precisely \mathfrak{N}.)
(2) The Jacobson radical J of R is the intersection of all maximal ideals of R. Show that if $a \in J$ then $1+a$ is a unit in R.
4.4. More difficult questions. (Please choose 5 problems from the following questions)

Problem 4.4.1. [DN, page 129, problem 1]
Let R be a ring with $1 \neq 0$. For two elements $a, b \in R$, if $1-a b$ is a unit, then $1-b a$ is a unit.
(I have a nice explanation of the proof, but I don't want to ruin it; so I leave the hint to the end of the file. It's up to you whether to use it.)
Problem 4.4.2. [DF, page 306, problem 5]
Keep the notation as in Problem 4.3.13. Let $R=\mathbb{Z}+x \mathbb{Q}[x] \subset \mathbb{Q}[x]$.
(1) Suppose that $f(x), g(x) \in \mathbb{Q}[x]$ are two nonzero polynomials with rational coefficients and that x^{r} is the largest power of x dividing both $f(x)$ and $g(x)$ in $\mathbb{Q}[x]$, (i.e., r is the degree of the lowest order term appearing in either $f(x)$ or $g(x))$. Let f_{r} and g_{r} be the coefficients of x^{r} in $f(x)$ and $g(x)$, respectively (one of which is nonzero by definition of r). Then $\mathbb{Z} f_{r}+\mathbb{Z} g_{r}=\mathbb{Z} d_{r}$ for some nonzero $d_{r} \in \mathbb{Q}$. Prove that there is a polynomial $d(x) \in \mathbb{Q}[x]$ that is a g.c.d. of $f(x)$ and $g(x)$ in $\mathbb{Q}[x]$ and whose term of minimal degree is $d_{r} x^{r}$.
(2) Prove that $f(x)=d(x) q_{1}(x)$ and $g(x)=d(x) q_{2}(x)$ where $q_{1}(x)$ and $q_{2}(x)$ are elements of the subring R of $\mathbb{Q}[x]$.
(3) Prove that $d(x)=a(x) f(x)+b(x) g(x)$ for polynomials $a(x), b(x)$ in R.
(4) Conclude from (a) and (b) that $R f(x)+R g(x)=R d(x)$ in $\mathbb{Q}[x]$ and use this to prove that R is a Bezout Domain.
(5) Show that (d), the results of the previous exercise imply that R must contain ideals that are not principal (hence not finitely generated). Prove that in fact $I=x \mathbb{Q}[x]$ is an ideal of R that is not finitely generated.
Problem 4.4.3. [DF, page 311, problem 3]
Show that the polynomial $(x-1)(x-2) \cdots(x-n)-1$ is irreducible over \mathbb{Z} for all $n \geq 1$.
(There is a hint in the book; I leave it to you to decide whether to look at it. This is a little tricky.)
Problem 4.4.4. [DF, page 311, problem 10]
Prove that $p(x)=x^{4}-4 x^{2}+8 x+2$ is irreducible over the quadratic field $F=\mathbb{Q}(\sqrt{-2})=$ $\{a+b \sqrt{-2} \mid a, b \in \mathbb{Q}\}$.
Problem 4.4.5. Let $A, B \in \mathbb{Q}^{\times}$be rational numbers. Consider the quaternion ring

$$
D_{A, B, \mathbb{R}}=\{a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \mid a, b, c, d \in \mathbb{R}\}
$$

in which the multiplication satisfies relations: $\mathbf{i}^{2}=A, \mathbf{j}^{2}=B$, and $\mathbf{i j}=-\mathbf{j} \mathbf{i}=\mathbf{k}$.
(1) Represent $\mathbf{j k}, \mathbf{i k}, \mathbf{k}^{2}$ in terms of elements in $D_{A, B, \mathbb{R}}$.
(2) When $A, B>0$, show that $D_{A, B, \mathbb{R}}$ is isomorphic to $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$, given by

$$
\mathbf{i} \leftrightarrow\left(\begin{array}{cc}
\sqrt{A} & 0 \\
0 & -\sqrt{A}
\end{array}\right), \quad \mathbf{j} \leftrightarrow\left(\begin{array}{ll}
0 & B \\
1 & 0
\end{array}\right) .
$$

(3) Show that $D_{A, B, \mathbb{R}}$ is isomorphic to \mathbb{H} if and only if $A, B<0$, and is isomorphic to $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ if at least one of A and B is positive.
(4) Why is $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ not isomorphic to \mathbb{H} ?

Problem 4.4.6. Let $A, B \in \mathbb{Q}^{\times}$be rational numbers. Consider the quaternion ring

$$
D_{A, B, \mathbb{Q}}=\{a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \mid a, b, c, d \in \mathbb{Q}\}
$$

in which the multiplication satisfies relations: $\mathbf{i}^{2}=A, \mathbf{j}^{2}=B$, and $\mathbf{i j}=-\mathbf{j} \mathbf{i}=\mathbf{k}$.
(1) Show that if either A or B is a square in \mathbb{Q}, then $D_{A, B, \mathbb{Q}}$ is isomorphic to $\operatorname{Mat}_{2 \times 2}(\mathbb{Q})$.
(2) Prove that $D_{A, B, \mathbb{Q}}$ is isomorphic to $\operatorname{Mat}_{2 \times 2}(\mathbb{Q})$ if and only if $x^{2}=A y^{2}+B z^{2}$ has a nonzero (meaning not all zero) solution in \mathbb{Q}.

Problem 4.4.7. [Alibaba 2021]
Let p be a prime number and let \mathbb{F}_{p} be the finite field with p elements. Consider an automorphism τ of the polynomial ring $\mathbb{F}_{p}[x]$ given by

$$
\tau(f)(x)=f(x+1)
$$

Let R denote the subring of $\mathbb{F}_{p}[x]$ consisting of those polynomials f with $\tau(f)=f$. Find a polynomial $g \in \mathbb{F}_{p}[x]$ such that $\mathbb{F}_{p}[x]$ is a free module over R with basis $g, \tau(g), \ldots, \tau^{p-1}(g)$ (in other words, every element of $\mathbb{F}_{p}[x]$ can be uniquely written as a "linear combination"

$$
a_{0} g+a_{1} \tau(g)+\cdots+a_{p-1} \tau^{p-1}(g)
$$

with $a_{0}, \ldots, a_{p-1} \in R$.
Problem 4.4.8. Let S_{3} be the symmetric group on 3 letters and let R be the group ring $R=\mathbb{Z}\left[S_{3}\right]$.
(1) Write down a nonzero element in R which is a zero-divisor.
(2) Write down an element in the center of R which is not in \mathbb{Z}.

Problem 4.4.9. [DN, page 134, problem 67]
Let G be an abelian group and η, ξ be endomorphisms of G (namely homomorphisms from G to itself). Define the product and sum of η and ξ to be

$$
\eta \cdot \xi(a)=\eta(\xi(a)), \quad(\eta+\xi)(a)=\eta(a)+\xi(a)
$$

for $a \in G$. Verify that $\eta+\xi$ is a homomorphism from G to itself. This two operations on the set of all endomorphisms of $G: \operatorname{End}(G)$ defines a structure of rings, called the endomorphism ring.

Determine the endomorphism ring of the following:
(1) $(\mathbb{Z},+)$
(2) \mathbf{Z}_{n}
(3) $\left(\mathbf{Z}_{p}\right)^{n}=\mathbf{Z}_{p} \times \cdots \times \mathbf{Z}_{p}$ (where p is a prime).

Problem 4.4.10. Imitate the discussion of Gaussian integers for $R=\mathbb{Z}\left[\zeta_{3}\right]$ with $\zeta_{3}=$ $\frac{-1+\sqrt{-3}}{2}$.
(1) Show that a prime p can be written as $p=a^{2}+a b+b^{2}$ with $a, b \in \mathbb{Z}$ if and only if $p=3$ or $p \equiv 1(\bmod 3)$.
(2) Classify irreducible elements in $R=\mathbb{Z}\left[\zeta_{3}\right]$.

Hint for Problem 4.4.1: Consider a Taylor expansion $(1-a b)^{-1}=1+a b+a b a b+\cdots$ and relate this to $(1-b a)^{-1}$. Then, you just have to make sense of what you have computed.

