
2023 Fall Honors Algebra Exercise 4 (due on November 9)
For submission of homework, please finish the 20 True/False problems, and

choose 10 problems from the standard ones and 5 problems from the more difficult
ones. Mark the question numbers clearly.

[A] = Artin, [DF] = Dummit and Foote, [DN] = Ding and Nie (Chinese), [H] =
Hungerford.

All rings contain 1 and 1 ̸= 0 in these rings. Moreover, homomorphisms always
take 1 to 1.
4.1. True/False questions. (Only write T or F when submitting the solutions.)

(1) Let R be a commutative ring and let f(x), g(x) ∈ R[x] be polynomials of degree 3.
Then f(x)g(x) has degree 6.

(2) The direct product of two integral domains is again an integral domain.
(3) In a commutative ring R, the intersection of two ideals I and J always contains IJ .
(4) In a commutative ring R, x2 − 1 has exactly two zeros: x = ±1.
(5) In a ring R, if I1 ⊆ I2 ⊆ · · · be an increasing sequence of proper ideals (meaning

Ii ̸= R for each i), then ∪∞
i=1Ii is a proper ideal of R.

(6) If R is a UFD, then every element p(x) ∈ R[x] that is irreducible in Frac(R)[x] is
irreducible in R[x].

(7) If R is a PID, then R[x] is a PID.
(8) If R is a PID, then for any ideal I of R, R/I is a PID.
(9) Since 5 = (1 + 2i)(1− 2i) = (2− i)(2 + i) are different factorizations of 5 in Z[i], Z[i]

is not a UFD.
(10) If P1 and P2 are prime ideals in a commutative ring R, then P1 +P2 is a prime ideal.
(11) If p is a prime element in an integral domain D, then p is an irreducible element.
(12) Z[

√
−5] is an integral domain but not a PID.

(13) If R is a PID, then for every nonzero ideal (a), there are only finitely many ideals of
R containing (a).

(14) In a UFD, every nonzero element can be uniquely written as products of prime ele-
ments.

(15) A gcd of 2 and 3 in Q is 1
2
.

(16) For every prime p and every r ∈ N, the group (Z/prZ)× is a cyclic group.
(17) Let F be a field, a nonconstant polynomial f(x) is irreducible if and only if F [x]/(f(x))

is a field.
(18) The polynomial x4 + 2x3 + 2x2 + 2x+ 2 is irreducible in Q[x].
(19) A (nonconstant) polynomial f(x) in Z[x] is irreducible in Q[x] if and only if f(x) is

irreducible in Z[x].
(20) If F is a field, the norm N : F [x] → Z≥0 given by N(0) = 0 and N(f(x)) = 2deg(f(x))

if f(x) ̸= 0, defines a Euclidean domain structure on F [x].
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4.2. Warm-up questions. (Do not submit solutions for the following questions)
Problem 4.2.1. [DF, page 278, problem 7]

Find a generator for the ideal (85, 1 + 13i) in Z[i], i.e. a greatest common divisor for 85
and 1 + 13i, by Euclidean Algorithm.
Problem 4.2.2. (Math behind Public Key Code: easy version)

[DF, page 279, problem 12]
Let N be a positive integer. Let M be an integer relatively prime to N and let d be

an integer relatively prime to φ(N), where φ denotes Euler’s φ-function. Prove that if
M1 = Md (mod N) then M = Md′ (mod N) where d′ is the inverse of d mod φ(N): dd′ = 1
(mod φ(N)).

Remark: This result is the basis for a standard Public Key Code. Suppose N = pq is the
product of two distinct large primes (each on the order of 100 digits, for example). If M is
a message, then M1 = Md (mod N) is a scrambled (encoded) version of M , which can be
unscrambled (decoded) by computing Md′

1 (mod N) (these powers can be computed quite
easily even for large values of M and N by successive squarings; not be directly checking
one-by-one!). The values of N and d (but not p and q) are made publicly known (hence the
name) and then anyone with a message M can send their encoded message Md (mod N).
To decode the message it seems necessary to determine d′, which requires the determination
of the value φ(N) = φ(pq) = (p− 1)(q − 1) (no one has as yet proved that there is no other
decoding scheme, however). The success of this method as a code rests on the necessity of
determining the factorization of N into primes, for which no sufficiently efficient algorithm
exists (for example, the most naive method of checking all factors up to

√
N would here

require on the order of 10100 computations, or approximately 300 years even at 10 billion
computations per second, and of course one can always increase the size of p and q).

So one may view this as an application of the multiplication group (Z/pZ)×. As modern
mathematics progresses, there are analogous public key code schemes available. One typical
way is to use so called “elliptic curves”, solutions to equations like y2 = x3 + ax+ b modulo
a large prime p, where a, b ∈ Z/pZ. Among many other benefits of this new type of coding
system is that: people who wants to decode it needs to study much more beyond abstract
algebra, :). Indeed, who understands higher mathematics may tend to have less motivation
to do harmful things.
Problem 4.2.3. [DF, page 282, problem 3]

Prove that a quotient of a P.I.D. by a prime ideal is again a P.I.D.
Problem 4.2.4. [DF, page 256, problem 6]

Prove that R is a division ring if and only if its only left ideals are (0) and R. (The
analogous result holds when “left” is replaced by “right.”)
Problem 4.2.5 (DF, page 257, problem 11). Assume R is commutative. Let I and J be
ideals of R and assume P is a prime ideal of R that contains IJ (for example, if P contains
I ∩ J). Prove either I or J is contained in P .
Problem 4.2.6. [DF, page 293, problem 3]

Determine all representations of the integer 2130797 = 172 ·73·101 as a sum of two squares.
Problem 4.2.7. [DF, page 298, problem 5]

Prove that (x, y) and (2, x, y) are prime ideals in Z[x, y] but only the latter ideal is a
maximal ideal.
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Problem 4.2.8. [DF, page 301, problem 5]
Exhibit all the ideals in the ring F [x]/(p(x)), where F is a field and p(x) is a polynomial

in F [x] (describe them in terms of the factorization of p(x)).
Problem 4.2.9. [DF, page 311, problem 1]

Determine whether the following polynomials are irreducible in the rings indicated. For
those that are reducible, determine their factorization into irreducibles. The notation Fp

denotes the finite field Z/pZ for p a prime.
(1) x2 + x+ 1 in Fp[x].
(2) x3 + x+ 1 in F3[x].
(3) x4 + 1 in F5[x].
(4) x4 + 10x2 + 1 in Z[x].

Problem 4.2.10. [DF, page 312, problem 13]
Prove that x3 + nx+ 2 is irreducible over Z for all integers n ̸= 1,−3,−5.

Problem 4.2.11. Consider Z[x].
(1) Is Z[x] a UFD? Why?
(2) Show that {a+ xf(x)|a ∈ 2Z, f(x) ∈ Z[x]} is an ideal in Z[x].
(3) Is Z[x] a PID?
(4) Is Z[x] a Euclidean domain? Why?

Problem 4.2.12. [F, page 253, problems 15 and 16]
List all prime ideals and maximal ideals of Z× Z.

Problem 4.2.13. Given an isomorphism of rings between C[Zn] with C× · · · × C︸ ︷︷ ︸
n times
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4.3. Standard questions. (Please choose 10 problems from the following questions)

Problem 4.3.1. [DF, page 283, problem 6]
Let R be an integral domain and suppose that every prime ideal in R is principal. This

exercise proves that every ideal of R is principal. i.e., R is a P.I.D.
(1) Assume that the set of ideals of R that are not principal is nonempty and prove that

this set has a maximal element under inclusion (which, by hypothesis, is not prime).
[Use Zorn’s Lemma.]

(2) Let I be an ideal which is maximal with respect to being nonprincipal, and let a, b ∈ R
with ab ∈ I but a /∈ I and b /∈ I. Let Ia = (I, a) be the ideal generated by I and a,
let Ib = (I, b) be the ideal generated by I and b, and define J = {r ∈ R|rIa ⊆ I}.
Prove that Ia = (α) and J = (β) are principal ideals in R with I ⊊ Ib ⊆ J and
IaJ = (αβ) ⊆ I.

(3) If x ∈ I show that x = sα for some s ∈ J . Deduce that I = IaJ is principal, a
contradiction, and conclude that R is a P.I.D.

Problem 4.3.2. [DF, page 258, problems 30 and 31]
(1) Let I be an ideal of the commutative ring R and define

rad(I) = {r ∈ R | rn ∈ I for some n ∈ Z+}

called the radical of I. (In many other references, we write
√
I instead.) Prove that

rad(I) is an ideal containing I and that rad(I)/I is the nilradical of the quotient ring
R/I, i.e., (rad(I))/I = N(R/I) (see Problem 3.3.16).

(2) An ideal I of R is called a radical ideal if rad(I) = I. Prove that every prime ideal of
R is a radical ideal.

Problem 4.3.3. [DF, page 259, problem 37]
A commutative ring R is called a local ring if it has a unique maximal ideal. Prove that

if R is a local ring with maximal ideal M then every element of R − M is a unit. Prove
conversely that if R is a commutative ring with 1 in which the set of nonunits forms an ideal
M , then R is a local ring with unique maximal ideal M .

(Local rings are important concepts in commutative algebra. Without getting into much
much detail, the idea is that, like we study one-prime-by-another when solving integer coef-
ficient polynomial equations, we may study elements or properties of a ring by working with
each prime ideal. There is a localization process that “zoom-in” the study at one prime and
produce a local ring as above. The local ring, in some ways, is a best approximation of fields
that is still a just a ring.)

Problem 4.3.4. [DF, page 283, problem 7] and [DF, page 294, problem 11]
An integral domain R in which every ideal generated by two elements is principal (i.e., for

every a, b ∈ R, (a, b) = (d) for some d ∈ R) is called a Bezout Domain.
(1) Prove that the integral domain R is a Bezout Domain if and only if every pair of

elements a, b of R has a g.c.d. d ∈ R that can be written as an R-linear combination
of a and b, i.e., d = ax+ by for some x, y ∈ R.

(2) Prove that every finitely generated ideal of a Bezout Domain is principal. (In partic-
ular, a Bezout Domain is a non-noetherian version of P.I.D.)

(3) Let F be the fraction field of the Bezout Domain R. Prove that every element of F
can be written in the form a/b with a, b ∈ R and a and b relatively prime.
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(4) Prove that R is a P.I.D. if and only if R is a U.F.D. that is also a Bezout Domain.

Problem 4.3.5. (continued with the previous problem)
Let F [x, y1, y2, . . . ] be the polynomial ring in the infinite set of variables x, y1, y2, . . . over

the field F , and let I be the ideal (x− y21, y1 − y22, . . . , yi − y2i+1, . . . ) in this ring. Define R to
be the ring F [x, y1, y2, . . . ]/I, so that in R the square of each yi+1 is yi and y21 = x modulo
I, i.e., x has a 2ith root, for every i. Denote the image of yi in R as x1/2i . Let Rn be the
subring of R generated by F and x1/2n .

(1) Prove that R1 ⊆ R2 ⊆ · · · and that R is the union of all Rn, i.e., R = ∪∞
n=1Rn.

(2) Prove that Rn is isomorphic to a polynomial ring in one variable over F , so that Rn

is a P.I.D. Deduce that R is a Bézout Domain. (There are hints on the book which I
omitted here.)

(3) Prove that the ideal generated by x, x1/2, x1/4, . . . in R is not finitely generated (so
R is not a P.I.D.).

Problem 4.3.6. (from a discussion with Junyi Xie)
Let p be a prime number. Consider the following subset of polynomials

S =
{∑

n≥0

anx
pn

∣∣∣ an ∈ Fp

}
.

Show that S is closed under composition f ◦ g(x).
Prove that S together with the natural addition and composition (not the multiplication)

is a ring, and isomorphic to the polynomial ring Fp[x].
(Can you construct a natural map from Fp[x] → S that is easy to describe and contains

the Frobenius map?)

Problem 4.3.7. [DF, page 257, problem 13]
Let φ : R → S be a homomorphism of commutative rings with 1 (and φ(1R) = 1S).
(1) Prove that if P is a prime ideal of S then φ−1(P ) is a prime ideal of R. In particular,

if R is a subring of S, then intersection of a prime idea of S with R is a prime ideal
of R.

(2) Prove that if M is a maximal ideal of S and φ is surjective then φ−1(M) is a maximal
ideal of R. Give an example to show that this need not be the case if φ is not
surjective.

(Remark: this is a very important exercise, I highly recommend you work out this problem.)

Problem 4.3.8. [DF, page 283, problem 5]
Let R be the quadratic integer ring Z[

√
−5]. Define the ideals I2 = (2, 1 +

√
−5), I3 =

(3, 1 +
√
−5), and I ′3 = (3, 1−

√
−5).

(1) Prove that I2, I3, and I ′3 are non-principal ideals in R.
(2) Prove that the product of two non-principal ideals can be principal by showing that

if is the principal ideal generated by 2, i.e., I22 = (2).
(3) Prove similarly that I2I3 = (1+

√
−5) and I2I

′
3 = (1−

√
−5) are principal. Conclude

that the principal ideal (6) is the product of 4 ideals: (6) = I22I3I
′
3.

Remark: In fact, one can show that nonzero ideals in R has two kinds: principal ones and
non-principal ones, and the product of any two non-principal ideals is a principal ideal. This
is a particular case that the “ideal class group of R is Z/2Z”.
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Problem 4.3.9. [DF, page 293, problem 6]
(1) Let q ∈ Z be a prime with q ≡ 3 mod 4. Prove that the quotient ring Z[i]/(q) is a

field with q2 elements.
(2) Let p ∈ Z be a prime with p ≡ 1 mod 4 and write p = ππ̄ as its factorization

into irreducible elements. Show that the hypotheses for the Chinese Remainder Theorem
are satisfied and that Z[i]/(p) ∼= Z[i]/(π) × Z[i]/(π̄) as rings. Show that the quotient ring
Z[i]/(p) has order p2 and conclude that Z[i]/(π) and Z[i]/(π̄) are both fields of order p.

Problem 4.3.10. [DF, page 298, problem 8]
Let F be a field and let R = F [x, x2y, x3y2, . . . , xnyn−1, . . . ] be a subring of the polynomial

ring F [x, y].
(1) Prove that the fields of fractions of R and F [x, y] are the same.
(2) Prove that R contains an ideal that is not finitely generated.

Problem 4.3.11. [DN, page 156, problem 22]
In the Gaussian integer ring Z[i], determine whether

f(x) = x4 + (8 + i)x3 + (3− 4i)x+ 5

is irreducible or not.

Problem 4.3.12. [DF, page 299, problem 17]
Let R be a commutative ring. An ideal I in R[x1, . . . , xn] is called a homogeneous ideal if

whenever p ∈ I then each homogeneous component of p is also in I. Prove that an ideal is a
homogeneous ideal if and only if it may be generated by homogeneous polynomials.

Problem 4.3.13. [DF, page 206, problem 4]
Let R = Z+ xQ[x] ⊂ Q[x] be the set of polynomials in x with rational coefficients whose

constant term is an integer.
(1) Prove that R is an integral domain and its units are ±1.
(2) Show that the irreducibles in R are ±p where p is a prime in Z and the polynomi-

als f(x) that are irreducible in Q[x] and have constant term ±1. Prove that these
irreducibles are prime in R.

(3) Show that x cannot be written as the product of irreducibles in R (in particular, x is
not irreducible) and conclude that R is not a U.F.D.

(4) Show that x is not a prime in R and describe the quotient ring R/(x).

Problem 4.3.14. [DF, page 311, problem 8]
Prove that K1 = F11[x]/(x

2 + 1) and K2 = F11[y]/(y
2 + 2y + 2) are both fields with 121

elements. Prove that the map which sends the element p(x̄) of K1 to the element p(ȳ+1) of
K2 (where p is any polynomial with coefficients in F11) is well defined and gives a ring (hence
field) isomorphism from K1 to K2.

Problem 4.3.15. [DF, page 312, problem 11]
Prove that x2 + y2 − 1 is irreducible in Q[x, y].

Problem 4.3.16. [DF, page 312, problem 16]
Let F be a field and let f(x) be a polynomial of degree n in F [x]. The polynomial

g(x) = xnf(1/x) is called the reverse of f(x).
(1) Describe the coefficients of g in terms of the coefficients of f .
(2) Prove that f is irreducible if and only if g is irreducible.
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Remark: If A is an n×n-matrix, how do you relate the characteristic polynomial det(xIn−A)
and the so-called characteristic power series det(In − xA)?
Problem 4.3.17. [H, page 157, problem 8]

(1) The polynomial x + 1 is a unit in the power series ring Z[[x]], but is not a unit in
Z[x].

(2) x2 + 3x+ 2 is irreducible in Z[[x]] but not in Z[x].
Problem 4.3.18. [DF, page 315, problem 3]

Let p be an odd prime in Z and let n be a positive integer. Prove that xn−p is irreducible
over Z[i].
Problem 4.3.19 (Classical results). Let R be a commutative ring.

(1) Recall that the nil-radical N is the ideal of R consisting of elements x in R such that
xN = 0 for some N ∈ N. Show that N is the intersection of all prime ideals of R is
contained in N. (Remark: it can be shown that the intersection of all prime ideals is
precisely N.)

(2) The Jacobson radical J of R is the intersection of all maximal ideals of R. Show that
if a ∈ J then 1 + a is a unit in R.
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4.4. More difficult questions. (Please choose 5 problems from the following questions)
Problem 4.4.1. [DN, page 129, problem 1]

Let R be a ring with 1 ̸= 0. For two elements a, b ∈ R, if 1− ab is a unit, then 1− ba is a
unit.

(I have a nice explanation of the proof, but I don’t want to ruin it; so I leave the hint to
the end of the file. It’s up to you whether to use it.)
Problem 4.4.2. [DF, page 306, problem 5]

Keep the notation as in Problem 4.3.13. Let R = Z+ xQ[x] ⊂ Q[x].
(1) Suppose that f(x), g(x) ∈ Q[x] are two nonzero polynomials with rational coefficients

and that xr is the largest power of x dividing both f(x) and g(x) in Q[x], (i.e., r is
the degree of the lowest order term appearing in either f(x) or g(x)). Let fr and gr
be the coefficients of xr in f(x) and g(x), respectively (one of which is nonzero by
definition of r). Then Zfr + Zgr = Zdr for some nonzero dr ∈ Q. Prove that there is
a polynomial d(x) ∈ Q[x] that is a g.c.d. of f(x) and g(x) in Q[x] and whose term of
minimal degree is drx

r.
(2) Prove that f(x) = d(x)q1(x) and g(x) = d(x)q2(x) where q1(x) and q2(x) are elements

of the subring R of Q[x].
(3) Prove that d(x) = a(x)f(x) + b(x)g(x) for polynomials a(x), b(x) in R.
(4) Conclude from (a) and (b) that Rf(x)+Rg(x) = Rd(x) in Q[x] and use this to prove

that R is a Bezout Domain.
(5) Show that (d), the results of the previous exercise imply that R must contain ideals

that are not principal (hence not finitely generated). Prove that in fact I = xQ[x] is
an ideal of R that is not finitely generated.

Problem 4.4.3. [DF, page 311, problem 3]
Show that the polynomial (x− 1)(x− 2) · · · (x− n)− 1 is irreducible over Z for all n ≥ 1.
(There is a hint in the book; I leave it to you to decide whether to look at it. This is a

little tricky.)
Problem 4.4.4. [DF, page 311, problem 10]

Prove that p(x) = x4 − 4x2 +8x+2 is irreducible over the quadratic field F = Q(
√
−2) =

{a+ b
√
−2|a, b ∈ Q}.

Problem 4.4.5. Let A,B ∈ Q× be rational numbers. Consider the quaternion ring
DA,B,R = {a+ bi+ cj+ dk | a, b, c, d ∈ R}

in which the multiplication satisfies relations: i2 = A, j2 = B, and ij = −ji = k.
(1) Represent jk, ik, k2 in terms of elements in DA,B,R.
(2) When A,B > 0, show that DA,B,R is isomorphic to Mat2×2(R), given by

i ↔
(√

A 0

0 −
√
A

)
, j ↔

(
0 B
1 0

)
.

(3) Show that DA,B,R is isomorphic to H if and only if A,B < 0, and is isomorphic to
Mat2×2(R) if at least one of A and B is positive.

(4) Why is Mat2×2(R) not isomorphic to H?
Problem 4.4.6. Let A,B ∈ Q× be rational numbers. Consider the quaternion ring

DA,B,Q = {a+ bi+ cj+ dk | a, b, c, d ∈ Q}
in which the multiplication satisfies relations: i2 = A, j2 = B, and ij = −ji = k.
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(1) Show that if either A or B is a square in Q, then DA,B,Q is isomorphic to Mat2×2(Q).
(2) Prove that DA,B,Q is isomorphic to Mat2×2(Q) if and only if x2 = Ay2 + Bz2 has a

nonzero (meaning not all zero) solution in Q.
Problem 4.4.7. [Alibaba 2021]

Let p be a prime number and let Fp be the finite field with p elements. Consider an
automorphism τ of the polynomial ring Fp[x] given by

τ(f)(x) = f(x+ 1).

Let R denote the subring of Fp[x] consisting of those polynomials f with τ(f) = f . Find a
polynomial g ∈ Fp[x] such that Fp[x] is a free module over R with basis g, τ (g), . . . , τ p−1(g)
(in other words, every element of Fp[x] can be uniquely written as a “linear combination”

a0g + a1τ(g) + · · ·+ ap−1τ
p−1(g)

with a0, . . . , ap−1 ∈ R.
Problem 4.4.8. Let S3 be the symmetric group on 3 letters and let R be the group ring
R = Z[S3].

(1) Write down a nonzero element in R which is a zero-divisor.
(2) Write down an element in the center of R which is not in Z.

Problem 4.4.9. [DN, page 134, problem 67]
Let G be an abelian group and η, ξ be endomorphisms of G (namely homomorphisms from

G to itself). Define the product and sum of η and ξ to be
η · ξ(a) = η(ξ(a)), (η + ξ)(a) = η(a) + ξ(a)

for a ∈ G. Verify that η+ ξ is a homomorphism from G to itself. This two operations on the
set of all endomorphisms of G: End(G) defines a structure of rings, called the endomorphism
ring.

Determine the endomorphism ring of the following:
(1) (Z,+)
(2) Zn

(3) (Zp)
n = Zp × · · · × Zp (where p is a prime).

Problem 4.4.10. Imitate the discussion of Gaussian integers for R = Z[ζ3] with ζ3 =
−1+

√
−3

2
.

(1) Show that a prime p can be written as p = a2 + ab + b2 with a, b ∈ Z if and only if
p = 3 or p ≡ 1 (mod 3).

(2) Classify irreducible elements in R = Z[ζ3].

Hint for Problem 4.4.1: Consider a Taylor expansion (1− ab)−1 = 1+ ab+ abab+ · · · and
relate this to (1− ba)−1. Then, you just have to make sense of what you have computed.
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