For submission of your homework, please finish the 25 True/False problems, and choose 10 questions from the standard ones and 5 questions from the more difficult ones. Mark the question numbers clearly.
$[\mathrm{A}]=$ Artin,$\quad[\mathrm{DF}]=$ Dummit and Foote,$\quad[\mathrm{DN}]=$ Ding and Nie (Chinese),$\quad[\mathrm{H}]=$ Hungerford.

All rings contain 1 and $1 \neq 0$ in these rings. Moreover, homomorphisms always take 1 to 1 .
3.1. True/False questions. (Only write T or F when submitting the solutions.) The letter p always refers to a prime number, and n a positive integer.
(1) If G is an abelian group of order n, the for any divisor d of n, G contains a subgroup of order d.
(2) The commutator subgroup of a simple group G must be G itself. (careful)
(3) Let G be a group acting on a set X. If $g_{1}, g_{2} \in G$ and $x \in X$, then $g_{1} \cdot x=g_{2} \cdot x$ implies $g_{1}=g_{2}$.
(4) Let G be a p-group acting on a finite set X. Then the number of fixed points of the action is congruent modulo p to $\# X$.
(5) Let p be a prime number and $\alpha \in \mathbb{N}$. Then every group of order $2 p^{\alpha}$ is solvable.
(6) All Sylow p-subgroups of a group G are isomorphic.
(7) If H is a subgroup of G, then $N_{G}(H)$ is a normal subgroup of G.
(8) A semi-direct product of two finite abelian groups is solvable.
(9) If a finite group G has order p^{n}, then its solvable length $\leq n$.
(10) A finite nilpotent group is the direct product of its Sylow subgroups (of different primes)
(11) Let G be a group of order p^{n}. Then for each $i=1, \ldots, n-1$, subgroups of G of order p^{i} are conjugate of each other.
(12) A p-group G of order p^{n} contains a subgroup of order of p^{i} for every $i=0, \ldots, n$.
(13) Every group of order 42 has a normal subgroup of order 7 .
(14) Every group of prime-power order is solvable.
(15) If G / H is abelian, then the commutator subgroup G^{\prime} of G contains H.
(16) Let R be a commutative ring and $R^{\prime} \subseteq R$ is a subring. Then R / R^{\prime} admits a natural ring structure.
(17) Let R be a commutative ring and let I and J be ideals. Then $I J$ is the ideal consisting of elements of the form $a b$ with $a \in I$ and $b \in J$.
(18) Let R be a (not necessarily commutative) ring, evaluating polynomials at $x=a \in R$ defines a homomorphism $R[x] \rightarrow R, f(x) \mapsto f(a)$.
(19) A zero-divisor in a commutative ring with unity may have a multiplicative inverse.
(20) The Hamilton quaternion \mathbb{H} has only two ideals: 0 and \mathbb{H}.

For (21)-(25) below, let $\varphi: R \rightarrow R^{\prime}$ be a surjective homomorphism of commutative rings.
(21) if $a \in R$ is a zero-divisor, then $\varphi(a) \in R^{\prime}$ is a zero-divisor;
(22) if R is an integral domain, then $\varphi(R)=R^{\prime}$ is an integral domain;
(23) if R^{\prime} is an integral domain, then R is an integral domain;
(24) if $u \in R$ is a unit, then $\varphi(u)$ is a unit in R^{\prime};
(25) if $\varphi(u) \in R^{\prime}$ is a unit, then u is a unit in R.
3.2. Warm-up questions. (Do not submit solutions to these questions)

Problem 3.2.1. [DF, page 136, problems 1 and 2]
(1) Prove that if P is a Sylow p-subgroup of G and H is a subgroup of G containing P then P is a Sylow p-subgroup of H. Give an example to show that, in general, a Sylow p-subgroup of a subgroup of G need not be a Sylow p-subgroup of G.
(2) Prove that if H is a subgroup of G and Q a Sylow p-subgroup of H, then $g Q g^{-1}$ is a Sylow p-subgroup of $g H g^{-1}$ for all $g \in G$.
Problem 3.2.2. Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of S_{4}.
Problem 3.2.3. [DF, page 147, problem 18]
Prove that if $\# G=200$ then G is not simple.
Problem 3.2.4. Compute the lower and upper series for D_{8}.
Problem 3.2.5. Let N be a normal subgroup of G. Suppose that both N and G / N are solvable. Then G is solvable.

Problem 3.2.6. Let $\varphi: G \rightarrow H$ be a surjective homomorphism. Show that the image of a Sylow p-subgroup is a Sylow p-subgroup.
Problem 3.2.7. Explicitly write down all one-dimensional representations of the dihedral group $D_{2 n}$. (The answer depends on the parity of n.)
Problem 3.2.8. (1) Let R be a commutative ring with 1 , if $a^{2}=a$ is an idempotent element, then $a R$ and ($1-a$) R both naturally have ring structure (what are the " 1 "s?) Moreover, we have

$$
R \cong a R \times(1-a) R
$$

(2) A ring R is a Boolean ring if $a^{2}=a$ for all $a \in R$, so that every element is idempotent. Show that every Boolean ring is commutative.

Problem 3.2.9. Let R be a commutative ring and $n \in \mathbb{N}$. Show that the following two rings are isomorphic.

$$
\operatorname{Mat}_{n}(R[x]) \cong\left(\operatorname{Mat}_{n}(R)\right)[x]
$$

(Think: what exactly do we need to prove?)
Problem 3.2.10. [DF, page 231, problem 7]
The center of a ring R is $\{z \in R \mid z r=r z$ for all $r \in R\}$. Prove that the center of a ring is a subring that contains the identity. Prove that the center of a division ring is a field.

Problem 3.2.11. [DF, page 256, problem 6]
Prove that R is a division ring if and only if its only left ideals are (0) and R. (The analogous result holds when "left" is replaced by "right.")

3.3. Standard questions. (Choose 10 problems to submit)

Problem 3.3.1. [DF, page 147, problem 23]
Prove that if $\# G=462$ then G is not simple.
Problem 3.3.2. Prove that every group of order $5 \cdot 7 \cdot 47$ is abelian and cyclic.
Problem 3.3.3. A group of order 72 is not a simple group.
Problem 3.3.4. [DF, page 147, problem 33]
Let $P \in \operatorname{Syl}_{p}(G)$ and assume $N \unlhd G$. Prove that $P \cap N$ is a Sylow p-subgroup of N. Deduce that $P N / N$ is a Sylow p-subgroup of G / N.

Problem 3.3.5. [DF, page 147, problem 28]
Let G be a group of order 1575. Prove that if a Sylow 3 -subgroup of G is normal then a Sylow 5 -subgroup and a Sylow 7 -subgroup are normal. In this situation prove that G is abelian.

Problem 3.3.6. [DF, page 147, problem 16]
Let $\# G=p q r$, where p, q and r are primes with $p<q<r$. Prove that G has a normal Sylow subgroup for either p, q or r.
Problem 3.3.7. [DF, page 147, problem 35]
Let $P \in \operatorname{Syl}_{p}(G)$ and let $H \leq G$. Prove that $g P g^{-1} \cap H$ is a Sylow p-subgroup of H for some $g \in G$. Give an explicit example showing that $h P h^{-1} \cap H$ is not necessarily a Sylow p-subgroup of H for any $h \in H$ (in particular, we cannot always take $g=1$ in the first part of this problem, but we can when H was normal in G).
Problem 3.3.8. Let $S_{p^{2}}$ be the permutation group of p^{2} elements. Show that the Sylow p-subgroup of $S_{p^{2}}$ is isomorphic to a semi-direct product $\left(\mathbf{Z}_{p}\right)^{p} \rtimes_{\varphi} \mathbf{Z}_{p}$. Specify the homomorphism $\varphi: \mathbf{Z}_{p} \rightarrow \operatorname{Aut}\left(\left(\mathbf{Z}_{p}\right)^{p}\right)$ that defines this semi-direct product. (In fact, this is a wreath product $\mathbf{Z}_{p} \backslash \mathbf{Z}_{p}$.)
Problem 3.3.9. [A, page 230, §2, problem 12]
Prove or disprove: A nonabelian simple group cannot operate nontrivially on a set containing fewer than five elements.

Problem 3.3.10. Suppose that p is the smallest prime integer which divides $\# G$. Prove that a subgroup H of index p is normal.
Problem 3.3.11. [A, page 231, $\S 3$, problem 10]
Let B be the subgroup of $G=\mathrm{GL}_{n}(\mathbb{C})$ of upper triangular matrices, and let $U \subset B$ be the set of upper triangular matrices with diagonal entries 1. Prove that $B=N_{G}(U)$ and $B=N_{G}(B)$.
Problem 3.3.12. [DF, page 198, problem 12]
Compute the upper and lower central series of A_{4}.
Problem 3.3.13. [DF, page 198, problem 9]
Prove that a finite group G is nilpotent if and only if whenever $a, b \in G$ with $\operatorname{gcd}(|a|,|b|)=1$ then $a b=b a$.
Problem 3.3.14. [DF, page 188, Theorem 1(3)]
Let P be a group of order p^{a} and H a normal subgroup of P of order p^{b}. Then for every $c \in\{0, \ldots, b\}, H$ contains a subgroup of order p^{c} that is normal in G.

Problem 3.3.15. Let X be any nonempty set and let $\mathcal{P}(X)$ be the set of all subsets of X (the power set of X). Define addition and multiplication on $\mathcal{P}(X)$ by

$$
A+B=(A \backslash B) \cup(B \backslash A) \quad \text { and } \quad A \times B=A \cap B
$$

i.e., addition is symmetric difference and multiplication is intersection.
(1) Prove that $\mathcal{P}(X)$ is a ring under these operations ($\mathcal{P}(X)$ and its subrings are often referred to as rings of sets).
(2) Prove that this ring is commutative, has an identity and is a Boolean ring. (See Problem 3.2.8 for the definition of Boolean rings.)
(Hint: of course, one may really use subsets as elements of $\mathcal{P}(X)$, but the proof might look nasty. Maybe think about the indicator function of the subsets.)

Problem 3.3.16. [DF, page 267, problem 1]
Let R be a ring with identity $1 \neq 0$. An element $e \in R$ is called an idempotent if $e^{2}=e$. Assume e is an idempotent in R and $e r=r e$ for all $r \in R$. Prove that $R e$ and $R(1-e)$ are two-sided ideals of R and that $R \cong R e \times R(1-e)$. Show that e and $1-e$ are identities for the subrings $R e$ and $R(1-e)$ respectively.

Problem 3.3.17. (1) Show that the units in the product of commutative rings is the product of sets of units, i.e. for two commutative unital rings R_{1} and R_{2}, we have $\left(R_{1} \times R_{2}\right)^{\times}=$ $R_{1}^{\times} \times R_{2}^{\times}$. Show that this is also a group isomorphism.
(2) From this deduce that, if $N=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ is the prime factorization of a positive integer, we have

$$
(\mathbb{Z} / N \mathbb{Z})^{\times} \cong\left(\mathbb{Z} / p_{1}^{\alpha_{1}} \mathbb{Z}\right)^{\times} \times \cdots \times\left(\mathbb{Z} / p_{r}^{\alpha_{r}} \mathbb{Z}\right)^{\times}
$$

(3) Show that for each odd prime p_{i}, the group of units $\left(\mathbb{Z} / p_{i}^{\alpha_{i}} \mathbb{Z}\right)^{\times}$is a cyclic group of order $p_{i}^{\alpha_{i}-1}\left(p_{i}-1\right)$. (Optional)
Problem 3.3.18. In a ring R, write $Z(R)$ for its center, namely $Z(R)=\{r \in R \mid a r=$ $r a$ for any $a \in R\}$.
(1) What is the center of $\operatorname{Mat}_{n \times n}(\mathbb{C})$?
(2) If A and B are rings. Show that $Z(A \times B)=Z(A) \times Z(B)$.
(3) Let n_{1}, \ldots, n_{r} be positive integers. What is the center of the ring

$$
\prod_{i=1}^{r} \operatorname{Mat}_{n_{i}}(\mathbb{C})
$$

Problem 3.3.19. Show that, in an commutative ring R, for two ideals $I, J \subseteq R$, we have

$$
I J \subseteq I \cap J
$$

Give an example of an integral domain R, and two ideals I, and J such that the inclusion is strict.
3.4. More difficult questions. (Choose 5 questions to submit.) Some of the proof has reference; it is okay to read the proof there and reproduce it on your homework.

Problem 3.4.1. Let p be a prime and let \mathbb{F}_{p} denote the field of p elements.
(1) Find the order of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$.
(2) Give a Sylow p-subgroup of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$.
(3) How many Sylow p-subgroups does $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ have? (Compute explicitly.)
(4) Verify that the number of Sylow p-subgroups satisfies the Sylow's third theorem.

Problem 3.4.2. [DF, page 148, problem 44]
Let p be the smallest prime dividing the order of a finite group G. If $P \in \operatorname{Syl}_{p}(G)$ and P is cyclic, prove that $N_{G}(P)=C_{G}(P)$.

Problem 3.4.3 (Yau contest 2015). Let p and q be two distinct prime numbers. Let G be a non-abelian finite group satisfying the following conditions:
(a) all nontrivial elements have order either p or q;
(b) The q-Sylow subgroup H_{q} is normal and is a nontrivial abelian group.

Show in steps the following statement:
The group G is of the form $\mathbf{Z}_{p} \ltimes\left(\mathbf{Z}_{q}\right)^{n}$, where the action of $1 \in \mathbf{Z}_{p}$ on $\mathbf{Z}_{q}^{n} \simeq \mathbb{F}_{q}^{n}$ is given by a matrix $M(1) \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$. each of whose eigenvalue is a primitive p-th root of unity.
(1) Let H_{p} denote a p-Sylow subgroup of G. Show that its inclusion into G induces an isomorphism $H_{p} \cong G / H_{q}$, and that $G \simeq H_{p} \ltimes H_{q}$.
(2) Let $M: H_{p} \rightarrow \operatorname{Aut}\left(H_{q}\right) \simeq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ be the homomorphism induced from the conjugations. Show that for each $1 \neq a \in H_{p}, M(a)$ is semisimple and each of whose eigenvalue is a primitive p-th root of unity. In particular M is injective.
(3) Show that if two nontrivial elements $a, b \in H_{p}$ commute with each other, then $a=b^{n}$ for some $n \in \mathbb{N}$, and that $H_{p} \simeq \mathbf{Z}_{p}$.
(4) Complete the solution of the problem.

Problem 3.4.4. [Alibaba contest, 2020]
Find all finite groups G satisfying the following conditions:

- the order of G is the product of distinct primes, i.e. $\# G=p_{1} \cdots p_{m}$ for some distinct primes p_{1}, \ldots, p_{m}; and
- all non-trivial elements of G have prime order, that is, the order of every element belongs to $\left\{1, p_{1}, \ldots, p_{m}\right\}$.
(Note: The answer depends on m; for example, when $m=2$, there are many such G; you need to classify them.) (I don't particular enjoy this problem because I don't feel it contain more information than a tricky problem.)
Problem 3.4.5. [DF, page 198, problem 8]
Prove that if p is a prime and P is a non-abelian group of order p^{3}, then $|Z(P)|=p$ and $P / Z(P) \cong \mathbf{Z}_{p} \times \mathbf{Z}_{p}$.

Problem 3.4.6. Recall that the commutator subgroup $[G, G]$ of a group G is generated by the commutators $a^{-1} b^{-1} a b$ for $a, b \in G$. It is not true in general that every element in $[G, G]$ is of the form of a commutator. Here is one example from MathOverflow (question number 7811, due to Derek Holt).

Let p be a prime number and $n \in \mathbb{N}$. Consider a group G generated by elements a_{i} $(1 \leq i \leq n)$, such that

- $a_{i}^{p}=1$ for every i,
- for $1 \leq i<j \leq n$, the commutator $b_{i j}=a_{i}^{-1} a_{j}^{-1} a_{i} a_{j}$ is central in G, and satisfies $b_{i j}^{p}=1$.
Prove the following statements:
(1) The commutator subgroup $[G, G]$ has order $p^{n(n-1) / 2}$ and is generated by $b_{i j}$.
(2) On the other hand, show that elements of the form $[x, y]$ with $x, y \in G$ can have at most $p^{2 n}$ elements.
(3) Deduce from this that for any fixed $k>0$, by choosing n sufficiently large, we can find G such that not all elements of $[G, G]$ are products of at most k commutators.

Problem 3.4.7. [DN, page 79-80]
A different proof of First Sylow Theorem following the book by Shisun Ding and Lingzhao Nie. (In fact, we prove a seemingly stronger statement.) Let G be a finite group or order $n=p^{r} \cdot m$ with p a prime number, $r, m \in \mathbb{N}$ such that $p \nmid m$. Let $k \leq r$ be an integer, then G contains a subgroup of order p^{k}. (When $k=r$, we recover First Sylow Theorem.)

First prove an elementary lemma. When $n=p^{r} \cdot m$ with $p^{r} \| n$,

$$
p^{r-k} \|\binom{ n}{p^{k}}
$$

Next, consider the set A of subsets of G or cardinality p^{k}. Then G acts on A by left translation:

$$
g \cdot\left\{x_{1}, \ldots, x_{p^{k}}\right\}=\left\{g x_{1}, \ldots, g x_{p^{k}}\right\} .
$$

Show that there is an orbit whose cardinality is not divisible by p^{r-k+1}.
From this, deduce that the stabilizer group of one element in this orbit is a subgroup of order p^{k}.

Remark: It is hard to compare this proof with the proof given in class. We shall see shortly that by studying subgroups of p-groups, every p-group is solvable, and thus contains a subgroup of every smaller p-power order. So the statement in Dummit-Foote is essentially not weaker than Ding-Nie's statement. Personally, I feel Dummit-Foote's argument is slightly more natural than Ding-Nie's(?)

Problem 3.4.8. [A, page 232, §5, problem 3]
Let G be a group of order 30 .
(1) Prove that either the Sylow 5 -subgroup K or the Sylow 3 -subgroup H is normal.
(2) Prove that $H K$ is a cyclic subgroup of G.
(3) Classify groups of order 30 .

Problem 3.4.9. A different proof of simplicity of A_{n}. See for example [DN, page 66, Theorem 9]

Step 1: Prove that A_{n} is generated by 3 -cycles. (check directly that the product of any two transpositions can be rewritten as a product of 3 -cycles.)

Step 2: Show that it is enough to show that every nontrivial normal subgroup H of A_{n} contains one 3-cycles.

Step 3: Discuss fixed points of elements in H. Take an element τ with most fixed points and show that τ has exactly $n-3$ fixed points, and thus a 3 -cycle.

Problem 3.4.10. Let F be a field consider the group $B_{n}(F)$ of upper-triangular invertible matrices, and its subgroup of strict upper-triangular matrices

$$
U_{n}(F)=\left\{\left.\left(\begin{array}{ccccc}
1 & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & 1 & a_{23} & \ddots & \vdots \\
0 & 0 & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & a_{n-1, n} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right) \right\rvert\, a_{i j} \in F\right\}
$$

(1) Compute the upper and lower central series of $B_{n}(F)$ and $U_{n}(F)$.
(2) Compute the derived series of $B_{n}(F)$.

Optional: From these computation, we see that $B_{n}(F)$ is a solvable group whereas $U_{n}(F)$ is a nilpotent group. In fact, for $U_{n}(F)$, we may replace the field F by $\mathbb{Z} / m \mathbb{Z}$ for $m \in \mathbb{N}$. In this case, can you make explicit why $U_{n}(\mathbb{Z} / m \mathbb{Z})$ is the product of its Sylow subgroups?

Problem 3.4.11. (from a discussion with Junyi Xie)
Let p be a prime number. Consider the following subset of polynomials

$$
S=\left\{\sum_{n \geq 0} a_{n} x^{p^{n}} \mid a_{n} \in \mathbb{F}_{p}\right\}
$$

Show that S is closed under composition $f \circ g(x)$.
Prove that S together with the natural addition and composition (not the multiplication) is a ring, and isomorphic to the polynomial ring $\mathbb{F}_{p}[x]$.
(Can you construct a natural map from $\mathbb{F}_{p}[x] \rightarrow S$ that is easy to describe and involves the Frobenius map? Here Frobenius map is $f(x) \mapsto f(x)^{p}$; but when we are in a ring where $p=0$, raising to p th power preserves addition and multiplication.)

Problem 3.4.12. [DN, page 129, problem 1]
Let R be a ring with $1 \neq 0$. For two elements $a, b \in R$, if $1-a b$ is a unit, then $1-b a$ is a unit.
(I have a nice explanation of the proof, but I don't want to ruin it; so I leave the hint to the end of the file. It's up to you whether to use it.)
Problem 3.4.13. Let $A, B \in \mathbb{Q}^{\times}$be rational numbers. Consider the quaternion ring

$$
D_{A, B, \mathbb{R}}=\{a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \mid a, b, c, d \in \mathbb{R}\}
$$

in which the multiplication satisfies relations: $\mathbf{i}^{2}=A, \mathbf{j}^{2}=B$, and $\mathbf{i j}=-\mathbf{j} \mathbf{i}=\mathbf{k}$.
(1) Represent $\mathbf{j k}, \mathbf{i k}, \mathbf{k}^{2}$ in terms of elements in $D_{A, B, \mathbb{R}}$.
(2) When $A, B>0$, show that $D_{A, B, \mathbb{R}}$ is isomorphic to $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$, given by

$$
\mathbf{i} \leftrightarrow\left(\begin{array}{cc}
\sqrt{A} & 0 \\
0 & -\sqrt{A}
\end{array}\right), \quad \mathbf{j} \leftrightarrow\left(\begin{array}{ll}
0 & B \\
1 & 0
\end{array}\right) .
$$

(3) Show that $D_{A, B, \mathbb{R}}$ is isomorphic to \mathbb{H} if and only if $A, B<0$, and is isomorphic to $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ if at least one of A and B is positive.
(4) Why is $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ not isomorphic to \mathbb{H} ?

Problem 3.4.14. Let $A, B \in \mathbb{Q}^{\times}$be rational numbers. Consider the quaternion ring

$$
D_{A, B, \mathbb{Q}}=\{a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \mid a, b, c, d \in \mathbb{Q}\}
$$

in which the multiplication satisfies relations: $\mathbf{i}^{2}=A, \mathbf{j}^{2}=B$, and $\mathbf{i j}=-\mathbf{j} \mathbf{i}=\mathbf{k}$.
(1) Show that if either A or B is a square in \mathbb{Q}, then $D_{A, B, \mathbb{Q}}$ is isomorphic to $\operatorname{Mat}_{2 \times 2}(\mathbb{Q})$.
(2) Prove that $D_{A, B, \mathbb{Q}}$ is isomorphic to $\operatorname{Mat}_{2 \times 2}(\mathbb{Q})$ if and only if $x^{2}=A y^{2}+B z^{2}$ has a nonzero (meaning not all zero) solution in \mathbb{Q}.
Problem 3.4.15. [Alibaba 2021]
Let p be a prime number and let \mathbb{F}_{p} be the finite field with p elements. Consider an automorphism τ of the polynomial ring $\mathbb{F}_{p}[x]$ given by

$$
\tau(f)(x)=f(x+1)
$$

Let R denote the subring of $\mathbb{F}_{p}[x]$ consisting of those polynomials f with $\tau(f)=f$. Find a polynomial $g \in \mathbb{F}_{p}[x]$ such that $\mathbb{F}_{p}[x]$ is a free module over R with basis $g, \tau(g), \ldots, \tau^{p-1}(g)$ (in other words, every element of $\mathbb{F}_{p}[x]$ can be uniquely written as a "linear combination"

$$
a_{0} g+a_{1} \tau(g)+\cdots+a_{p-1} \tau^{p-1}(g)
$$

with $a_{0}, \ldots, a_{p-1} \in R$.

Hint for Problem 3.4.12: Consider a Taylor expansion $(1-a b)^{-1}=1+a b+a b a b+\cdots$ and relate this to $(1-b a)^{-1}$. Then, you just have to make sense of what you have computed.

