
2023 Fall Honors Algebra Exercise 3 (due on October 26)

For submission of your homework, please finish the 25 True/False problems,
and choose 10 questions from the standard ones and 5 questions from the more
difficult ones. Mark the question numbers clearly.

[A] = Artin, [DF] = Dummit and Foote, [DN] = Ding and Nie (Chinese), [H] =
Hungerford.

All rings contain 1 and 1 ̸= 0 in these rings. Moreover, homomorphisms always
take 1 to 1.

3.1. True/False questions. (Only write T or F when submitting the solutions.) The letter
p always refers to a prime number, and n a positive integer.

(1) If G is an abelian group of order n, the for any divisor d of n, G contains a subgroup
of order d.

(2) The commutator subgroup of a simple group G must be G itself. (careful)
(3) Let G be a group acting on a set X. If g1, g2 ∈ G and x ∈ X, then g1 · x = g2 · x

implies g1 = g2.
(4) Let G be a p-group acting on a finite set X. Then the number of fixed points of the

action is congruent modulo p to #X.
(5) Let p be a prime number and α ∈ N. Then every group of order 2pα is solvable.
(6) All Sylow p-subgroups of a group G are isomorphic.
(7) If H is a subgroup of G, then NG(H) is a normal subgroup of G.
(8) A semi-direct product of two finite abelian groups is solvable.
(9) If a finite group G has order pn, then its solvable length ≤ n.
(10) A finite nilpotent group is the direct product of its Sylow subgroups (of different

primes)
(11) Let G be a group of order pn. Then for each i = 1, . . . , n− 1, subgroups of G of order

pi are conjugate of each other.
(12) A p-group G of order pn contains a subgroup of order of pi for every i = 0, . . . , n.
(13) Every group of order 42 has a normal subgroup of order 7.
(14) Every group of prime-power order is solvable.
(15) If G/H is abelian, then the commutator subgroup G′ of G contains H.
(16) Let R be a commutative ring and R′ ⊆ R is a subring. Then R/R′ admits a natural

ring structure.
(17) Let R be a commutative ring and let I and J be ideals. Then IJ is the ideal consisting

of elements of the form ab with a ∈ I and b ∈ J .
(18) Let R be a (not necessarily commutative) ring, evaluating polynomials at x = a ∈ R

defines a homomorphism R[x] → R, f(x) 7→ f(a).
(19) A zero-divisor in a commutative ring with unity may have a multiplicative inverse.
(20) The Hamilton quaternion H has only two ideals: 0 and H.

For (21)–(25) below, let φ : R → R′ be a surjective homomorphism of commutative
rings.

(21) if a ∈ R is a zero-divisor, then φ(a) ∈ R′ is a zero-divisor;
(22) if R is an integral domain, then φ(R) = R′ is an integral domain;
(23) if R′ is an integral domain, then R is an integral domain;
(24) if u ∈ R is a unit, then φ(u) is a unit in R′;
(25) if φ(u) ∈ R′ is a unit, then u is a unit in R.
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3.2. Warm-up questions. (Do not submit solutions to these questions)

Problem 3.2.1. [DF, page 136, problems 1 and 2]
(1) Prove that if P is a Sylow p-subgroup of G and H is a subgroup of G containing P then

P is a Sylow p-subgroup of H. Give an example to show that, in general, a Sylow p-subgroup
of a subgroup of G need not be a Sylow p-subgroup of G.
(2) Prove that if H is a subgroup of G and Q a Sylow p-subgroup of H, then gQg−1 is a

Sylow p-subgroup of gHg−1 for all g ∈ G.

Problem 3.2.2. Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of S4.

Problem 3.2.3. [DF, page 147, problem 18]
Prove that if #G = 200 then G is not simple.

Problem 3.2.4. Compute the lower and upper series for D8.

Problem 3.2.5. Let N be a normal subgroup of G. Suppose that both N and G/N are
solvable. Then G is solvable.

Problem 3.2.6. Let φ : G → H be a surjective homomorphism. Show that the image of a
Sylow p-subgroup is a Sylow p-subgroup.

Problem 3.2.7. Explicitly write down all one-dimensional representations of the dihedral
group D2n. (The answer depends on the parity of n.)

Problem 3.2.8. (1) Let R be a commutative ring with 1, if a2 = a is an idempotent
element, then aR and (1−a)R both naturally have ring structure (what are the “1”s?)
Moreover, we have

R ∼= aR× (1− a)R.

(2) A ring R is a Boolean ring if a2 = a for all a ∈ R, so that every element is idempotent.
Show that every Boolean ring is commutative.

Problem 3.2.9. Let R be a commutative ring and n ∈ N. Show that the following two rings
are isomorphic.

Matn(R[x]) ∼=
(
Matn(R)

)
[x]

(Think: what exactly do we need to prove?)

Problem 3.2.10. [DF, page 231, problem 7]
The center of a ring R is {z ∈ R | zr = rz for all r ∈ R}. Prove that the center of a ring

is a subring that contains the identity. Prove that the center of a division ring is a field.

Problem 3.2.11. [DF, page 256, problem 6]
Prove that R is a division ring if and only if its only left ideals are (0) and R. (The

analogous result holds when “left” is replaced by “right.”)
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3.3. Standard questions. (Choose 10 problems to submit)

Problem 3.3.1. [DF, page 147, problem 23]
Prove that if #G = 462 then G is not simple.

Problem 3.3.2. Prove that every group of order 5 · 7 · 47 is abelian and cyclic.

Problem 3.3.3. A group of order 72 is not a simple group.

Problem 3.3.4. [DF, page 147, problem 33]
Let P ∈ Sylp(G) and assume N⊴G. Prove that P ∩N is a Sylow p-subgroup of N . Deduce

that PN/N is a Sylow p-subgroup of G/N .

Problem 3.3.5. [DF, page 147, problem 28]
Let G be a group of order 1575. Prove that if a Sylow 3-subgroup of G is normal then

a Sylow 5-subgroup and a Sylow 7-subgroup are normal. In this situation prove that G is
abelian.

Problem 3.3.6. [DF, page 147, problem 16]
Let #G = pqr, where p, q and r are primes with p < q < r. Prove that G has a normal

Sylow subgroup for either p, q or r.

Problem 3.3.7. [DF, page 147, problem 35]
Let P ∈ Sylp(G) and let H ≤ G. Prove that gPg−1 ∩ H is a Sylow p-subgroup of H for

some g ∈ G. Give an explicit example showing that hPh−1 ∩ H is not necessarily a Sylow
p-subgroup of H for any h ∈ H (in particular, we cannot always take g = 1 in the first part
of this problem, but we can when H was normal in G).

Problem 3.3.8. Let Sp2 be the permutation group of p2 elements. Show that the Sylow
p-subgroup of Sp2 is isomorphic to a semi-direct product (Zp)

p ⋊φ Zp. Specify the homomor-
phism φ : Zp → Aut((Zp)

p) that defines this semi-direct product. (In fact, this is a wreath
product Zp ≀ Zp.)

Problem 3.3.9. [A, page 230, §2, problem 12]
Prove or disprove: A nonabelian simple group cannot operate nontrivially on a set con-

taining fewer than five elements.

Problem 3.3.10. Suppose that p is the smallest prime integer which divides #G. Prove
that a subgroup H of index p is normal.

Problem 3.3.11. [A, page 231, §3, problem 10]
Let B be the subgroup of G = GLn(C) of upper triangular matrices, and let U ⊂ B be

the set of upper triangular matrices with diagonal entries 1. Prove that B = NG(U) and
B = NG(B).

Problem 3.3.12. [DF, page 198, problem 12]
Compute the upper and lower central series of A4.

Problem 3.3.13. [DF, page 198, problem 9]
Prove that a finite groupG is nilpotent if and only if whenever a, b ∈ G with gcd(|a|, |b|) = 1

then ab = ba.

Problem 3.3.14. [DF, page 188, Theorem 1(3)]
Let P be a group of order pa and H a normal subgroup of P of order pb. Then for every

c ∈ {0, . . . , b}, H contains a subgroup of order pc that is normal in G.
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Problem 3.3.15. Let X be any nonempty set and let P(X) be the set of all subsets of X
(the power set of X). Define addition and multiplication on P(X) by

A+B = (A\B) ∪ (B\A) and A×B = A ∩B

i.e., addition is symmetric difference and multiplication is intersection.

(1) Prove that P(X) is a ring under these operations (P(X) and its subrings are often
referred to as rings of sets).

(2) Prove that this ring is commutative, has an identity and is a Boolean ring. (See
Problem 3.2.8 for the definition of Boolean rings.)

(Hint: of course, one may really use subsets as elements of P(X), but the proof might look
nasty. Maybe think about the indicator function of the subsets.)

Problem 3.3.16. [DF, page 267, problem 1]
Let R be a ring with identity 1 ̸= 0. An element e ∈ R is called an idempotent if e2 = e.

Assume e is an idempotent in R and er = re for all r ∈ R. Prove that Re and R(1− e) are
two-sided ideals of R and that R ∼= Re× R(1− e). Show that e and 1− e are identities for
the subrings Re and R(1− e) respectively.

Problem 3.3.17. (1) Show that the units in the product of commutative rings is the product
of sets of units, i.e. for two commutative unital rings R1 and R2, we have (R1 × R2)

× =
R×

1 ×R×
2 . Show that this is also a group isomorphism.

(2) From this deduce that, if N = pα1
1 · · · pαr

r is the prime factorization of a positive integer,
we have

(Z/NZ)× ∼= (Z/pα1
1 Z)× × · · · × (Z/pαr

r Z)×.
(3) Show that for each odd prime pi, the group of units (Z/pαi

i Z)× is a cyclic group of
order pαi−1

i (pi − 1). (Optional)

Problem 3.3.18. In a ring R, write Z(R) for its center, namely Z(R) = {r ∈ R | ar =
ra for any a ∈ R}.

(1) What is the center of Matn×n(C)?
(2) If A and B are rings. Show that Z(A×B) = Z(A)× Z(B).
(3) Let n1, . . . , nr be positive integers. What is the center of the ring

r∏
i=1

Matni
(C).

Problem 3.3.19. Show that, in an commutative ring R, for two ideals I, J ⊆ R, we have

IJ ⊆ I ∩ J.

Give an example of an integral domain R, and two ideals I, and J such that the inclusion is
strict.
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3.4. More difficult questions. (Choose 5 questions to submit.) Some of the proof has
reference; it is okay to read the proof there and reproduce it on your homework.

Problem 3.4.1. Let p be a prime and let Fp denote the field of p elements.

(1) Find the order of GLn(Fp).
(2) Give a Sylow p-subgroup of GLn(Fp).
(3) How many Sylow p-subgroups does GLn(Fp) have? (Compute explicitly.)
(4) Verify that the number of Sylow p-subgroups satisfies the Sylow’s third theorem.

Problem 3.4.2. [DF, page 148, problem 44]
Let p be the smallest prime dividing the order of a finite group G. If P ∈ Sylp(G) and P

is cyclic, prove that NG(P ) = CG(P ).

Problem 3.4.3 (Yau contest 2015). Let p and q be two distinct prime numbers. Let G be
a non-abelian finite group satisfying the following conditions:

(a) all nontrivial elements have order either p or q;
(b) The q-Sylow subgroup Hq is normal and is a nontrivial abelian group.

Show in steps the following statement:

The group G is of the form Zp ⋉ (Zq)
n, where the action of 1 ∈ Zp on Zn

q ≃ Fn
q is

given by a matrix M(1) ∈ GLn(Fq). each of whose eigenvalue is a primitive p-th root
of unity.

(1) Let Hp denote a p-Sylow subgroup of G. Show that its inclusion into G induces an
isomorphism Hp

∼= G/Hq, and that G ≃ Hp ⋉Hq.
(2) Let M : Hp → Aut(Hq) ≃ GLn(Fq) be the homomorphism induced from the con-

jugations. Show that for each 1 ̸= a ∈ Hp, M(a) is semisimple and each of whose
eigenvalue is a primitive p-th root of unity. In particular M is injective.

(3) Show that if two nontrivial elements a, b ∈ Hp commute with each other, then a = bn

for some n ∈ N, and that Hp ≃ Zp.
(4) Complete the solution of the problem.

Problem 3.4.4. [Alibaba contest, 2020]
Find all finite groups G satisfying the following conditions:

• the order of G is the product of distinct primes, i.e. #G = p1 · · · pm for some distinct
primes p1, . . . , pm; and

• all non-trivial elements of G have prime order, that is, the order of every element
belongs to {1, p1, . . . , pm}.

(Note: The answer depends on m; for example, when m = 2, there are many such G; you
need to classify them.) (I don’t particular enjoy this problem because I don’t feel it contain
more information than a tricky problem.)

Problem 3.4.5. [DF, page 198, problem 8]
Prove that if p is a prime and P is a non-abelian group of order p3, then |Z(P )| = p and

P/Z(P ) ∼= Zp × Zp.

Problem 3.4.6. Recall that the commutator subgroup [G,G] of a group G is generated by
the commutators a−1b−1ab for a, b ∈ G. It is not true in general that every element in [G,G]
is of the form of a commutator. Here is one example from MathOverflow (question number
7811, due to Derek Holt).
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Let p be a prime number and n ∈ N. Consider a group G generated by elements ai
(1 ≤ i ≤ n), such that

• api = 1 for every i,
• for 1 ≤ i < j ≤ n, the commutator bij = a−1

i a−1
j aiaj is central in G, and satisfies

bpij = 1.

Prove the following statements:

(1) The commutator subgroup [G,G] has order pn(n−1)/2 and is generated by bij.
(2) On the other hand, show that elements of the form [x, y] with x, y ∈ G can have at

most p2n elements.
(3) Deduce from this that for any fixed k > 0, by choosing n sufficiently large, we can

find G such that not all elements of [G,G] are products of at most k commutators.

Problem 3.4.7. [DN, page 79–80]
A different proof of First Sylow Theorem following the book by Shisun Ding and Lingzhao

Nie. (In fact, we prove a seemingly stronger statement.) Let G be a finite group or order
n = pr ·m with p a prime number, r,m ∈ N such that p ∤ m. Let k ≤ r be an integer, then
G contains a subgroup of order pk. (When k = r, we recover First Sylow Theorem.)

First prove an elementary lemma. When n = pr ·m with pr|| n,

pr−k
∣∣∣∣ (n

pk

)
.

Next, consider the set A of subsets of G or cardinality pk. Then G acts on A by left
translation:

g · {x1, . . . , xpk} = {gx1, . . . , gxpk}.
Show that there is an orbit whose cardinality is not divisible by pr−k+1.

From this, deduce that the stabilizer group of one element in this orbit is a subgroup of
order pk.

Remark: It is hard to compare this proof with the proof given in class. We shall see
shortly that by studying subgroups of p-groups, every p-group is solvable, and thus contains a
subgroup of every smaller p-power order. So the statement in Dummit–Foote is essentially not
weaker than Ding–Nie’s statement. Personally, I feel Dummit–Foote’s argument is slightly
more natural than Ding–Nie’s(?)

Problem 3.4.8. [A, page 232, §5, problem 3]
Let G be a group of order 30.

(1) Prove that either the Sylow 5-subgroup K or the Sylow 3-subgroup H is normal.
(2) Prove that HK is a cyclic subgroup of G.
(3) Classify groups of order 30.

Problem 3.4.9. A different proof of simplicity of An. See for example [DN, page 66, Theorem
9]

Step 1: Prove that An is generated by 3-cycles. (check directly that the product of any
two transpositions can be rewritten as a product of 3-cycles.)

Step 2: Show that it is enough to show that every nontrivial normal subgroup H of An

contains one 3-cycles.
Step 3: Discuss fixed points of elements in H. Take an element τ with most fixed points

and show that τ has exactly n− 3 fixed points, and thus a 3-cycle.
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Problem 3.4.10. Let F be a field consider the group Bn(F ) of upper-triangular invertible
matrices, and its subgroup of strict upper-triangular matrices

Un(F ) =

{
1 a12 a13 · · · a1n

0 1 a23
. . .

...

0 0
. . . . . .

...
0 0 · · · 1 an−1,n

0 0 · · · 0 1


∣∣∣∣∣ aij ∈ F

}

(1) Compute the upper and lower central series of Bn(F ) and Un(F ).
(2) Compute the derived series of Bn(F ).

Optional: From these computation, we see that Bn(F ) is a solvable group whereas Un(F ) is
a nilpotent group. In fact, for Un(F ), we may replace the field F by Z/mZ for m ∈ N. In
this case, can you make explicit why Un(Z/mZ) is the product of its Sylow subgroups?

Problem 3.4.11. (from a discussion with Junyi Xie)
Let p be a prime number. Consider the following subset of polynomials

S =
{∑

n≥0

anx
pn

∣∣∣ an ∈ Fp

}
.

Show that S is closed under composition f ◦ g(x).
Prove that S together with the natural addition and composition (not the multiplication)

is a ring, and isomorphic to the polynomial ring Fp[x].
(Can you construct a natural map from Fp[x] → S that is easy to describe and involves

the Frobenius map? Here Frobenius map is f(x) 7→ f(x)p; but when we are in a ring where
p = 0, raising to pth power preserves addition and multiplication.)

Problem 3.4.12. [DN, page 129, problem 1]
Let R be a ring with 1 ̸= 0. For two elements a, b ∈ R, if 1− ab is a unit, then 1− ba is a

unit.
(I have a nice explanation of the proof, but I don’t want to ruin it; so I leave the hint to

the end of the file. It’s up to you whether to use it.)

Problem 3.4.13. Let A,B ∈ Q× be rational numbers. Consider the quaternion ring

DA,B,R = {a+ bi+ cj+ dk | a, b, c, d ∈ R}
in which the multiplication satisfies relations: i2 = A, j2 = B, and ij = −ji = k.

(1) Represent jk, ik, k2 in terms of elements in DA,B,R.
(2) When A,B > 0, show that DA,B,R is isomorphic to Mat2×2(R), given by

i ↔
(√

A 0

0 −
√
A

)
, j ↔

(
0 B
1 0

)
.

(3) Show that DA,B,R is isomorphic to H if and only if A,B < 0, and is isomorphic to
Mat2×2(R) if at least one of A and B is positive.

(4) Why is Mat2×2(R) not isomorphic to H?

Problem 3.4.14. Let A,B ∈ Q× be rational numbers. Consider the quaternion ring

DA,B,Q = {a+ bi+ cj+ dk | a, b, c, d ∈ Q}
in which the multiplication satisfies relations: i2 = A, j2 = B, and ij = −ji = k.
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(1) Show that if either A or B is a square in Q, then DA,B,Q is isomorphic to Mat2×2(Q).
(2) Prove that DA,B,Q is isomorphic to Mat2×2(Q) if and only if x2 = Ay2 + Bz2 has a

nonzero (meaning not all zero) solution in Q.

Problem 3.4.15. [Alibaba 2021]
Let p be a prime number and let Fp be the finite field with p elements. Consider an

automorphism τ of the polynomial ring Fp[x] given by

τ(f)(x) = f(x+ 1).

Let R denote the subring of Fp[x] consisting of those polynomials f with τ(f) = f . Find a
polynomial g ∈ Fp[x] such that Fp[x] is a free module over R with basis g, τ(g), . . . , τ p−1(g)
(in other words, every element of Fp[x] can be uniquely written as a “linear combination”

a0g + a1τ(g) + · · ·+ ap−1τ
p−1(g)

with a0, . . . , ap−1 ∈ R.

Hint for Problem 3.4.12: Consider a Taylor expansion (1−ab)−1 = 1+ab+abab+ · · · and
relate this to (1− ba)−1. Then, you just have to make sense of what you have computed.


	3.1. True/False questions
	3.2. Warm-up questions
	3.3. Standard questions
	3.4. More difficult questions

