2022 Fall Honors Algebra Exercise 2 (due on October 6)

For submission, please finish the 20 True/False problems and choose 10 problems from the standard questions and 5 problems from the more difficult ones. $[\mathrm{A}]=$ Artin,$\quad[\mathrm{DF}]=$ Dummit and Foote,$\quad[\mathrm{DN}]=$ Ding and Nie (Chinese),$\quad[\mathrm{H}]=$ Hungerford.
2.1. True/False questions. (Only write T or F when submitting the solutions.)
(1) In every cyclic group, every element is a generator.
(2) In a cyclic group of odd order, the square of a generator is also a generator.
(3) If an abelian group G is generated by two elements with order p and q (p and q are different primes), then G is cyclic.
(4) Every subgroup of an abelian group is abelian.
(5) In a group G, if x is an element of order p and y is an element of order q, where p and q are distinct prime numbers, then $x y$ has order $p q$.
(6) If every proper subgroup of a group G is abelian, then G is abelian.
(7) There are same number of even permutations and odd permutations in $S_{n}(n \geq 2)$.
(8) If two normal subgroups H_{1} and H_{2} of G (as abstract groups) are isomorphic, then $G / H_{1} \cong G / H_{2}$.
(9) Every element of $\mathbf{Z}_{4} \times \mathbf{Z}_{8}$ has order 8.
(10) Every abelian group of order divisible by 6 contains a cyclic subgroup of order 6 .
(11) The only homomorphism from A_{5} to a group of order 750 is the trivial one.
(12) If H is a normal subgroup of G, then G / H cannot be isomorphic to G.
(13) If the commutator subgroup of a group G is G itself, then G is a simple group.
(14) A group G acts on a set X. If for some $g \in G, g$ fixes every element of X, then $g=1$.
(15) A finite group G acts on a set X. Then for every $x \in X, \# G=\#(G \cdot x) \cdot \# \operatorname{Stab}_{G}(x)$.
(16) A group G acts on a set X. The stabilizer of any two elements $x, y \in X$ are the conjugate of each other.
(17) Let H be a subgroup of G. If the centralizer of H is the entire group G, then H is a subgroup of the center of G.
(18) If a group G contains a cyclic subgroup of order 2 and admits a surjective homomorphism to the cyclic group of order 2 , then G can be written as a direct product $G \simeq H \times \mathbf{Z}_{2}$ for some group H.
(19) Every subgroup of $G_{1} \times G_{2}$ is of the form $H_{1} \times H_{2}$ for subgroups $H_{1} \leq G_{1}$ and $H_{2} \leq G_{2}$.
(20) If H is a normal subgroup of G, then for any normal subgroup N of $G, H N / H$ is a normal subgroup of G / H.
2.2. Warm-up questions. (Do not turn in the solutions.)

Problem 2.2.1. [DF, page 60, problem 5]
Find the number of generators for \mathbf{Z}_{49000}.
Problem 2.2.2. [DF, page 156, problem 2]
Let G_{1}, \ldots, G_{n} be groups and let $G:=G_{1} \times \cdots \times G_{n}$ be the product. Let I be a proper, nonempty subset of $\{1, \ldots, n\}$ and $J=\{1, \ldots, n\}-I$ its complement. Define G_{I} to be the set of elements of G that have identity of G_{j} in position j for all $j \notin I$.
(1) Prove that G_{I} is isomorphic to the direct product of the groups $G_{i}, i \in I$.
(2) Prove that G_{I} is a normal subgroup of G and $G / G_{I} \cong G_{J}$.
(3) Prove that $G \cong G_{I} \times G_{J}$.

Problem 2.2.3. [DF, page 157, problem 14]
Let $G=A_{1} \times \cdots \times A_{n}$ and for each i let B_{i} be a normal subgroup of A_{i}. Prove that $B_{1} \times \cdots \times B_{n} \unlhd G$ and that

$$
\left(A_{1} \times \cdots \times A_{n}\right) /\left(B_{1} \times \cdots \times B_{n}\right) \cong\left(A_{1} / B_{1}\right) \times \cdots \times\left(A_{n} / B_{n}\right)
$$

Problem 2.2.4. Compute the number of non-isomorphic abelian groups of order 576.
Problem 2.2.5. Compute the order of $\operatorname{Aut}\left(\mathbf{Z}_{3} \times \mathbf{Z}_{9}\right)$.
Problem 2.2.6. If H is the unique subgroup of G of a given order in G. Show that for any automorphism $\varphi: G \rightarrow G, \varphi(H)=H$.

Problem 2.2.7. [DF, page 184, problems 1 and 2]
Let H and K be groups and $\varphi: K \rightarrow \operatorname{Aut}(H)$ a homomorphism. Write $G=H \rtimes_{\varphi} K$.
(1) Prove that $C_{K}(H)=\operatorname{ker}(\varphi)$.
(2) Prove that $C_{H}(K)=N_{H}(K)$.

Problem 2.2.8. [DF, page 116, problem 2]
Let G be a group acting faithfully on a set A. Let $\sigma \in G$ and let $a \in A$. Prove that $\sigma \operatorname{Stab}_{G}(a) \sigma^{-1}=\operatorname{Stab}_{G}(\sigma(a))$. Deduce that if G acts transitively on A, then

$$
\bigcap_{\sigma \in G} \sigma \operatorname{Stab}_{G}(a) \sigma^{-1}=1
$$

Problem 2.2.9. [DF, page 116, problem 4]
Let S_{3} act on the set Ω of ordered pairs: $\{(i, j) \mid 1 \leq i, j \leq 3\}$ by $\sigma((i, j))=(\sigma(i), \sigma(j))$. Find the orbits of S_{3} on Ω. For each $\sigma \in S_{3}$ find the cycle decomposition of σ under this action (i.e., find its cycle decomposition when σ is considered as an element of S_{9} - first fix a labelling of these nine ordered pairs). For each orbit \mathcal{O} of S_{3} acting on these nine points pick some $a \in \mathcal{O}$ and find the stabilizer of a in S_{3}.
Problem 2.2.10. Let H and K be subgroups of the group G. For each $x \in G$ define the H - K double coset of x in G to be the set

$$
H x K=\{h x k \mid h \in H, k \in K\}
$$

(1) Prove that $H x K$ is the union of the left cosets $x_{1} K, \ldots, x_{n} K$ where $\left\{x_{1} K, \ldots, x_{n} K\right\}$ is the orbit containing $x K$ of H acting by left multiplication on the set of left cosets of K.
(2) Prove that $H x K$ is a union of right cosets of H.
(3) Show that $H x K$ and $H y K$ are either the same set or are disjoint for all $x, y \in G$. Show that the set of $H-K$ double cosets partitions G.
(4) (Alternative to (3)) Consider $H \times K$-action on G given by $(h, k) \cdot g=h g k^{-1}$, where $h \in H, k \in K, g \in G$. Show that this is an action, and the orbit through x is precisely the $H x K$.
(5) Prove that $\# H x K=\# K \cdot\left[H: H \cap x K x^{-1}\right]$.
(6) Prove that $\# H x K=\# H \cdot\left[K: K \cap x^{-1} H x\right]$.

Problem 2.2.11. Find all conjugacy classes and their sizes in the following group:
(1) D_{8}.
(2) $\mathbf{Z}_{2} \times S_{3}$.
(3) $S_{3} \times S_{3}$.

2.3. Standard questions. (Choose 10 problems to submit.)

Problem 2.3.1. Find a product of cyclic groups that is isomorphic to the group

$$
\left(\mathbf{Z}_{12} \times \mathbf{Z}_{12}\right) /\langle(2,6)\rangle
$$

Problem 2.3.2. Let $\varphi: G \rightarrow H$ be a homomorphism of groups. Let K be a subgroup of $\operatorname{Im}(\varphi)$. Show that

$$
N_{G}\left(\varphi^{-1}(K)\right)=\varphi^{-1}\left(N_{H}(K)\right) .
$$

Problem 2.3.3. Let G and H be two groups. Suppose that there is an injective homomorphism $i: H \rightarrow G$ and a homomorphism $\pi: G \rightarrow H$ such that $\pi \circ i=\mathrm{id}_{H}$. Show that one can write G as a semidirect product $H \ltimes \operatorname{ker}(\pi)$ such that i is the embedding of H into the first factor, and π is the projection to the first factor (by quotienting out the normal subgroup $\operatorname{ker}(\pi))$.

Can you give an example where this semidirect product is not a direct product?
Problem 2.3.4. [DF, page 166, problem 7]
Let $G=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{n}\right\rangle$ be a finite abelian group (written in multiplicative convention) with $\left|x_{i}\right|=n_{i}$. Consider the p th power map

$$
\varphi: A \rightarrow A, \quad \text { by } \quad x \mapsto x^{p} .
$$

(1) Prove that φ is a homomorphism.
(2) Describe the image and the kernel of φ in terms of the given generators. (The answer depends on whether each n_{i} is divisible by p.)
(3) Prove that both $\operatorname{ker}(\varphi)$ and $A / \operatorname{im}(\varphi)$ are elementary p-groups, namely products of copies of $\mathbb{Z} / p \mathbb{Z}$, and they contain the same number of copies of $\mathbb{Z} / p \mathbb{Z}$.

Problem 2.3.5. [DF, page 167, problem 14]
For any group G define the dual group of G (denoted \widehat{G}) to be the set of all homomorphisms from G into the multiplicative group of roots of unity in \mathbb{C} (such homomorphisms are called characters of G). Define a group operation in \widehat{G} by pointwise multiplication of functions: if χ, ψ are homomorphisms from G into the group of roots of unity then $\chi \psi$ is the homomorphism given by $(\chi \psi)(g)=\chi(g) \psi(g)$ for all $g \in G$, where the latter multiplication takes place in \mathbb{C}.
(1) Show that this operation on G makes \widehat{G} into an abelian group. (In particular, what is the identity element in \widehat{G} and what is the inverse of an element of \widehat{G} ?)

Remark on notation: it is better to use \widehat{G} only when G is abelian, as \widehat{G} for G non-abelian often refers to the set of "representations of G.
(2) Show that if G and H are abelian groups, then $\widehat{G \times H} \cong \widehat{G} \times \widehat{H}$.
(3) Compute $\widehat{\mathbf{Z}_{n}}$ as a group.
(4) If G is a finite abelian group, prove that $G \simeq \widehat{G}$.
(This result is often phrased: a finite abelian group is self-dual. It implies that the lattice diagram of a finite abelian group is the same when it is turned upside down. Note however that there is no natural isomorphism between G and its dual (the isomorphism depends on a choice of a set of generators for G). This is frequently stated in the form: a finite abelian group is non-canonically isomorphic to its dual.)

Problem 2.3.6. [DF, page 158, problem 17]
Let I be a nonempty index set and let G_{i} be a group for each $i \in I$. The restricted direct product or direct sum of the group G_{i} is the set of elements of the direct product which are identity in all but finitely many components, that is the set of all elements $\left(a_{i}\right)_{i \in I} \in \prod_{i \in I} G_{i}$ such that $a_{i}=1_{i}$ for all but a finite number of $i \in I$.
(1) Prove that the restricted product is a normal subgroup of the direct product.
(2) Let $I=\mathbb{N}$ and let p_{i} be the i th integer prime. Show that if $G_{i}=\mathbf{Z}_{p_{i}}$. Then every element of the restricted direct product of the G_{i} 's has finite order but $\prod_{i \in I} G_{i}$ has elements of infinite order. Show that in this example, the restricted product is the torsion subgroup of the direct product.

Problem 2.3.7. Let G and H be two groups and let Z be an (abelian) group equipped with embeddings $i: Z \rightarrow G$ and $j: Z \rightarrow H$ such that the images $i(Z)$ is contained in the center of G, and the image of $j(Z)$ is contained in the center of H.
(1) Show that

$$
\begin{aligned}
& \Delta: Z \longrightarrow G \times H \\
& \quad z \longmapsto\left(i(z), j(z)^{-1}\right)
\end{aligned}
$$

defines a natural embedding, and the image is a normal subgroup of $G \times H$. Denote $G \times{ }^{Z} H$ to be the quotient $(G \times H) / \Delta(Z)$.
(2) Consider the following example: $G=\mathrm{GL}_{2}(\mathbb{R}), H=\mathbb{C}^{\times}:=\mathbb{C} \backslash\{0\}$ (with multiplication), and $\mathbb{Z}:=\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$. We hope to relate the product $\mathrm{GL}_{2}(\mathbb{R}) \times \mathbb{R}^{\times} \mathbb{C}^{\times}$to certain unitary group: consider the Hermitian form $\langle-,-\rangle$ with Hermitian matrix $\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$ defined on $\mathbb{C}^{\oplus 2}$ and the similitude unitary group:

$$
\mathrm{GU}(2):=\left\{g \in \mathrm{GL}_{2}(\mathbb{C}), c \in \mathbb{R}^{\times} ;\langle g x, g y\rangle=c\langle x, y\rangle\right\} .
$$

Show that $\mathrm{GL}_{2}(\mathbb{R}) \times \mathbb{R}^{\times} \mathbb{C}^{\times} \cong \mathrm{GU}(2)$.
A version of this isomorphism is used somewhere later in number theory: where the construction for unitary group is easier, yet the construction for GL_{2} (or rather its variant) is more subtle. This isomorphism allows one to "transfer" certain structure on $\mathrm{GU}(2)$ to GL_{2}.

Problem 2.3.8. [DF, page 133-134]
Let H be a normal subgroup of the group G. For each $g \in G$ consider the conjugation on H by $\varphi_{g}: h \mapsto g h g^{-1}$ for $h \in H$.

Show that sending $G \rightarrow \operatorname{Aut}(H)$ by $g \mapsto \varphi_{g}$ is a homomorphism. The kernel of this map is

$$
C_{G}(H):=\{g \in G ; g h=h g \text { for all } h \in H\} .
$$

This $C_{G}(H)$ is called the centralizer of H in G.
Problem 2.3.9. [DF, page 177, Proposition 11]
Let H and K be groups and let $\varphi: K \rightarrow \operatorname{Aut}(H)$ be a homomorphism. Then the following are equivalent:
(1) the identity (set) map between $H \rtimes K$ and $H \times K$ is a group homomorphism (hence an isomorphism),
(2) φ is the trivial homomorphism from K into $\operatorname{Aut}(H)$,
(3) $K \unlhd H \rtimes K$.

Problem 2.3.10. [DF, page 137, problems 3 and 4]
(1) Prove that under any automorphism of D_{8}, r has at most 2 possible images and s has at most 4 possible images. Deduce that $\# \operatorname{Aut}\left(D_{8}\right) \leq 8$.
(2) Use the fact that $D_{8} \unlhd D_{16}$ to prove that $\operatorname{Aut}\left(D_{8}\right) \cong D_{8}$. (What is the center of D_{16} ?)

Problem 2.3.11. [DF, page 184, problem 6]
Assume that K is a cyclic group, H is an arbitrary group and $\varphi_{1}, \varphi_{2}: K \rightarrow \operatorname{Aut}(H)$ be homomorphisms such that $\varphi_{1}(K)$ and $\varphi_{2}(K)$ are conjugate subgroups of $\operatorname{Aut}(H)$. If K is infinite then assume that φ_{1} and φ_{2} are injective.

Prove by constructing an explicit isomorphism that $H \rtimes_{\varphi_{1}} K \cong H \rtimes_{\varphi_{2}} K$. (Challenge question: why the condition of φ_{1} and φ_{2} being injective when K is infinite is needed?)

Problem 2.3.12. [DF, page 186, problem 18]
Show that for any $n \geq 3$ there are exactly 4 distinct homomorphisms from \mathbf{Z}_{2} into $\operatorname{Aut}\left(\mathbf{Z}_{2^{n}}\right)$. Prove that the resulting semidirect products give 4 nonisomorphic groups of order 2^{n+1}. (Remark: These four groups together with the cyclic group and the generalized quaternion group, $Q_{2^{n+1}}$, are all the groups of order 2^{n+1} which possess a cyclic subgroup of index 2 .)

Problem 2.3.13. [DF, page 187, problem 22]
Let F be a field let n be a positive integer and let G be the group of upper triangular matrices in $\mathrm{GL}_{n}(F)$.
(1) Prove that G is the semidirect product $U \rtimes D$ where U is the set of upper triangular matrices with 1's down the diagonal and D is the set of diagonal matrices in $\mathrm{GL}_{n}(F)$.
(2) Let $n=2$. Recall that $U \cong F$ and $D \cong F^{\times} \times F^{\times}$. Describe the homomorphism from D to $\operatorname{Aut}(U)$ explicitly in terms of these isomorphisms (i.e., show how each element of $F^{\times} \times F^{\times}$acts as an automorphism on F).

Problem 2.3.14. Let G be a group acting on sets X and Y. We say that a map $f: X \rightarrow Y$ is a G-map or a G-equivariant map if for any $x \in X$,

$$
g \cdot f(x)=f(g \cdot x)
$$

(1) Show that for $x \in X$, the stabilizer group $\operatorname{Stab}_{G}(x)$ is a subgroup of $\operatorname{Stab}_{G}(f(x))$.
(2) Consider the situation $\varphi: X=G / H \rightarrow Y=G / K$ for subgroups $H \leq K \leq G$ (sending $g H$ to $g K$). Show that this map is G-equivariant for the left translation action.

For a point $y=g K \in Y$, show that its preimage $\varphi^{-1}(y)$ admits a natural transitive action of $g K g^{-1}$. Write $\varphi^{-1}(y)$ in terms of a coset space of $g K g^{-1}$.

Problem 2.3.15. Let H be a subgroup of G and let $N:=N_{G}(H)$ denote its normalizer in G. Show that the coset space G / H carries a natural action of $G \times N_{G}(H) / H$ given by

$$
(g, n) x H=g x n^{-1} H
$$

for $g \in G, n \in N_{G}(H)$ and $x H \in G / H$.
Show that this action is transitive. What is the stabilizer subgroup at the identity coset H ?

Two remarks: having an action of $G \times N_{G}(H) / H$ is equivalent to say we have an action of G and an action of $N_{G}(H) / H$, and the two action commutes. When we talk about stabilizer subgroup, we really mean a group that explicitly realized as a subgroup of $G \times N_{G}(H) / H$.

Problem 2.3.16. [DF, page 117, problem 9]
Assume that G acts transitively on the finite set A and let H be a normal subgroup of G. Let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{r}$ be the distinct orbits of H on A.
(1) Prove that G permutes the sets $\mathcal{O}_{1}, \ldots, \mathcal{O}_{r}$ in the sense that for each $g \in G$ and each $i \in\{1, \ldots, r\}$ there is a J such that $g \mathcal{O}_{i}=\mathcal{O}_{j}$, where $g \mathcal{O}=\{g \cdot a \mid a \in \mathcal{O}\}$. Prove that G is transitive on $\left\{\mathcal{O}_{1}, \ldots, \mathcal{O}_{r}\right\}$. Deduce that all orbits of H on A have the same cardinality.
(2) Prove that if $a \in \mathcal{O}_{1}$ then $\# \mathcal{O}_{1}=\left[H: H \cap \operatorname{Stab}_{G}(a)\right]$ and prove that $r=[G:$ $\left.H \operatorname{Stab}_{G}(a)\right]$.
The situation considered in this problem will be used quite frequently in studying number theory (in "ramification theory").
Problem 2.3.17. Consider the group S_{n} acting on $\{1, \ldots, n\}$. Let \mathcal{P} denote the set of subsets of $\{1, \ldots, n\}$. The natural S_{n}-action on $\{1, \ldots, n\}$ induces an action on \mathcal{P} given by: for $\sigma \in S_{n}$ and $I \subseteq\{1, \ldots, n\}$,

$$
\sigma(I):=\{\sigma(i) ; i \in I\} .
$$

Find all orbits of \mathcal{P} under this S_{n}-action. What is the stabilizer of each element of \mathcal{P} ?
(This generalizes Problem 2.2.9, which may in turn provide some examples to this problem.)
Problem 2.3.18. [DF, page 122, problem 8]
Prove that if H is a subgroup of G of index n, then there is a normal subgroup K of G such that $K \leq H$ and $[G: K] \leq n!$.

Problem 2.3.19. [DF, page 137, problem 8]
Let G be a group with subgroups H and K with $H \leq K$.
(a) Prove that if H is characteristic in K, and K is characteristic in G, then H is characteristic in G.
(b) Give an example to show that if H is normal in K and K is characteristic in G then H need not be normal in G.

Problem 2.3.20. [A, page 229, §1, problem 12]
Let N be a normal subgroup of a group G. Suppose that $\# N=5$ and that $\# G$ is odd. Prove that N is contained in the center of G.

Problem 2.3.21. [A, page 236, problem 3]
(1) Suppose that a group G operates transitively on a set S, and that H is the stabilizer of an element $s_{0} \in S$. Consider the action of G on $S \times S$ defined by $g\left(s_{1}, s_{2}\right)=\left(g s_{1}, g s_{2}\right)$. Establish a bijective correspondence between double cosets of H in G and G-orbits in $S \times S$.
(2) Work out the correspondence explicitly for the case that G is the dihedral group D_{5} and S is the set of vertices of a 5 -gon.

Problem 2.3.22. [DF, page 111, problem 8]
Find a composition series for A_{4}. Deduce that A_{4} is solvable.
Problem 2.3.23. [DF, page 111, problem 12]
Prove that A_{n} contains a subgroup isomorphic to S_{n-2} for each $n \geq 3$.
Problem 2.3.24. This problem combines the left translation, the right translation, and the conjugation action of G on itself.

Fix a group G for this discussion.
(1) Show that there is an action of $G \times G$ on G given by: for $(g, h) \in G \times G$, define a bijection:

$$
\begin{gathered}
\Phi_{g, h}: G \longrightarrow G \\
\Phi_{g, h}(x)=g x h^{-1} .
\end{gathered}
$$

(2) Show that the stabilizer group of this $G \times G$ at each element $g \in G$ is isomorphic to G. (Note: these subgroups are isomorphic but not the same as a subgroups.)
(3) Show that the left translation, right translation, and the adjoint actions maybe viewed as restrictions of this $G \times G$-action to certain subgroups of $G \times G$.

2.4. More difficult questions. (Choose 5 problems to submit)

Problem 2.4.1. Let p be a prime. Write the following abelian groups additively.
(1) Consider the group $G=\mathbf{Z}_{p^{m_{1}}} \times \cdots \times \mathbf{Z}_{p^{m_{r}}}$ with $m_{1} \leq \cdots \leq m_{r}$. Compute the order of p^{n}-torsion subgroup of G :

$$
G\left[p^{N}\right]:=\left\{x \in G ; p^{N} x=0\right\}
$$

(2) Let $H=\mathbf{Z}_{p^{n_{1}}} \times \cdots \times \mathbf{Z}_{p^{n_{s}}}$ be another abelian group with $n_{1} \leq \cdots \leq n_{s}$. Show that $G \simeq H$ if and only if $r=s$ and $m_{i}=n_{i}$ for each $i=1, \ldots, r$.

Problem 2.4.2. [Yau contest, 2019]
Let S_{n} be the group of permutations of $\{1, \ldots, n\}$. Let $\sigma \in S_{n}$ be the permutation

$$
(1, n)(2, n-1) \cdots(k, n-k+1) \cdots\left(\left\lceil\frac{n-1}{2}\right\rceil,\left\lceil\frac{n+2}{2}\right\rceil\right)
$$

Prove that the centralizer $Z_{S_{n}}(\sigma)$ is isomorphic to $S_{\left\lfloor\frac{n}{2}\right\rfloor} \ltimes\left(\mathbf{Z}_{2}\right)^{\lfloor n / 2\rfloor}$.
Problem 2.4.3. Let G be a group of order n with n odd. Prove that the left translation action gives a homomorphism $G \rightarrow A_{n}$.
Problem 2.4.4. Let G be a finitely generated abelian group. The classification theorem says that G is isomorphic to product to "standard" abelian groups. But such isomorphism is not "canonical". We discuss this matter here. We write the group operation in G additively. Let us assume that $G \simeq \mathbb{Z} \times \mathbf{Z}_{n_{1}} \times \cdots \times \mathbf{Z}_{n_{r}}$ for positive integers $n_{1} \geq 2, n_{i} \mid n_{i+1}$ for $i=1, \ldots, r-1$.
(1) Define $G_{\text {tor }}:=\{g \in G ; n \cdot g=0$ for some $n \in \mathbb{N}\}$; this is the torsion subgroup of G. Show that if G is isomorphic to $\mathbb{Z} \times \mathbf{Z}_{n_{1}} \times \cdots \times \mathbf{Z}_{n_{r}}$ and $G / G_{\text {tor }} \cong \mathbb{Z}$. (This $G_{\text {tor }}$ is a canonical subgroup and $G / G_{\text {tor }} \cong \mathbb{Z}$ is a canonical torsion-free quotient.)
(2) Describe all injective homomorphisms $\varphi: \mathbb{Z} \rightarrow G$ such that $G / \varphi(\mathbb{Z})$ is isomorphic to $G_{\text {tor }}$. How many are there?

Show that every such φ induces an isomorphism $\tilde{\varphi}: \mathbb{Z} \times G_{\text {tor }} \rightarrow G$. (But of course, there is no canonical such choice.)
Problem 2.4.5 (Yau contest 2017). Let A be a finite abelian group and let $\phi: A \rightarrow A$ be an endomorphism. Put

$$
A_{\text {nil }}:=\left\{x \in A \mid \phi^{k}(x)=0 \text { for some } k \geq 1\right\} .
$$

Show that there is a unique subgroup A_{0} of A such that ϕ restricts to an automorphism of A_{0} and $A=A_{0} \times A_{\text {nil }}$.

This problem seems a little strange if one sees it the first time. A good example is the following: let p be an odd prime and $r \in \mathbb{N}, A=\mathbf{Z}_{p^{r}}^{4}$; the homomorphism ϕ is given by the matrix

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & p
\end{array}\right)
$$

The decomposition $A=A_{0} \times A_{\text {nil }}$ is used for example in p-adic number theory.
Problem 2.4.6. [Proposed by Yuan]
Let G be an finite \mathbb{Z}-module (i.e., a finite abelian group with additive group law) with a bilinear, (strongly) alternative, and non-degenerate pairing

$$
\ell: G \times G \rightarrow \mathbb{Q} / \mathbb{Z}
$$

Here "(strongly) alternating" means for every $a \in G, \ell(a, a)=0$; "non-degenerate" means for every nonzero $a \in G$ there is a $b \in G$ such that $\ell(a, b) \neq 0$. Show in steps the following statement:
$(\mathrm{S}): G$ is isomorphic to $H_{1} \oplus H_{2}$ for some finite abelian groups $H_{1} \simeq H_{2}$ such that

$$
\ell_{H_{i} \times H_{i}}=0 \quad \text { for each } i=1,2 .
$$

(1) For every $a \in G$, write $o(a)$ for the order of a and $\ell_{a}: G \rightarrow \mathbb{Q} / \mathbb{Z}$ for the homomorphism $\ell_{a}(b)=\ell(a, b)$. Show that the image of ℓ_{a} is $o(a)^{-1} \mathbb{Z} / \mathbb{Z}$.
(2) Show that G has a pair of elements a, b with the following properties:
(a) $o(a)$ is maximal in the sense that for any $x \in G, o(x) \mid o(a)$;
(b) $\ell(a, b)=o(a)^{-1} \bmod \mathbb{Z}$;
(c) $o(a)=o(b)$.

We call the subgroup $\langle a, b\rangle:=\mathbb{Z} a+\mathbb{Z} b$ a maximal hyperbolic subgroup of G.
(3) Let $\langle a, b\rangle$ be a maximal hyperbolic subgroup of G. Let G^{\prime} be the orthogonal complement of $\langle a, b\rangle$ consisting of elements $x \in G$ such that $\ell(x, c)=0$ for all $c \in\langle a, b\rangle$. Show that G is a direct sum as follows:

$$
G=\mathbb{Z} a+\mathbb{Z} b+G^{\prime}
$$

(4) Finish the proof of (S) by induction.

One origin of such group G is the so-called Tate-Shafarevich group of an elliptic curve over a number field. Such group comes equipped with a perfect alternating pairing IF known to be finite.

Problem 2.4.7. [DF, page 138, problem 18]
This exercise shows that for $n \neq 6$ every automorphism of S_{n} is inner. Fix an integer $n \geq 2$ with $n \neq 6$.
(1) Prove that the automorphism group of a group G permutes the conjugacy classes of G, i.e., for each $\sigma \in \operatorname{Aut}(G)$ and each conjugacy class C of G the set $\sigma(C)$ is also a conjugacy class of G.
(2) Let C be the conjugacy class of transpositions in S_{n} and let C^{\prime} be the conjugacy class of any element of order 2 in S_{n} that is not a transposition. Prove that $|C| \neq\left|C^{\prime}\right|$. (Here we use $n \neq 6$.) Deduce that any automorphism of S_{n} sends transpositions to transpositions.
(3) Prove that for each $\sigma \in \operatorname{Aut}\left(S_{n}\right)$

$$
\sigma:(12) \mapsto\left(a b_{2}\right), \quad \sigma:(13) \mapsto\left(a b_{3}\right), \quad \ldots, \quad \sigma:(1 n) \mapsto\left(a b_{n}\right)
$$

for some distinct integers $a, b_{2}, b_{3}, \ldots, b_{n} \in\{1, \ldots, n\}$.
(4) As we have known that $(12),(13), \ldots,(1 n)$ generate S_{n}, deduce that any automorphism of S_{n} is uniquely determined by its action on these elements. Use (3) to show that S_{n} has at most n ! automorphisms and conclude that $\operatorname{Aut}\left(S_{n}\right)=\operatorname{Inn}\left(S_{n}\right)$ for $n \neq 6$.
(Comment: before teaching this class, I had no idea of this! So strange. If you are interested, read on for [DF, page 138, problem 19] and [DF, page 221, problem 10].)
Problem 2.4.8. [DN, page 100, problem 57]
Prove that if a group G is finitely generated, then any its subgroup of finite index is finitely generated.

Problem 2.4.9 (wreath product). [DF, page 187, problem 23] + some content online
Let K and L be groups, let n be a positive integer, let $\rho: K \rightarrow S_{n}$ be a homomorphism and let H be the direct product of n copies of L. Then there is a natural homomorphism $\psi: S_{n} \rightarrow \operatorname{Aut}(H)$, by permuting the n factors of H. The composition $\psi \circ \rho$ is a homomorphism from K into $\operatorname{Aut}(H)$. The wreath product of L by K is the semidirect product $H \rtimes K$ with respect to this homomorphism and is denoted by $L 2 K$ (LaTeX code \backslash wr) (this wreath product depends on the choice of permutation representation ρ of K and of course the number n - if none is given explicitly, ρ is assumed to be the left regular representation of K).
(1) Assume K and L are finite groups and ρ is the left regular representation of K. Find $\#(L \imath K)$ in terms of $\# K$ and $\# L$.
(2) Let p be a prime, let $K=L=Z_{p}=\mathbb{Z} / p \mathbb{Z}$ and let ρ be the left regular representation of K. Prove that $Z_{p} \backslash Z_{p}$ is a non-abelian group of order p^{p+1} and is isomorphic to a Sylow p-subgroup of $S_{p^{2}}$ (the permutation group of p^{2} elements).
(3) Show that S_{2} 亿 S_{n} (Hyperoctahedral group) is the symmetry group of n-dimensional cube. The action of S_{n} on $\{1, \ldots, n\}$ is the usual one.
Some fun examples:
(a) The Rubik's Cube group is a subgroup of index 12 in the product of wreath products, $\left(Z_{3} \backslash S_{8}\right) \times\left(Z_{2} \backslash S_{12}\right)$, the factors corresponding to the symmetries of the 8 corners and 12 edges.
(b) The Sudoku validity preserving transformations (VPT) group contains the double wreath product $\left(S_{3} \backslash S_{3}\right)$) S_{2}, where the factors are the permutation of rows/columns within a 3 -row or 3 -column band or stack $\left(S_{3}\right)$, the permutation of the bands/stacks themselves $\left(S_{3}\right)$ and the transposition, which interchanges the bands and stacks $\left(S_{2}\right)$. Here, the index sets Ω are the set of bands (resp. stacks) $(|\Omega|=3)$ and the set bands, stacks $(|\Omega|=2)$. Accordingly, $\#\left(\left(S_{3} \backslash S_{3}\right) \imath S_{2}\right)=(3!)^{8} \times 2$.
Problem 2.4.10. [DF, page 122, problem 14]
Let G be a finite group of composite order n with the property that G has a subgroup of order k for each positive integer k dividing n. Prove that G is not simple.

Problem 2.4.11. [DF, page 131, problems 23-24]
(1) Recall that a proper subgroup M of G is called maximal if whenever $M \leq H \leq G$, either $H=M$ or $H=G$. Prove that if M is a maximal subgroup of G then either $N_{G}(M)=M$ or $N_{G}(M)=G$. Deduce that if M is a maximal subgroup of G that is not normal in G then the number of nonidentity elements of G that are contained in conjugates of M is at most $(\# M-1)[G: M]$.
(2) Assume H is a proper subgroup of the finite group G. Prove

$$
G \neq \bigcup_{g \in G} g H g^{-1}
$$

i.e., G is not the union of the conjugates of any proper subgroup.

Remark: This problem has the following application later in number theory: Let L be a finite extension of a number field K. Then there exists infinitely many unramified places v of K such that every place of L over v has degree >1 over v.

Problem 2.4.12. (Cohen-Lenstra density question)
(1) Let p be a prime. Compute the order of automorphism group of

$$
\mathbf{Z}_{p^{n_{1}}} \times \cdots \times \mathbf{Z}_{p^{n_{r}}}
$$

with $n_{1} \leq \cdots \leq n_{r}$.
(2) Define $(p)_{r}:=\prod_{i=1}^{r}\left(1-p^{-i}\right)$. Show that

$$
\sum_{\substack{G \text { p-abelian } \\ \# G \leq p^{r}}} \frac{1}{\# \operatorname{Aut}(G)}=\frac{1}{(p)_{r}},
$$

where the sum takes over all finite abelian groups that have order $\# G \mid p^{r}$. (I have not tried this problem myself but I have checked it for $r=2,3$ by hand; I don't know if there is a nice proof.)

Taking the limit shows that

$$
\sum_{G p \text {-abelian }} \frac{1}{\# \operatorname{Aut}(G)}=\frac{1}{(p)_{\infty}}
$$

Remark: The background of this question is the so-called Cohen-Lenstra heuristic. Consider all imaginary quadratic fields $F=\mathbb{Q}(\sqrt{-d})$ with d a square-free positive integer. Its "ring of integers"

$$
\mathcal{O}_{F}= \begin{cases}\mathbb{Z}[\sqrt{-d}] & -d \equiv 2,3 \bmod 4 \\ \mathbb{Z}\left[\frac{1}{2}(1+\sqrt{-d})\right] & -d \equiv 1 \bmod 4\end{cases}
$$

Then there is a question of whether \mathcal{O}_{F} has a property that every element admits a unique factorization into primes, just like in \mathbb{Z}. This is of course not correct in general. To characterize the failure of this, one may naturally introduce a finite abelian group, called the ideal class group $\mathrm{Cl}\left(\mathcal{O}_{F}\right)$. The group $\mathrm{Cl}\left(\mathcal{O}_{F}\right)$ is trivial if and only if \mathcal{O}_{F} admits the unique factorization property. For imaginary quadratic fields F, it is known (Gauss' conjecture) that there are only 9 imaginary quadratic fields. Cohen-Lenstra says that for any finite abelian group G of p-power order

$$
\lim _{D \rightarrow \infty} \frac{\#\left\{1<d \leq D \text { square-free } \mid \mathrm{Cl}\left(\mathcal{O}_{\mathbb{Q}(\sqrt{-d})}\right)\left[p^{\infty}\right] \cong G\right\}}{\#\{1<d \leq D \text { square-free }\}}
$$

is proportional to $\frac{1}{\# \operatorname{Aut}(G)}$. (Here $\bullet\left[p^{\infty}\right]$ means to take the p-power torsion subgroup of the corresponding abelian group, or the p-Sylow subgroup.) This is the "correct" randomness: namely, the ideal class group is a "random" finite abelian group, weighted by the size of its automorphism group.

For real quadratic fields, there is also a similar conjecture, but more complicated heuristic (namely the ideal class group is supposed to be a random group quotient by a random cyclic subgroup). In particular, conjecturally, around 75.446% of real quadratic fields have the unique factorization property; it is not even known to have infinitely many such real quadratic field (known as Gauss' conjecture on real quadratic fields).

Problem 2.4.13 (Alibaba 2022). Let G_{1}, \ldots, G_{n} be nonabelian simple groups for some integer $n \geq 2$; and let H be a group of $G_{1} \times \cdots \times G_{n}$ satisfying that the projection homomorphism $H \rightarrow G_{i} \times G_{j}$ is surjective for every pair of indices $i<j$. Show that $H=G_{1} \times \cdots \times G_{n}$.

