
2022 Fall Honors Algebra Exercise 2 (due on October 6)

For submission, please finish the 20 True/False problems and choose 10 prob-
lems from the standard questions and 5 problems from the more difficult ones.

[A] = Artin, [DF] = Dummit and Foote, [DN] = Ding and Nie (Chinese), [H] =
Hungerford.

2.1. True/False questions. (Only write T or F when submitting the solutions.)

(1) In every cyclic group, every element is a generator.
(2) In a cyclic group of odd order, the square of a generator is also a generator.
(3) If an abelian group G is generated by two elements with order p and q (p and q are

different primes), then G is cyclic.
(4) Every subgroup of an abelian group is abelian.
(5) In a group G, if x is an element of order p and y is an element of order q, where p

and q are distinct prime numbers, then xy has order pq.
(6) If every proper subgroup of a group G is abelian, then G is abelian.
(7) There are same number of even permutations and odd permutations in Sn (n ≥ 2).
(8) If two normal subgroups H1 and H2 of G (as abstract groups) are isomorphic, then

G/H1
∼= G/H2.

(9) Every element of Z4 × Z8 has order 8.
(10) Every abelian group of order divisible by 6 contains a cyclic subgroup of order 6.
(11) The only homomorphism from A5 to a group of order 750 is the trivial one.
(12) If H is a normal subgroup of G, then G/H cannot be isomorphic to G.
(13) If the commutator subgroup of a group G is G itself, then G is a simple group.
(14) A group G acts on a set X. If for some g ∈ G, g fixes every element of X, then g = 1.
(15) A finite group G acts on a set X. Then for every x ∈ X, #G = #(G ·x) ·#StabG(x).
(16) A group G acts on a set X. The stabilizer of any two elements x, y ∈ X are the

conjugate of each other.
(17) Let H be a subgroup of G. If the centralizer of H is the entire group G, then H is a

subgroup of the center of G.
(18) If a group G contains a cyclic subgroup of order 2 and admits a surjective homo-

morphism to the cyclic group of order 2, then G can be written as a direct product
G ≃ H × Z2 for some group H.

(19) Every subgroup of G1 × G2 is of the form H1 × H2 for subgroups H1 ≤ G1 and
H2 ≤ G2.

(20) If H is a normal subgroup of G, then for any normal subgroup N of G, HN/H is a
normal subgroup of G/H.
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2.2. Warm-up questions. (Do not turn in the solutions.)

Problem 2.2.1. [DF, page 60, problem 5]
Find the number of generators for Z49000.

Problem 2.2.2. [DF, page 156, problem 2]
Let G1, . . . , Gn be groups and let G := G1 × · · · ×Gn be the product. Let I be a proper,

nonempty subset of {1, . . . , n} and J = {1, . . . , n} − I its complement. Define GI to be the
set of elements of G that have identity of Gj in position j for all j /∈ I.

(1) Prove that GI is isomorphic to the direct product of the groups Gi, i ∈ I.
(2) Prove that GI is a normal subgroup of G and G/GI

∼= GJ .
(3) Prove that G ∼= GI ×GJ .

Problem 2.2.3. [DF, page 157, problem 14]
Let G = A1 × · · · × An and for each i let Bi be a normal subgroup of Ai. Prove that

B1 × · · · ×Bn ⊴G and that(
A1 × · · · × An

)/(
B1 × · · · ×Bn

) ∼= (A1/B1)× · · · × (An/Bn).

Problem 2.2.4. Compute the number of non-isomorphic abelian groups of order 576.

Problem 2.2.5. Compute the order of Aut(Z3 × Z9).

Problem 2.2.6. If H is the unique subgroup of G of a given order in G. Show that for any
automorphism φ : G→ G, φ(H) = H.

Problem 2.2.7. [DF, page 184, problems 1 and 2]
Let H and K be groups and φ : K → Aut(H) a homomorphism. Write G = H ⋊φ K.

(1) Prove that CK(H) = ker(φ).
(2) Prove that CH(K) = NH(K).

Problem 2.2.8. [DF, page 116, problem 2]
Let G be a group acting faithfully on a set A. Let σ ∈ G and let a ∈ A. Prove that

σStabG(a)σ
−1 = StabG(σ(a)). Deduce that if G acts transitively on A, then⋂

σ∈G

σStabG(a)σ
−1 = 1.

Problem 2.2.9. [DF, page 116, problem 4]
Let S3 act on the set Ω of ordered pairs: {(i, j) | 1 ≤ i, j ≤ 3} by σ((i, j)) = (σ(i), σ(j)).

Find the orbits of S3 on Ω. For each σ ∈ S3 find the cycle decomposition of σ under this
action (i.e., find its cycle decomposition when σ is considered as an element of S9 - first fix
a labelling of these nine ordered pairs). For each orbit O of S3 acting on these nine points
pick some a ∈ O and find the stabilizer of a in S3.

Problem 2.2.10. Let H and K be subgroups of the group G. For each x ∈ G define the
H-K double coset of x in G to be the set

HxK = {hxk | h ∈ H, k ∈ K}.
(1) Prove that HxK is the union of the left cosets x1K, . . . , xnK where {x1K, . . . , xnK}

is the orbit containing xK of H acting by left multiplication on the set of left cosets
of K.

(2) Prove that HxK is a union of right cosets of H.
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(3) Show that HxK and HyK are either the same set or are disjoint for all x, y ∈ G.
Show that the set of H −K double cosets partitions G.

(4) (Alternative to (3)) Consider H ×K-action on G given by (h, k) · g = hgk−1, where
h ∈ H, k ∈ K, g ∈ G. Show that this is an action, and the orbit through x is precisely
the HxK.

(5) Prove that #HxK = #K · [H : H ∩ xKx−1].
(6) Prove that #HxK = #H · [K : K ∩ x−1Hx].

Problem 2.2.11. Find all conjugacy classes and their sizes in the following group:

(1) D8.
(2) Z2 × S3.
(3) S3 × S3.
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2.3. Standard questions. (Choose 10 problems to submit.)

Problem 2.3.1. Find a product of cyclic groups that is isomorphic to the group

(Z12 × Z12)
/
⟨(2, 6)⟩.

Problem 2.3.2. Let φ : G → H be a homomorphism of groups. Let K be a subgroup of
Im(φ). Show that

NG(φ
−1(K)) = φ−1(NH(K)).

Problem 2.3.3. Let G and H be two groups. Suppose that there is an injective homomor-
phism i : H → G and a homomorphism π : G→ H such that π ◦ i = idH . Show that one can
write G as a semidirect product H ⋉ ker(π) such that i is the embedding of H into the first
factor, and π is the projection to the first factor (by quotienting out the normal subgroup
ker(π)).

Can you give an example where this semidirect product is not a direct product?

Problem 2.3.4. [DF, page 166, problem 7]
Let G = ⟨x1⟩ × ⟨x2⟩ × · · · × ⟨xn⟩ be a finite abelian group (written in multiplicative

convention) with |xi| = ni. Consider the pth power map

φ : A→ A, by x 7→ xp.

(1) Prove that φ is a homomorphism.
(2) Describe the image and the kernel of φ in terms of the given generators. (The answer

depends on whether each ni is divisible by p.)
(3) Prove that both ker(φ) and A/im(φ) are elementary p-groups, namely products of

copies of Z/pZ, and they contain the same number of copies of Z/pZ.

Problem 2.3.5. [DF, page 167, problem 14]

For any group G define the dual group of G (denoted Ĝ) to be the set of all homomor-
phisms from G into the multiplicative group of roots of unity in C (such homomorphisms

are called characters of G). Define a group operation in Ĝ by pointwise multiplication of
functions: if χ, ψ are homomorphisms from G into the group of roots of unity then χψ is the
homomorphism given by (χψ)(g) = χ(g)ψ(g) for all g ∈ G, where the latter multiplication
takes place in C.

(1) Show that this operation on G makes Ĝ into an abelian group. (In particular, what

is the identity element in Ĝ and what is the inverse of an element of Ĝ?)

Remark on notation: it is better to use Ĝ only when G is abelian, as Ĝ for G
non-abelian often refers to the set of “representations of G.

(2) Show that if G and H are abelian groups, then Ĝ×H ∼= Ĝ× Ĥ.

(3) Compute Ẑn as a group.

(4) If G is a finite abelian group, prove that G ≃ Ĝ.

(This result is often phrased: a finite abelian group is self-dual. It implies that the lattice
diagram of a finite abelian group is the same when it is turned upside down. Note however
that there is no natural isomorphism between G and its dual (the isomorphism depends on
a choice of a set of generators for G). This is frequently stated in the form: a finite abelian
group is non-canonically isomorphic to its dual.)
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Problem 2.3.6. [DF, page 158, problem 17]
Let I be a nonempty index set and let Gi be a group for each i ∈ I. The restricted direct

product or direct sum of the group Gi is the set of elements of the direct product which are
identity in all but finitely many components, that is the set of all elements (ai)i∈I ∈

∏
i∈I Gi

such that ai = 1i for all but a finite number of i ∈ I.

(1) Prove that the restricted product is a normal subgroup of the direct product.
(2) Let I = N and let pi be the ith integer prime. Show that if Gi = Zpi . Then every

element of the restricted direct product of the Gi’s has finite order but
∏

i∈I Gi has
elements of infinite order. Show that in this example, the restricted product is the
torsion subgroup of the direct product.

Problem 2.3.7. Let G and H be two groups and let Z be an (abelian) group equipped with
embeddings i : Z → G and j : Z → H such that the images i(Z) is contained in the center
of G, and the image of j(Z) is contained in the center of H.

(1) Show that

∆ : Z G×H

z (i(z), j(z)−1)

defines a natural embedding, and the image is a normal subgroup of G×H. Denote
G×Z H to be the quotient (G×H)/∆(Z).

(2) Consider the following example: G = GL2(R), H = C× := C\{0} (with multipli-
cation), and Z := R× = R\{0}. We hope to relate the product GL2(R) ×R× C× to
certain unitary group: consider the Hermitian form ⟨−,−⟩ with Hermitian matrix(

0 i
−i 0

)
defined on C⊕2 and the similitude unitary group:

GU(2) :=
{
g ∈ GL2(C), c ∈ R×; ⟨gx, gy⟩ = c⟨x, y⟩

}
.

Show that GL2(R)×R× C× ∼= GU(2).

A version of this isomorphism is used somewhere later in number theory: where the con-
struction for unitary group is easier, yet the construction for GL2 (or rather its variant) is
more subtle. This isomorphism allows one to “transfer” certain structure on GU(2) to GL2.

Problem 2.3.8. [DF, page 133–134]
Let H be a normal subgroup of the group G. For each g ∈ G consider the conjugation on

H by φg : h 7→ ghg−1 for h ∈ H.
Show that sending G→ Aut(H) by g 7→ φg is a homomorphism. The kernel of this map is

CG(H) := {g ∈ G; gh = hg for all h ∈ H}.
This CG(H) is called the centralizer of H in G.

Problem 2.3.9. [DF, page 177, Proposition 11]
Let H and K be groups and let φ : K → Aut(H) be a homomorphism. Then the following

are equivalent:

(1) the identity (set) map between H ⋊K and H ×K is a group homomorphism (hence
an isomorphism),

(2) φ is the trivial homomorphism from K into Aut(H),
(3) K ⊴H ⋊K.
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Problem 2.3.10. [DF, page 137, problems 3 and 4]

(1) Prove that under any automorphism of D8, r has at most 2 possible images and s has
at most 4 possible images. Deduce that #Aut(D8) ≤ 8.

(2) Use the fact that D8⊴D16 to prove that Aut(D8) ∼= D8. (What is the center of D16?)

Problem 2.3.11. [DF, page 184, problem 6]
Assume that K is a cyclic group, H is an arbitrary group and φ1, φ2 : K → Aut(H) be

homomorphisms such that φ1(K) and φ2(K) are conjugate subgroups of Aut(H). If K is
infinite then assume that φ1 and φ2 are injective.
Prove by constructing an explicit isomorphism that H ⋊φ1 K

∼= H ⋊φ2 K. (Challenge
question: why the condition of φ1 and φ2 being injective when K is infinite is needed?)

Problem 2.3.12. [DF, page 186, problem 18]
Show that for any n ≥ 3 there are exactly 4 distinct homomorphisms from Z2 into Aut(Z2n).

Prove that the resulting semidirect products give 4 nonisomorphic groups of order 2n+1.
(Remark: These four groups together with the cyclic group and the generalized quaternion
group, Q2n+1 , are all the groups of order 2n+1 which possess a cyclic subgroup of index 2.)

Problem 2.3.13. [DF, page 187, problem 22]
Let F be a field let n be a positive integer and let G be the group of upper triangular

matrices in GLn(F ).

(1) Prove that G is the semidirect product U ⋊D where U is the set of upper triangular
matrices with 1’s down the diagonal and D is the set of diagonal matrices in GLn(F ).

(2) Let n = 2. Recall that U ∼= F and D ∼= F× ×F×. Describe the homomorphism from
D to Aut(U) explicitly in terms of these isomorphisms (i.e., show how each element
of F× × F× acts as an automorphism on F ).

Problem 2.3.14. Let G be a group acting on sets X and Y . We say that a map f : X → Y
is a G-map or a G-equivariant map if for any x ∈ X,

g · f(x) = f(g · x).

(1) Show that for x ∈ X, the stabilizer group StabG(x) is a subgroup of StabG(f(x)).
(2) Consider the situation φ : X = G/H → Y = G/K for subgroups H ≤ K ≤ G

(sending gH to gK). Show that this map is G-equivariant for the left translation
action.

For a point y = gK ∈ Y , show that its preimage φ−1(y) admits a natural transitive
action of gKg−1. Write φ−1(y) in terms of a coset space of gKg−1.

Problem 2.3.15. Let H be a subgroup of G and let N := NG(H) denote its normalizer in
G. Show that the coset space G/H carries a natural action of G×NG(H)/H given by

(g, n)xH = gxn−1H

for g ∈ G, n ∈ NG(H) and xH ∈ G/H.
Show that this action is transitive. What is the stabilizer subgroup at the identity coset

H?
Two remarks: having an action of G×NG(H)/H is equivalent to say we have an action of

G and an action of NG(H)/H, and the two action commutes. When we talk about stabilizer
subgroup, we really mean a group that explicitly realized as a subgroup of G×NG(H)/H.
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Problem 2.3.16. [DF, page 117, problem 9]
Assume that G acts transitively on the finite set A and let H be a normal subgroup of G.

Let O1, . . . ,Or be the distinct orbits of H on A.

(1) Prove that G permutes the sets O1, . . . ,Or in the sense that for each g ∈ G and each
i ∈ {1, . . . , r} there is a J such that gOi = Oj, where gO = {g · a | a ∈ O}. Prove
that G is transitive on {O1, . . . ,Or}. Deduce that all orbits of H on A have the same
cardinality.

(2) Prove that if a ∈ O1 then #O1 = [H : H ∩ StabG(a)] and prove that r = [G :
HStabG(a)].

The situation considered in this problem will be used quite frequently in studying number
theory (in “ramification theory”).

Problem 2.3.17. Consider the group Sn acting on {1, . . . , n}. Let P denote the set of
subsets of {1, . . . , n}. The natural Sn-action on {1, . . . , n} induces an action on P given by:
for σ ∈ Sn and I ⊆ {1, . . . , n},

σ(I) := {σ(i); i ∈ I}.
Find all orbits of P under this Sn-action. What is the stabilizer of each element of P?

(This generalizes Problem 2.2.9, which may in turn provide some examples to this problem.)

Problem 2.3.18. [DF, page 122, problem 8]
Prove that if H is a subgroup of G of index n, then there is a normal subgroup K of G

such that K ≤ H and [G : K] ≤ n!.

Problem 2.3.19. [DF, page 137, problem 8]
Let G be a group with subgroups H and K with H ≤ K.
(a) Prove that if H is characteristic in K, and K is characteristic in G, then H is charac-

teristic in G.
(b) Give an example to show that if H is normal in K and K is characteristic in G then

H need not be normal in G.

Problem 2.3.20. [A, page 229, §1, problem 12]
Let N be a normal subgroup of a group G. Suppose that #N = 5 and that #G is odd.

Prove that N is contained in the center of G.

Problem 2.3.21. [A, page 236, problem 3]

(1) Suppose that a group G operates transitively on a set S, and that H is the stabilizer of
an element s0 ∈ S. Consider the action of G on S×S defined by g(s1, s2) = (gs1, gs2).
Establish a bijective correspondence between double cosets of H in G and G-orbits
in S × S.

(2) Work out the correspondence explicitly for the case that G is the dihedral group D5

and S is the set of vertices of a 5-gon.

Problem 2.3.22. [DF, page 111, problem 8]
Find a composition series for A4. Deduce that A4 is solvable.

Problem 2.3.23. [DF, page 111, problem 12]
Prove that An contains a subgroup isomorphic to Sn−2 for each n ≥ 3.

Problem 2.3.24. This problem combines the left translation, the right translation, and the
conjugation action of G on itself.
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Fix a group G for this discussion.
(1) Show that there is an action of G × G on G given by: for (g, h) ∈ G × G, define a

bijection:

Φg,h : G −→ G

Φg,h(x) = gxh−1.

(2) Show that the stabilizer group of this G × G at each element g ∈ G is isomorphic to
G. (Note: these subgroups are isomorphic but not the same as a subgroups.)

(3) Show that the left translation, right translation, and the adjoint actions maybe viewed
as restrictions of this G×G-action to certain subgroups of G×G.
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2.4. More difficult questions. (Choose 5 problems to submit)

Problem 2.4.1. Let p be a prime. Write the following abelian groups additively.

(1) Consider the group G = Zpm1 × · · · × Zpmr with m1 ≤ · · · ≤ mr. Compute the order
of pn-torsion subgroup of G:

G[pN ] :=
{
x ∈ G; pNx = 0

}
(2) Let H = Zpn1 × · · · × Zpns be another abelian group with n1 ≤ · · · ≤ ns. Show that

G ≃ H if and only if r = s and mi = ni for each i = 1, . . . , r.

Problem 2.4.2. [Yau contest, 2019]
Let Sn be the group of permutations of {1, . . . , n}. Let σ ∈ Sn be the permutation

(1, n)(2, n− 1) · · · (k, n− k + 1) · · ·
(⌈

n−1
2

⌉
,
⌈
n+2
2

⌉)
.

Prove that the centralizer ZSn(σ) is isomorphic to S⌊n
2
⌋ ⋉ (Z2)

⌊n/2⌋.

Problem 2.4.3. Let G be a group of order n with n odd. Prove that the left translation
action gives a homomorphism G→ An.

Problem 2.4.4. Let G be a finitely generated abelian group. The classification theorem says
that G is isomorphic to product to “standard” abelian groups. But such isomorphism is not
“canonical”. We discuss this matter here. We write the group operation in G additively. Let
us assume that G ≃ Z×Zn1×· · ·×Znr for positive integers n1 ≥ 2, ni|ni+1 for i = 1, . . . , r−1.

(1) Define Gtor := {g ∈ G; n · g = 0 for some n ∈ N}; this is the torsion subgroup of G.
Show that if G is isomorphic to Z×Zn1 × · · · ×Znr and G/Gtor

∼= Z. (This Gtor is a
canonical subgroup and G/Gtor

∼= Z is a canonical torsion-free quotient.)
(2) Describe all injective homomorphisms φ : Z → G such that G/φ(Z) is isomorphic to

Gtor. How many are there?
Show that every such φ induces an isomorphism φ̃ : Z×Gtor → G. (But of course,

there is no canonical such choice.)

Problem 2.4.5 (Yau contest 2017). Let A be a finite abelian group and let ϕ : A → A be
an endomorphism. Put

Anil :=
{
x ∈ A

∣∣ ϕk(x) = 0 for some k ≥ 1
}
.

Show that there is a unique subgroup A0 of A such that ϕ restricts to an automorphism of
A0 and A = A0 × Anil.
This problem seems a little strange if one sees it the first time. A good example is the

following: let p be an odd prime and r ∈ N, A = Z4
pr ; the homomorphism ϕ is given by the

matrix 
1 1 0 0
0 1 0 0
0 0 2 0
0 0 0 p


The decomposition A = A0 × Anil is used for example in p-adic number theory.

Problem 2.4.6. [Proposed by Yuan]
Let G be an finite Z-module (i.e., a finite abelian group with additive group law) with a

bilinear, (strongly) alternative, and non-degenerate pairing

ℓ : G×G→ Q/Z.
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Here “(strongly) alternating” means for every a ∈ G, ℓ(a, a) = 0; “non-degenerate” means
for every nonzero a ∈ G there is a b ∈ G such that ℓ(a, b) ̸= 0. Show in steps the following
statement:

(S) : G is isomorphic to H1 ⊕H2 for some finite abelian groups H1 ≃ H2 such that

ℓHi×Hi
= 0 for each i = 1, 2.

(1) For every a ∈ G, write o(a) for the order of a and ℓa : G→ Q/Z for the homomorphism
ℓa(b) = ℓ(a, b). Show that the image of ℓa is o(a)−1Z/Z.

(2) Show that G has a pair of elements a, b with the following properties:
(a) o(a) is maximal in the sense that for any x ∈ G, o(x)|o(a);
(b) ℓ(a, b) = o(a)−1 mod Z;
(c) o(a) = o(b).
We call the subgroup ⟨a, b⟩ := Za+ Zb a maximal hyperbolic subgroup of G.

(3) Let ⟨a, b⟩ be a maximal hyperbolic subgroup of G. Let G′ be the orthogonal com-
plement of ⟨a, b⟩ consisting of elements x ∈ G such that ℓ(x, c) = 0 for all c ∈ ⟨a, b⟩.
Show that G is a direct sum as follows:

G = Za+ Zb+G′.

(4) Finish the proof of (S) by induction.

One origin of such group G is the so-called Tate–Shafarevich group of an elliptic curve over
a number field. Such group comes equipped with a perfect alternating pairing IF known to
be finite.

Problem 2.4.7. [DF, page 138, problem 18]
This exercise shows that for n ̸= 6 every automorphism of Sn is inner. Fix an integer n ≥ 2

with n ̸= 6.

(1) Prove that the automorphism group of a group G permutes the conjugacy classes of
G, i.e., for each σ ∈ Aut(G) and each conjugacy class C of G the set σ(C) is also a
conjugacy class of G.

(2) Let C be the conjugacy class of transpositions in Sn and let C ′ be the conjugacy class
of any element of order 2 in Sn that is not a transposition. Prove that |C| ≠ |C ′|.
(Here we use n ̸= 6.) Deduce that any automorphism of Sn sends transpositions to
transpositions.

(3) Prove that for each σ ∈ Aut(Sn)

σ : (12) 7→ (ab2), σ : (13) 7→ (ab3), . . . , σ : (1n) 7→ (abn)

for some distinct integers a, b2, b3, . . . , bn ∈ {1, . . . , n}.
(4) As we have known that (12), (13), . . . , (1n) generate Sn, deduce that any automor-

phism of Sn is uniquely determined by its action on these elements. Use (3) to show
that Sn has at most n! automorphisms and conclude that Aut(Sn) = Inn(Sn) for
n ̸= 6.

(Comment: before teaching this class, I had no idea of this! So strange. If you are
interested, read on for [DF, page 138, problem 19] and [DF, page 221, problem 10].)

Problem 2.4.8. [DN, page 100, problem 57]
Prove that if a group G is finitely generated, then any its subgroup of finite index is finitely

generated.
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Problem 2.4.9 (wreath product). [DF, page 187, problem 23] + some content online
Let K and L be groups, let n be a positive integer, let ρ : K → Sn be a homomorphism

and let H be the direct product of n copies of L. Then there is a natural homomorphism
ψ : Sn → Aut(H), by permuting the n factors ofH. The composition ψ◦ρ is a homomorphism
from K into Aut(H). The wreath product of L by K is the semidirect product H ⋊K with
respect to this homomorphism and is denoted by L≀K (LaTeX code \wr) (this wreath product
depends on the choice of permutation representation ρ of K and of course the number n - if
none is given explicitly, ρ is assumed to be the left regular representation of K).

(1) Assume K and L are finite groups and ρ is the left regular representation of K. Find
#(L ≀K) in terms of #K and #L.

(2) Let p be a prime, let K = L = Zp = Z/pZ and let ρ be the left regular representation
of K. Prove that Zp ≀ Zp is a non-abelian group of order pp+1 and is isomorphic to a
Sylow p-subgroup of Sp2 (the permutation group of p2 elements).

(3) Show that S2 ≀ Sn (Hyperoctahedral group) is the symmetry group of n-dimensional
cube. The action of Sn on {1, . . . , n} is the usual one.

Some fun examples:

(a) The Rubik’s Cube group is a subgroup of index 12 in the product of wreath products,
(Z3 ≀S8)× (Z2 ≀S12), the factors corresponding to the symmetries of the 8 corners and
12 edges.

(b) The Sudoku validity preserving transformations (VPT) group contains the double
wreath product (S3 ≀ S3) ≀ S2, where the factors are the permutation of rows/columns
within a 3-row or 3-column band or stack (S3), the permutation of the bands/stacks
themselves (S3) and the transposition, which interchanges the bands and stacks (S2).
Here, the index sets Ω are the set of bands (resp. stacks) (|Ω| = 3) and the set bands,
stacks (|Ω| = 2). Accordingly, #

(
(S3 ≀ S3) ≀ S2

)
= (3!)8 × 2.

Problem 2.4.10. [DF, page 122, problem 14]
Let G be a finite group of composite order n with the property that G has a subgroup of

order k for each positive integer k dividing n. Prove that G is not simple.

Problem 2.4.11. [DF, page 131, problems 23–24]
(1) Recall that a proper subgroupM ofG is calledmaximal if wheneverM ≤ H ≤ G, either

H = M or H = G. Prove that if M is a maximal subgroup of G then either NG(M) = M
or NG(M) = G. Deduce that if M is a maximal subgroup of G that is not normal in G then
the number of nonidentity elements of G that are contained in conjugates of M is at most
(#M − 1)[G :M ].
(2) Assume H is a proper subgroup of the finite group G. Prove

G ̸=
⋃
g∈G

gHg−1,

i.e., G is not the union of the conjugates of any proper subgroup.

Remark: This problem has the following application later in number theory: Let L be a
finite extension of a number field K. Then there exists infinitely many unramified places v
of K such that every place of L over v has degree > 1 over v.

Problem 2.4.12. (Cohen–Lenstra density question)
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(1) Let p be a prime. Compute the order of automorphism group of

Zpn1 × · · · × Zpnr

with n1 ≤ · · · ≤ nr.
(2) Define (p)r :=

∏r
i=1(1− p−i). Show that∑

G p-abelian
#G≤pr

1

#Aut(G)
=

1

(p)r
,

where the sum takes over all finite abelian groups that have order #G|pr. (I have not
tried this problem myself but I have checked it for r = 2, 3 by hand; I don’t know if
there is a nice proof.)

Taking the limit shows that∑
G p-abelian

1

#Aut(G)
=

1

(p)∞
,

Remark: The background of this question is the so-called Cohen–Lenstra heuristic. Con-
sider all imaginary quadratic fields F = Q(

√
−d) with d a square-free positive integer. Its

“ring of integers”

OF =

{
Z[
√
−d] −d ≡ 2, 3 mod 4

Z[1
2
(1 +

√
−d)] −d ≡ 1 mod 4.

Then there is a question of whether OF has a property that every element admits a unique
factorization into primes, just like in Z. This is of course not correct in general. To char-
acterize the failure of this, one may naturally introduce a finite abelian group, called the
ideal class group Cl(OF ). The group Cl(OF ) is trivial if and only if OF admits the unique
factorization property. For imaginary quadratic fields F , it is known (Gauss’ conjecture) that
there are only 9 imaginary quadratic fields. Cohen–Lenstra says that for any finite abelian
group G of p-power order

lim
D→∞

#{1 < d ≤ D square-free | Cl(OQ(
√
−d))[p

∞] ∼= G}
#{1 < d ≤ D square-free}

is proportional to
1

#Aut(G)
. (Here •[p∞] means to take the p-power torsion subgroup of the

corresponding abelian group, or the p-Sylow subgroup.) This is the “correct” randomness:
namely, the ideal class group is a “random” finite abelian group, weighted by the size of its
automorphism group.

For real quadratic fields, there is also a similar conjecture, but more complicated heuristic
(namely the ideal class group is supposed to be a random group quotient by a random
cyclic subgroup). In particular, conjecturally, around 75.446% of real quadratic fields have
the unique factorization property; it is not even known to have infinitely many such real
quadratic field (known as Gauss’ conjecture on real quadratic fields).

Problem 2.4.13 (Alibaba 2022). Let G1, . . . , Gn be nonabelian simple groups for some inte-
ger n ≥ 2; and let H be a group of G1×· · ·×Gn satisfying that the projection homomorphism
H → Gi ×Gj is surjective for every pair of indices i < j. Show that H = G1 × · · · ×Gn.
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