For submitted part, please complete all True/False questions, choose 10 out of the standard questions, and 5 out of the more challenging questions.
$[\mathrm{A}]=$ Artin,$\quad[\mathrm{DF}]=$ Dummit and Foote,$\quad[\mathrm{DN}]=$ Ding and Nie (Chinese),$\quad[\mathrm{H}]=$ Hungerford, $[\mathrm{Ja}]=$ Jacobson, $[\mathrm{XZ}]=\mathrm{Xu}$ and Zhao
1.1. True/False questions. (Only write T or F when submitting the solutions. Put the solutions five in a row for the convenience of the graders)
(1) $(\mathbb{Q} \backslash\{0\}, *)$ with $a * b=\frac{a b}{2}$ defines a commutative group structure on $\mathbb{Q} \backslash\{0\}$. (What does it look like?)
(2) If $\phi: G \rightarrow G$ is a homomorphism from a group G to itself, if ϕ is surjective, then ϕ is an isomorphism.
(3) In a group G, for any $f, g, h \in G$, the equation $f \cdot x \cdot g=h$ has a solution x in G.
(4) In a cyclic group, every element is a generator.
(5) If H, K are subgroups of a group G, then $H K=\{h k \mid h \in H, k \in K\}$ is a subgroup.
(6) The empty set can be viewed as a group.
(7) For any two groups G and G^{\prime}, there exists a homomorphism $\phi: G \rightarrow G^{\prime}$. (Think carefully.)
(8) A homomorphism may have empty kernel.
(9) It is not possible to have a nontrivial homomorphism from a finite group to an infinite group.
(10) Every quotient group of a nonabelian group is nonabelian.
(11) Let G be a group, then the quotient G / G is the empty set.
(12) $\mathbb{R} / n \mathbb{R}$ is a cyclic group of order n, where $n \mathbb{R}=\{n r \mid r \in \mathbb{R}\}$ and \mathbb{R} is under addition.
(13) Let G be a group and N a normal subgroup. Suppose that K and K^{\prime} are conjugate subgroups of G, then $K N$ and $K^{\prime} N$ are conjugate subgroups of G.
(14) Every finite group of prime order is solvable.
(15) Two groups with the same set of Jordan-Hölder factors are isomorphic.
1.2. Warm-up problems. (Do not submit; exercise on your own.)

Problem 1.2.1. [DF, page 22, problem 9]
Let $G=\{a+b \sqrt{2} \in \mathbb{R} \mid a, b \in \mathbb{Q}\}$.
(a) Prove that G is a group under addition.
(b) Prove that the nonzero elements of G are a group under multiplication.

Problem 1.2.2. [DF, page 22, problem 15]
Prove that, for elements a_{1}, \ldots, a_{n} in a group $G,\left(a_{1} a_{2} \cdots a_{n}\right)^{-1}=a_{n}^{-1} a_{n-1}^{-1} \cdots a_{1}^{-1}$.
Problem 1.2.3. [DF, page 22, problems 18 and 25]
Part I: Let x and y be elements of a group G. Prove that the following are equivalent:
(1) $x y=y x$ (i.e. x and y commutes)
(2) $y x y^{-1}=x$ (i.e. the conjugate of x by y is still x)
(3) $x y x^{-1} y^{-1}=1$ (i.e. the commutator of x and y is 1)

Part II: Prove that if $x^{2}=1$ for all $x \in G$, then G is abelian.
Problem 1.2.4. [DF, page 34, problems 18 and 19]
Find all numbers n such that S_{5} contains an element of order n. Do the same for S_{7}.

Problem 1.2.5. [DF, page 40, problem 18]
Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^{2}$ is a homomorphism if and only if G is abelian.

Problem 1.2.6. [DF, page 49, problem 14]
Show that $\left\{x \in D_{2 n} \mid x^{2}=1\right\}$ is not a subgroup $D_{2 n}$ (here $n \geq 3$).
Problem 1.2.7. [DN, page 54, problem 8] Prove that a group G is a commutative group if and only if the map $x \mapsto x^{-1}$ is an isomorphism of groups.
Problem 1.2.8. [H, page 37, problem 6]
If G is a cyclic group of order n and $k \mid n$, then G has exactly one subgroup of order k.
Problem 1.2.9. [DF, page 87, problem 17]
Let G be the dihedral group of order 16

$$
G=\left\langle r, s \mid r^{8}=s^{2}=1, r s=s r^{-1}\right\rangle
$$

and let $\bar{G}:=G /\left\langle r^{4}\right\rangle$ be the quotient of G by the subgroup generated by r^{4}.
(1) Show that $\left\langle r^{4}\right\rangle$ is normal; and show that $\# \bar{G}=8$.
(2) Exhibit each element of \bar{G} in the form $\bar{s}^{a} \bar{r}^{b}$, for some integers a and b.
(3) Give an explicit isomorphism $\bar{G} \rightarrow D_{8}$.

Problem 1.2.10. Let F be a field (or just simply \mathbb{Q}, \mathbb{R}, or \mathbb{C}). Consider matrix groups

$$
G=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \right\rvert\, a, b, d \in F, a \neq 0, d \neq 0\right\} \supset N=\left\{\left.\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \right\rvert\, b \in F\right\}
$$

(1) Show that N is a normal subgroup of G.
(2) Express each element of the quotient G / N by elements in G.

Problem 1.2.11. [DN, page 55, problem 16]
In the group $\mathrm{SL}_{2}(\mathbb{Q})$, show that the element $a=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ has order 4 and the element $b=\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)$ has order 3 , yet $a b$ has infinite order.
(So even though a and b have finite order, $a b$ can have infinite order.)
Problem 1.2.12. [DF, page 95, problem 8]
Prove that if H and K are finite subgroups of G whose orders are relatively prime then $|H \cap K|=1$.

Problem 1.2.13. [DF, page 96, problem 11]
Let $H \leqslant K \leqslant G$. (Do not assume that G is finite.) Prove that

$$
|G: H|=|G: K| \cdot|K: H| .
$$

Problem 1.2.14. [DF, page 101, problem 4]
Let C be a normal subgroup of the group A and let D be a normal subgroup of the group B. Prove that

$$
(C \times D) \unlhd(A \times B) \quad \text { and } \quad(A \times B) /(C \times D) \simeq(A / C) \times(B / D)
$$

Problem 1.2.15. [XZ, page 24, 15]
Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}e^{2 \pi i / n} & 0 \\ 0 & e^{2 \pi i / n}\end{array}\right)$. Prove that the set $\left\{I, B, B^{2}, \ldots, B^{n-1}, A, A B, \ldots, A B^{n-1}\right\}$ form a group under matrix multiplication. Moreover, this group is isomorphic to $D_{2 n}$.
1.3. Standard problems. (Choose 10 problems to submit.)

Problem 1.3.1. [DF, page 22, problem 22] If x and g are elements of a group G, prove that $|x|=\left|g x g^{-1}\right|$. Deduce that $|a b|=|b a|$ for all $a, b \in G$.
Problem 1.3.2. Let $n, m \in \mathbb{N}_{>2}$. Determine all homomorphisms $\phi: \mathbf{Z}_{n} \rightarrow D_{2 m}$.
Problem 1.3.3. Prove that S_{n} is generated by (12) and $(12 \cdots n)$. (One can probably prove this directly, but one can also prove it as listed in the class, by first showing S_{n} is generated by all ($i j$); and then showing S_{n} is generated by ($i, i+1$); and finally this statement.)

Problem 1.3.4. [DF, page 33, problem 13 and partially problem 17] Show that an element has order 2 in S_{n} if and only if its cycle decomposition is a product of commuting 2-cycles. In S_{6}, how many elements have order 2 ?

Problem 1.3.5. [DF, page 40, problem 7]
Prove that D_{8} and Q_{8} are not isomorphic. (Find the definition in Dummit-Foote.)
Problem 1.3.6. Prove that every subgroup of a cyclic group is cyclic, and every quotient group of a cyclic group is cyclic.

Problem 1.3.7. [A, page 68, 2.6 and page 70, 6.9] Let G be a group. Define an opposite group G^{op} with law of composition $a \star b$ as follows: the underlying set is the same as G, but the law of composition is $a \star b=b a$.

- Prove that G^{op} is a group.
- Prove that G and G^{op} are isomorphic.

Problem 1.3.8. Let $\varphi: G \rightarrow H$ be a group homomorphism, and let K be a subgroup of H.
(1) Show that $\varphi^{-1}(K)$ is a subgroup of G.
(2) When E is a normal subgroup of H, show that $\varphi^{-1}(E)$ is normal in G.
(3) When G is finite, show that $\left|\varphi^{-1}(K)\right|=|\operatorname{ker}(\varphi)| \cdot|\varphi(G) \cap K|$. (Note: one needs to first show the finiteness of each term.)

Problem 1.3.9. [DF, page 87, problem 21]
Consider the group $G=\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ given in terms of the following generators and relations

$$
G=\left\langle x, y \mid x^{4}=y^{4}=1, x y=y x\right\rangle .
$$

Let $\bar{G}=G /\left\langle x^{2} y^{2}\right\rangle$ (note that every subgroup of the abelian group G is normal).
(1) Show that the order of \bar{G} is 8 .
(2) Exhibit each element of \bar{G} in the form of $\bar{x}^{a} \bar{y}^{b}$ for some integers a and b.
(3) Find the order of each of the elements of \bar{G} exhibited in (2).
(4) Give an explicit isomorphism $\bar{G} \simeq \mathbf{Z}_{4} \times \mathbf{Z}_{2}$.

Problem 1.3.10. [DF, page 88, problem 27]
Let N be a finite subgroup of a group G. Show that for an element $g \in G, g N g^{-1} \subseteq N$ if and only if $g N g^{-1}=N$. Can you give an example where this fails for an infinite N ? (Hint: can consider a case similar to Problem 1.2.10.)
Problem 1.3.11. [DF, page 88, problem 34]
Let $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle$ be the usual presentation of dihedral group of order $2 n$, and let k be a positive integer dividing n.
(1) Prove that $\left\langle r^{k}\right\rangle$ is a normal subgroup of $D_{2 n}$.
(2) Prove that $D_{2 n} /\left\langle r^{k}\right\rangle \cong D_{2 k}$.

Problem 1.3.12. [DN, page 55, problem 12]
Any subgroup H of G of index 2 is normal.
Problem 1.3.13. [DN, page 97, problem 15]
Let H_{1}, H_{2} be subgroups of a group G, and let N be a normal subgroup of G contained in $H_{1} \cap H_{2}$. Show that

$$
\left(H_{1} / N\right) \cap\left(H_{2} / N\right) \cong\left(H_{1} \cap H_{2}\right) / N .
$$

Here the intersection takes place in G / N.
Problem 1.3.14. [DN, page 98, problem 27]
Let G be a finite group. Let $H, K<G$ be subgroups and let $a \in G$. The set

$$
H a K:=\{h a k \mid h \in H, k \in K\}
$$

is called a double cosets for H and K. Prove that

$$
|H a K|=|H| \cdot\left[K: a^{-1} H a \cap K\right] .
$$

Problem 1.3.15. [H, page 41, problem 10]
Let H, K, N be subgroups of a group G such that

$$
H<K, \quad H \cap N=K \cap N, \quad \text { and } \quad H N=K N .
$$

Show that $H=K$.
Problem 1.3.16. [DF, page 96, problem 10]
Suppose that H and K are subgroups of finite index in the (possibly infinite) group G with $[G: H]=m$ and $[G: K]=n$. Prove that

$$
\operatorname{lcm}(m, n) \leq[G: H \cap K] \leq m n
$$

Deduce that if m and n are relatively prime, then

$$
[G: H \cap K]=[G: H] \cdot[G: K] .
$$

Problem 1.3.17. [XZ, page 58, problem 19]
Suppose that H and K are both normal subgroups of G and that G / H and G / K are both solvable. Prove that $G /(H \cap K)$ is solvable.

Problem 1.3.18. (online sources)
(1) Let G be a finite abelian group with elements $a_{1}, a_{2}, \ldots, a_{n}$. (But we use multiplicative convention in this problem.) Prove that $a_{1} a_{2} \cdots a_{n}$ is an element whose square is the identity.
(2) If the G in part (1) has no elements of order 2 or more than one elements of order 2. Prove that $a_{1} a_{2} \cdots a_{n}=e$.
(3) If G has exactly one element y of order 2 , prove that $a_{1} a_{2} \cdots a_{n}=y$.
(4) (Wilson's theorem) If p is a prime number, show that $(p-1)!\equiv-1(\bmod p)$.

Problem 1.3.19. Let G be a group and let A be a subgroup and N a normal subgroup. Prove that $A N$ is solvable if and only if both A and N are solvable.

1.4. More challenging questions. (Choose 5 problems to submit.)

Problem 1.4.1 (Subgroups of dihedral groups). List all subgroups of the dihedral group $D_{2 n}$ (note: one has to separate the discussion by whether n is even or odd). Determine which subgroup is normal.

Problem 1.4.2. [Jacobson, page 53, problem 6]
Let H be a subgroup of a finite group G. Show that there exist elements z_{1}, \ldots, z_{n} simultaneously representing left and right cosets of H in G, that is

$$
G / H=\left\{c_{1} H, \ldots, c_{n} H\right\} \quad \text { and at the same time } \quad H \backslash G=\left\{H c_{1}, \ldots, H c_{n}\right\}
$$

(There is a hint in that book. I leave it to you to decide whether to look at it.)
Problem 1.4.3. [DF, problems 10 and 11]
Let G be the group of rigid motions in \mathbb{R}^{3} of a cube (or an octahedron). Show that $|G|=24$. Give an explicit isomorphism $G \simeq S_{4}$.

Problem 1.4.4. [H, page 29 problem 8, page 30 problem 10, page 37, problem 7]
(1) Give a one-line proof of that \mathbb{Z} is a normal subgroup of \mathbb{Q} (the additive subgroup).
(2) Let p be a prime and let $Z\left(p^{\infty}\right)$ be the following subset of \mathbb{Q} / \mathbb{Z} :

$$
Z\left(p^{\infty}\right)=\left\{\overline{a / b} \in \mathbb{Q} / \mathbb{Z} \mid a, b \in \mathbb{Z} \text { and } b=p^{i} \text { for some } i \geq 0\right\}
$$

Show that $Z\left(p^{\infty}\right)$ is an infinite subgroup of \mathbb{Q} / \mathbb{Z}.
(3) Show that every element of $Z\left(p^{\infty}\right)$ has finite order p^{n} for some $n \geq 0$.
(4) Show that the subgroup $H_{n}:=\left\{z \in Z\left(p^{\infty}\right) \mid p^{n} \cdot z=0\right\}$ is isomorphic to $\mathbb{Z} / p^{n} \mathbb{Z}$.
(5) Deduce that $Z\left(p^{\infty}\right)=\bigcup_{n} H_{n}$.
(6) Prove that $Z\left(p^{\infty}\right)$ is divisible, that is, for each element $x \in Z\left(p^{\infty}\right)$ and for each $n \in \mathbb{N}$, there exists $y \in Z\left(p^{\infty}\right)$ such that $x=n y$.

Problem 1.4.5. Prove the fourth isomorphism theorem (on your own): Let G be a group and let N be a normal subgroup of G; write $\pi: G \rightarrow \bar{G}=G / N$ denote the projection. Show that there is a bijection

$$
\begin{gathered}
\{\text { subgroups } A \text { of } G \text { containing } N\} \longleftrightarrow\{\text { subgroups of } \bar{G}\} \\
A \longmapsto \bar{A}:=A / N \\
\pi^{-1}(C) \longleftrightarrow C
\end{gathered}
$$

In addition, prove that, for all $A, B \leqslant G$ with $N \leqslant A$ and $N \leqslant B$
(1) $A \leqslant B$ if and only if $\bar{A} \leqslant \bar{B}$,
(2) $A \leqslant B$, then $[B: A]=[\bar{B}: \bar{A}]$,
(3) $\overline{\langle A, B\rangle}=\langle\bar{A}, \bar{B}\rangle$,
(4) $\overline{A \cap B}=\bar{A} \cap \bar{B}$,
(5) $A \unlhd G$ if and only if $\bar{A} \unlhd \bar{G}$.

Problem 1.4.6. [H, page 51, problem 7]
Show that $N=\{(1),(12)(34),(13)(24),(14)(23)\}$ is a normal subgroup of S_{4} contained in A_{4}. Give explicit isomorphisms $S_{4} / N \cong S_{3}$ and $A_{4} / N \cong \mathbb{Z} / 3 \mathbb{Z}$. (Read the definition of A_{n} on your own.)

Problem 1.4.7. [A, page 77, problems 7-9]
The set of $n \times n$ matrices can be identified with the space $\mathbb{R}^{n \times n}$. Let G be a subgroup of $\mathrm{GL}_{n}(\mathbb{R})$. Prove the following:
(1) If $A, B, C, D \in G$ and if there are paths in G from A to B and from C to D, then there is a path from $A C$ to $B D$. (Here a path from A to B means a continuous function $f:[0,1] \rightarrow G$ such that $f(0)=A$ and $f(1)=B$.)
(2) The set of matrices that admits a path to the identify I forms a normal subgroup of G (called the connected component of G), often denoted by G°.
(3) Show that $\mathrm{SL}_{n}(\mathbb{R})$ is generated by elementary matrices of the form $I+a E_{i j}$ for $a \in \mathbb{R}$, $i \neq j$ and $E_{i j}$ the $n \times n$-matrix with all zero entries except at (i, j)-entry, where it is 1.
(4) Use above to deduce that $\mathrm{SL}_{n}(\mathbb{R})$ is path-connected (that is, all elements are linked to I_{n} by paths).
(5) Show that the subgroup of connected component $\mathrm{GL}_{n}(\mathbb{R})^{\circ}$ in $\mathrm{GL}_{n}(\mathbb{R})$ has index 2.

Problem 1.4.8 (Yau contest 2011). Consider the group

$$
\mathrm{SL}_{2}(\mathbb{Z})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{M}_{2}(\mathbb{Z}) \right\rvert\, a d-b c=1\right\} .
$$

Show that it is generated by two matrices $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
Problem 1.4.9 (Yau contest 2014). Let S and T be nonabelian finite simple groups, and write $G=S \times T$.
(1) Show that the total number of normal subgroups of G is four.
(2) If S and T are isomorphic, show that G has a maximal proper subgroup not containing either direct factor (meaning $\{1\} \times T$ or $S \times\{1\}$). (A maximal proper subgroup of G is a subgroup H of G such that $H \neq G$ and the only subgroup of G strictly containing H is G itself. The existence of maximal proper subgroups is clear in this context because G is finite; you need to show that, there is one such maximal proper subgroup that does not contain S nor T.)
(3) If G has a maximal proper subgroup that contains neither of the direct factors of G, show that S and T are isomorphic.
Problem 1.4.10 (Yau contest 2017). Let G be a group and let $g \in G$ be an element of finite order n. Suppose that n is the product of two positive integers r and s which are coprime to each other.
(1) Show that there is a pair $\left(g_{1}, g_{2}\right)$ of elements of G such that $g_{1}^{r}=g_{2}^{s}=1$ and $g_{1} g_{2}=$ $g_{2} g_{1}=g$.
(2) Show that such a pair is unique.

