
2023 秋: 代数学一 (实验班) 期末考试

时间：120 分钟 满分：110 分，最高得分不超过 100 分

所有的环都有乘法单位元, 且与其加法单位元不相等; 所有环同态把 1 映到 1.

All rings contain 1R and 1R ̸= 0R; all ring homomorphisms take 1 to 1.

判断题 请在答卷纸上整齐编号书写 T 或 F (10 分)

1 2 3 4 5 6 7 8 9 10

F F T F F T T F T T

1. 每个 Z4 × Z8 中的元素的阶都是 8.

Every element of Z4 × Z8 has order 8.

False. For example, (0, 0) ∈ Z4 × Z8 has order 1.

2. 如果 H 是 G 的子群，则 NG(H) 是 G 的正规子群。

If H is a subgroup of G, then NG(H) is a normal subgroup of G.

False. There is no reason for NG(H) to be normal in G. For example, H = {1, (12)} ∈
S3 = G is a subgroup, NG(H) = H is not normal in G.

3. 环 R1 ×R2 的理想都形如 I1 × I2，这里 I1 是 R1 的理想，I2 是 R2 的理想。

Every ideal of the product of the ring R1 × R2 is of the form I1 × I2 for ideals I1 ⊆ R1

and I2 ⊆ R2.

True. Let I be the idea of R1 × R2. Put I1 = {a1 | there exists (a1, a2) ∈ I} and I2 =

{a2 | there exists (a1, a2) ∈ I}. Indeed, for (a1, a2), (a1, a2)(1, 0) = (a1, 0) and (a1, a2)(0, 1) =

(0, a2); so I1 = {a1 | (a1, 0) ∈ I} and I2 = {a2 | (0, a2) ∈ I}. It is clear that I1 is an ideal of

R1, and I2 is an ideal of R2. On the other hand, I1 × I2 = I1 + I2; so all ideals are of the

form I1 × I2.

4. 设 R 是整环，φ : R → R′ 是交换环之间的满射。则 φ(R) = R′ 也是一个整环。

Let R be an integral domain and φ : R → R′ a surjective homomorphism of commutative

rings, then φ(R) = R′ is an integral domain.

False. There is no reason for R′ to be an integral domain. For example, φ : Z → Z/nZ
is surjective but Z/nZ is not an integral domain unless n is a prime number.

5. 若 p 是一个整环 D 中的不可约元素，则 p 是一个 D 中的素元。

If p is an irreducible element in an integral domain D, then p is a prime element.

False. In an integral domain, a prime element is always irreducible, but not conversely.
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6. 设 M 和 N 是两个 Q-线性空间，φ : M → N 是一个 Z-模同态。则 φ 是一个 Q-线

性映射。

Let M and N be two Q-vector spaces and φ : M → N is a Z-module homomorphism.

Then φ is a Q-linear map.

True. We need to show that φ(a
b
m) = a

b
φ(m) for a

b
∈ Q. This is because b · φ(a

b
m) =

φ(b·a
b
m) = φ(am) = aφ(m). InQ-vector space, we may “divide by b” to get φ(a

b
m) = a

b
φ(m).

7. 任何一个域要么包含 Q，要么包含某个 Fp (p 为素数).

A field either contains Q or contains Fp for some prime number p.

True. If the field F has characteristic 0, it contains Q. If the field F has characteristic

p > 0, it contains Fp.

8. 设 K/F 是一个有限的域扩张。若中间域 K1 和 K2 满足 Gal(K/K1)与 Gal(K/K2)

同构，则 K1 = K2.

Let K be a finite Galois extension of F . If two intermediate fields K1 and K2 satisfies

Gal(K/K1) is isomorphic to Gal(K/K2), then K1 = K2.

False. To prove that K1 = K2, it is not enough to require two Galois group Gal(K/K1)

and Gal(K/K2) to be isomorphic, we need Gal(K/K1) and Gal(K/K2) to be the same

group. For example, K = Q(
√
2,
√
3) and Gal(K/Q) ∼= (Z/2Z)2. For K1 = Q(

√
2) and

K2 = Q(
√
3), the Galois groups Gal(K/K1) = {0} × Z/2Z and Gal(K/K2) = Z/2Z × {0}

are isomorphic. Yet K1 ̸= K2.

9. 设域扩张塔 F ⊆ K1 ⊆ K2 ⊆ · · · 中每一个 Ki/F 都是有限伽罗华扩张。记 K =⋃
iKi. 则 K 是一个 F 的伽罗华扩张。

Let F ⊆ K1 ⊆ K2 ⊆ · · · be field extensions such that each Ki is finite and Galois over

F . Put K =
⋃

iKi. Then K is a Galois extension of F .

True. Both properties of being separable and being normal are preserved under increas-

ing union.

10. 设 K/F 是一个次数为 7 的扩张。则任何一个在 K 中但不在 F 中的元素 α 都在

F 上生成 K.

Let K/F be a field extension of degree 7. Then any element α ∈ K that does not belong

to F generates K over F .

True. If α /∈ F , then F (α) ̸= F . We have [K : F ] = [K : F (α)] · [F (α) : F ]. Since

[K : F ] = 7 is a prime number, [F (α) : F ] can only be 7. So K = F (α).

解答题一 (15 分) 记 ζ13 := e2πi/13 ∈ C 和 α := ζ13 + ζ−1
13 .

(1) 决定 Q(α)/Q 的伽罗华群. (需要给出一个严格的证明.)



(2)确定 Q(α)/Q的所有中间域，并给出伽罗华群与域对应的图表。对每个中间域 (不

包括 Q(α) 和 Q), 给出一个 Q 上的生成元，并计算它的极小多项式。

Let ζ13 := e2πi/13 ∈ C, and let α := ζ13 + ζ−1
13 .

(1) Determine the Galois group of Q(α)/Q. (You need to give a rigorous proof.)

(2) Determine all intermediate fields of Q(α)/Q, and draw the diagram of Galois corre-

spondence of these intermediate fields. For each intermediate field (excluding Q(α) and Q),

give a generator over Q and compute its minimal polynomial.

证明. (1) The Galois group Gal(Q(ζ13)/Q) ∼= (Z/13Z)×. For a ∈ (Z/13Z)×, let σa denote

the corresponding automorphism. We note that α is invariant under the action of σa if and

only if

σa(ζ13 + ζ−1
13 ) = ζa13 + ζ−a

13 = 2 cos
aπ

13

is equal to ζ13 + ζ−1
13 = 2 cos π

13
. This is further equivalent to a ∈ {±1}. So the Galois group

of Gal(Q(ζ13)/Q(ζ13 + ζ−1
13 )) = {±1}. The Galois group

Gal(Q(ζ13 + ζ−1
13 )/Q) ∼= (Z/13Z)×/{±1}.

It is a cyclic group of order 6.

(2) We have the following diagram of intermediate fields and subgroups.

{±1}/{±1}

{±1,±5}/{±1}

{±1,±3,±4}/{±1}

(Z/13Z)×/{±1}.

Q(ζ13 + ζ−1
13 )

Q(ζ13)
{±1,±5}

Q(ζ13)
{±1,±3,±4}

Q

Here {±1,±5}/{±1} is the unique subgroup of (Z/13Z)×/{±1} of order 2, and {±1,±3,±4}/{±1}
is the unique subgroup of order 3.

Write ζ = ζ13. For a ∈ N, put αa = ζa + ζ−a and α1 = α. Put

β = α1 + α5 = ζ + ζ−1 + ζ5 + ζ−5 ∈ Q(ζ){±1,±5}.



We compute that

β2 = (α1 + α5)
2 = α2

1 + 2α1α5 + α2
5 = α2 + 2 + 2α4 + 2α6 + α3 + 2,

β3 = (α1 + α5)
3 = α3

1 + 3α2
1α5 + 3α1α

2
5 + α3

5

= (α3 + 3α1) + 3(α6 + α3 + 2α5) + 3(α2 + α4 + 2α1) + (α2 + 3α5)

= 9α1 + 4α2 + 4α3 + 3α4 + 9α5 + 3α6.

Using that 1 + ζ13 + · · ·+ ζ1213 = 1 + α1 + · · ·+ α6 = 0, we see that

0 = 5(1 + α1 + · · ·+ α6) = 5 + β3 + (β2 − 4)− 4β = β3 + β2 − 4β + 1.

Thus, we have Q(ζ13)
{±1,±5} = Q(β) and β has minimal polynomial x3 + x2 − 4x+ 1.

Put

γ = α1 + α3 + α4 = ζ + ζ−1 + ζ3 + ζ−3 + ζ4 + ζ−4 ∈ Q(ζ){±1,±3,±4}.

We compute that

γ2 = α2
1 + α2

3 + α2
4 + 2α1α3 + 2α1α4 + 2α3α4

= (α2 + 2) + (α6 + 2) + (α5 + 2) + 2(α2 + α4) + 2(α3 + α5) + 2(α1 + α6)

= 6 + 3α2 + 3α5 + 3α6 + 2α1 + 2α3 + 2α4

Using that 1 + ζ13 + · · ·+ ζ1213 = 1 + α1 + · · ·+ α6 = 0, we see that

0 = 3(1 + α1 + · · ·+ α6) = 3 + (γ2 − 6) + γ = γ2 + γ − 3.

This γ = −1+
√
13

2
so that Q(γ) = Q(

√
13). □

解答题二 (10 分) 设 G 是一个阶为 2mk 的群，这里 k 是一个奇数且 m 为正整数。假

设 G 包含一个阶恰为 2m 的元素 g。

(a)左乘 x ∈ G定义了一个 G中元素的置换 (正如 Cayley定理中所叙述)。证明 πg 是

一个奇置换 (这里 g 是前述阶为 2m 的元素)。

(b) 令 H 为 G 中所有满足 πh 为偶置换的元素 h ∈ G. 证明：|H| = 2m−1k 且 H 包含

一个元素其阶恰为 2m−1.

(c) 证明 G 包含一个子群其元素个数为 k.

Let G be a group of order 2mk with k odd and with m ≥ 1. Assume that G contains

an element g of order 2m.

(a) Multiplication (from the left) by x ∈ G gives a permutation πx of the elements of

G, as in Cayley’s theorem. Show that πg is an odd permutation (where g is the element of

order 2m).



(b) Let H be the subgroup of h ∈ G such that πh is an even permutation. Show that

|H| = 2m−1k and that H contains an element of order 2m−1.

(c) Show that G contains a subgroup of order k.

证明. (a) Since g has order 2m, there are exactly k right ⟨g⟩-cosets of G. So πg is a product

of k 2m-cycles. But every 2m-cycle is an odd permutation, so πg is an odd permutation.

(b) Consider the homomorphism

φ : G S(G) {±1}x 7→πx sgn

The kernel of φ is precisely the subgroup H of those h ∈ G for which πh is an even permu-

tation.

By first isomorphism theorem, G/H ∼= {±1}; so |H| = 2m−1k and it is clear that g2 ∈ H

and g2 generate a subgroup of H of order 2m−1.

(c) Use induction on m, we first see that G admits a subgroup Gm−1 of order 2m−1h

which contains an element of order 2m−1. Applying (b) in turn to Gm−1 shows that Gm−2

admits a subgroup Gm−2 of order 2
m−2h which contains an element of order 2m−2. Continue

this way, we arrive at the group G0 of order exactly k. □

解答题三 (10 分) 设 L/K 是一个伽罗华扩张，且其伽罗华群为由 σ 生成的 n 阶循环

群。设 n = ab, gcd(a, b) = 1. 令 F1 为 σa 的固定域，F2 为 σb 的固定域. 假设 F1 = K(α),

F2 = K(β). 证明：L = K(α + β).

Let L/K be a Galois extension of fields such that Gal(L/K) is cyclic of order n, gener-

ated by σ. Write n = ab with gcd(a, b) = 1. Let F1 be the fixed field of σa and F2 be the

fixed field of σb. Suppose that F1 = K(α) and F2 = K(β). Prove that L = K(α + β).

证明. If L ̸= K(α + β), then K(α + β) is fixed by some σi with i ̸= 0. By taking some

multiple of i, we may assume that i is divisible by either a or b. WLOG, i is divisible by b.

In particular, σi(α + β) = α + β. So

σi(α)− α = β − σi(β) = 0,

as β is fixed by σb. It then follows that α is also fixed by σi. So K(α) ⊆ L⟨σa,σi⟩ ⊊ F1.

Contradiction!

So L = K(α + β). □

解答题四 (15 分) 设 R 是一个唯一分解整环. 假设 R 中所有非零的素理想都是极大理

想。证明：R 是一个主理想整环。(允许使用 Zorn 引理的推论，虽然不必要。)



Let R be a unique factorization domain. Suppose that every nonzero prime ideal of R

is maximal. Show that R is a principal ideal domain. (You may make apply corollaries of

Zorn’s lemma, although not necessarily needed.)

证明. We first show that if p and q are nonassociated prime (or equivalently irreducible)

elements, then there exist a, b ∈ R such that ap+ bq = 1.

Now, let I be an ideal of R. For each nonzero element of I, the UFD property ensures

that it factors uniquely as a product of irreducible elements (which is the same as prime

elements). Take f to be the nonzero element of I with minimal number of prime factors,

say f = p1 · · · pr with irreducible elements p1, . . . , pr ∈ R. We claim that I = (f).

Let g be another element of I that is not a multiple of f . WLOG, we assume that g

has prime factorization ps+1 · · · prq1 · · · qt with each q1, . . . , qt irreducible, and that each of

p1, . . . , ps is nonassociate with each of q1, . . . , qt. For each pair (i, j) ∈ {1, . . . , s}×{1, . . . , t}
there exist aij, bij ∈ R such that aijpi + bijqj = 1. So we have

1 =
s∏

i=1

t∏
j=1

(aijpi + bijqj)

Expanding the RHS, we note that every term is either a multiple of p1 · · · ps or a multiple

of q1 · · · qt. (Indeed, if for every i, some aijpi term is taken, the product is a multiple of

p1 . . . ps. If for some i, none of aijpi is taken, we must have chosen all of bijqj; so the product

is a multiple of q1 · · · qt.)
Thus, ps+1 · · · pr = ps+1 · · · pr

∏s
i=1

∏t
j=1(aijpi+bijqj) is a linear combination of f and g;

so ps+1 · · · pr ∈ I, but this contradicts with the minimal number of prime factors of nonzero

elements in I. Thus I = (f) is principal. □

解答题五 (10分)设G是一个有限群，固定G的阶的一个素因子 p。记K =
⋂
NG(P )，

这里相交取遍 G 的所有西罗 p-子群 P，NG(−) 为正规化子。证明

(a) K �G.

(b) G 和 G/K 有相同数量的西罗 p-子群。

Let G be a finite group and assume that p is a fixed prime divisor of its order. Set

K =
⋂

NG(P ) where the intersection is taken over all Sylow p-subgroups P of G and NG(−)

denotes the normalizer. Show that

(a) K �G.

(b) G and G/K have the same number of Sylow p-subgroups.



证明. (a) For g ∈ G, we have

gKg−1 = g
(⋂

NG(P )
)
g−1 =

⋂
gNG(P )g−1 =

⋂
NG(gPg−1) =

⋂
NG(P ) = K.

The second last equality is because that all p-Sylow subgroups are conjugate. So K is normal

in G.

(b) Put G = G/K and for any subgroup H of G, denote its image in G/K by H (so

H = H/H ∩K).

Fix a p-Sylow subgroup Q of G, then its image Q in G/K is a p-Sylow subgroup. Let N

denote the normalizer ofQ, i.e. N = NG(Q). So the number of p-Sylow subgroups is precisely

#(G/N). Similarly, the number of p-Sylow subgroups in G/K is precisely #G/NG(Q).

First note that K =
⋂

NG(P ) ⊆ NG(Q) = N . We claim that NG(Q) ∼= N . For any

n ∈ N , nQn−1 = nQn−1 = Q; so the image of N is contained in NG(Q). Conversely, if some

n̄ ∈ G normalizes Q, it must be the case that nQn−1 ⊆ QK for some lift n of n̄ in G. But

on the other hand, Q is a p-Sylow subgroup in G, so it is a p-Sylow subgroup of QK. On

the other hand, K normalizes Q; so QK normalizes Q. Inside QK, the p-Sylow subgroup Q

is normal; so Q = nQn−1. It follows that n ∈ N and hence n̄ ∈ N .

Now, we see that G/N ∼= G/N ; it follows that the number of p-Sylow subgroups in G

and the number of p-Sylow subgroups in G/K are the same. □

解答题六 (15 分) 此问题与标准基定理有关。

(a) 设 K/F 是一个有限伽罗华扩张，伽罗华群为 G. 证明：将 K 自然地看做群环

F [G] 的模是秩为 1 的自由模当且仅当存在元素 x ∈ K 使得 {σ(x) |σ ∈ G} 为 K 作为

F -线性空间的一组基.

标准基定理 是指上述两个等价条件永远成立。接下来，我们在特殊情形下证明此定

理。(当然，不可以直接使用此定理。)

(b) 设 K/F 是一个有限域的有限扩张，这里 |F | = q. 用 Φ : x 7→ xq 记 K 上的 q 次

幂 Frobenius 映射, 并记 G := Gal(K/F ). 求 Φ 作为 F -线性空间 K 上线性映射的极小多

项式.

(c) 符号和标记如 (b). 利用 (b) 证明有限域有限扩张的标准基定理。(如果没有证明

(b) 可以使用 (b) 的结论。)

This problem concerns normal basis theorem.

(a) Let K/F be a finite Galois extension with Galois group G. Prove that K viewed as

a module over the group ring F [G] is free of rank 1 if and only if there exists x ∈ K such

that {σ(x) |σ ∈ G} form an F -basis of K.



The normal basis theorem states that the above equivalent condition always holds. In

the following, we verify this in a very special case. (Clearly, you cannot use normal basis

theorem to prove results.)

(b) Consider the case when K/F is an extension of finite fields with #F = q. Let

Φ : x 7→ xq denote the qth power Frobenius map on K, and let G := Gal(K/F ). Compute

the minimal polynomial of Φ as a F -linear endomorphism of K.

(c) Keep the setup as in (b). Use (b) to prove the normal basis theorem for extensions

of finite fields. (Even if you do not know how to prove (b), you can still use the result of (b)

to deduce (c).)

证明. (a) If K is an F [G]-module free of rank 1, say with generator x. Let φ : F [G]x ∼= K.

Then

K =
⊕
σ∈G

Fσ(x).

Conversely, if x ∈ K is so that {σ(x) |σ ∈ G} form an F -basis of K, we have an isomorphism

F [G] K∑
σ

aσ[σ]
∑
σ

aσσ(x).

∼=

This proves (a).

(b) Assume that [K : F ] = n. Consider Φ as an F -linear operator acting on K; let

P (x) = xm + am−1x
m−1 + · · · + a0 ∈ F [x] denote its minimal polynomial. Since Φn = 1 on

K, we must have P (x)|(xn − 1). In particular, m ≤ n.

If m < n, we must have Φm + am−1Φ
m−1 + · · · + a0 · id = 0 on K. Yet by Artin’s

independence of characters, 1,Φ,Φ2, . . . ,Φn−1 are linearly independent as functions on K.

So the above linear relation cannot happen with m < n. So m = n and thus P (x) = xn − 1.

(c) Since dimF K is equal to the degree of the minimal polynomial of Φ, the F -vector

space K, as a F [t]-module where t acts by Φ, is isomorphic to F [t]/(tn − 1). This means

that K is a free module of F [Gal(K/F )] of rank 1. □

解答题七 (15分)给定交换幺环 R。令 N 为由 R 中幂零的元素构成的集合 (即是具有

如下性质的元素 r ∈ R 的集合：存在 n ≥ 1 使得 rn = 0). 由课上的一个定理知 N 是 R 的

一个理想。证明如下的三个命题(a)–(c)等价. (不允许直接使用大定理如：幂零理想是所有

素理想的交。如果一定要使用，需要先给出证明。)

(a) R/N 是一个域。

(b) R 中的每个元素要么是一个单位，要么是幂零的。

(c) N 是一个素理想，且它是 R 的唯一的素理想。



现在，假设 p 是一个素数且 n ∈ Z≥1。确定环

R = Z[X]/(Xp − 1, pn)

是否满足上述等价条件。给出证明。

Let R be a commutative ring with 1. Let N be the set of nilpotent elements of R (that

is the set of r ∈ R such that rn = 0 for some n ≥ 1). By a theorem from the class, N is an

ideal of R. Prove that the following statements (a)–(c) are equivalent. (One cannot quote

big theorems such as nilpotent radical of a commutative ring is the intersection of all prime

ideals; if one has to use this, please provide a proof.)

(a) R/N is a field.

(b) Every element of R is either a unit or nilpotent.

(c) N is a prime ideal and it is the only prime ideal of R.

Now assume that p is a prime number and n ∈ Z≥1. Determine whether the ring

R = Z[X]/(Xp − 1, pn)

satisfies the above equivalence conditions.

证明. We first point out that a unit of R can never be nilpotent. First prove the equivalence

of (a)–(c).

(a) ⇒ (b). Let a ∈ R be an element that is not nilpotent. We need to show that a is a

unit. Clearly, a /∈ N . Thus the image ā of a in R/N is nonzero. Since R/N is a field, there

exists b̄ ∈ R/N such that ā · b̄ = 1̄ in R/N . Take any lift b ∈ R of b̄. Then ab − 1 = n for

some n ∈ N . But n is nilpotent, so nr = 0 for some r ∈ Z≥1. Then we have

1 = ab− n = (ab− n)r =
r∑

i=0

(
r

i

)
(ab)inr−i

But the term with i = 0 vanishes, so the RHS is a multiple of a. Thus a is a unit.

(b) ⇒ (c). First show that N is a prime ideal. Indeed, if ab ∈ N for some a, b ∈ R.

Suppose that a, b /∈ N , then a, b are both units, so ab is also a unit, and thus ab /∈ N .

Contradiction. So N is a prime ideal.

Now we show that every prime ideal p is equal to N . Indeed, for every element n ∈ N ,

nr = 0 ∈ p for some r. So n ∈ p, and thus N ⊆ p. But every element that is not in N is a

unit, and a prime ideal cannot contain a unit. So N = p.

(c) ⇒ (a) Since N is the only prime ideal of R, it is a maximal ideal. Thus R/N is a

field.



Now, we prove that the ring R = Z[X]/(Xp − 1, pn) satisfies the above equivalence

conditions. It is clear that p ∈ N because pn is zero in R. Moreover, we claim that

X − 1 ∈ N , this is because (X − 1)p = Xp − 1 + p∗ is a multiple of p; so (X − 1)pn is zero

in R. It then follows that (p,X − 1) ⊆ N . But on the other hand,

R/(p,X − 1) = Fp[X]/(X − 1) ∼= Fp

is already a field. So N = (p,X−1) is a maximal ideal and the quotient R/N is a field. The

ring R satisfies condition (a). □

解答题八 (10 分) 固定素数 p. 设 L/K 是特征 p 的域的一个有限扩张. 记 σ 为域 L 的

p-Frobenius 自同态，显然 σ 将 K 映到自身.

(a) 考虑 L/K 的中间域:

K ⊆ · · · ⊆ Kσ3(L) ⊆ Kσ2(L) ⊆ Kσ(L) ⊆ L.

证明：对所有非负整数 n,

[Kσn(L) : Kσn+1(L)] ≥ [Kσn+1(L) : Kσn+2(L)].

(b) 证明：如果 [L : Kσ(L)] ≤ p, 那么域扩张 L/K 可以由一个元素生成. (可以使用课

上证明或者作业中的结论，使用其它结论需要给出证明。)

Let p be a prime number. Let L/K be a finite extension of fields of characteristic p,

and let σ denote the p-Frobenius endomorphism on L, which of course stabilizes K.

(a) Consider the intermediate fields between K and L:

K ⊆ · · · ⊆ Kσ3(L) ⊆ Kσ2(L) ⊆ Kσ(L) ⊆ L.

Prove that for any n ∈ Z≥0,

[Kσn(L) : Kσn+1(L)] ≥ [Kσn+1(L) : Kσn+2(L)].

(b) Prove that if [L : Kσ(L)] ≤ p, then L/K can be generated by one element. (You are

allowed to use theorems proved in class or in exercises; for all other theorems, you

need to provide proofs.)



证明. (a) Consider the following tower of extensions

Kσn(L)

Kσn+1(L)

Kσn+2(L) σ(K)σn+1(L)

σ(K)σn+2(L)

The extension σ(K)σn+1(L)/σ(K)σn+2(L) is isomorphic to the extensionKσn(L)/Kσn+1(L)

(under the isomorphism via σ), and the extension Kσn+1(L)/Kσn+2(L) is the composition

of the extension σ(K)σn+1(L)/σ(K)σn+2(L) with K. So we have

[Kσn(L) : Kσn+1(L)] = [σ(K)σn+1(L) : σ(K)σn+2(L)] ≥ [Kσn+1(L) : Kσn+2(L)].

(b) First of all, the p-th power of every element of Kσn(L) belongs to Kσn+1(L); the

extension Kσn(L)/Kσn+1(L) is a power of p (or 1).

By (a), we know that

p ≥ [L : Kσ(L)] ≥ [Kσ(L) : Kσ2(L)] ≥ · · ·

So there must be a positive integer n such that

[L : Kσ(L)] = · · · = [Kσn−1(L) : Kσn(L)] = p, Kσn(L) = Kσn+1(L) = Kσn+2(L) = · · ·

Let α be an element of L that generates L over Kσ(L). Then αp ∈ Kσ(L). By the exact

proof of (a), we see that αp generates σ(K)σ(L) over σ(K)σ2(L) and hence generates Kσ(L)

over Kσ2(L). Continue this way, we have αpn−1
generates Kσn−1(L) over Kσn(L). Thus, α

generates L over Kσn(L).

On the other hand, put F = σn(L). We show that KF = Kσ(F ) implies that KF

is separable over K. Indeed, we first prove that for any intermediate field E of KF/K,

E = σ(E)K. Clearly, E ⊇ Kσ(E). Then we have the following diagram

KF Kσ(F )

E σ(KF )

Kσ(E)

K σ(E)



From this, we have

[Kσ(F ) : Kσ(E)] = [KF : E][E : Kσ(E)] ≥ [KF : E] = [σ(KF ) : σ(E)] ≥ [Kσ(F ) : Kσ(E)].

Here the last equality follows from the isomorphism σ, and the last inequality follows from

composing the extension σ(KF )/σ(E) with K. From this series of inequalities, we see that

all equality holds; in particular E = Kσ(E).

Now suppose that KF is not separable over K. If α ∈ KF is inseparable over K, with

minimal polynomial g(tp) for a polynomial g(x) ∈ F [x] of degree m. Then [K(α) : K] = pm

and [K(αp) : K] = m. Yet αp ∈ Kσ(K(α)) which is equal to KK(α) = K(α) by the

discussion of intermediate field. This is a contradiction.

Now, we conclude by noting that Kσn(L)/K is separable and hence generated by one

element β. Thus α and β generate L over K with β separable over K. By a theorem in

class, L/K is generated by one element. □


