2022 秋:代数学一 (实验班) 期末考试版本A

时间: 120 分钟 满分: 110 分, 最高得分不超过 100 分

所有的环都有乘法单位元, 且与其加法单位元不相等; 所有环同态把 1 映到 1. All rings contain 1_R and $1_R \neq 0_R$; all ring homomorphisms take 1 to 1.

判断题 请在答卷纸上整齐编号书写 T 或 F (10 分)

1	2	3	4	5	6	7	8	9	10
F	Т	F	Т	F	Т	Т	Т	Т	Т

1. 若 K 是域 F 的一个有限伽罗华扩张且相应的伽罗华群是单群, 那么 K/F 没有任何一个中间域 E (除了 K 和 F) 使得 K 是 E 的伽罗华扩张.

If the field K is a finite Galois extension of the field F whose Galois group is simple, then there is no intermediate fields E of K/F for which K is Galois over E, except K and F themselves.

False. The statement would be correct if we require no intermediate fields E of K/F for which E is Galois over F, except K and F themselves.

2. 设 H 是一个 G 的子群. 若 H 的中心化子是整个群 G, 那么 H 是 G 的中心的子群.

Let H be a subgroup of G. If the centralizer of H is the entire group G, then H is a subgroup of the center of G.

True. If the centralizer of H is the entire group G, then every element of H commutes with every element of G. This is equivalent to say that H is contained in Z(G).

3. 每一个 $G_1 \times G_2$ 的子群都是形如 $H_1 \times H_2$, 这里 $H_1 \leq G_1$ 和 $H_2 \leq G_2$ 是相应的子 群.

Every subgroup of $G_1 \times G_2$ is of the form $H_1 \times H_2$ for subgroups $H_1 \leq G_1$ and $H_2 \leq G_2$. False. For example, $G_1 \times G_2 = \mathbb{Z}_2 \times \mathbb{Z}_2$ has a subgroup $\langle (1,1) \rangle$, which is not of the form $H_1 \times H_2$ for $H_i \leq G_i$ (i = 1, 2).

4. 设 p 是一个素数, α 是一个自然数. 那么每一个阶为 $2p^{\alpha}$ 的有限群都是可解的.

Let p be a prime number and $\alpha \in \mathbb{N}$. Then every group of order $2p^{\alpha}$ is solvable.

True. When p = 2, a 2-group is clearly solvable. When p is odd, This is because the Sylow p-subgroup of G is a normal subgroup and itself is clearly solvable.

5. 设 $\varphi: R \to R'$ 是一个满的环同态,并且假设 R 是一个整环. 则 R' 是一个整环.

Let $\varphi : R \to R'$ be a surjective ring homomorphism, and assume that R is an integral domain. Then R' is an integral domain.

False. For example, take $R = \mathbb{Z}$ and $R' = \mathbb{Z}/4\mathbb{Z}$, and consider the surjective natural quotient map $\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$.

6. 在 Q 中, ¹/₂ 是 2 和 3 的一个最大公约元素.

A gcd of 2 and 3 in \mathbb{Q} is $\frac{1}{2}$.

True. This is correct.

7. 设 K 是一个 \mathbb{Q} 的包含在某个 $\mathbb{Q}(\mu_n)$ 的域扩张. 那么 K 在 \mathbb{Q} 上的一个伽罗华扩张.

Let K be an extension of \mathbb{Q} that is contained in $\mathbb{Q}(\mu_n)$ for some n, then K is Galois over \mathbb{Q} .

True. The Galois group of $\mathbb{Q}(\mu_n)/\mathbb{Q}$ is abelian and thus any intermediate field is Galois over \mathbb{Q} .

8. 若 *K* 是正特征 *p* 的域 *F* 的一个有限不可分扩张, 那么对于任何一个元素 $\alpha \in K$, 若它满足 $K = F(\alpha)$, 则 α 的极小多项式可以被写为 $f(x^p)$ 的样子, 这里 $f(x) \in F[x]$ 是一 个多项式.

If K is a finite inseparable field extension of a field F of characteristic p > 0, then for every $\alpha \in K$ satisfying $K = F(\alpha)$, the minimal polynomial of α can be written as $f(x^p)$ for some $f(x) \in F[x]$.

True. Clearly, α cannot be separable over F, as it would then imply that K is separable over F. Thus the minimal polynomial of α is inseparable, and thus is of the form $f(x^p)$ for some $f(x) \in F[x]$.

9. 令 *K* 是有限域 *F* 的一个 *n* 次扩张,那么 *K*/*F* 的所有中间域的个数 (包括 *K* 和 *F*) 和 *n* 的约数的个数相等.

Let K be a finite extension of degree n of a finite field F, then the number of intermediate fields between K and F (including F and K themselves) is the same as the (positive) divisors of n.

True. Say $F = \mathbb{F}_q$ and thus \mathbb{F}_{q^n} . The correspondence is given by: each divisor d of n corresponds to the extension \mathbb{F}_{q^d} of \mathbb{F}_q .

10. 设 x 为一个自由变元. 那么 $\mathbb{Q}(x)$ 是 $\mathbb{Q}(\frac{x^2+1}{x})$ 的一个二次扩张.

Let x be an indeterminate variable. Then $\mathbb{Q}(x)$ is a quadratic extension of $\mathbb{Q}(\frac{x^2+1}{x})$.

True. Setting $z = \frac{x^2+1}{x}$, then we have $x^2 + 1 = xz$. This is an irreducible polynomial of degree 2.

解答题一 (10 分) 令 *G* 是一个有限群, *K* 是其正规子群, *P* 是 *K* 的一个西罗 *p*-子群 (*p* 为素数). 证明: *G* = *KN_G*(*P*), 这里 *N_G*(*P*) 是 *P* 在 *G* 中的正规化子.

Let G be a finite group, K a normal subgroup, and P a p-Sylow subgroup of K for some prime p. Prove that $G = KN_G(P)$, where $N_G(P)$ is the normalizer of P in G.

Solution: For each $g \in G$, as K is normal in G, $gKg^{-1} = K$. Thus gPg^{-1} is a Sylow p-subgroup of K. By Sylow's second theorem, gPg^{-1} is conjugate to P by an element of K, namely, there exists $k \in K$ such that $gPg^{-1} = kPk^{-1}$. This implies that $k^{-1}gPg^{-1}k = P$ and thus $k^{-1}g \in N_G(P)$. In other words, $g \in kN_G(P) = KN_G(P)$. This shows that $G = KN_G(P)$.

解答题二 (15 分) 环 $\mathbb{Z}[x]/(x^3 + 1, 6)$ 中一共有多少个素理想?为什么? (如果你引用 一些定理或者熟知的结论,请清楚地注明,并验证所需的条件。)

How many prime ideals are there in the ring $\mathbb{Z}[x]/(x^3+1,6)$? Why? (If you make use of a known theorem or a well-known result, please state clearly which theorem or result you are using, and please verify the needed conditions.)

Solution: First of all, by Chinese remainder theorem, applied to the ideal (2) and (3) in the quotient ring $\mathbb{Z}[x]/(x^3+1)$ (note that (2) + (3) = (1) is comaximal), we have

$$\mathbb{Z}[x]/(x^3+1,6) \cong \mathbb{Z}[x]/(x^3+1,2) \times \mathbb{Z}[x]/(x^3+1,3) \cong \mathbb{F}_3[x]/(x^3+1) \times \mathbb{F}_2[x]/(x^3+1).$$

It is well-known that prime ideals of a product ring $R_1 \times R_2$ takes the form of $\mathfrak{p}_1 \times R_2$ or $R_1 \times \mathfrak{p}_2$ for prime ideals $\mathfrak{p}_1 \subset R_1$ and $\mathfrak{p}_2 \subset R_2$. (To see this, if $\mathfrak{p} \subseteq R_1 \times R_2$ is a prime ideal, then $(0,1) \times (1,0) \in \mathfrak{p}$, forcing either (0,1) or (1,0) belongs to \mathfrak{p} . Without loss of generality, assume that $(1,0) \in \mathfrak{p}$, then \mathfrak{p} takes the form of $R_1 \times I$ for some set I. Note also that, if $a, b \in R$ is such that $ab \in I$, then $(1,a) \times (1,b) \in I$, it would imply that either a or b belongs to I. So I is a prime ideal of R_2 . Conversely, for all such ideal $R_1 \times I$, $(R_1 \times R_2)/(R_1 \times I) \cong R_2/I$ is an integral domain.)

So it is enough to find the prime ideals of $\mathbb{F}_3[x]/(x^3+1)$ and of $\mathbb{F}_2[x]/(x^3+1)$, respectively. For $\mathbb{F}_3[x]/(x^3+1)$, it is isomorphic to $\mathbb{F}_3[x]/(x+1)^3$. The only prime ideal in this ring is (x+1).

For $\mathbb{F}_2[x]/(x^3+1)$, we note that

$$x^{3} + 1 = (x + 1)(x^{2} - x + 1)$$

and that both x + 1 and $x^2 - x + 1$ are irreducible and they are relatively prime. It then follows again by Chinese Remainder Theorem that we have an isomorphism

$$\mathbb{F}_2[x]/(x^3+1) \cong \mathbb{F}_2[x]/(x+1) \times \mathbb{F}_2[x]/(x^2-x+1).$$

The latter have two prime ideals.

To sum up, the ring $\mathbb{Z}[x]/(x^3+1,6)$ has three prime ideals.

解答题三 (15 分) 设 $n \ge 3$ 是一个无平方因子的整数. 令 $R = \mathbb{Z}[\sqrt{-n}] = \{a + b\sqrt{-n} | a, b \in \mathbb{Z}\}$ 是复数域 C 的子环.

- (1) 证明: $\sqrt{-n}$ 和 $1 + \sqrt{-n}$ 是 R 中的不可约元.
- (2) 证明 R 不是一个唯一分解整环.
- (3) 构造一个 R 中的理想使得它不是主理想,并证明之.

Let *n* be a square-free integer greater than 3. Let *R* denote the subring $\mathbb{Z}[\sqrt{-n}] = \{a + b\sqrt{-n} \mid a, b \in \mathbb{Z}\}$ of the field of complex numbers \mathbb{C} .

(1) Show that $\sqrt{-n}$ and $1 + \sqrt{-n}$ are irreducible in R.

(2) Prove that R is not a unique factorization domain (UFD).

(3) Construct an ideal in R that is not principal; prove it.

Solution: Consider the norm map $N: R \to \mathbb{Z}$ given by

$$N(a + b\sqrt{-n}) = (a + b\sqrt{-n})(a - b\sqrt{-n}) = a^2 + nb^2.$$

It is multiplicative.

We directly observe that, for $x = a + b\sqrt{-n}$, $N(x) = a^2 + nb^2 = 1$ if and only if $a = \pm 1$ and b = 0, namely, N(x) = 1 if and only if $x = \pm 1$. In particular, if N(x) = 1, then x is a unit in R.

Moreover, we point out that, for any positive integer $d \in (1, n)$, there is no $x \in R$ with norm d, unless d is a square and in this case $x = \pm \sqrt{d}$. This is because when solving $a^2 + nb^2 = d$ with d < n, we can only have b = 0. Thus either d is not a square, in which case, there is no such x, or d is a square, in which case, $x = \pm \sqrt{d}$.

(1) Suppose $\sqrt{-n} = xy$ for $x, y \in R$ non-unit. Then, we must have

$$N(x)N(y) = N(xy) = N(\sqrt{-n}) = n.$$

Yet, n is square free, N(x) and N(y) are integers between 1 and n. By the discussion above, there is no such x or y in R. Contradiction. So $\sqrt{-n}$ is irreducible.

Similarly, suppose $1 + \sqrt{-n} = xy$ for $x, y \in R$. Then

$$N(x)N(y) = N(xy) = N(1 + \sqrt{-n}) = 1 + n$$

Again, N(x) and N(y) are integers between 1 and n. The only possibility is that $x = \pm d$ for some integer $d \in (1, \sqrt{n})$ such that $d^2|n+1$. But then it would follow that $y = \pm \frac{n+1}{d} \notin R$.

(2) If n is even, then

$$n = 2 \cdot \frac{n}{2} = \sqrt{-n} \cdot (-\sqrt{-n}).$$

This will certainly give two different factorizations of n in R, as $\sqrt{-n}$ is irreducible as proved, yet not equal to any factors of 2 or $\frac{n}{2}$.

If n is odd, then

$$n+1 = 2 \cdot \frac{n+1}{2} = (1 + \sqrt{-n})(1 - \sqrt{-n}).$$

Similarly, this will give two different factorizations of n + 1 in R.

(3) When n is even, we will show that $(2, \sqrt{-n})$ is an ideal but not principal. Suppose $(2, \sqrt{-n}) = (x)$ for some $x \in R$, then x|2 and $x|\sqrt{-n}$. Now we have

$$N(x) | N(2) = 4, \quad N(x), | N(\sqrt{-n}) = -n.$$

As *n* is a square-free even integer, N(x) = 1 or 2. But no elements in *R* has norm 2. So N(x) = 1, i.e. $x\bar{x} = 1$. So *x* is a unit in *R*, i.e. $(2, \sqrt{-n}) = (1)$. Thus, $1 = 2(a + b\sqrt{-n}) + \sqrt{-n}(c + d\sqrt{-n})$ for some $a, b, c, d \in \mathbb{Z}$. We then deduce that

$$1 = 2a - nd \quad \text{and} 2b + c = 0.$$

But n is even, this gives a contradiction.

When n is odd, we will show that $(2, 1+\sqrt{-n})$ is an ideal but not principal. Suppose that $(2, 1+\sqrt{-n}) = (x)$. Similarly, we deduce that N(x) = 4. This implies that N(x) = 1, 2, 4. As no elements in R has norm 2. Also, if $x = \pm 2$, we must have $2 = x | 1 + \sqrt{-n}$, which is not possible. So again, $x = \pm 1$, i.e. $(2, 1 + \sqrt{-n}) = (1)$. Now, we have $1 = 2(a + b\sqrt{-n}) + (1 + \sqrt{-n})(c + d\sqrt{-n})$ for some $a, b, c, d \in \mathbb{Z}$. This implies that

$$1 = 2a + c - nd$$
 and $2b + c + d = 0.$

As n is odd, the first equality implies that c + d is odd, yet the second equality forces c + d to be even. This is a contradiction. So $(2, 1 + \sqrt{-n})$ is not a principal ideal.

解答题四 (10 分) 设 $\mathbb{Q} = K_0 \subseteq K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n$ 是 \mathbb{C} 中的一列域扩张使得对每个 $i \ge 0, K_{i+1}$ 是 K_i 的三次伽罗华扩张. 证明: $\mathbb{Q}(\sqrt[3]{2})$ 不包含在 K_n 中.

Let $\mathbb{Q} = K_0 \subseteq K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n$ be a sequence of subfields of \mathbb{C} such that K_{i+1} is Galois over K_i of degree 3 for each $i \ge 0$. Show that $\mathbb{Q}(\sqrt[3]{2})$ is not contained in K_n .

Solution: Let r be the minimal number such that $\sqrt[3]{2} \in K_r$. Since K_r is Galois over K_{r-1} , so it is normal. As the polynomial $x^3 - 2$ has one zero in K_r , it must splits in K_r , namely, $\sqrt[3]{2} \cdot e^{2\pi i/3}$ and $\sqrt[3]{2} \cdot e^{4\pi i/3}$ both belong to K_r . This then implies that $e^{2\pi i/3} \in K_r$, and thus

$$\mathbb{Q}(e^{2\pi i/3}) \subseteq K_r.$$

Yet K_r is of degree 3^r over \mathbb{Q} , it cannot contain a quadratic field $\mathbb{Q}(e^{2\pi i/3})$. This gives a contradiction.

解答题五 (15 分) 令 p 为一个素数且设 F 是一个包含所有 p次单位根的特征不为 p 的 域. 令 $K \neq F$ 的伽罗华扩张且伽罗华群为 $\mathbf{Z}_p \times \mathbf{Z}_p$.

(1) 证明:存在两个元素 $\alpha, \beta \in K^{\times}$ 使得 $K = F(\alpha, \beta)$ 且 $a = \alpha^{p}, b = \beta^{p} \in F$. (你可以 使用Artin的特征线性无关的定理,但如果要使用 Kummer 定理,请证明)

(2) 列出扩张 K/F 的所有的中间域,请写成在 $F(\eta)$ 的形式,这里 $\eta \in K$ 中的某个元素.并给出相应的 $\mathbf{Z}_p \times \mathbf{Z}_p$ 的子群 (给出生成元,用 α 和 β 表示).

Let p be a prime number and let F be a field of characteristic not p, containing p-th roots of unity. Let K be a Galois extension of F with Galois group $\mathbf{Z}_p \times \mathbf{Z}_p$.

(1) Show that there exist two elements $\alpha, \beta \in K^{\times}$ such that $K = F(\alpha, \beta)$ and $a = \alpha^p, b = \beta^p \in F$. (You can use Artin's theorem on independence of characters. But if you want to use Kummer theory, prove it.)

(2) List all intermediate fields between K and F and express each field in the form of $F(\eta)$ for some element $\eta \in K$ in terms of α and β . Moreover, give the corresponding Galois subgroups, in terms of generators.

Solution: (1) Let ζ_p denote a primitive *p*th root of unity. Write the Galois group of *K* over *F* by $\langle \sigma, \tau | \sigma^p = \tau^p = 1, \sigma \tau = \tau \sigma \rangle$. We hope to be able to find all intermediate fields.

We first understand the subfields K^{σ} and K^{τ} . Pick an element $x \in K^{\sigma}$ and put

$$\alpha := x + \zeta_p \tau(x) + \zeta_p^2 \tau^2(x) + \dots + \zeta_p^{p-1} \tau^{p-1}(x).$$

By independence of characters, there exists $x \in K^{\sigma}$ such that $\alpha \neq 0$. We note that $\tau(\alpha) = \zeta_p^{-1}\alpha$. This implies that $a = \alpha^p$ is fixed under the τ -action. So $a \in F^{\times}$. Also, as α is not fixed by τ , so $\alpha \in (K^{\sigma})^{\times}$ and $K^{\sigma} = F(\alpha)$. (In particular, $\sigma(\alpha) = \alpha$.

A similar argument constructs $\beta \in (K^{\tau})^{\times}$ with $\sigma(\beta) = \zeta_p^{-1}\beta$, and shows that $K^{\tau} = F(\beta)$. Put $b = \beta^p \in F^{\times}$. We note that $K = K^{\sigma}K^{\tau}$; so $K = F(\alpha, \beta)$.

(2) The subgroups of $\mathbf{Z}_p \times \mathbf{Z}_p$ are $\{1\}$, $\mathbf{Z}_p \times \mathbf{Z}_p$, and the subgroups generated by τ and by $\sigma \tau^i$ for $i = 0, \ldots, p - 1$, respectively. We need to explain the corresponding field. The fields corresponding to $\{1\}$, $\mathbf{Z}_p \times \mathbf{Z}_p$, $\langle \tau \rangle$, and $\langle \sigma \rangle$ are K, F, $F(\alpha)$, and $F(\beta)$, respectively.

We note that for $i = 1, \ldots, p - 1$,

$$\sigma\tau^{i}(\alpha\beta^{-i}) = \tau^{i}(\alpha) \cdot \sigma(\beta)^{-i} = \zeta_{p}^{-i}\alpha \cdot (\zeta_{p}^{-1}\beta)^{-i} = \alpha\beta^{-i}.$$

Thus, $\alpha\beta^{-i} \in K^{\langle \sigma\tau^i \rangle}$. Yet $\tau(\alpha\beta^{-i}) = \tau(\alpha)\beta^{-i} = \zeta_p^{-1}\alpha\beta^{-i} \neq \alpha\beta^{-i}$. So $\alpha\beta^{-i} \notin F$. Thus, we have $K^{\langle \sigma\tau^i \rangle} = F(\alpha\beta^{-i})$.

To complete the proof, we need to show that $K = F(\alpha + \beta)$ is monogenic. Indeed, $\tau(\alpha + \beta) = \zeta_p^{-1}\alpha + \beta \neq \alpha + \beta$. For any element $\sigma \tau^i$ (with $i \in \mathbf{Z}_p$),

$$\sigma\tau^{i}(\alpha+\beta) = \zeta_{p}^{-i}\alpha + \zeta_{p}^{-1}\beta.$$

If $\zeta_p^{-i}\alpha + \zeta_p^{-1}\beta = \alpha + \beta$, we must have

$$\beta = \alpha (1 + \zeta_p^{-1} + \dots + \zeta_p^{1-i}).$$

Yet, if we apply σ to both sides of this, the RHS is invariant under σ -action, and $\sigma(\beta) = \zeta_p^{-1}\beta$. This is a contradiction.

From this, we deduce that $\alpha + \beta$ does not belong to any intermediate field and thus $K = F(\alpha + \beta)$.

解答题六 (15 分) 设 p 是一个素数, q 为 p 的幂次. 记 \mathbb{F}_q 为有 q 个元素的有限域, \mathbb{F}_{q^n} 为其次数为 n 的有限扩张.

(1) 证明: *q*-Frobenius 元素 $\sigma(x) = x^q$ 是循环群 Gal($\mathbb{F}_{q^n}/\mathbb{F}_q$) 的生成元.

(2) 考虑如下的范数映射 $N: \mathbb{F}_{q^n} \to \mathbb{F}_q$

$$N(x) = x\sigma(x)\sigma^2(x)\cdots\sigma^{n-1}(x).$$

证明: N 是满射.

(3) 证明: $N^{-1}(1)$ 作为 \mathbb{F}_q -线性空间生成 \mathbb{F}_{q^n} .

Let p be a prime integer, and q be a power of p. Let \mathbb{F}_q be the finite field with q elements, and \mathbb{F}_{q^n} be the degree n extension of \mathbb{F}_q .

(1) Prove that the q-Frobenius $\sigma(x) = x^q$ generates $\operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q)$ as a cyclic group.

(2) Consider the norm map $N: \mathbb{F}_{q^n} \to \mathbb{F}_q$ defined by

$$N(x) = x\sigma(x)\sigma^2(x)\cdots\sigma^{n-1}(x).$$

Prove that N is surjective.

(3) Prove that $N^{-1}(1)$ spans \mathbb{F}_{q^n} as an \mathbb{F}_q -vector space.

Solution: (1) Clearly, $\sigma(x) = x^q$ is an automorphism of \mathbb{F}_{q^n} that fixes \mathbb{F}_q . Moreover, for every divisor d of n, the number of elements satisfying $\sigma^d(x) = x$ is q^d ; so if $d \neq n$ not the entire \mathbb{F}_{q^n} . This means that the subgroup generated by σ inside $\operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q)$ is of order n. Thus $\operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q) = \langle \sigma \rangle$. (2) We may rewrite the norm map as $N(x) = x^{1+q+\cdots q^{n-1}}$. But $\mathbb{F}_{q^n}^{\times}$ is cyclic of order $q^n - 1$. So via isomorphisms $\mathbb{F}_{q^n}^{\times} \simeq \mathbb{Z}_{q^n-1}$ and $\mathbb{F}_q^{\times} \simeq \mathbb{Z}_{q-1}$, we may identify N with a map

$$N: \mathbf{Z}_{q^n-1} \to \mathbf{Z}_{q-1}$$

The kernel of N consists of elements in \mathbb{Z}_{q^n-1} that are $(1+q+q^2+\cdots+q^{n-1})$ -torsion. So $\# \ker N = 1+q+q^2+\cdots+q^{n-1}$. This in turn shows that $\#\operatorname{Im}(N) = q-1$. So $N : \mathbb{F}_{q^n}^{\times} \to \mathbb{F}_q^{\times}$ is surjective. Clearly, N(0) = 0. We are done.

(3) By the discussion above, the number of elements in $N^{-1}(1)$ is $\frac{q^n - 1}{q - 1} = q^{n-1} + q^{n-2} + \cdots + q + 1 > q^{n-1}$. But if $N^{-1}(1)$ does not span \mathbb{F}_{q^n} , the subspace it spans can only have at most q^{n-1} elements. This is a contradiction.

解答题七 (10 分) 证明多项式 x⁴+1 在任何一个正特征域上是可约多项式.

Prove that the polynomial x^4+1 is not irreducible over any field of positive characteristic.

Solution: It suffices to show that $x^4 + 1$ is reducible over \mathbb{F}_p for every prime number p (and thus reducible over F).

But we claim that $x^4 + 1$ splits completely over \mathbb{F}_{p^2} already. But we note that for every prime number $p, 8 | p^2 - 1$. In particular, \mathbb{F}_{p^2} contains 8th roots of unity, and thus $x^4 + 1$ splits completely in \mathbb{F}_{p^2} . So $x^4 + 1$ cannot be irreducible over \mathbb{F}_p as the splitting field of $x^4 + 1$ over \mathbb{F}_p has degree at most 2.

This proves that $x^4 + 1$ is reducible over \mathbb{F}_p and F.

解答题八 (10 分) 令 F 是一个域且 $f(x) \in F[x]$ 是不可约多项式. 设 K 是 f(x) 在 F 上的分裂域并假设存在某个元素 $\alpha \in K$ 使得 α 和 $\alpha + 1$ 都是 f(x) 的根.

- (1) 证明: F 不是特征 0 的域.
- (2) 证明:存在某个 K/F 的中间域 E 使得 [K:E] 等于 F 的特征.

Let F be a field and let $f(x) \in F[x]$ be an irreducible polynomial. Suppose that K is a splitting field for f(x) over F and assume that there exists an element $\alpha \in K$ such that both α and $\alpha + 1$ are roots of f(x).

- (1) Show that the characteristic of F is not zero.
- (2) Prove that there exists an intermediate field E between K and F such that [K : E] is equal to the characteristic of F.

Solution: (1) Note that α and $\alpha + 1$ are zeros of f(x). Then α is the zero of f(x) and of f(x-1). But f(x) is irreducible over F[x]. So the only possibility is that f(x) divides f(x) - f(x-1) and thus f(x-1) = f(x). This can only happen when the characteristic of F is positive.

(2) Continue with the discussion in (1), we note that f(x) = f(x-1) implies that all terms in f(x) have degrees divisible by p. Indeed, if not, take the term $a_n x^n$ with highest degree n relatively prime to p. Then f(x) - f(x-1) contains a term $a_n n x^{n-1}$; so it is not zero. This means that f(x) has only terms whose degrees are divisible by p.

Write $f(x) = g(x^p)$. Consider the splitting field of g(x) inside K, denoted by L. In L[x], the g(x) factors as $g(x) = (x - \alpha_1) \cdots (x - \alpha_r)$. As discussed above, L is a proper subfield of K because otherwise each α_i is a pth power and then f(x) is a p-th power as well, contradicting with the irreducibility of f. From K to L, we need to join $\alpha_1^{1/p}, \ldots, \alpha_r^{1/p}$ to K. Put

$$K_i = K(\alpha_1^{1/p}, \dots, \alpha_i^{1/p})$$

Then each extension K_i/K_{i-1} is of degree 1 or p. Take the "last" subfield of K, which gives a subfield E of K such that [K : E] = p.