
2022 秋: 代数学一 (实验班) 期末考试版本A

时间：120 分钟 满分：110 分，最高得分不超过 100 分

所有的环都有乘法单位元, 且与其加法单位元不相等; 所有环同态把 1 映到 1.

All rings contain 1R and 1R ̸= 0R; all ring homomorphisms take 1 to 1.

判断题 请在答卷纸上整齐编号书写 T 或 F (10 分)
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1. 若 K 是域 F 的一个有限伽罗华扩张且相应的伽罗华群是单群, 那么 K/F 没有任

何一个中间域 E (除了 K 和 F ) 使得 K 是 E 的伽罗华扩张.

If the field K is a finite Galois extension of the field F whose Galois group is simple,

then there is no intermediate fields E of K/F for which K is Galois over E, except K and

F themselves.

False. The statement would be correct if we require no intermediate fields E of K/F

for which E is Galois over F , except K and F themselves.

2. 设 H 是一个 G 的子群. 若 H 的中心化子是整个群 G, 那么 H 是 G 的中心的子群.

Let H be a subgroup of G. If the centralizer of H is the entire group G, then H is a

subgroup of the center of G.

True. If the centralizer of H is the entire group G, then every element of H commutes

with every element of G. This is equivalent to say that H is contained in Z(G).

3. 每一个 G1 × G2 的子群都是形如 H1 ×H2, 这里 H1 ≤ G1 和 H2 ≤ G2 是相应的子

群.

Every subgroup of G1×G2 is of the form H1×H2 for subgroups H1 ≤ G1 and H2 ≤ G2.

False. For example, G1×G2 = Z2×Z2 has a subgroup ⟨(1, 1)⟩, which is not of the form

H1 ×H2 for Hi ≤ Gi (i = 1, 2).

4. 设 p 是一个素数, α 是一个自然数. 那么每一个阶为 2pα 的有限群都是可解的.

Let p be a prime number and α ∈ N. Then every group of order 2pα is solvable.

True. When p = 2, a 2-group is clearly solvable. When p is odd, This is because the

Sylow p-subgroup of G is a normal subgroup and itself is clearly solvable.

5. 设 φ : R → R′ 是一个满的环同态，并且假设 R 是一个整环. 则 R′ 是一个整环.

Let φ : R → R′ be a surjective ring homomorphism, and assume that R is an integral

domain. Then R′ is an integral domain.
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False. For example, take R = Z and R′ = Z/4Z, and consider the surjective natural

quotient map Z → Z/4Z.

6. 在 Q 中, 1
2
是 2 和 3 的一个最大公约元素.

A gcd of 2 and 3 in Q is 1
2
.

True. This is correct.

7. 设 K 是一个 Q 的包含在某个 Q(µn) 的域扩张. 那么 K 在 Q 上的一个伽罗华扩张.

Let K be an extension of Q that is contained in Q(µn) for some n, then K is Galois

over Q.

True. The Galois group of Q(µn)/Q is abelian and thus any intermediate field is Galois

over Q.

8. 若 K 是正特征 p 的域 F 的一个有限不可分扩张, 那么对于任何一个元素 α ∈ K,

若它满足 K = F (α), 则 α 的极小多项式可以被写为 f(xp) 的样子，这里 f(x) ∈ F [x] 是一

个多项式.

If K is a finite inseparable field extension of a field F of characteristic p > 0, then for

every α ∈ K satisfying K = F (α), the minimal polynomial of α can be written as f(xp) for

some f(x) ∈ F [x].

True. Clearly, α cannot be separable over F , as it would then imply that K is separable

over F . Thus the minimal polynomial of α is inseparable, and thus is of the form f(xp) for

some f(x) ∈ F [x].

9. 令 K 是有限域 F 的一个 n 次扩张，那么 K/F 的所有中间域的个数 (包括 K 和

F ) 和 n 的约数的个数相等.

LetK be a finite extension of degree n of a finite field F , then the number of intermediate

fields between K and F (including F and K themselves) is the same as the (positive) divisors

of n.

True. Say F = Fq and thus Fqn . The correspondence is given by: each divisor d of n

corresponds to the extension Fqd of Fq.

10. 设 x 为一个自由变元. 那么 Q(x) 是 Q(x
2+1
x

) 的一个二次扩张.

Let x be an indeterminate variable. Then Q(x) is a quadratic extension of Q(x
2+1
x

).

True. Setting z = x2+1
x

, then we have x2 + 1 = xz. This is an irreducible polynomial of

degree 2.

解答题一 (10 分) 令 G 是一个有限群，K 是其正规子群, P 是 K 的一个西罗 p-子群

(p 为素数). 证明：G = KNG(P ), 这里 NG(P ) 是 P 在 G 中的正规化子.



Let G be a finite group, K a normal subgroup, and P a p-Sylow subgroup of K for some

prime p. Prove that G = KNG(P ), where NG(P ) is the normalizer of P in G.

Solution: For each g ∈ G, as K is normal in G, gKg−1 = K. Thus gPg−1 is a Sylow

p-subgroup of K. By Sylow’s second theorem, gPg−1 is conjugate to P by an element of K,

namely, there exists k ∈ K such that gPg−1 = kPk−1. This implies that k−1gPg−1k = P

and thus k−1g ∈ NG(P ). In other words, g ∈ kNG(P ) = KNG(P ). This shows that

G = KNG(P ).

解答题二 (15 分) 环 Z[x]/(x3 + 1, 6) 中一共有多少个素理想？为什么？ (如果你引用

一些定理或者熟知的结论，请清楚地注明，并验证所需的条件。)

How many prime ideals are there in the ring Z[x]/(x3 + 1, 6)? Why? (If you make use

of a known theorem or a well-known result, please state clearly which theorem or result you

are using, and please verify the needed conditions.)

Solution: First of all, by Chinese remainder theorem, applied to the ideal (2) and (3)

in the quotient ring Z[x]/(x3 + 1) (note that (2) + (3) = (1) is comaximal), we have

Z[x]/(x3 + 1, 6) ∼= Z[x]/(x3 + 1, 2)× Z[x]/(x3 + 1, 3) ∼= F3[x]/(x
3 + 1)× F2[x]/(x

3 + 1).

It is well-known that prime ideals of a product ring R1 × R2 takes the form of p1 × R2 or

R1 × p2 for prime ideals p1 ⊂ R1 and p2 ⊂ R2. (To see this, if p ⊆ R1 × R2 is a prime

ideal, then (0, 1) × (1, 0) ∈ p, forcing either (0, 1) or (1, 0) belongs to p. Without loss of

generality, assume that (1, 0) ∈ p, then p takes the form of R1 × I for some set I. Note

also that, if a, b ∈ R is such that ab ∈ I, then (1, a)× (1, b) ∈ I, it would imply that either

a or b belongs to I. So I is a prime ideal of R2. Conversely, for all such ideal R1 × I,

(R1 ×R2)/(R1 × I) ∼= R2/I is an integral domain.)

So it is enough to find the prime ideals of F3[x]/(x
3+1) and of F2[x]/(x

3+1), respectively.

For F3[x]/(x
3 + 1), it is isomorphic to F3[x]/(x+ 1)3. The only prime ideal in this ring

is (x+ 1).

For F2[x]/(x
3 + 1), we note that

x3 + 1 = (x+ 1)(x2 − x+ 1)

and that both x + 1 and x2 − x + 1 are irreducible and they are relatively prime. It then

follows again by Chinese Remainder Theorem that we have an isomorphism

F2[x]/(x
3 + 1) ∼= F2[x]/(x+ 1)× F2[x]/(x

2 − x+ 1).

The latter have two prime ideals.

To sum up, the ring Z[x]/(x3 + 1, 6) has three prime ideals.



解答题三 (15 分) 设 n ≥ 3 是一个无平方因子的整数. 令 R = Z[
√
−n] = {a +

b
√
−n | a, b ∈ Z} 是复数域 C 的子环.

(1) 证明：
√
−n 和 1 +

√
−n 是 R 中的不可约元.

(2) 证明 R 不是一个唯一分解整环.

(3) 构造一个 R 中的理想使得它不是主理想，并证明之.

Let n be a square-free integer greater than 3. Let R denote the subring Z[
√
−n] =

{a+ b
√
−n | a, b ∈ Z} of the field of complex numbers C.

(1) Show that
√
−n and 1 +

√
−n are irreducible in R.

(2) Prove that R is not a unique factorization domain (UFD).

(3) Construct an ideal in R that is not principal; prove it.

Solution: Consider the norm map N : R → Z given by

N(a+ b
√
−n) = (a+ b

√
−n)(a− b

√
−n) = a2 + nb2.

It is multiplicative.

We directly observe that, for x = a+ b
√
−n, N(x) = a2 + nb2 = 1 if and only if a = ±1

and b = 0, namely, N(x) = 1 if and only if x = ±1. In particular, if N(x) = 1, then x is a

unit in R.

Moreover, we point out that, for any positive integer d ∈ (1, n), there is no x ∈ R

with norm d, unless d is a square and in this case x = ±
√
d. This is because when solving

a2 + nb2 = d with d < n, we can only have b = 0. Thus either d is not a square, in which

case, there is no such x, or d is a square, in which case, x = ±
√
d.

(1) Suppose
√
−n = xy for x, y ∈ R non-unit. Then, we must have

N(x)N(y) = N(xy) = N(
√
−n) = n.

Yet, n is square free, N(x) and N(y) are integers between 1 and n. By the discussion above,

there is no such x or y in R. Contradiction. So
√
−n is irreducible.

Similarly, suppose 1 +
√
−n = xy for x, y ∈ R. Then

N(x)N(y) = N(xy) = N(1 +
√
−n) = 1 + n

Again, N(x) and N(y) are integers between 1 and n. The only possibility is that x = ±d for

some integer d ∈ (1,
√
n) such that d2|n+ 1. But then it would follow that y = ±n+1

d
/∈ R.

(2) If n is even, then

n = 2 · n
2
=

√
−n · (−

√
−n).

This will certainly give two different factorizations of n in R, as
√
−n is irreducible as proved,

yet not equal to any factors of 2 or n
2
.



If n is odd, then

n+ 1 = 2 · n+ 1

2
= (1 +

√
−n)(1−

√
−n).

Similarly, this will give two different factorizations of n+ 1 in R.

(3) When n is even, we will show that (2,
√
−n) is an ideal but not principal. Suppose

(2,
√
−n) = (x) for some x ∈ R, then x|2 and x|

√
−n. Now we have

N(x) |N(2) = 4, N(x), |N(
√
−n) = −n.

As n is a square-free even integer, N(x) = 1 or 2. But no elements in R has norm 2. So

N(x) = 1, i.e. xx̄ = 1. So x is a unit in R, i.e. (2,
√
−n) = (1). Thus, 1 = 2(a + b

√
−n) +

√
−n(c+ d

√
−n) for some a, b, c, d ∈ Z. We then deduce that

1 = 2a− nd and2b+ c = 0.

But n is even, this gives a contradiction.

When n is odd, we will show that (2, 1+
√
−n) is an ideal but not principal. Suppose that

(2, 1 +
√
−n) = (x). Similarly, we deduce that N(x) = 4. This implies that N(x) = 1, 2, 4.

As no elements in R has norm 2. Also, if x = ±2, we must have 2 = x | 1 +
√
−n, which is

not possible. So again, x = ±1, i.e. (2, 1 +
√
−n) = (1). Now, we have 1 = 2(a+ b

√
−n) +

(1 +
√
−n)(c+ d

√
−n) for some a, b, c, d ∈ Z. This implies that

1 = 2a+ c− nd and 2b+ c+ d = 0.

As n is odd, the first equality implies that c+ d is odd, yet the second equality forces c+ d

to be even. This is a contradiction. So (2, 1 +
√
−n) is not a principal ideal.

解答题四 (10分)设 Q = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn 是 C中的一列域扩张使得对每个
i ≥ 0, Ki+1 是 Ki 的三次伽罗华扩张. 证明： Q( 3

√
2) 不包含在 Kn 中.

Let Q = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn be a sequence of subfields of C such that Ki+1 is

Galois over Ki of degree 3 for each i ≥ 0. Show that Q( 3
√
2) is not contained in Kn.

Solution: Let r be the minimal number such that 3
√
2 ∈ Kr. Since Kr is Galois over

Kr−1, so it is normal. As the polynomial x3 − 2 has one zero in Kr, it must splits in Kr,

namely, 3
√
2 · e2πi/3 and 3

√
2 · e4πi/3 both belong to Kr. This then implies that e2πi/3 ∈ Kr,

and thus

Q(e2πi/3) ⊆ Kr.

Yet Kr is of degree 3r over Q, it cannot contain a quadratic field Q(e2πi/3). This gives a

contradiction.



解答题五 (15 分) 令 p 为一个素数且设 F 是一个包含所有 p次单位根的特征不为 p 的

域. 令 K 是 F 的伽罗华扩张且伽罗华群为 Zp × Zp.

(1) 证明：存在两个元素 α, β ∈ K× 使得 K = F (α, β) 且 a = αp, b = βp ∈ F . (你可以

使用Artin的特征线性无关的定理，但如果要使用 Kummer 定理，请证明)

(2) 列出扩张 K/F 的所有的中间域，请写成在 F (η) 的形式, 这里 η 是 K 中的某个元

素. 并给出相应的 Zp × Zp 的子群 (给出生成元, 用 α 和 β 表示).

Let p be a prime number and let F be a field of characteristic not p, containing p-th

roots of unity. Let K be a Galois extension of F with Galois group Zp × Zp.

(1) Show that there exist two elements α, β ∈ K× such that K = F (α, β) and a =

αp, b = βp ∈ F . (You can use Artin’s theorem on independence of characters. But if you

want to use Kummer theory, prove it.)

(2) List all intermediate fields between K and F and express each field in the form of

F (η) for some element η ∈ K in terms of α and β. Moreover, give the corresponding Galois

subgroups, in terms of generators.

Solution: (1) Let ζp denote a primitive pth root of unity. Write the Galois group of K

over F by ⟨σ, τ |σp = τ p = 1, στ = τσ⟩. We hope to be able to find all intermediate fields.

K

Kσ Kστ i Kτ

F

⟨σ⟩
⟨στ i⟩

⟨τ⟩

We first understand the subfields Kσ and Kτ . Pick an element x ∈ Kσ and put

α := x+ ζpτ(x) + ζ2pτ
2(x) + · · ·+ ζp−1

p τ p−1(x).

By independence of characters, there exists x ∈ Kσ such that α ̸= 0. We note that τ(α) =

ζ−1
p α. This implies that a = αp is fixed under the τ -action. So a ∈ F×. Also, as α is not

fixed by τ , so α ∈ (Kσ)× and Kσ = F (α). (In particular, σ(α) = α.

A similar argument constructs β ∈ (Kτ )× with σ(β) = ζ−1
p β, and shows that Kτ =

F (β). Put b = βp ∈ F×. We note that K = KσKτ ; so K = F (α, β).

(2) The subgroups of Zp × Zp are {1}, Zp × Zp, and the subgroups generated by τ and

by στ i for i = 0, . . . , p − 1, respectively. We need to explain the corresponding field. The

fields corresponding to {1}, Zp × Zp, ⟨τ⟩, and ⟨σ⟩ are K, F , F (α), and F (β), respectively.

We note that for i = 1, . . . , p− 1,

στ i(αβ−i) = τ i(α) · σ(β)−i = ζ−i
p α · (ζ−1

p β)−i = αβ−i.



Thus, αβ−i ∈ K⟨στ i⟩. Yet τ(αβ−i) = τ(α)β−i = ζ−1
p αβ−i ̸= αβ−i. So αβ−i ̸∈ F . Thus, we

have K⟨στ i⟩ = F (αβ−i).

To complete the proof, we need to show that K = F (α + β) is monogenic. Indeed,

τ(α + β) = ζ−1
p α + β ̸= α + β. For any element στ i (with i ∈ Zp),

στ i(α + β) = ζ−i
p α + ζ−1

p β.

If ζ−i
p α + ζ−1

p β = α + β, we must have

β = α(1 + ζ−1
p + · · ·+ ζ1−i

p ).

Yet, if we apply σ to both sides of this, the RHS is invariant under σ-action, and σ(β) = ζ−1
p β.

This is a contradiction.

From this, we deduce that α + β does not belong to any intermediate field and thus

K = F (α + β).

解答题六 (15 分) 设 p 是一个素数, q 为 p 的幂次. 记 Fq 为有 q 个元素的有限域, Fqn

为其次数为 n 的有限扩张.

(1) 证明：q-Frobenius 元素 σ(x) = xq 是循环群 Gal(Fqn/Fq) 的生成元.

(2) 考虑如下的范数映射 N : Fqn → Fq

N(x) = xσ(x)σ2(x) · · ·σn−1(x).

证明：N 是满射.

(3) 证明: N−1(1) 作为 Fq-线性空间生成 Fqn .

Let p be a prime integer, and q be a power of p. Let Fq be the finite field with q elements,

and Fqn be the degree n extension of Fq.

(1) Prove that the q-Frobenius σ(x) = xq generates Gal(Fqn/Fq) as a cyclic group.

(2) Consider the norm map N : Fqn → Fq defined by

N(x) = xσ(x)σ2(x) · · ·σn−1(x).

Prove that N is surjective.

(3) Prove that N−1(1) spans Fqn as an Fq-vector space.

Solution: (1) Clearly, σ(x) = xq is an automorphism of Fqn that fixes Fq. Moreover, for

every divisor d of n, the number of elements satisfying σd(x) = x is qd; so if d ̸= n not the

entire Fqn . This means that the subgroup generated by σ inside Gal(Fqn/Fq) is of order n.

Thus Gal(Fqn/Fq) = ⟨σ⟩.



(2) We may rewrite the norm map as N(x) = x1+q+···qn−1
. But F×

qn is cyclic of order

qn − 1. So via isomorphisms F×
qn ≃ Zqn−1 and F×

q ≃ Zq−1, we may identify N with a map

N : Zqn−1 → Zq−1

The kernel of N consists of elements in Zqn−1 that are (1 + q + q2 + · · ·+ qn−1)-torsion. So

#kerN = 1+q+q2+ · · ·+qn−1. This in turn shows that #Im(N) = q−1. So N : F×
qn → F×

q

is surjective. Clearly, N(0) = 0. We are done.

(3) By the discussion above, the number of elements in N−1(1) is
qn − 1

q − 1
= qn−1+qn−2+

· · ·+ q + 1 > qn−1. But if N−1(1) does not span Fqn , the subspace it spans can only have at

most qn−1 elements. This is a contradiction.

解答题七 (10 分) 证明多项式 x4 + 1 在任何一个正特征域上是可约多项式.

Prove that the polynomial x4+1 is not irreducible over any field of positive characteristic.

Solution: It suffices to show that x4 + 1 is reducible over Fp for every prime number p

(and thus reducible over F ).

But we claim that x4 +1 splits completely over Fp2 already. But we note that for every

prime number p, 8 | p2 − 1. In particular, Fp2 contains 8th roots of unity, and thus x4 + 1

splits completely in Fp2 . So x4+1 cannot be irreducible over Fp as the splitting field of x4+1

over Fp has degree at most 2.

This proves that x4 + 1 is reducible over Fp and F .

解答题八 (10 分) 令 F 是一个域且 f(x) ∈ F [x] 是不可约多项式. 设 K 是 f(x) 在 F

上的分裂域并假设存在某个元素 α ∈ K 使得 α 和 α + 1 都是 f(x) 的根.

(1) 证明：F 不是特征 0 的域.

(2) 证明：存在某个 K/F 的中间域 E 使得 [K : E] 等于 F 的特征.

Let F be a field and let f(x) ∈ F [x] be an irreducible polynomial. Suppose that K is

a splitting field for f(x) over F and assume that there exists an element α ∈ K such that

both α and α + 1 are roots of f(x).

(1) Show that the characteristic of F is not zero.

(2) Prove that there exists an intermediate field E between K and F such that [K : E]

is equal to the characteristic of F .

Solution: (1) Note that α and α + 1 are zeros of f(x). Then α is the zero of f(x) and

of f(x − 1). But f(x) is irreducible over F [x]. So the only possibility is that f(x) divides

f(x)− f(x− 1) and thus f(x− 1) = f(x). This can only happen when the characteristic of

F is positive.



(2) Continue with the discussion in (1), we note that f(x) = f(x − 1) implies that all

terms in f(x) have degrees divisible by p. Indeed, if not, take the term anx
n with highest

degree n relatively prime to p. Then f(x) − f(x − 1) contains a term annx
n−1; so it is not

zero. This means that f(x) has only terms whose degrees are divisible by p.

Write f(x) = g(xp). Consider the splitting field of g(x) inside K, denoted by L. In

L[x], the g(x) factors as g(x) = (x − α1) · · · (x − αr). As discussed above, L is a proper

subfield of K because otherwise each αi is a pth power and then f(x) is a p-th power as well,

contradicting with the irreducibility of f . From K to L, we need to join α
1/p
1 , . . . , α

1/p
r to K.

Put

Ki = K(α
1/p
1 , . . . , α

1/p
i )

Then each extension Ki/Ki−1 is of degree 1 or p. Take the “last” subfield of K, which gives

a subfield E of K such that [K : E] = p.


