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All rings contain 1x and 1 # Og; all ring homomorphisms take 1 to 1.
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If the field K is a finite Galois extension of the field F' whose Galois group is simple,
then there is no intermediate fields F of K/F for which K is Galois over E, except K and
F' themselves.

False. The statement would be correct if we require no intermediate fields £ of K/F
for which E is Galois over F', except K and F' themselves.

2. W H RN GHTRE. & H o280 G, B4 H&Z G i 1#.

Let H be a subgroup of GG. If the centralizer of H is the entire group G, then H is a
subgroup of the center of G.

True. If the centralizer of H is the entire group G, then every element of H commutes

with every element of G. This is equivalent to say that H is contained in Z(G).

3. B Gy x Gy MTEEERELI Hy x Hy, IXB H) < Gy A Hy < Gy AT
.

Every subgroup of GG; X G5 is of the form H; x H, for subgroups H; < G and Hy < Go.

False. For example, Gy x Gy = Zy X Z5 has a subgroup ((1, 1)), which is not of the form
H, x Hy for H; < G; (i =1,2).
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Let p be a prime number and o € N. Then every group of order 2p“ is solvable.

True. When p = 2, a 2-group is clearly solvable. When p is odd, This is because the
Sylow p-subgroup of GG is a normal subgroup and itself is clearly solvable.

5. ¥ o1 R RR—AEIREZ, 3RS R & AEE W R R

Let ¢ : R — R’ be a surjective ring homomorphism, and assume that R is an integral

domain. Then R’ is an integral domain.



False. For example, take R = Z and R’ = Z/4Z, and consider the surjective natural

quotient map Z — Z/4Z.
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A ged of 2 and 3 in Q is %

True. This is correct.

7. K 2 Q KB SR Q(u,) B K. A K £ Q L—MnZ g5k

Let K be an extension of QQ that is contained in Q(u,) for some n, then K is Galois
over Q.

True. The Galois group of Q(u,)/Q is abelian and thus any intermediate field is Galois

over Q.
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If K is a finite inseparable field extension of a field F' of characteristic p > 0, then for
every o € K satisfying K = F(«), the minimal polynomial of o can be written as f(z?) for
some f(z) € Flx].

True. Clearly, o cannot be separable over F', as it would then imply that K is separable

over F. Thus the minimal polynomial of « is inseparable, and thus is of the form f(z?) for
some f(z) € Flx].
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Let K be a finite extension of degree n of a finite field F', then the number of intermediate
fields between K and F (including F' and K themselves) is the same as the (positive) divisors
of n.

True. Say F' = F, and thus F,». The correspondence is given by: each divisor d of n

corresponds to the extension Fa of F,.

10. % = H—AEHEETE. B4 Q) & Q(ZE) fy— 4 k.
Let x be an indeterminate variable. Then Q(x) is a quadratic extension of Q(%)

x2;17 then we have 22 + 1 = xz. This is an irreducible polynomial of

True. Setting z =
degree 2.
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Let GG be a finite group, K a normal subgroup, and P a p-Sylow subgroup of K for some
prime p. Prove that G = K Ng(P), where Ng(P) is the normalizer of P in G.

Solution: For each g € G, as K is normal in G, gKg~! = K. Thus gPg~! is a Sylow
p-subgroup of K. By Sylow’s second theorem, gPg~! is conjugate to P by an element of K,
namely, there exists k& € K such that gPg~' = kPk™!. This implies that k~'gPg 'k = P
and thus k~'g € Ng(P). In other words, g € kNg(P) = KNg(P). This shows that
G = KNg(P).
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How many prime ideals are there in the ring Z[z]/(z® + 1,6)? Why? (If you make use
of a known theorem or a well-known result, please state clearly which theorem or result you
are using, and please verify the needed conditions.)

Solution: First of all, by Chinese remainder theorem, applied to the ideal (2) and (3)
in the quotient ring Z[x]/(x® 4+ 1) (note that (2) + (3) = (1) is comaximal), we have

Zx))(2* +1,6) =2 Z[z] /(2 +1,2) x Z[2]/(2® + 1,3) = Faa] /(2 + 1) x Fafa]/(2® + 1).

It is well-known that prime ideals of a product ring R; X R, takes the form of p; x Ry or
Ry X py for prime ideals p; C Ry and py C Ry. (To see this, if p C Ry X Ry is a prime
ideal, then (0,1) x (1,0) € p, forcing either (0,1) or (1,0) belongs to p. Without loss of
generality, assume that (1,0) € p, then p takes the form of Ry x I for some set I. Note
also that, if a,b € R is such that ab € I, then (1,a) x (1,b) € I, it would imply that either
a or b belongs to I. So [ is a prime ideal of Ry. Conversely, for all such ideal R; x I,
(Ry X Ry)/(Ry x I) = Ry/I is an integral domain.)

So it is enough to find the prime ideals of F3[z]/(2*+1) and of Fy[z]/(23+1), respectively.

For Fs[z]/(x® 4+ 1), it is isomorphic to F3[z]/(x + 1)3. The only prime ideal in this ring
is (z +1).

For Fy[z]/(x® + 1), we note that

P +rl=(+1)(2>—x+1)

and that both  + 1 and 22> — 2 + 1 are irreducible and they are relatively prime. It then

follows again by Chinese Remainder Theorem that we have an isomorphism
Folx]/(2® + 1) 2 Fylz]/(z + 1) x Folz]/(z* — 2 + 1).

The latter have two prime ideals.

To sum up, the ring Z[z]/(x + 1,6) has three prime ideals.
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Let n be a square-free integer greater than 3. Let R denote the subring Z[/—n| =
{a+by/—n|a,b € Z} of the field of complex numbers C.

(1) Show that v/—n and 1 + \/—n are irreducible in R.

(2) Prove that R is not a unique factorization domain (UFD).

(3) Construct an ideal in R that is not principal; prove it.

Solution: Consider the norm map N : R — Z given by
N(a+ by—n) = (a+ by/—n)(a — by/—n) = a® + nb’.

It is multiplicative.

We directly observe that, for x = a+ by/—n, N(z) = a®> + nb* = 1 if and only if a = +1
and b = 0, namely, N(x) = 1 if and only if z = £1. In particular, if N(z) = 1, then z is a
unit in .

Moreover, we point out that, for any positive integer d € (1,n), there is no x € R
with norm d, unless d is a square and in this case z = ++/d. This is because when solving
a’? + nb* = d with d < n, we can only have b = 0. Thus either d is not a square, in which
case, there is no such z, or d is a square, in which case, z = +/d.

(1) Suppose v/—n = xy for z,y € R non-unit. Then, we must have
N(z)N(y) = N(zy) = N(V—n) = n.

Yet, n is square free, N(x) and N(y) are integers between 1 and n. By the discussion above,
there is no such x or y in R. Contradiction. So v/—n is irreducible.
Similarly, suppose 1 + /—n = zy for x,y € R. Then

N(z)N(y) = N(zy) = N1+ +-n) =1+n

Again, N(z) and N(y) are integers between 1 and n. The only possibility is that x = +d for
some integer d € (1,/n) such that d*|n + 1. But then it would follow that y = £ ¢ R.
(2) If n is even, then

n:2-g:\/—_n-(—\/—_n).

This will certainly give two different factorizations of n in R, as \/—n is irreducible as proved,

n

yet not equal to any factors of 2 or 3.



If n is odd, then

n+1=2-”;1=(1+\/—_n)(1—\/—_>.

Similarly, this will give two different factorizations of n + 1 in R.
(3) When n is even, we will show that (2,1/—n) is an ideal but not principal. Suppose
(2,v/—n) = (z) for some = € R, then z|2 and z|\/—n. Now we have

N(z)|N(2) =4, N(x),|N(H/-n)=—n.

As n is a square-free even integer, N(z) = 1 or 2. But no elements in R has norm 2. So
N(z) =1,ie zz =1. So x is a unit in R, i.e. (2,4/—n) = (1). Thus, 1 = 2(a + by/—n) +
v —n(c+ dv/—n) for some a,b,c,d € Z. We then deduce that

1=2a—nd and2b+c¢=0.

But n is even, this gives a contradiction.

When n is odd, we will show that (2, 14+/—n) is an ideal but not principal. Suppose that
(2,1+ +/—n) = (z). Similarly, we deduce that N(z) = 4. This implies that N(z) = 1,2,4.
As no elements in R has norm 2. Also, if z = 2, we must have 2 = x| 1 + v/—n, which is
not possible. So again, x = +1, i.e. (2,14 y/—n) = (1). Now, we have 1 = 2(a + b\/—n) +
(1 ++/—n)(c+ dv/—n) for some a,b,c,d € Z. This implies that

=2a+c—nd and 2b+c+d=0.

As n is odd, the first equality implies that ¢ 4+ d is odd, yet the second equality forces ¢ + d
to be even. This is a contradiction. So (2,14 /—n) is not a principal ideal.
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Let Q = Ky C K; C Ky C--- C K, be a sequence of subfields of C such that K;, is
Galois over K; of degree 3 for each ¢ > 0. Show that @(\3/5) is not contained in KX,,.

Solution: Let r be the minimal number such that v/2 € K,. Since K, is Galois over
K,_1, so it is normal. As the polynomial 23 — 2 has one zero in K,, it must splits in K,
namely, /2 - ¢?™/3 and /2 - ¢*™/3 both belong to K,. This then implies that e*™/3 ¢ K,
and thus

Yet K, is of degree 3" over Q, it cannot contain a quadratic field Q(e?™/3). This gives a

contradiction.
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Let p be a prime number and let I’ be a field of characteristic not p, containing p-th
roots of unity. Let K be a Galois extension of I’ with Galois group Z, X Z,,.

(1) Show that there exist two elements o, € K* such that K = F(«, ) and a =
a?,b = P € F. (You can use Artin’s theorem on independence of characters. But if you
want to use Kummer theory, prove it.)

(2) List all intermediate fields between K and F' and express each field in the form of
F(n) for some element n € K in terms of o and . Moreover, give the corresponding Galois
subgroups, in terms of generators.

Solution: (1) Let ¢, denote a primitive pth root of unity. Write the Galois group of K
over F' by (0,7 |0? =71P = 1,07 = 70). We hope to be able to find all intermediate fields.

We first understand the subfields K7 and K7. Pick an element x € K and put
a:=x+ (7(r) + C§T2<I) +-- CgilTp’l(x).

By independence of characters, there exists € K such that aw # 0. We note that 7(a) =
G Yo, This implies that a = o” is fixed under the 7-action. So a € F*. Also, as « is not
fixed by 7, so @ € (K?)* and K? = F(«). (In particular, o(«a) = a.

A similar argument constructs 8 € (K7)* with o(8) = ¢, 13, and shows that K™ =
F(B). Put b= p? € F*. We note that K = K°K7; so K = F(a, ).

(2) The subgroups of Z, x Z, are {1}, Z, x Z,, and the subgroups generated by 7 and
by or? for i = 0,...,p — 1, respectively. We need to explain the corresponding field. The
fields corresponding to {1}, Z, x Z,, (1), and (o) are K, F, F(«), and F(3), respectively.

We note that fori=1,...,p—1,

ori(af ™) = 7(a) - 0(8) 7 = Gla- (G 1B) = af ™,



Thus, af~" € K7, Yet 7(af™") = 7(a)3~" = ¢, laf™ # aBf™. So af™" ¢ F. Thus, we
have K™) = F(af™).

To complete the proof, we need to show that K = F(«a + () is monogenic. Indeed,
T(a+ f) = (o + f # a+ 4. For any element o7" (with i € Z,,),

or'(a+B) =¢ a+ (B
If C;’d + C;lﬁ = « + 3, we must have
B=al+¢ "+ 4+

Yet, if we apply o to both sides of this, the RHS is invariant under o-action, and o(3) = ¢ 13.
This is a contradiction.
From this, we deduce that o + 3 does not belong to any intermediate field and thus

K =F(a+p).

BRER7S (16 70) W p R—NFRE, ¢ A p KWK, L Fy NH ¢ MuRBARE, Fy
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(1) EBH: g-Frobenius JT& o(x) = 27 ZaIHHE Gal(F,. /F,) HI4ERIC.

(2) BRI KTEGT N Fpn — F,

N(z) = zo(z)o*(z)--- o™ ().

WEBH: N 2l
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Let p be a prime integer, and ¢ be a power of p. Let [F, be the finite field with ¢ elements,
and F;» be the degree n extension of F,.

(1) Prove that the g-Frobenius o(z) = 27 generates Gal(F,»/F,) as a cyclic group.

(2) Consider the norm map N : F,n — F, defined by

Prove that N is surjective.

(3) Prove that N~'(1) spans F» as an F,-vector space.

Solution: (1) Clearly, o(z) = 27 is an automorphism of F» that fixes IF,. Moreover, for
every divisor d of n, the number of elements satisfying o?(z) = x is ¢%; so if d # n not the
entire F ». This means that the subgroup generated by o inside Gal(F,»/F,) is of order n.
Thus Gal(Fy /F,) = (o).



14+q+--q"~!

(2) We may rewrite the norm map as N(z) = x But Fy. is cyclic of order

q" — 1. So via isomorphisms F . ~ Zgn_; and F ~ Z, 1, we may identify N with a map
N:Zp_y —Zy

The kernel of N consists of elements in Z,._; that are (1 4+ g+ ¢*+ -+ + ¢"')-torsion. So
#ker N = 14+q+¢°+---+¢"". This in turn shows that #Im(N) = ¢—1. So N : F}, — Fx
is surjective. Clearly, N(0) = 0. We are done.

n

—1
q — :qn—l+qn—2+

co4+q+1>¢"" Butif N7}(1) does not span F,., the subspace it spans can only have at

(3) By the discussion above, the number of elements in N'(1) is

most ¢"~! elements. This is a contradiction.

REEL (10 70) IEMZ T o 4 1 AR IEAFER B AT 20 2 T

Prove that the polynomial 2*+1 is not irreducible over any field of positive characteristic.

Solution: It suffices to show that z* + 1 is reducible over F,, for every prime number p
(and thus reducible over F').

But we claim that 2* 4 1 splits completely over F,2 already. But we note that for every
prime number p, 8|p® — 1. In particular, F,2 contains 8th roots of unity, and thus z* 4 1
splits completely in F,2. So 2*+1 cannot be irreducible over F,, as the splitting field of z*+1
over [F,, has degree at most 2.

This proves that z* + 1 is reducible over F,, and F.

RERI/\ (10 47) & F —MEH f(z) € Flz] 2AAZHA. & K 2 f(z) £ F
RS RIS TTR o € K {15 o Fl a+ 1 #52 f(z) BIR.
(1) iEWI: F ASRASE 0 f5,
(2) WEB: fEEERAS K/F B)HEs E 1S (K : E] T F BI4RHLE.
Let F be a field and let f(x) € F[z] be an irreducible polynomial. Suppose that K is

a splitting field for f(z) over F' and assume that there exists an element o € K such that
both o and « + 1 are roots of f(x).
(1) Show that the characteristic of F' is not zero.
(2) Prove that there exists an intermediate field E between K and F such that [K : F]
is equal to the characteristic of F.
Solution: (1) Note that o and v + 1 are zeros of f(z). Then « is the zero of f(x) and
of f(x —1). But f(z) is irreducible over F[z]. So the only possibility is that f(x) divides
f(z) = f(z — 1) and thus f(x — 1) = f(z). This can only happen when the characteristic of

F' is positive.



(2) Continue with the discussion in (1), we note that f(x) = f(z — 1) implies that all
terms in f(z) have degrees divisible by p. Indeed, if not, take the term a,x™ with highest
degree n relatively prime to p. Then f(z) — f(x — 1) contains a term a,nx™'; so it is not
zero. This means that f(x) has only terms whose degrees are divisible by p.

Write f(z) = g(zP). Consider the splitting field of g(x) inside K, denoted by L. In
L[z], the g(z) factors as g(z) = (z — ;) -+ (x — ). As discussed above, L is a proper
subfield of K because otherwise each «; is a pth power and then f(z) is a p-th power as well,
contradicting with the irreducibility of f. From K to L, we need to join a}/p, e ,a,ln/p to K.
Put

K= K(@'", ... o'
Then each extension K;/K;_; is of degree 1 or p. Take the “last” subfield of K, which gives
a subfield E of K such that [K : E] =p.



