
2021 秋: 代数学一 (实验班) 期末考试

时间：120 分钟 满分：110 分，最高得分不超过 100 分

所有的环都有乘法单位元, 且与其加法单位元不相等; 所有环同态把 1 映到 1.

All rings contains 1R and 1R 6= 0R; all ring homomorphism takes 1 to 1.

判断题 (10 分)

1 2 3 4 5 6 7 8 9 10
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1. 群 G 忠实作用在集合 X 上. 若 g1, g2 ∈ G 和 x ∈ X 满足 g1 · x = g2 · x，则 g1 = g2.

A group G acts faithfully on a set X. If g1, g2 ∈ G and x ∈ X, then g1 ·x = g2 ·x implies

g1 = g2.

False. Even with the faithful condition, it is still possible that the stabilizer group at

x ∈ X is nontrivial, e.g. G may act on G t {x} so that G acts on G by left translation but

fixes x. Thus, if g1 and g2 are two distinct elements from the stabilizer, g1 · x = g2 · x = x

yet g1 6= g2.

2. 设 H 是群 G 的正规子群. 假设 H 中元素的最大阶 ≤ m, G/H 中元素的最大阶

≤ n. 则 G 中元素的最大阶 ≤ mn.

Let H be a normal subgroup of a group G. Suppose that the maximal order of elements

in H is ≤ m, and the maximal order of elements in G/H is ≤ n. Then the maximal order

of elements in G is ≤ mn.

True. Let g ∈ G; denote ḡ its image in G/H. Then there exists positive integer n′ ≤ n

such that ḡn
′

= 1G/H . This means that gn
′ ∈ H. So (gn

′
)m

′
= 1G for some m′ ≤ m. This

means that the order of g in G is ≤ m′n′ ≤ mn.

3. 设 ϕ : R→ R′ 为一交换环之间的满同态. 若 R 为整环, 则 ϕ(R) = R′ 也为整环.

Let ϕ : R→ R′ be a surjective homomorphism of commutative rings. If R is an integral

domain, then ϕ(R) = R′ is an integral domain.

False. Typically, the property of being an integral domain does not propagate through

quotient. For example, ϕ : Z → Z/6Z is a surjective homomorphism with Z an integer

domain, yet Z/6Z is not an integral domain.

4. 给定环 R 和 R-左模 M , N . 则 HomR(M,N) 也有自然的 R-左模结构.

Let R be a ring and M and N be left R-modules. Then HomR(M,N) is a left R-module.
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False. Typically, if R is not commutative, the Hom space HomR(M,N) is merely an

abelian group.

5. 在一个唯一分解整环中, 每个非零元都可以唯一的写成素元的乘积.

In a UFD, every nonzero element can be uniquely written as products of prime elements.

False. In a UFD, every nonzero nonunit element can be written as products of prime

elements up to associates. Here “up to associates” means that the prime element factorization

can be modified by units; and thus not literally unique.

6. 设域 L 是域 F 的扩张, K1 和 K2 为中间域. 若 K1/F 是正规扩张, 则 K1K2/K2 也

是正规扩张.

Let L be a field extension of a field F with intermediate fields K1 and K2. Suppose that

K1/F is normal, then K1K2 is normal over K2.

True. It is enough to check the case when K1/F is finite (the general case follows from

taking union of the finite cases). As K1/F is assumed to be normal, it is the splitting field of

a polynomial f(x) ∈ F [x] over F . Then K1K2 is the splitting field of the same polynomial

f(x) over K2.

7. 任一指数为 n 的循环扩张 K/F 一定形如 K = F ( n
√
a) (a ∈ F ).

Every cyclic extension K over F of degree n is of the form K = F ( n
√
a) for some a ∈ F .

False. On needs F to contain nth roots of unity for this to be true.

8. 设域 L 是域 F 的扩张, K1 和 K2 为中间域. 若 K1 和 K2 为 F 上的 Galois 扩张,

则 [K1K2 : F ] = [K1 : F ] · [K2 : F ].

Let L be a field extension of a field F with intermediate fields K1 and K2. Suppose that

K1 and K2 are Galois over F . Then [K1K2 : F ] = [K1 : F ] · [K2 : F ].

False. It is a theorem that [K1K2 : K1 ∩K2] = [K1 : K1 ∩K2] · [K2 : K1 ∩K2]. So the

statement holds if and only if K1 ∩K2 = F .

9. 对任一有限域 F 和正整数 n, (在同构意义下) F 恰有一个次数为 n 的循环扩张.

For any finite field F and any positive integer n, there exists a unique (up to isomor-

phism) cyclic extension of F of degree n.

True. If F = Fq for q a power of a prime, then the cyclic extension of F of degree n is

Fqn .

10. 若 f(x) ∈ F [x] 是一个不可约多项式且在一个 F 的扩域中存在单根 α, 则 f(x) 在

F 上的正规闭包在 F 上是 Galois 的.

If f(x) ∈ F [x] is an irreducible polynomial and there exists a simple zero α of f(x) in

some field extension of F , then the normal closure of f(x) over F is Galois over F .



True. If an irreducible polynomial is not separable, all of its zeros have the same

multiplicity. So the condition implies that f(x) is separable, and thus its normal closure

over F is Galois over F .



解答题一 (12 分) 令 R 是一个交换环. 若所有 R 自由模的子模都是自由的, 则 R 是一

个主理想整环.

Let R be a commutative ring. If all submodules of finitely generated free modules over

R are free over R, then R is a PID.

证明. First prove that R is an integral domain. Suppose that a, b ∈ R\{0} with ab = 0.

Consider aR ⊆ R; it is a submodule of free module; so aR is a free R-module. However, we

know that b kills all of aR because ab = 0; this contradicts that aR is a free R-module.

Let I ⊆ R be an ideal; it is then a free R-submodule of R. We claim that I is a free

module of rank 1 over R. Suppose not, then there exist (αj)j∈J forming an R-basis of I. But

if #J ≥ 2, we know that αj · (αi) + αi · (−αj) = 0, contradiction! This says that I is free of

rank one, i.e. I is generated by one element α ∈ I so that I = (α) is a principal ideal. Thus

R is a PID. �



解答题二 (12 分) 是否存在一个有限群 G 使得 G/Z(G) 恰有 143 个元素? (这里 Z(G)

是 G 的中心.)

Is there a finite group G such that G/Z(G) has 143 elements? (Z(G) is the center of

G.)

证明. There is no such finite group. Suppose not.

We first study G/Z(G): it is easy to see that the numbers of 11-Sylow subgroups H11

and 13-Sylow subgroups H13 are n11 = n13 = 1. In particular, both H11 and H13 are normal.

As H11∩H13 = {1} and #G/Z(G) = 143. Thus G/Z(G) ∼= H11×H13. From this, we deduce

that G/Z(G) ∼= Z143, which is a cyclic group.

Let τ be a generator of G/Z(G) ∼= Z143. Pick a generator τ̃ ∈ G that lies in the coset

τZ(G). But τ̃ commutes with all elements in Z(G). Moreover τ̃ commutes with all powers

of τ̃ . So τ̃ commutes with all elements of G. So τ̃ commutes with all elements in G; thus

τ̃ ∈ Z(G). But this contradicts with τ being a generator of G/Z(G). Thus such G does not

exist. �



解答题三 (13 分)

设 k 为一有 q 个元素的有限域.

(1) k[x] 中有多少个首一的不可约多项式次数为 d = 2, 3, 4, 5, 6?

(2) 一个 5 次 (不一定不可约) k 上多项式分裂域的 Galois 群可能是什么? 为什么?

Let k be a finite field with q elements.

(1) How many monic irreducible polynomials are there in k[x] of each degree d =

2, 3, 4, 5, 6?

(2) What are the possible Galois groups of the splitting field of a (not necessarily irre-

ducible) polynomial of degree 5 over k? Why?

证明. (1) Each irreducible polynomial of degree 2 has exact two zeros in Fq2 − Fq; so there

are q2−q
2

irreducible polynomials of degree 2.

Similarly, there are q3−q
3

irreducible polynomials of degree 3, and there are q5−q
5

irre-

ducible polynomials of degree 5.

Each irreducible polynomials of degree 4 corresponds to four elements of Fq4 − Fq2 ; so

there are q4−q2
4

irreducible polynomials of degree 4.

Each irreducible polynomials of degree 6 corresponds to six elements of Fq6−
(
Fq2∪Fq3

)
;

there are q6−q3−q2+q
6

such polynomials.

(2) The factorization of f into irreducibles correspond to partitions of 5:

If f is irreducible, the splitting field is Fq5 . The associated Galois group is Z5.

If f factors as the product of a degree 2 and a degree 3 polynomials, the splitting field

is Fq6 .The associated Galois group is Z6.

In other cases, we can get similarly Fq4 , Fq3 , Fq2 , and Fq. The associated Galois groups

are Z4, Z3, Z2, {1}, respectively. �



解答题四 (13 分)

记 α =
√
i+ 2 (i =

√
−1).

(1) 计算 α 在 Q 上的极小多项式 f(x). (需间接或者直接的证明 f(x) 的不可约性.)

(2) 记 F 为 f(x) 在 Q 上的分裂域. 确定 F 在 Q 上的 Galois 群.

(3) 写出所有 Gal(F/Q)子群和所有 F/Q中间域的一一对应图. (此问无需解释过程,但

子群需要用元素或者生成元标注.)

Let α =
√
i+ 2 where i =

√
−1.

(1) Compute the minimal polynomial f(x) of α over Q. (Need to show the irreducibility

of f(x), directly or indirectly.)

(2) Let F be the splitting field of f(x) over Q. Determine the Galois group of F over Q.

(3) Draw the corresponding diagram representing the field extensions of Q and subgroups

of Gal(F/Q). (No reasoning is needed for (3), but express the subgroups by elements

or generators.)

证明. (1) The condition implies that α2 = i+ 2. Thus α2−2 = i, and hence (α2−2)2 = −1,

namely, α4 − 4α2 + 5 = 0. Write α = β + 1; we get

(β + 1)4 − 4(β + 1)2 + 5 = 0 ⇒ β4 + 4β3 + 2β3 − 4β + 2 = 0.

This is irreducible by Eisenstein criterion.

(2) Zeros of f(x) are α0 = α, α1 = −
√
i+ 2, α2 =

√
−i+ 2, and α3 = −

√
−i+ 2. Note

that α0α2 =
√
i+ 2 ·

√
−i+ 2 =

√
5 and similarly α1α3 =

√
5. So the splitting field K of

f(x) is obtained by adjoining
√

5 to Q(α), which is a degree 8 field over Q.

We now investigate the Galois group Gal(K/Q). First we make explicit the nontrivial

element σ of the Gal(K/Q(α)). It acts by

σ(α) = α, σ(
√

5) = −
√

5.

We need another element τ , that is in Gal(K/Q(
√
−5)) but not in Gal(K/Q(

√
5, i)). Then

τ(
√

5) = −
√

5 and τ(i) = −i. This then forces τ(
√

2 + i) = ±
√

2− i. We fix it so that

τ(
√

2 + i) =
√

2− i; then στσ(
√

2 + i) = −
√

2− i.
One easily compute

τστ(
√

5) = −
√

5, τστ(
√

2 + i) = τσ(
√

2− i) = τσ
( √5√

2 + i

)
= τ
( −√5√

2 + i

)
=
√

2 + i.

τ 4 = 1 and τστ = σ. So the group is D8.



K = Q(α,
√

5)

Q(
√

2 + i) Q(
√

2− i) Q(
√

5, i) Q(
√

2 + i+
√

2− i) Q(
√

2 + i−
√

2− i)

Q(i) Q(
√
−5) Q(

√
5)

Q

{1}

〈σ〉 〈τ 2σ〉 〈τ 2〉 〈τσ〉 〈τ 3σ〉

〈σ, τ 2〉 〈τ〉 〈τσ, τ 2〉

D8

�



解答题五 (10 分) 多项式 f(x) =
n∏

i=1

(x − ri) 的判别式为
∏
i<j

(ri − rj)2. 设 f(x) ∈ Q[x]

为一 4 次的首一不可约多项式, 其根为 α, β, γ, δ.

(1) 证明 αβ+ γδ, αγ+ βδ, αδ+ βγ 是一个首一三次多项式 g(x) ∈ Q[x] 的根, 且它的判

别式和 f(x) 的判别式相同.

(2) 简短说明为什么 f 在 Q 上的 Galois 群是五个群 S4, A4, Z4, D8, Z2 × Z2 之一. (提

示: 解答涉及到 S4 的子群分类, 你需要说明是用什么条件选出的这五个群, 无需证

明满足所列条件的群恰好这五个群; 但要说明 Z2 × Z2 是具体 S4 的哪个子群.)

(3) 在哪种上述情况下, 多项式 g(x) 是不可约的?

The discriminant of a polynomial f(x) =
n∏

i=1

(x− ri) is
∏
i<j

(ri− rj)2. Let f(x) ∈ Q[x] be

a monic irreducible polynomial of degree 4 with roots α, β, γ, δ.

(1) Prove that αβ + γδ, αγ + βδ, and αδ + βγ are roots of a monic cubic polynomial

g(x) ∈ Q[x] whose discriminant is the same as the discriminant of f .

(2) Give a short explanation of why the Galois group of f over Q is one of the five

groups S4, A4, Z4, D8, or Z2×Z2. (Hint: The solution would involve the classification

of subgroups of S4; you need only to specify the condition that allows you to pin

down these groups, but do not need to verify that the subgroups exactly satisfying

your conditions are these five groups. However, do explain how Z2 × Z2 is realized

as a subgroup of S4.)

(3) In which of the above case, is the polynomial g irreducible?

证明. (1) Rewrite α1 = α, α2 = β, α3 = γ, α4 = δ, and set write f(x) = x4 − a1x3 + a2x
2 −

a3x+a4. Set g(x) = (x−αβ−γδ)(x−αγ−βδ)(x−αδ−βγ). Either, one can verify directly

that however permuting α, β, γ, δ, g(x) is invariant; or one can compute directly that

g(x) = x3 −
∑

{i,j}⊂{1,2,3,4}

αiαjx
2 +

∑
{i,j,k}⊂{1,2,3,4}

α2
iαjαkx

+
( 4∑

i=1

α2
i · (α1 · · ·α4) +

∑
{i,j,k}⊂{1,2,3,4}

α2
iα

2
jα

2
k

)
=x3 − a2x2 + (a1a3 − 4a4)x+

(
a4(a

2
1 − 2a2) + a23 − 2a2a4

)
The discriminant of g(x) is

disc(g) =
(
αβ + γδ − αγ − βδ

)2(
αβ + γδ − αδ − βγ

)2(
αγ + βδ − αδ − βγ

)2
=
(
(α− δ)(β − γ)

)2(
(β − δ)(α− γ)

)2(
(γ − δ)(α− β)

)2
= disc(f).



(2) The Galois permutes all four roots α, β, γ, δ and is thus a subgroup of S4. For f to

be irreducible, we need the action on the four elements to be transitive. The only subgroups

of S4 which acts transitively on these four elements (i.e. not contained in an S3) are there

five groups. Here

Z2 × Z2 = {(12)(34), (13)(24), (14)(23)}.

(3) The polynomial g(x) is irreducible if and only if the action of the Galois group on

the set {αβ+γδ, αγ+βδ, αδ+βγ} is transitive. The stabilizer group of the element αβ+γδ

is 〈(12), (34), (13)(24)〉, which is conjugate to D8 sitting inside S4, where the rotation is given

by (1423).

So if the Galois group is contained in Z4, D8 or Z2×Z2, (after considering conjugations),

there exists one element in {αβ + γδ, αγ + βδ, αδ + βγ} fixed by this group. In this case,

g(x) is reducible. Otherwise, if the Galois group is A4 or S4, g(x) is irreducible. �



解答题六 (10 分)

令 p 为一素数. 假设域 F 的每一个有限扩张的次数都被 p 整除. 证明所有 F 的有限

扩张的次数都是 p 的幂次.

Let p be a prime integer. Suppose that the degree of every finite extension of a field F

is divisible by p. Prove that the degree of every finite extension of F is a power of p.

证明. Let E be a finite separable extension of F and K its Galois closure; write G :=

Gal(K/F ). Take H to be the p-Sylow subgroup of G, then KH is an extension of F of

degree [G : H], which is prime to p, unless G = H. But we have assumed that the degree

of every finite extension of F is divisible by p. So G = H, and thus any finite separable

extension of F has degree a power of p.

If F is perfect, the above already proved the problem. Otherwise, F has an extension

of degree ` = char(k) given by F (
√̀
a) for some a ∈ F\F `. Thus ` = p. Then all finite

extensions of F have degree a power of p.

�



解答题七 (10 分)

设 R 为一唯一分解整环, 其中所有非零素理想皆为极大理想. 证明 R 是一个主理想整

环.

Suppose that R is a unique factorization domain (UFD) for which every nonzero prime

ideal is maximal. Show that R is a principal ideal domain (PID).

证明. We first prove that for two prime elements p and q, either they are associates, or there

exists a, b ∈ R such that ap+ bq = 1. Indeed, if p and q are not associates, the ideals (p) and

(q) cannot have containment relations (otherwise, say (p) ⊆ (q), we must have q|p; which

would immediately forces p and q to be associates). Now as nonzero prime ideals (such as

(p) and (q)) are maximal, the ideal (p, q) must be the unit ideal, i.e. there exists a, b ∈ R
such that ap+ bq = 1.

Next, we show that if, in the factorization of two elements c, d ∈ R, no prime factors of

c are associates of prime factors of d, then there exists a, b ∈ R such that ac + bd = 1. By

induction, it suffices to prove that: if (p1, q) = (p2, q) = (1), then (p1p2, q) = (1). Indeed,

write λ1p1 + µ1q = 1 and λ2p2 + µ2q = 1 for λ1, λ2, µ1, µ2 ∈ R, then

λ1λ2p1p2 = (1− µ1q)(1− µ2q) = 1− (µ1 + µ2 − µ1µ2q)q

This implies that (p1p2, q) = (1).

We finally prove that R is a PID. Let I be a nonzero ideal. Pick an element x ∈ I

with minimal number of prime factors. We show that I = (x). If y ∈ I\(x), then write

d = gcd(x, y) and x = dxd and y = dyd with xd, yd ∈ R, and xd, yd have distinct prime

factors. By the discussion above, there exist a, b ∈ R such that axd + byd = 1. This implies

that d ∈ I, contradicting with the minimality of prime factors of x ∈ I. Thus I is a principal

ideal. �



解答题八 (10 分)

设群 G 由两个元素生成.

(1) 证明 G 至多有 17 个指数为 3 的子群. (提示: 考虑从 G 到 S3 的同态.)

(2) 证明 G 至多有 13 个指数为 3 的子群.

注: 你可以直接证明 (2). 事实上, 存在这样的群 G 恰有 13 个指数为 3 的子群, 但你不需

要证明这个.

Let G be a group which is generated by two elements.

(1) Prove that G has at most 17 subgroups of index 3. (Hint: think about homomor-

phisms from G to S3.)

(2) Prove that G has at most 13 subgroups of index 3.

Remark: Clearly, you can choose to prove (2) directly. In fact, there exists a such group G

with exactly 13 subgroups of index 3; but you do not need to prove that.

证明. For each such group H of G of index 3, write the set of cosets by {H, aH, bH}. Then

we can associate two homomorphisms ϕH,1, ϕH,2 : G → S3 given by the left multiplication

on {H, aH, bH}. (Here, we identify H with 1, and these are two ways to identify aH and bH

with 2 and 3; hence the two homomorphisms.) So these two homomorphisms are conjugate

by (23).

We may recover H from ϕH,1 and ϕH,2 by taking the preimage of {1, (23)} under either

ϕH,1 and ϕH,2, namely the subgroup of S3 that fixes 1. In other words,{
subgroups of G of index 3

}
↪→
{

homomorphisms ϕ : G→ S3

}/
conjugation

As G is generated by two elements x, y ∈ G, the homomorphism ϕ : G → S3 is

determined by ϕ(x), ϕ(y) ∈ S3. Moreover, since G acts transitively on {H, aH, bH}, the

images of ϕ(x), ϕ(y) in S3 cannot be contained in a proper subgroup of S3. All such possible

pairs (ϕ(x), ϕ(y)) ∈ (S3)
2 have

62 − 3 · 22 + 2 = 26

possibilities. Modulo the conjugation action, there are 13 possible pairs of homomorphisms.

Thus, there are at most 13 subgroups H of G of index 3. �



解答题九 (5 分)

令 k 为一特征为 p > 0 的完美域. 设 F = k(t) 为 k 上单变元的函数域. 证明 F 的任

一有限扩张 E 都是单扩张, 即存在 α ∈ E 使得 E = F (α).

Let k be a perfect field of characteristic p > 0. Let F = k(t) be the field of rational

functions in one variable over k. Show that every finite extension E of F can be generated

by one element, that is, there exists α ∈ E such that E = F (α).

证明. We first remark that by the proof of primitive element theorem, a finite separable

extension can be generated by one element.

Let E be a finite extension of F = k(t), we need to show that E is generated by one

element over F . We prove by induction on [E : F ]. We will show that

(1) either E/F is separable,

(2) or k(t1/p) ⊆ E.

Suppose that we have proved this. Then in case (1), the separable extension E/F is generated

by one element. In case (2), E is a finite extension of k(t1/p). Write u = t1/p; then E is

a finite extension of k(u). By inductive hypothesis, E = k(u)(α). Let f(x) ∈ k(u)[x] be

the minimal polynomial of α over k(u); write f(x) = xn + an−1(u)xn−1 + · · ·+ a0(u). Then

(f(x))p = xpn + an−1(u)pxp(n−1) + · · · + a0(u)p ∈ F [x] is the minimal polynomial of α over

k(t). (This can be seen as follows: clearly, f(α)p = 0; if (f(x))p factors nontrivially as

g(x)h(x) ∈ F [x], then viewing g(x), h(x) ∈ k(u)[x], we see that they must be powers of f(x).

Contradiction.)

Now we prove that one of (1) and (2) happens. Suppose that (2) does not hold; we

prove (1). It suffices to show that each α ∈ E is separable over F . Suppose some α is

not separable over F ; let f(x) be the minimal polynomial. By a theorem from the class,

f(x) = g(xp) for some g(x) = xn + an−1(t)x
n−1 + · · · + a0(t) ∈ F [x]. As k is perfect, there

exists bi(t
1/p) ∈ k(t1/p) such that bi(t

1/p)p = ai(t). So the minimal polynomial of α over

k(t1/p) divides xn + bn−1(t
1/p)xn−1 + · · ·+ b0(t

1/p). Note that

p·deg g ≥ [k(t1/p)(α) : k(t1/p)][k(t1/p) : k(t)] = [k(t1/p)(α) : F (α)]·[F (α) : F ] = [k(t1/p)(α) : F (α)]·deg f.

It follows that k(t1/p)(α) = F (α); thus F (α) contains k(t1/p), proving (2). �



解答题十 (5 分)

设域 F 满足 Q ⊆ F ⊂ C, 是一个 Q 上的有限交换 Galois 扩张. 设 α ∈ F 的极小多项
式为 f(x) ∈ Q[x], 且满足 |α| = 1.

(1) 证明 F 在复共轭下保持稳定.

(2) 证明 f(x) 的任一复根 β 满足 |β| = 1.

(3) 记 f(x) = xn + an−1x
n−1 + · · ·+ a0, 证明对所有 0 ≤ i < n, |ai| ≤ 2n.

(4) 证明 F 只包含有限多个绝对值为 1 的代数整数 (即满足极小多项式的系数为整数

的 F 中的元素).

(5) 证明 (4) 中的这些代数整数都是单位根.

Let F be a field with Q ⊆ F ⊆ C, where F/Q is a finite abelian Galois extension. Let

α ∈ F and let f(x) ∈ Q[x] be its minimal monic polynomial. Assume that |α| = 1.

(1) Show that F is closed under complex conjugation.

(2) Prove that |β| = 1 for every complex root β of f(x).

(3) Writing f(x) = xn + an−1x
n−1 + · · ·+ a0, show that |ai| ≤ 2n for all i with 0 ≤ i < n.

(4) Prove that F contains only finitely many algebraic integers (i.e. elements in F whose

minimal polynomial over Q have coefficients in Z) having absolute value 1.

(5) Deduce that each of the algebraic integers in (4) is a root of unity.

证明. (1) As F is Galois over Q, the Kronecker–Weber theorem implies that F is contained

in Q(ζN) for some N . The complex conjugation belongs to Gal(Q(ζN)/Q) must stabilize any

Galois extension of Q. So F is stable under complex conjugation.

In particular, this means that the complex conjugation c may be viewed as an element

in Gal(F/Q).

(2) As f(x) is irreducible, there exists σ ∈ Gal(F/Q) that takes α to β. Moreover, since

Gal(F/Q) is abelian, c and σ commutes. So

|α| = 1 ⇒ αc(α) = 1 ⇒ σ(α)σ(c(α)) = 1 ⇒ σ(α)c(σ(α)) = 1.

This shows that |β| = 1.

(3) As f(x) =
∏n

i=1(x− αi) with each |αi| ≤ 1. Expand this out, it is easy to see that

each |ai| ≤ 2n.

(4) If α ∈ F is an algebraic integer with absolute value 1, its minimal polynomial must

be of the form above (with degree n ≤ [F : Q]; so the coefficients have absolute value ≤ 2n.

So there are finitely many such polynomials, and hence finitely many such α’s.



(5) For each α above, consider 1, α, α2, . . . . They are all algebraic integers with absolute

value 1. But there are only finitely many such elements. We must have αi = αj for some

i 6= j. Thus αj−i = 1 and α is a root of unity.

�


