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All rings contains 1g and 1 # Og; all ring homomorphism takes 1 to 1.
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1 BEG BEIMEFRAEEE X L HE g, eGMze XL gz =g-2, W g1 = go.

A group G acts faithfully on a set X. If g1, 90 € G and x € X, then g, -x = go-x implies
g1 = g2-

False. Even with the faithful condition, it is still possible that the stabilizer group at
x € X is nontrivial, e.g. G may act on G U {x} so that G acts on G by left translation but
fixes x. Thus, if g; and gy are two distinct elements from the stabilizer, g1 -z = g -z =«
yet g1 # go.

2. W H =M G WIEMTRE. R H BuRERN < m, G/H 1oz
<n. M GHmRAEKH < mn.

Let H be a normal subgroup of a group G. Suppose that the maximal order of elements
in H is < m, and the maximal order of elements in G/H is < n. Then the maximal order
of elements in G is < mn.

True. Let g € G; denote g its image in G/H. Then there exists positive integer n’ <n
such that §" = 1g/y. This means that ¢" € H. So (¢")™ = 1¢ for some m’ < m. This
means that the order of ¢ in G is < m/n’ < mn.

3. W o R— R N—HIAIAMHRZ. & R NEH, M o(R) = R AR

Let ¢ : R — R’ be a surjective homomorphism of commutative rings. If R is an integral
domain, then ¢(R) = R’ is an integral domain.

False. Typically, the property of being an integral domain does not propagate through
quotient. For example, ¢ : Z — Z/6Z is a surjective homomorphism with Z an integer

domain, yet Z/67Z is not an integral domain.

4. BEW R A R-AEAE M, N. W Homp(M, N) A BRI R-FEBIE5H).

Let R be aring and M and N be left R-modules. Then Hompg(M, N) is a left R-module.
1



False. Typically, if R is not commutative, the Hom space Homg(M, N) is merely an

abelian group.

5. fE—AME— AR AN AEZ e AT LAME — )5 R TT IR

In a UFD, every nonzero element can be uniquely written as products of prime elements.

False. In a UFD, every nonzero nonunit element can be written as products of prime
elements up to associates. Here “up to associates” means that the prime element factorization

can be modified by units; and thus not literally unique.

6. Bk L &3 F 1yak, Ko A K, e 35 K/ F ISR, W KKy /K, 1
e IR

Let L be a field extension of a field F' with intermediate fields K; and K5. Suppose that
K, /F is normal, then KK, is normal over K.

True. It is enough to check the case when K /F is finite (the general case follows from
taking union of the finite cases). As K;/F is assumed to be normal, it is the splitting field of
a polynomial f(z) € F[z] over F. Then K; K> is the splitting field of the same polynomial
f(x) over K.

7. E—IBEON n IERY K K/F —EH K = F({/a) (a € F).
Every cyclic extension K over F of degree n is of the form K = F(/a) for some a € F.

False. On needs I’ to contain nth roots of unity for this to be true.

8. Bk L X F ¥k, Ky Al Ky NI, 35 Ky MK, 8 F R Galois 75K,
M [K Ky : F)=[K,: F][Ky: F].

Let L be a field extension of a field F' with intermediate fields K; and K5. Suppose that
K, and K, are Galois over F'. Then [K 1Ky : F| =Ky : F|-[Ky: F.

False. It is a theorem that [K 1Ky : K1 N Ky = [K; : K3 N Ko - [Ky : K4 N Ky, So the
statement holds if and only if K7 N Ky = F.

9. XHAE—H R F FIERE n, (ERBET) F8AHE—MNREOY 0 BRI K.

For any finite field F' and any positive integer n, there exists a unique (up to isomor-
phism) cyclic extension of F' of degree n.

True. If F' =, for ¢ a power of a prime, then the cyclic extension of F' of degree n is
Fon.

q

10. % f(z) € Flz] 2= MATAZTXEAE D F BT P AAERR o, W f(2) 4
F ERIERMPARAE F E2 Galois 1.
If f(xz) € Flx] is an irreducible polynomial and there exists a simple zero « of f(z) in

some field extension of F, then the normal closure of f(z) over F' is Galois over F.



True. If an irreducible polynomial is not separable, all of its zeros have the same
multiplicity. So the condition implies that f(z) is separable, and thus its normal closure

over F' is Galois over F'.



fRER— (12 70) 2 R 233, 5P R B BN TARHAGEE B, W R &—
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Let R be a commutative ring. If all submodules of finitely generated free modules over
R are free over R, then R is a PID.

1EBA. First prove that R is an integral domain. Suppose that a,b € R\{0} with ab = 0.
Consider aR C R; it is a submodule of free module; so aR is a free R-module. However, we
know that b kills all of aR because ab = 0; this contradicts that aR is a free R-module.

Let I C R be an ideal; it is then a free R-submodule of R. We claim that [ is a free
module of rank 1 over R. Suppose not, then there exist (a;);c; forming an R-basis of I. But
if #J > 2, we know that «; - (o;) + «; - (—a;) = 0, contradiction! This says that I is free of
rank one, i.e. [ is generated by one element o € [ so that I = («) is a principal ideal. Thus
R is a PID. U



BB (12 77) ROAE-DEIREE G 15 G/Z(G) 16 143 MILR? (XH Z(G)
e G HF.)

Is there a finite group G such that G/Z(G) has 143 elements? (Z(G) is the center of
G.)

1E 8. There is no such finite group. Suppose not.

We first study G/Z(G): it is easy to see that the numbers of 11-Sylow subgroups Hi;
and 13-Sylow subgroups Hi3 are ny; = ny3 = 1. In particular, both Hy; and H,3 are normal.
As HyyNHy3 = {1} and #G/Z(G) = 143. Thus G/Z(G) = Hyy x Hys. From this, we deduce
that G/Z(G) = Zy43, which is a cyclic group.

Let 7 be a generator of G/Z(G) = Zy43. Pick a generator 7 € G that lies in the coset
7Z(G). But 7 commutes with all elements in Z(G). Moreover 7 commutes with all powers
of 7. So 7 commutes with all elements of G. So 7 commutes with all elements in G; thus
7 € Z(G). But this contradicts with 7 being a generator of G/Z(G). Thus such G does not
exist. U



A= (13 4)
Bk N—H ¢ DITER AR

(1) klz] PHZDDNE—HIATAZ IR XEN d=2,3,4,5,67

(2) =5 kK (A—EATY) k L2021 Galois BEATRERAT A7 AT
Let k£ be a finite field with ¢ elements.

(1) How many monic irreducible polynomials are there in k[x] of each degree d =
2,3,4,5,67

(2) What are the possible Galois groups of the splitting field of a (not necessarily irre-
ducible) polynomial of degree 5 over k7 Why?

1uERA. (1) Each irreducible polynomial of degree 2 has exact two zeros in F,2 — Fy; so there
are L;q irreducible polynomials of degree 2.

Similarly, there are % irreducible polynomials of degree 3, and there are L4 jyre-

5
ducible polynomials of degree 5.
Each irreducible polynomials of degree 4 corresponds to four elements of Fyu — Fp2; so

there are q42q2 irreducible polynomials of degree 4.

Each irreducible polynomials of degree 6 corresponds to six elements of I — (qu U]Fqs);

63 2
there are Lﬁqﬂ

such polynomials.

(2) The factorization of f into irreducibles correspond to partitions of 5:

If f is irreducible, the splitting field is F,s. The associated Galois group is Zs.

If f factors as the product of a degree 2 and a degree 3 polynomials, the splitting field
is IF 6. The associated Galois group is Z.

In other cases, we can get similarly F,4, Fs, F2, and F,. The associated Galois groups
are Zy, Z3, Zo, {1}, respectively. O
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REBI (13 77)
L a=+vi+2(Gi=+-1).
(1) 115 o /£ Q EMR/NZ TN f(z). (FIAEEGE HEEMIEY f(x) BIATTZM.)
(2) ik F R f(z) £ Q B2 HiE F £ Q £ Galois #f.
(3) BT Gal(F/Q) THAFA F/Q ek ——X M. (B G wrd s, |
TR S TR ECE AL TR
Let o = v/i 4+ 2 where i = /—1.

(1) Compute the minimal polynomial f(z) of o over Q. (Need to show the irreducibility
of f(x), directly or indirectly.)

(2) Let F be the splitting field of f(z) over Q. Determine the Galois group of F' over Q.

(3) Draw the corresponding diagram representing the field extensions of Q and subgroups
of Gal(F'/Q). (No reasoning is needed for (3), but express the subgroups by elements

or generators.)

1EAA. (1) The condition implies that a? = i+ 2. Thus o? —2 = i, and hence (a? —2)? = —1,
namely, a* —4a? +5 = 0. Write a = 8 + 1; we get

B+D)*—4(B+1)*+5=0 = p*+43°+28°-4p+2=0.

This is irreducible by Eisenstein criterion.

(2) Zeros of f(z) ate ap =, a1 = —Vi+ 2, ap = v/—i + 2, and a3 = —/—i + 2. Note
that agas = Vi + 2 - vV/—i+ 2 = /5 and similarly oqyas = v/5. So the splitting field K of
f(z) is obtained by adjoining v/5 to Q(a), which is a degree 8 field over Q.

We now investigate the Galois group Gal(K/Q). First we make explicit the nontrivial
element ¢ of the Gal(K/Q(«)). It acts by

ola) = a, o(v5) = —V/5.

We need another element 7, that is in Gal(/K/Q(y/—5)) but not in Gal(/K/Q(v/5,7)). Then
7(v/5) = —v/5 and 7(i) = —i. This then forces 7(v/2+1) = +v/2 —i. We fix it so that
T(V2+1) =2 —1; then o70(vV2 4+ 1) = —/2 — 4.

One easily compute

ror(vV5) = —V/5, ToT(V2+1i)=T10(V2—1i) = TO'(\/Q\/_L—H) 7( —V5 ) =V2+i.

74 =1 and 707 = 0. So the group is Ds.
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RE-R (10 4r) 20 f(z) = [[(x —r) BWARKXA [[(r—ry)? & f(z) € Qla]
i=1 i<j
N— 4 RE—ATLZ I, KRN o, 8,7, 6.

(1) UEH aB+76, ay + B0, ad + By R—NE—ZRZW g(z) € Qz] MR, HEMH
A f () HF A ).

(2) TR WM N4 f £ Q EH Galois #E TLMRE Sy, Ay, Zu, Ds, Zy X Zp Z—. (iR
AN B R Sy WITREDN IS, IR E UL AT A 25 Ak X TR, B/RAE
WS S BT 0 A BO RIS B I TN (B Z, x Zy SEBAR Sy HITEAST8E.)

(3) FEMRRI IR EOLT, 2T g(z) RARLIN?

The discriminant of a polynomial f(z) = [[(x —r;) is [[(r; —r;j)*. Let f(z) € Q[x] be
i=1 i<j
a monic irreducible polynomial of degree 4 with roots «, 3,7, 9.

(1) Prove that a8 + 9, ay + 59, and ad + (v are roots of a monic cubic polynomial
g(x) € Q[z] whose discriminant is the same as the discriminant of f.

(2) Give a short explanation of why the Galois group of f over Q is one of the five
groups Sy, Ay, Zy, Dg, or Z3 X Zy. (Hint: The solution would involve the classification
of subgroups of S4; you need only to specify the condition that allows you to pin
down these groups, but do not need to verify that the subgroups exactly satisfying
your conditions are these five groups. However, do explain how Z; x Z is realized
as a subgroup of Sj.)

(3) In which of the above case, is the polynomial g irreducible?

JER. (1) Rewrite ap = a, ap = B, a3 = v, a4 = 6, and set write f(z) = 2 — a12% + ax2?® —
asr+aq. Set g(z) = (r—af —v0)(z —ay—B6)(x —ad — (). Either, one can verify directly

that however permuting «, 5,7, 4, g(z) is invariant; or one can compute directly that

g(r) = 2 — Z oo + Z adajonr

{17]}C{1727374} {Z?]7k}c{172)374}

4
+ (Z o (o ay) + Z afoz?ozi)
i=1

{Z7]7k}C{1727374}

=2* — ax2” + (a1a3 — 4aqg)z + (as(al — 2a2) + a3 — 2aza4)
The discriminant of g(z) is

disc(g) = (B + 6 — ay — 56)2(045 + ) — ad — 57)2(cw + 36 — ad — BW)Q
= ((@=8)(8=)"((8=0)(a=7))"((v = (= B))" = dise(f).



(2) The Galois permutes all four roots «, 3,7, and is thus a subgroup of Sy. For f to
be irreducible, we need the action on the four elements to be transitive. The only subgroups
of Sy which acts transitively on these four elements (i.e. not contained in an S3) are there
five groups. Here

Zy x Zy = {(12)(34), (13)(24), (14)(23)}.

(3) The polynomial g(z) is irreducible if and only if the action of the Galois group on
the set {af +~6, ay+ 36, ad + B} is transitive. The stabilizer group of the element af +~§
is ((12), (34), (13)(24)), which is conjugate to Dg sitting inside Sy, where the rotation is given
by (1423).

So if the Galois group is contained in Zy, Dg or Z3 X Zs, (after considering conjugations),
there exists one element in {af + 7d, ay + 0, ad + [~} fixed by this group. In this case,
g(x) is reducible. Otherwise, if the Galois group is A4 or Sy, g(x) is irreducible. O



FREEN (10 47)

L p N—FRE. BB F A RY KRB p B B F AR
kBB p HIRR.

Let p be a prime integer. Suppose that the degree of every finite extension of a field F

is divisible by p. Prove that the degree of every finite extension of F'is a power of p.

1EP. Let E be a finite separable extension of F' and K its Galois closure; write G :=
Gal(K/F). Take H to be the p-Sylow subgroup of G, then K# is an extension of F' of
degree [G : H|, which is prime to p, unless G = H. But we have assumed that the degree
of every finite extension of F' is divisible by p. So G = H, and thus any finite separable
extension of F' has degree a power of p.

If F'is perfect, the above already proved the problem. Otherwise, F' has an extension
of degree ¢ = char(k) given by F({/a) for some a € F\F*. Thus ¢ = p. Then all finite
extensions of F' have degree a power of p.

OJ
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W R A—ME— R, b g R R BAR B AR BEAR. 1EB] R 2 — P AR R
.

Suppose that R is a unique factorization domain (UFD) for which every nonzero prime

ideal is maximal. Show that R is a principal ideal domain (PID).

1EB]. We first prove that for two prime elements p and ¢, either they are associates, or there
exists a,b € R such that ap+bg = 1. Indeed, if p and ¢ are not associates, the ideals (p) and
(¢) cannot have containment relations (otherwise, say (p) C (¢), we must have ¢|p; which
would immediately forces p and ¢ to be associates). Now as nonzero prime ideals (such as
(p) and (q)) are maximal, the ideal (p,q) must be the unit ideal, i.e. there exists a,b € R
such that ap + bg = 1.

Next, we show that if, in the factorization of two elements ¢, d € R, no prime factors of
¢ are associates of prime factors of d, then there exists a,b € R such that ac + bd = 1. By
induction, it suffices to prove that: if (p1,q) = (p2,q) = (1), then (p1ps, q) = (1). Indeed,
write A\1p1 + p1qg = 1 and Aops + poq = 1 for Ay, Ao, piq, 2 € R, then

MAopipz = (1 — 1) (1 — paq) =1 — (1 + po — papiaq)q

This implies that (p1p2,q) = (1).

We finally prove that R is a PID. Let I be a nonzero ideal. Pick an element x € [
with minimal number of prime factors. We show that [ = (z). If y € I\(x), then write
d = ged(z,y) and x = dzry and y = dyg with z4,y4 € R, and z4,ys have distinct prime
factors. By the discussion above, there exist a,b € R such that axzy + byy = 1. This implies
that d € I, contradicting with the minimality of prime factors of x € I. Thus [ is a principal
ideal. O
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Wit G I JTER AR

(1) EH G Z22H 17 MEEON 3 WTRE. (s BB G 2 S KIFZS.)

(2) IEH G B2 13 NMEECH 3 T
EARTT AR BIER (2). FRLE AAZXFNE G BA 13 AN 3 8TH, 2ERE
ZAEPZ A

Let GG be a group which is generated by two elements.

(1) Prove that G has at most 17 subgroups of index 3. (Hint: think about homomor-

phisms from G to Sj.)

(2) Prove that G has at most 13 subgroups of index 3.
Remark: Clearly, you can choose to prove (2) directly. In fact, there exists a such group G
with exactly 13 subgroups of index 3; but you do not need to prove that.

1EBA. For each such group H of G of index 3, write the set of cosets by {H,aH,bH}. Then
we can associate two homomorphisms ¢p 1,2 : G — S3 given by the left multiplication
on {H,aH,bH}. (Here, we identify H with 1, and these are two ways to identify a H and bH
with 2 and 3; hence the two homomorphisms.) So these two homomorphisms are conjugate
by (23).

We may recover H from g and g o by taking the preimage of {1, (23)} under either
w1 and @2, namely the subgroup of S3 that fixes 1. In other words,

{subgroups of G of index 3} — {homomorphisms p:G— 53} / conjugation

As G is generated by two elements z,y € G, the homomorphism ¢ : G — S3 is
determined by ¢(z),¢(y) € S3. Moreover, since G acts transitively on {H,aH,bH}, the
images of ¢(x), ¢(y) in S5 cannot be contained in a proper subgroup of S3. All such possible
pairs (p(z), p(y)) € (53)* have

6 —3-2°+2=26
possibilities. Modulo the conjugation action, there are 13 possible pairs of homomorphisms.

Thus, there are at most 13 subgroups H of G of index 3. O
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Lk N—HHEN p > 0 ISR, W F = k(t) A k LR ICHREUS. IE F 94T
—HRF B AR, WA o € B8 E = Fla).

Let k be a perfect field of characteristic p > 0. Let F' = k(t) be the field of rational
functions in one variable over k. Show that every finite extension F of F' can be generated
by one element, that is, there exists a € E such that £ = F(«).

1E8F. We first remark that by the proof of primitive element theorem, a finite separable
extension can be generated by one element.

Let E be a finite extension of F' = k(t), we need to show that E is generated by one
element over F'. We prove by induction on [E : F]. We will show that

(1) either E/F is separable,

(2) or k(t'/?) C E.
Suppose that we have proved this. Then in case (1), the separable extension E/F is generated
by one element. In case (2), E is a finite extension of k(t'/?). Write u = t'/?; then E is
a finite extension of k(u). By inductive hypothesis, E = k(u)(«). Let f(z) € k(u)[z] be
the minimal polynomial of o over k(u); write f(z) = 2™ 4+ a,_1(u)z" ' + -+ + ap(u). Then
(f(z))P = 27" + a,_1 (u)PzP™=Y 4 ... + qo(u)? € F[z] is the minimal polynomial of o over
k(t). (This can be seen as follows: clearly, f(a)? = 0; if (f(x))P factors nontrivially as
g(x)h(x) € F[z], then viewing g(x), h(z) € k(u)[x], we see that they must be powers of f(z).
Contradiction.)

Now we prove that one of (1) and (2) happens. Suppose that (2) does not hold; we
prove (1). It suffices to show that each o € E is separable over F. Suppose some « is
not separable over F; let f(x) be the minimal polynomial. By a theorem from the class,
f(x) = g(aP) for some g(x) = 2" + ap_1(t)x" 4+ -+ + ao(t) € Fx]. As k is perfect, there
exists b;(t'/P) € k(t'/?) such that b;(t'/?)? = a;(t). So the minimal polynomial of a over
k(t'/P) divides 2™ + by, 1 (/)21 4 - - + by(t'/P). Note that

pdegg > [k(t7)(@) - K(EPKEP) k(1) = k(") (@) : F(a)][F(a) : F] = [k(t'7)(a) : F(a)]-deg f.

It follows that k(t'/?)(a) = F(a); thus F(a) contains k(t'/?), proving (2). O



REE+ 5 7)
W F i QCFcCC, 22— Q LINAMRAH Galois 7K. % o € F HI/NEIN
RN f(r) € Qlz], Hili & |o| = 1.

(1) WEBH F fEE L5 N R E.

(2) W f(z) FIME—EAR 8 W2 |8 = 1.

(3) 8 f(x) = 2" + ap_12™ P + -+ ag, IEPAXATE 0 <i < n, |a;| < 2"

(4) iEH F RAEHEREAGEXEN 1 ARECREE (R 2R/ 2 T R A8
1 F HHIIGER).

(5) UEHH (4) H IR SR HOEE 2 F AT AR.

Let F be a field with Q C F' C C, where F/Q is a finite abelian Galois extension. Let

a € F and let f(x) € Q[z] be its minimal monic polynomial. Assume that |« = 1.

(1) Show that F' is closed under complex conjugation.

(2) Prove that || = 1 for every complex root 3 of f(x).

(3) Writing f(z) = 2™ +a,_ 12" ' + - - - + ag, show that |a;] < 2" for all ¢ with 0 <14 < n.

(4) Prove that F' contains only finitely many algebraic integers (i.e. elements in F' whose
minimal polynomial over Q have coefficients in Z) having absolute value 1.

(5) Deduce that each of the algebraic integers in (4) is a root of unity.

1EB. (1) As F'is Galois over Q, the Kronecker-Weber theorem implies that F' is contained
in Q(¢x) for some N. The complex conjugation belongs to Gal(Q((y)/Q) must stabilize any
Galois extension of Q. So F'is stable under complex conjugation.

In particular, this means that the complex conjugation ¢ may be viewed as an element
in Gal(F/Q).

(2) As f(z) is irreducible, there exists o € Gal(F'/Q) that takes o to 5. Moreover, since

Gal(F'/Q) is abelian, ¢ and o commutes. So
lal=1 = acla)=1 = o(a)o(c(a))=1 = o(a)c(o(a)) =1.

This shows that |3| = 1.

(3) As f(z) =[], (x — a;) with each |a;] < 1. Expand this out, it is easy to see that
each |a;| < 2".

(4) If o € F is an algebraic integer with absolute value 1, its minimal polynomial must
be of the form above (with degree n < [F': QJ; so the coefficients have absolute value < 2.

So there are finitely many such polynomials, and hence finitely many such o’s.



(5) For each a above, consider 1, «, a?

,.... They are all algebraic integers with absolute
value 1. But there are only finitely many such elements. We must have o = o/ for some
i # 7. Thus o/~ = 1 and « is a root of unity.

O



