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Abstract

Details for talks at BICMR and Fudan. Largely based on ideas in arXiv:2308.02819. Geom-
etry, gauge theory, and index theory of Landau levels are explained. An explicit “elementary”
calculation of a numerical index for Landau levels is provided. The role of large-scale index
theory in forcing macroscopic quantization of Hall conductance is explained. A connection to
remarkable formulae by Helton–Howe on commutator-traces is mentioned. The role of the quan-
tized Hall conductance in allowing universal access to Planck’s constant, leading to the modern
quantum definition of the kilogram, is discussed.

1 Commutators, traces and QM

Essence of QM:
[Position,Momentum] = [x,−i∇] = i. (×ℏ) (1)

Need ∞-dim Hilbert space H: taking trace gives contradiction.

� A bounded operator A on H is trace-class if∑
k

⟨ek| |A|︸︷︷︸
√
A∗A

ek⟩ <∞, any ONB {ek}k∈N,

and its trace is defined as
Tr(A) :=

∑
k

⟨ek|Aek⟩ ∈ C. (2)

These are unitarily invariant concepts.

� Trace-class is normed ideal strictly inside compacts; not C∗-algebra.

Quantum mechanics involves mathematical framework to predict real numbers measured in
experiments. For example, the operator equality in Eq. (1) is not directly measurable, it must
be turned into a number!
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Furthermore, symmetries, in the sense of preserving observed quantities, are unitarily imple-
mented (Wigner’s theorem). In this regard, it is important that the trace, Eq. (2), is a unitary
invariant.

Examples:

� “Mixed state” ρ in QM↔ positive operator with Tr(ρ) = 1. Expectation of any observable
T = T ∗ in state ρ is

Tr( ρT︸︷︷︸
trace class

) = Tr(Tρ) ∈ R.

This is a rather strict notion of “state”, in which any T = T ∗ is “observable”.

� Operator L on L2(Mcpt) with smooth integral kernel is trace-class. For general Riemannian
manifold M , local truncations χKLχK′ by compact subsets K,K ′ are trace-class.

QM is very much about the failure of observables A,B to commute, so commutators [A,B]
are crucial.

� On L2(M), all multiplication operators by characteristic functions, χK ,K ⊂M , commute.

� Informally, “location observables obviously commute”. Or do they. . . ?

� For example, let X,Y ⊂ M = R2 be right half-plane and upper half-plane respectively.
The full Hilbert space L2(R2) doesn’t distinguish clockwise/anticlockwise, so it shouldn’t
make a difference whether we look inX followed by Y (anticlockwise), or look in Y followed
by X (clockwise).

� But Hilbert subspaces of L2(R2) can have distinguished orientation (see Bargmann space
later). The compressions ofX,Y to such a subspace will no longer be expected to commute!
The x, y coordinates become “noncommutative”. As we will see, the quantum Hall effect
is, in some sense, a measurement of

[x position, y position]

within a “low energy” Hilbert subspace.

1.1 Trace of a commutator

If a commutator [A,B] does manage to be trace-class, it seems that its trace must vanish,

Tr[A,B]
?
= Tr(AB)− Tr(BA)

?
= 0.

Actually, first equality is only valid when AB and BA are individually trace-class. A deep result
of [Lidskii ’59; Fredholm determinant],

Tr(T ) =
∑

eigenvalues(T ),

and equality of non-zero eigenvalues of AB and BA (including multiplicity), shows that the
second equality holds.

We are interested the following situation:

Tr[A,B]“=”Tr(AB)︸ ︷︷ ︸
∞

−Tr(BA)︸ ︷︷ ︸
∞

∈ C.
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This should bring index theory ideas into mind, with a “coarse filter”.
Example: Normalize position, momentum operators to have spectrum in unit interval

[−1
2 ,

1
2 ]:

x̌ = f(x), p̌ = f(−i∇), f : t 7→ t
2
√
1+t2

.

Explicit computation (cf. Elgart–Fraas ’23):

2πi · Tr[x̌, p̌] = −1, (×ℏ)

as numbers! (Contrast Eq. (1).)

2 General trace-quantization theorem

For a trace-class projection P , obviously Tr(P ) is an integer, and this relates to ordinary Fred-
holm index.

Theorem 2.1 (cf. Ludewig–Thiang 2308:02819). Let C,D be bounded self-adjoint operators.
Suppose

[C,D] trace class.

If C,D are “almost projections” in the sense that

(C − C2)(D −D2) trace class, (3)

then the commutator-trace is quantized:

2πi · Tr[C,D] ∈ Z ⊂ C. (4)

Proof. Experimental physics (later)! Mathematically:

� The holomorphic map z 7→ e2πiz − 1 has zeroes at z = 0, 1, so

e2πiz − 1 = φ(z) · (z − z2).

Functional calculus:(
e2πiC − 1

)(
e2πiD − 1

)
= φ(C) · (C − C2)(D −D2)︸ ︷︷ ︸

trace class by assumption (3)

·φ(D)

is trace-class.

� Kitaev(formal, 2000)–Elgart–Fraas(rigorous, 2023): For unitaries U, V ,

(U − 1)(V − 1) trace class ⇒ det(UV U−1V −1) = 1.

Apply this to U = e2πiC , V = e2πiD,

det
(
e2πiCe2πiDe−2πiCe−2πiD

)
= 1.
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� For [C,D] trace class, Pincus–HH identity (BCH) applies,

exp
(
Tr[2πiC, 2πiD]︸ ︷︷ ︸

⇒ in 2πiZ

)
= 1.

and (4) follows immediately.

Example: In previous example, take

C = x̂+
1

2
, D = p̂+

1

2
,

and check that (C − C2)(D −D2) is trace class, e.g., using [Reed–Simon XI.21] to re-factorize
into a product of two Hilbert–Schmidt operators. The use of our theorem will more generally
illustrated by physical families of Toeplitz-type operators,

C = PXP ≡ PX , D = PY P ≡ PY ,

where P is some projection with “rapidly-decreasing” integral kernel, and X,Y are “partition
operators”. Generally, neither PX − P 2

X nor PY − P 2
Y is Hilbert–Schmidt. Rather, the trace

class condition on their product comes from geometric-analytic considerations.

2.1 Helton–Howe formula for Toeplitz operators on disc

Let D ⊂ C be unit disc. The Bergman space

H2(D) ⊂ L2(D)

comprises the holomorphics
∑∞

n=0 anz
n, and is a Hilbert subspace.

� Smooth functions f1, f2 ∈ C∞(D) commute as multiplication operators on L2.

� Let P : L2(D) → H2(D) be the orthogonal projection. The compressions of fi by P ,
denoted

Pfi ≡ PfiP,

are called Toeplitz operators. They only commute up to trace-class, and the formula

2πi · Tr[Pf1 , Pf2 ] =

∫
D
df1 ∧ df2 =

∫
D
{f1, f2}P.B.

was proven in [Helton–Howe, Acta ’75].

� Similar formulae hold for Toeplitz operators on weighted higher-dimensional Bergman
spaces [Tang–Wang–Zheng, Adv. Math. ’23]. Trace-class membership and formulae need
substantial work.
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We are concerned with a special class of symbol functions — the (smoothened) characteristic
functions. For subsets A ⊂ D, we simply write A for the multiplication operator by χA.

Example:
LetX,Y be right half-space, and upper half-space, respectively. So dX, dY are bump 1-forms

supported near vertical/horizontal axis respectively, while dX ∧ dY is bump 2-form supported
near origin, of mass 1. Then HH-formula gives

2πi · Tr[PX , PY ] = 1.

Furthermore, this integer is “cobordism invariant” with respect to X,Y , in the sense of only
relying on the transversality of ∂X with ∂Y .
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3 Quantum Hall effect

3.1 Magnetic fields

Laboratory ∼ Riemannian 3-manifold1 M with metric g. A magnetic field over M is a closed
2-form F on M. When a point particle of electric charge q located at x ∈ U is on a path with
velocity vector v ∈ TxM, then it is accelerated by the Lorentz force vector q(v ⌟ Fx)

♯. Here, ⌟
denotes interior product, and (·)♯ is the conversion of a 1-form to a tangent vector field via the
Riemannian metric g.

Confine the motion of charges to a 2-submanifold M ⊂M. This means that the component
of forces normal to M is automatically counteracted, and only the tangential components are
relevant for accelerating motion within M .

Write ι :M ↪→M for the inclusion map. With velocity vector v ∈ TxM , the tangential part
of the Lorentz force 1-form at x is

ι∗(v ⌟ Fx) = v ⌟ ι∗Fx.

We see that only the data of ι∗F is relevant for acceleration of motion within M .

Suppose M is orientable, then a choice of orientation gives a volume form volM . Since ι∗F
is a 2-form on M , it can be written as

ι∗F = B · volM (5)

for some scalar function B ∈ C∞(M). If B happens to be a constant function, we say that the
magnetic field strength (as felt by a charged particle on M) is uniform.

3.1.1 Normal field strength

If M is orientable, then a choice of orientation turns F into the more familiar magnetic vector
field

B = (∗F)♯, (6)

and vice versa. Here, ∗ is the Hodge star with respect to g and the orientation.

Remark 3.1. The vector field description of a magnetic field is not canonical — arrowheads on
mangetic field lines reflect a choice of orientation2.

Write N →M for the normal line bundle over M , so

TM|M ≡ ι∗TM = TM ⊕N .

If M and M are orientable, then so is N , and N is trivializable. Choosing orientations on
M and M, we get an “outward-pointing” unit normal vector field n over M . So over M , the
magnetic vector field B has a well-defined normal component function,

B⊥ = g(B,n) ∈ C∞(M).

1Typically, this is just taken to be an open subset of Euclidean R3.
2Classical electromagnetism does not violate parity by picking out a preferred (local) orientation.
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In fact, B⊥ coincides with B of Eq. (5); let {e1, e2} be a local positively-oriented orthonormal
basis for TM , then

B = B · volM (e1, e2) = ι∗F(e1, e2))
= F(e1, e2)
= ∗F(n)
= g((∗F)♯,n)
= g(B,n) = B⊥.

By an abuse of notation, we simply write

F “ = ” ι∗F

for the magnetic 2-form felt by a charged particle confined to M .

3.2 Landau operator on surfaces

The quantum mechanical description of electron motion on M subject to a magnetic field F
requires the following U(1)-gauge-theoretic ingredients.

There is a smooth Hermitian line bundle, L∇ → M , whose connection ∇ has curvature
2-form F = B · volM . The Landau operator associated to ∇ is the connection Laplacian

HB = ∇∗∇.

The ambiguity in the choice of ∇ (with curvature B · volM ) is discussed later.
For simplicity, assume M is contractible. So L∇ can be trivialized (global gauge choice),

thereby identifying L∇ ∼=M × C, and the L2-sections with the Hilbert space of functions

L2(M ;L∇) ∼= L2(M) ≡ L2(M ;µvolM ) (7)

Similarly, smooth sections ∼= C∞(M).
Once a gauge choice is made, ∇ is exhibited as the operator

∇ ∼= d− iA : C∞(M)→ Ω1(M),

and A is called the connection 1-form. Switching to a different gauge changes the identification
(7), implemented by a unitary map L2(M)→ L2(M) of multiplication by some smooth function
U :M → U(1). By contractibility of M ,

U = eiΛ, Λ :M → R.

The connection 1-form with respect to the new gauge is

Ã = A+ dΛ.

Let ∇, ∇̃ be any two connections with the same curvature form F . With respect to any
gauge choice, their respective connection 1-forms satisfy

dÃ − dA = 0.
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By the Poincaré Lemma and contractibility of M , there is a 0-form Λ such that Ã = A + dΛ,
and therefore a unitary gauge transformation U = eiΛ relates the two connections.

Thus, the magnetic field B ·volM is sufficient3 for specifying the Landau operatorHB = ∇∗∇,
up to gauge equivalence. Physically measurable quantities must be gauge-independent quantities
associated to HB.

3.3 Simplified geometry, clean model

Let M = Euclidean/complex plane, so R2 acts on it by translation. The ordinary Laplacian
−∇2 on functions is translation invariant (under pullback). Its spectrum is easily found to be
[0,∞) by Fourier transform.

Suppose B(z) = b ∈ R is constant (i.e. uniform ⊥ field). Then F = b·volM is also translation
invariant. Does this mean that HB is translation invariant? How do translations act on sections
of L∇? Before addressing these questions, let us compute the spectrum of HB as follows.

Pick an origin O. In Cartesian/complex coordinates, the (rotationally) “symmetric gauge”
choice has4

A =
b

2
(xdy − ydx) = ib

4
(zdz̄ − z̄dz), z = x+ iy,

Evidently,
dA = b · dx ∧ dy = b · volM

holds. It is instructive to consider the Dirac operator on M coupled to L∇,

Db = −2i
(

0 ∂ − b
4 z̄

∂̄ + b
4z 0

)
Then

D2
b = −4

(
0 ∂ − b

4 z̄

∂̄ + b
4z 0

)2

=

(
Hb − b 0

0 Hb + b

)
. (8)

Geometrically, Db is the Dirac operator of M coupled to L∇. The above equation is actually
the Lichnerowicz identity expressed in symmetric gauge and Cartesian coordinates.

It follows quite easily that:

� Spec(Hb)= (2N+ 1)|b|, called (Landau levels).

� Lowest LL is the Dirac kernel. In symmetric gauge:

ker
(
∂̄ +

b

4
z
)
= span

{
zne−

b
4
|z|2 : n ∈ N

}
, b > 0,

ker
(
∂ − b

4
z̄
)
= span

{
z̄ne−

|b|
4
|z|2 : n ∈ N

}
, b < 0.

This is the (anti-)Bargmann–Fock space: (anti-)holomorphic5 part of a Gaussian-weighted-
L2-space.

3If, for example, M is not simply-connected, then holonomies (Aharonov–Bohm fluxes) also come into play.
4In general coordinates, there would be a factor of |g| =

√
det(gij), which is 1 in Cartesian coordinates. This is

helpful for keeping track of units of length.
5If we are studying electron motion in a magnetic field, we would need to account for its negative charge. The

connection 1-form, thus curvature, would have an extra minus sign. Consequently, the LLL projection for b > 0 should
be the anti-Bargman–Fock space.
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� Let P ≡ P (b) be the projection onto LLL eigenspace. Remarkably,

2πi · Tr[PX , PY ] =

{
+1, b > 0,

−1, b < 0.
(9)

(Compare Bergman space example.) This has a coarse index-theoretic reason, which is
important for its robustness. We provide an “elementary” calculation in Section 7, which
seems to be unavailable in the literature.

3.4 Physics and geometric stability

Units.

� HB = ℏ2
2me
∇∗∇.

� ∇ = d− i qℏA where q = −e is electron charge.

� So A,F ,Λ have ℏ
e units,

U = ei
e
ℏΛ :M → U(1) (dimensionless).

� Note that in F = B · volM , the function B has Tesla dimension and volM has area
dimension6. Altogether, F has the same dimensions as ℏ

e , and it is “infinitesimal magnetic
flux through surface”.

� LLL has energy

E0 =
ℏ2

2m
· e
ℏ
|b| = ℏ

e|b|
2m︸︷︷︸
ωb

,

with ωb the “harmonic oscillator frequency”.

� Gaussian weight for LLL is
exp(− e

4ℏ |b||z|
2),

so magnetic length scale ∼ |b|−1/2. Roughly 26nm/
√
#Tesla.

� Later we will see that each Landau level has room for

e

h
|b| electrons per unit area.

� Material M has a certain electron density µ, so filling fraction

ν ≡ ν(b) = µh

e
|b|−1, (10)

is a pure number which is controlled by varying b.

6In coordinates, volM = g · dx ∧ dy, where g =
√
det(gij) has units of area.
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Let X (resp. Y ) be right (resp. upper) half-plane. Adiabatically apply electric voltage
between Xc and X, and measure (“classically”) the induced current from Y c to Y . The ratio
is the Hall conductance

σHall ≡ σHall(b) ≡ σHall(ν),

measured as a function of the control parameter b. It should be understood as the off-diagonal
part of the conductance matrix (tensor)

σ =

(
σxx −σHall

σHall σyy

)
,

with inverse matrix

ρ =

(
ρxx ρHall

−ρHall ρyy

)
= σ−1.

Experiment at low temperature and large |b|. For all ν ≈ small integer,

ρxx(ν) = 0 = ρyy(ν), ρHall(ν) =
h

e2
1

νint
, ∀ν ≈ small integer.

where νint is the integer part of ν. This implies that

σHall(ν) =
e2

h
νint, ∀ ν ≈ integer. (11)

That is, the measured result gets “rounded off to the nearest integer”.

� The rounding off is of astounding accuracy! (∼ 10−10).

� The sample can be prepared “quick and dirty”. There are non-uniform B, non-flat M ,
holes, complicated (random?) electrostatic potentials V ,. . . ). Yet, σHall remains integer-
quantized, as though all these “small-scale complications” are invisible!

Classical model fails miserably. In a classical EM treatment (no ℏ allowed!), one gets
(see physics textbooks, Drude model)

ρHall,classical(b) =
1

µe
b, ∀b ∈ R

(= h
e2

1
ν , ∀ν ∈ R \ {0}).

This is almost always wrong, compared to experiment (Eq. (3.4)). In fact, it is only correct for
for exactly integer ν, which is a quantum condition!

Quantum model succeeds.

� Given a general Hamiltonian H, let P be the spectral projection onto filled electron states.
By QM linear response theory, in the P -state (i.e. the many-electron state at 0 tempera-
ture), the Hall conductance should be

σHall(P ) = −2πi · Tr
(
P [[X,P ], [Y, P ]]

)
, (×e

2

h
), (12)

see, e.g., [Elgart–Schlein, CPAM ’04]. Also see Remark 6.1.
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This formula is precisely the Toeplitz-commutator which we had been studying,

P
[
[X,P ], [Y, P ]

]
= P [X,P ][Y, P ]− P [Y, P ][X,P ]
= P (XP − PX)(Y P − PY )− P (Y P − PY )(XP − PX)

= PXPY P − PY PXP
= [PX , PY ]. (13)

� Note that (13) is skew-adjoint, thus it has purely imaginary trace. So σHall in (12) is
always a real number.

If H is real (i.e., commutes with a complex conjugation T , usually thought of as time-
reversal), then so is P , as well as [PX , PY ]. Then σHall(P ) must vanish. So H must break
time-reversal symmetry, in order for σHall(P ) to have a chance of being nonzero. The
coupling to a gauge field (which cannot be gauged away) precisely achieves this symmetry
breaking.

� If we tweak the magnetic field in clean QH sample so that the filling factor is exactly
ν = 1, then P=Landau level projection (for charge −e electrons), and it may be explicitly
calculated that

σHall(P ) = −2πi · Tr[PX , PY ] = ±1. (×e
2

h
)

All methods I am aware of to do this calculation seem to require homogeneity and index
theory (e.g. Avron–Seiler–Simon, Bellissard). I will explain a T-duality/families index
calculation later (Eq. (25)), as well as an elementary one in Section 7.

� Each filled Landau level contributes the same Hall conductance. So the clean quantum
model again correctly predicts the experiment, Eq. (11), when ν ∈ N.

� However, in clean QM model, it is hard to even make precise sense of non-integer ν ∼ b−1,
since the Landau levels are infinitely-degenerate eigenvalues.

� In a true “dirty sample”, the Landau levels will broaden into spectral regions around the
Landau levels. The edges of these regions are thought to comprise “localized states”. Now
it makes sense to vary b−1 ∼ ν to approximate integer values, thereby “partially filling the
Landau bands”.

� Plateaux. Provided spectral gap survives at “filling factor ν”, the σHall(P (ν)) formula
holds, and P = f(HB + V ) for smooth f , so that we are within regime of our Theorem:

2πi · Tr[PX , PY ] ∈ Z.

Thus, QM model correctly predicts rounding off from ν to νint.

� Putting back the units, we see that the plateaux in the experimentally measured Hall
conductance gives us macroscopic, easy, reliable, robust access to the fundamental physical
constant e2

h .

� Large b is important, so that the finite sized sample is well modelled by infinite sized model
above.

� Caveat. Near to the Landau levels, true spectral gaps are not expected to survive. Instead,
one has “mobility gaps”, and it is a technical endeavour to extend the above discussion to
this setting (achieved in the literature in some special models).
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� Transitions. Indeed, the entire argument needs to fall apart as ν traverses the “core”
of the spectral region surrounding a Landau level. (Roughly, ν is close to “half-integer”.)
The “core” comprises “delocalized states”, which are the ones contributing to the Hall
conductance. Transitions between integral Hall conductances occur here, as different
amounts of delocalized states become occupied.

Remark 3.2. If P has finite-rank, then so does PXPY and PY PX , and cyclicity of the trace
applies to make σHall(P ) = 0.

If X,Y are bounded subsets, then PXPY and PY PX will be trace class by the methods of
Section 6. For example, if M is a finite sized sample, this forces σHall(P ) = 0. (In this case H
has compact resolvent, so P is finite-rank.) The crucial point is that the expression σHall(·) does
not correctly give the bulk Hall conductance of a finite sample M , not even approximately. It
includes the contribution of spectrum localized near to the boundary ∂M (“edge states”). We
should instead do a calculation σHall(KPK) truncated to a certain region K ⊂ M away from
∂M . Now, KPK is no longer a projection, and the identification of σHall(·) as a commutator
in (13) no longer applies. Thus the bulk Hall conductance need not vanish, and is no longer
exactly integral. Instead, when K and M are sufficiently large, the bulk Hall conductance will
approximate the exactly-quantized σHall(Pinfinite).

This is precisely what is seen in experiments: large fields |b| ≫ 1 are needed to make the
finite-sized sample “macroscopic” with respect to the length scale |b|−1/2, and the plateaux of
quantized Hall conductance is seen in such regimes.
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4 Index-theoretic perspective

� In [K+L+T, CMP ’21–’22], we explained geometric nature of Landau levels: they are
twisted Dirac operator kernels. This led to general bulk-boundary correspondence proof
by coarse index methods.

� On closed M , Diracs have Fredholm index (# zero-energy modes) computed by Atiyah–
Singer’s topological formula.

� The slogan “analytic index=topological index” might suggest that geometry is unimpor-
tant for “low energy physics”. But this is not true on non-closed manifolds.

� (Roe, ’90s) Index theory exists even on topologically trivial noncompact spaces. Large-
scale geometry controls index, small-scale geometry is ignored. For geometric operators,
“low energy” (index) ↔ “large-scale”.

4.1 Index pairing

The LHS of (9) is a gauge-independent quantity. Actually,

[P ] = ±[Dirac] ∈ K0(C
∗
Roe(M)),

and (9) is index pairing of [D] with coarse cohomology class associated to X,Y . Roe’s in-
dex theorem [4.42 in Coarse cohomology and index theory on complete Riemannian manifolds]
calculates this to be ±1.

Technically, Roe studied considered ordinary Dirac operator D. It has no spectral gap
around 0, so [D] had to be defined abstractly in the algebraic K-theory of

Bfin(M) ⊂ C∗
Roe(M) ⊂ B(L2(M ;S)).

Ordinary D has R2-invariance, allowing Fourier transform calculation. This is done at K-
theory level, with [D] represented by virtual projections in unitization, with no obvious relation
to spectral projections (what we care about). Notion of homotopy invariance is unclear.

For twisted Dirac, [PLLL] directly lies in topological subalgebra

B(M) ⊂ C∗
Roe(M),

without need for auxiliary virtual projections/unitization. However, standard translation in-
variance is lost — we need something more subtle to do calculation.

5 Magnetic translation symmetry

Each γ ∈ Isom(M) acts isometrically (on the right) on the manifold M . The curvature dA =
b · volM of L∇ is likewise invariant under pullback by Isom+(M), thus

d(A− γ∗A) = 0, ∀γ ∈ Isom+(M).

Poincaré Lemma says that there exists a 0-form ϕγ , such that

dϕγ = A− γ∗A,
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For example, fix an origin z0 and take

ϕγ(z) =

∫ z

z0

(A− γ∗A). (14)

This is well-defined (path-independent) since the integrand is closed. But it depends on a choice
of gauge.

The magnetic isometries are operators on L2(M), preliminarily defined as

Uγ := eiϕγγ∗, γ ∈ Isom(M)+. (15)

The assignment
Isom+(M)→ U(L2(M)), γ 7→ Uγ

is not a group homomorphism. Instead, the Uγ satisfy

Uγ1Uγ2 = σ(γ1, γ2)Uγ1γ2 ,

where

σ(γ1, γ2) = exp
(
i

∫ z

z0

(A− γ∗1A) + i

∫ z·γ1

z0

(A− γ∗2A)

− i
∫ z

z0

(A− (γ1γ2)
∗A)

)
= exp

(
i

∫ z0·γ1

z0

(A− γ∗2A)
)

= eiϕγ2 (z0·γ1) ∈ U(1). (16)

Thus, there is actually a central extension

1→ U(1)→ ˜Isom+(M)
π→ Isom+(M)→ 1, (17)

and the magnetic isometry assignment, Eq. (15), is a section. The map

σ(·, ·) : Isom+(M)× Isom+(M)→ U(1)

is the group 2-cocycle for this section. The U(1) factor just acts as scalar multiplication — it is
the fibrewise gauge group action.

We may check that

(d− iA) ◦ Uγ = Uγ(d− iA). (18)

Also, U−γ is the adjoint of Uγ up to a phase factor. So (d− iA)∗ also commutes with Uγ . Thus
Hb = (d− iA)∗(d− iA), and also P , commutes with Uγ . Similarly for Db.

To summarize: there is an action of ˜Isom+(M) on L∇ (tensored with trivial spinor bundle),
commuting with Hb (or Db), and lifting the action of Isom+(M) on the base manifold M .
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Gauge-dependence. For a different gauge, with Ã = A + dΛ the connection 1-form, the
magnetic isometries are instead

Ũγ = eiϕ̃γγ∗

where
ϕ̃γ = ϕγ + Λ(z)− Λ(z0)− Λ(z · γ) + Λ(z0 · γ).

It follows that
Ũγ = ei(Λ(z0·γ)−Λ(z0))︸ ︷︷ ︸

∈U(1)

· eiΛeiϕγγ∗e−iΛ︸ ︷︷ ︸
UTγU−1

, (19)

where U = eiΛ is the unitary gauge transformation.
We learn that:

� The formula, Eq. 15, for the magnetic isometries, respects gauge transformations only up
to a γ-dependent phase. Consequently, for a different choice of gauge, the 2-cocycle σ will
be modified by a coboundary.

� The choice of origin z0 in (15) introduces another phase ambiguity in the Uγ operators.

We might think that an appropriate choice of gauge will change allow for σ ≡ 1, so that the
magnetic isometry group is unitarily equivalent to a direct product

˜Isom+(M)
?∼= U(1)× Isom+(M).

However, the cohomology class of σ is an obstruction to achieving this simplification.

5.1 (Non)commutativity

Now let M be the Euclidean plane. So Isom+ ∼= R2 ⋊ SO(2). One way to see that ˜Isom+(M) is
a non-trivial central extension of Isom+(M) is to restrict attention to the translation subgroup
R2 ⊂ Isom+(M). There is a sub-central-extension,

1→ R̃2 → R2 → 1,

and the lifts Uγ , γ ∈ R2, are usually called magnetic translations (with respect to a gauge
choice).

The failure of the Uγ , γ ∈ R2 to commute is

Uγ1Uγ2U
−1
γ1 U

−1
γ2 = σ(γ1, γ2)Uγ1γ2U

−1
γ2γ1σ(γ2, γ1)

−1

= exp
(
i(ϕγ2(z0 · γ1)− ϕγ1(z0 · γ2))

)
= exp

(
i
( ∫ z0·γ1

z0

−
∫ z0·γ1·γ2

z0·γ2
−
∫ z0·γ2

z0

+

∫ z0·γ2·γ1

z0·γ1
)A
)

= exp
(
i

∮
z0→z0·γ1→z0·(γ1γ2)→z0·γ2→z0

A
)

= exp
(
ibγ1 · γ2)

)
. (Stokes′ theorem) (20)

Subtle point: In the next-to-last line, the paths z0 → z0 · γ1 and z0 · (γ1γ2)→ z0 · γ2 must be
related by translation-by-γ2 and path-reversal. Similarly for the other pair of sub-paths. Then
the last equality involving the enclosed area is a Euclidean space property.

Thus, as long as b ̸= 0, the magnetic translations cannot be made to commute. This calcula-
tion does not depend on phase ambiguities in the Uγ , and is, in particular, gauge-independent.
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5.1.1 Abelian lattice of magnetic translations

Fix generators γ1, γ2 of a square lattice Γb ⊂ R2, of side length
√

2π
|b| . There is a restricted

central extension,
1→ U(1)→ Γ̃b → Γb → 1.

Eq. (20) shows that the magnetic translations Uγ , γ ∈ Γb commute with each other. However,
this does not mean that

Γb → Γ̃b, γ 7→ Uγ ,

is a homomorphism. By abstract arguments, it is true, though, that we can attach appropriate
phases to the magnetic translations Uγ , γ ∈ Γb (in any gauge) to obtain a homomorphic lift,
thus

Γ̃b
∼= U(1)× Γb. (21)

(See Landau gauge discussion later for an explicit discussion.)
Note that the choice of isomorphism with a direct product (i.e. commuting lifts Uγ), is not

unique. Nor is there a canonical choice. Specifically, we can always modify

Uγ ⇝ α(γ)Uγ ,

where α(γ) are phase assignments satisfying

α(γ + γ′) = α(γ)α(γ′), ∀ γ, γ′ ∈ Γb, (22)

i.e., α is a character of Γb. The character space of Γb can be identified with a 2-torus T2.

Remark 5.1. The above discussion can be described in terms of group cohomology. The cen-
tral extension is trivial in H2(Γb,U(1)), and there is H1(Γb,U(1)) ∼= Hom(Γb,U(1)) worth of
trivializing lifts.

5.2 Moduli

5.2.1 Landau gauge

Fix an origin O. Let (x, y) be Cartesian coordinates centred at O, such that

γ1 = (
√

2π
|b| , 0), γ2 = (0,

√
2π
|b| ).

The so-called Landau gauge has
A = b xdy,

and one checks from Eq. (16) that

σ(·, ·) : Γb → Γb → U(1) ≡ 1.

This exhibits a splitting, Eq. (21). In any other gauge, the magnetic translations are unitarily
equivalent to the Landau gauge one up to phase redefinitions. So the former can always be
phase-redefined to obtain γ 7→ Uγ as a homomorphism.

As mentioned before, we can modify the (Landau gauge) magnetic translations by a char-
acter, without affecting their trivial cocycle σ. The explicit “source” of these freedoms is as
follows:
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� Eq. (14) says that in Landau gauge, changing z0 to z0+(kxb ,
ky
b ) causes Uγ1 to be adjusted

by a phase factor exp(iky
√

2π
|b| ), while Uγ2 is unaffected.

� If the origin for Landau gauge is changed to O+ (kxb ,
ky
b ), the “new Landau gauge” would

have Ã = b(x− kx
b )dy, and is therefore obtained from the “previous Landau gauge” by the

gauge transformation U(x, y) = e−ikxy. According to Eq. (19), the magnetic translation

Uγ2 would acquire an extra phase factor of exp(ikx
√

2π
|b| ), while Uγ1 is unaffected.

Write k = (ky, kx). The above says that a kx/b horizontal shift of O and a ky/b vertical shift
of z0 result in phase factors

Uγ ⇝ ei⟨k,γ⟩Uγ , γ ∈ Γb,

for the “Landau gauge magnetic translations”.
These ambiguities are parametrized by a torus

k = (ky, kx) ∈
[
0,
√

2π|b|
]2
/∼ = T2,

which is precisely the character space for Γb, mentioned in (22). Note that the natural orientation
on T2 is dkx ∧ dky in these coordinates.

Remark 5.2. The upshot is that the total space of the bundle L∇ admits a genuine Γb action (by
magnetic translations), lifting the action of Γb on the base M , and commuting with the Landau
operator. However, there is no canonical choice for this action. Instead, there is a T2-torsor
(“moduli”) of possible choices.

5.3 T-duality

Let T 2 = M/Γ be a fundamental domain, which is an affine 2-torus. Regard T 2 as a square in

M of side length
√

2π
|b| , with opposite edges identified. Do not confuse T 2 with T2 — they are

dual to each other.
Each choice of Γb-action (a point in the moduli). The quotient

L∇/Γb

defines a line bundle with connection,

L∇(k) → T 2.

Concretely, the phase functions eiϕγ1 , eiϕγ2 are the U(1)-valued transition functions needed for
patching fibres on opposite sides of the square together.

Over T 2, the line bundle curvature integrates to ±2π. The Dirac quantization condition
is satisfied, and topologically, the line bundle L → T 2 has Chern class being a generator of
H2(T 2;Z). This is independent of the choice k of Γb-action.

However, the global holonomies of ∇(k) are different. Recall that shifting the choice of action
by the parameter k = (ky, kx) ∈ T2 changes the fibre identifications when gluing edges of the
square to form cycles of T 2. Geometrically, a shift by k introduces an extra flat connection with

holonomies (e
i
√

2π
|b| ky , e

i
√

2π
|b| kx) around the x-cycle and the y-cycle, respectively
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Overall, there is a family of quotient line bundles,

L∇(k) → T 2, k ∈ T2,

and a corresponding family of Landau operators

Hb,k = (∇(k))∗∇(k), k ∈ T2.

Similarly, we have the family of twisted Dirac operators,

Db,k, k ∈ T2,

acting on the trivial spinor bundle of T 2 tensored with L∇(k)
.

5.3.1 Fourier transform of Landau levels

Lichnerowicz identity (8) still holds,

D2
b,k =

(
Hb,k − b 0

0 Hb,k + b

)
,

as k does not introduce any curvature corrections.
Each Hb,k and Db,k is elliptic over the closed manifold T 2, with discrete spectrum. So the

lowest Landau level of Hb,k is a finite-dimensional eigenspace, identified with the ker(Db,k).
Varying k ∈ T2, we obtain a vector bundle {ker(Db,k)}k∈T2 of Dirac kernels, which we should
think of as the “Fourier transform” of ker(Db) with respect to the abelian lattice Γb.

Details. We write Hk for the Hilbert space of L2-sections of L∇(k) → T 2. Each Hk is
isomorphic to L2(T 2) by picking a local trivialization over the interior of the square. (We can
do this concurrently for all k by using a global gauge over M .) So there is a Hilbert space
bundle,

H → T2

with fibres Hk. With a gauge choice, one has

L2(T2;H) ∼= L2(T2)⊗ L2(T 2).

Let ψ be a Schwartz class section of L∇ → M . For each k, the “k-quasiperiodic part” of ψ
is given by the Bloch sum

ψk :=
∑
γ∈Γb

ei⟨k,γ⟩Uγψ.

Since ψk is invariant under the k-th Γb-action, it determines an element ofHk. This construction
is then extended to general L2-sections of L∇ →M , and defines a unitary map

U : L2(M ;L∇)→ L2(T2;H).

For b = 0, this is known as the Bloch–Floquet transform (of functions, global gauge assumed),
ubiquitous in solid-state physics.
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Under U , the Γb-invariant operator Hb is transformed into the family {Hb,k}k∈T2 , with each
Hb,k acting on the Hk fibre. Geometrically, there is a fibre bundle

π2 : T
2 × T2 → T2,

and H is turned into a T2-parametrized family of elliptic operators on the fibre T 2. Likewise
for the Dirac operator Db. We are interested in what U does to the LLL/Dirac kernel.

The following can be computed explicitly in Landau gauge:

� ker(Db,k) is one-dimensional, for each k ∈ T2, and is ±-graded depending on the sign of b.
Thus the (virtual) kernel bundle, i.e., the index bundle,

IndT2(Db) = ±{ker(Db,k)}k∈T2

is well-defined over T2, and represents the families index in K0(T2).

� The Chern class of {ker(Db,k)}k∈T2 is a generator of H2(T2;Z) (independent of b).

A more abstract calculation proceeds as follows. Start from the bundle L∇(0) → T 2, which
has Chern character

Ch(L∇(0)
) = 1 +

b

2π
dx ∧ dy,

Over T 2 × T2, the so-called Poincaré line bundle

P → T 2 × T2,

has the property that its restriction to each T 2×{k} is flat with holonomies (ei
√

2π/|b|ky , ei
√

2π/|b|kx).
Think of the connection form as

kydx+ kxdy

with x, y the local Cartesian coordinates on T 2. So P is not flat overall, and has Chern character

Ch(P) = 1− 1

2π
(dky ∧ dx+ dkx ∧ dy) +

1

4π2
(dky ∧ dx ∧ dkx ∧ dy).

Recall that each Hb,k acts on sections of L∇(k) → T 2. Altogether, the collection of line
bundles,

{L∇(k)}k∈T2

comprises the restrictions of the following bundle over T 2 × T2,

π∗1L∇
(0) ⊗ P.

For the Db,k, we tensor with the trivial spinor bundle as usual.
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Now the families index formula gives

± Ch({ker(Db,k)}k∈T2)

= Ch(IndT2(Db)) (23)

=

∫
T 2

Ch(π∗1L(0) ⊗ P)

=

∫
T 2

(1 +
b

2π
dx ∧ dy) ∧

(
1− 1

2π
(dky ∧ dx+ dkx ∧ dy) (24)

+
1

4π2
(dky ∧ dx ∧ dkx ∧ dy)

)
= ±

(
1± 1

2π|b|
dkx ∧ dky

)
(25)

This gives the result that the Dirac kernel bundle/Fourier transformed LLL has Chern number
±1.
Remark 5.3. For the connection on {ker(Db,k)}k∈T2 , and, we might use the one induced in its
role as a subbundle of the trivialized Hilbert bundle H. The latter trivialization refers to a
gauge choice. So the connection on {ker(Db,k)}k∈T2 , and even its curvature, is not canonical.
But the integrated curvature, i.e. Chern number, is independent of these choices.

Scale invariance. Suppose we had chosen a coarser sublattice Γb,R of Γb, generated by
Rγ1 and Rγ2, where R ∈ N>1. Then T 2 has area 2πR2/|b|, while T2 has area 2π|b|/R2. The
calculation above would give

Ch({ker(Db,k)}k∈T2) = R2 ± R2

2π|b|
dkx ∧ dky,

and thus the same ±1 Chern number. The rank, however, jumps to R2.
The invariance of the Chern number to the choice of lattice scale is of great importance, since

the latter is, after all, just a mathematical choice. This indicates that the Chern number is a
“large-scale” invariant. Indeed, we may consider sufficiently large R, and identify the expression
of integrating the curvature over T2 with the expression Tr[PX , PY ].

Remark 5.4. If b = 0, we get an index bundle of Chern class 1 and virtual rank 0. Stabilization
is needed. Neither graded part of the index bundle can be identified with a physical P .

5.4 Baum–Connes assembly map

Notice that T 2 = BΓb (classifying space). The Baum–Connes assembly map µΓb
gives an

isomorphism

K0(T
2)

µ→ K0(C
∗
r (Γb))

Fourier∼= K0(T2)
Ch∼= H2(T2;Z) ∼= Z2.

We evaluated this for the (K-homology class of the) Dirac operator twisted by L∇(0)
.

When lifted to the Dirac operator on M = EΓb twisted by L∇, we get a Γb-equivariant
elliptic operator with C∗

r (Γb)-index. We made this concrete with Fourier transform.
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6 Finite-propagation, locally trace class operators

We wish to consider the QHE on more general M and B, so we need a more general non-
equivariant index. Which operator algebra is suitable for this?

� A (self-adjoint) Dirac operator D on M propagates at unit speed. So unitary eiDt propa-
gates distance |t|. Schwartz function of D has

f(D) =
1

2π

∫
f̂(t)eitD dt

with f̂ Schwartz. Then f(D) is approximated by finite-propagation operators (better than
in operator norm).

� With a spectral gap, low energy spectral subspace has projection

P = f(D)

being approximately finite-propagation. Think of P as a big matrix (in “position basis”)
whose entries decrease rapidly with distance from diagonal.

� If K,K ′ compact, then KPK ′ is trace-class (restrict smooth integral kernel to compact
subset).

Roe considered

Bfin(M) = {locally trace class, finite propagation}

C∗
Roe(M) = Bfin(M)

op
.

For even-dimensional M , he defined coarse index of D as an element of

K0(C
∗
Roe(M)), or Kalg

0 (Bfin(M)),

thus represented by (differences of) projections in the (unitized) algebras.

Recall that D =

(
0 D∗

+−
D+− 0

)
. If D has isolated interval I ∋ 0 in spectrum, the spectral

projection P = f(D) for some even characteristic function f on I, so

P =

(
P+ 0
0 P−

)
∈ C∗

Roe(M).

Then
Ind(D) = [P+]− [P−] ∈ K0(C

∗
Roe(M)).

Turning on gauge field introduces lower-order term in Db, without changing the K-theoretic
index.

Ind(Db) = [PLLL] ∈ K0(C
∗
Roe(M))

This can be done continuously in b ̸= 0 (contrast Dirac quantization constraint for Mcpt).

But. . . what does a non-trivial coarse index “count”?

� InMcpt case, P+, P− are trace-class kernel projections, thus finite-rank. So take supertrace,

STr(P+ ⊖ P−) = dimP+ − dimP− = Fredholm index(D).

� For noncompact M , the P± are not trace class, so we need “higher traces” to “measure”
them. The technology of cyclic cohomology and NCG studies this systematically; however,
we cannot work on the whole C∗

Roe(M).
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6.1 Pairing P with coarse partition

AB

C

X
↑
↓

← Y →

For simplicity, assume (incorrectly) that P = f(D) is in Bfin(M). The following trace-class
assumptions for the usage of our main theorem are satisfied:

� PX − P 2
X = PXPXcP is supported near X ∩ Xc. Similarly, PY − P 2

Y supported near
Y ∩ Y c. Thus

(PX − P 2
X)(PY − P 2

Y )

is supported near origin, thus trace class. Note that neither PX − P 2
X nor PY − P 2

Y

is Hilbert–Schmidt (why?). So the fact that their product is trace-class is somewhat
remarkable.

� To show that [PX , PY ] is trace class as well, we consider disjoint partition7,

A = X, B = Xc ∩ Y, C = Xc ∩ Y c.

Notice that APBPCP is supported near triple intersection, so it is trace class, with trace
given by summing loop amplitudes near intersection:

AB

C

••

•

••

•

•

•
•

• •
•

•

•
•

•
•
•
•

•

•
• •

•
•

•
•

••

•
• •

•

So the following “nett chiral loop amplitude” makes sense,

Tr(APBPCP + antisymm)

It will be convenient to write, for any three functions f1, f2, f3,

[f1, f2, f3]P :=
∑
σ∈S3

sgn(σ) · f1Pf2Pf3P.

Note that when one of the arguments is the identity function, then (say)

[f1, f2, 1]P = f1Pf2P + f2Pf1P + Pf1Pf2P − Pf2Pf1P − f2Pf1P − f1Pf2P
= [Pf1 , Pf2 ]. (26)

7An alternative approach uses Eq. (13), see Section 7.1.
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We are particularly interested in

Tr(APBPCP + antisymm) = [A,B,C]P

= [A,B, 1−A−B]P

= [A,B, 1]P (antisymmetry)

(26)
= [PA, PB]. (27)

By setting A = X,B = Xc ∩ Y , it may be checked that

[PX , PY ] = 2[PA, PB] + traceless. (28)

(This uses a cobordism invariance argument, see Section 6.2 for a clue, and [arXiv:2308.02819]
for details.)

In view of (27), we learn that [PX , PY ] is indeed trace class.

Our theorem now applies to give

σHall = −2πi · [PX , PY ] ∈ Z.

At abstract level, a coarse partition {A,B,C} determines a coarse 2-cochain over M , and
then a cyclic 2-cocycle on Bfin(M). This descends to a cyclic cohomology pairing with the
algebraic K0-theory of Bfin(M) [Connes ’85].

6.1.1 Extension of arguments to Fréchet algebra containing P

In reality, P is not finite-propagation. Certainly it lies in C∗
Roe(M), but higher-trace pairing

becomes ill-defined. The problem is that operator norm is too flabby to control traces.

� We showed that P lies in a certain Fréchet subalgebra B(M) ⊂ C∗
Roe(M) comprising rapid

decrease operators in trace-norm sense,

sup
diam(K),diam(K′)≤1

||KLK ′||Tr(1 + d(K,K ′))ν <∞, ∀ν.

Rapid decrease controls loop amplitudes against volume growth.

� We prove that arguments of Section 6.1 work for P ∈ B(M).

� En route, we construct localized versions

B(M ;Z), Z ⊂M,

and prove ideal property with respect to “large-scale excisiveness”. Thus, there is a “locally
trace-class” version of (localized) Roe C∗-algebras. Unlike the (localized) Roe C∗-algebras,
the construction is not based on coarsely invariant concepts, but a rather more restrictive
large-scale geometry concept!

� Specifically, assume that M has bounded geometry and polynomial volume growth (say).
Then we need to use the notion of polynomial excisiveness for subsets,

q⋂
n=0

Br(Zn) ⊂

(
q⋂

n=0

Zn

)
rµ

.
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6.2 Cobordism invariance

Let f1 + f2 + f3 = 1. Modify this “partition-of-unity” by a function g to

(f1 − g) + (f2 + g) + f3 = 1.

The difference in their bracket with P is

[f1 − g, f2 + g, f3]P − [f1, f2, f3]P = [f1, g, f3]P − [g, f2, f3]P

= [f1 + f2, g, f3]P

= [1, g, f3]P ([g, f3, f3]P = 0)

(26)
= [Pg, Pf3 ]. (29)

Suppose

� supp(f1) ∩ supp(f2) ∩ supp(f3) is compact. (“Coarse partition-of-unity”).

� supp(g) ∩ supp(f3) is compact, so that

f1 − g, f2 + g, f3

is another coarse partition-of-unity, “cobordant” to f1, f2, f3 via g.

Then (29) is trace class, and implies the following “cobordism invariance”

Tr[f1, f2, f3]P = Tr[f1 − g, f2 + g, f3]P . (30)

For example, we can modify a disjoint partition A,B,C by “smoothening out” the interface
between A,B (where the modification takes place near the interface). Iterate this for the B,C
and the C,A interfaces. Eq. (30) implies that if we replace A,B,C with smooth partitioning
functions Ã, B̃, C̃, we still have

Tr[A,B,C]P = Tr[Ã, B̃, C̃]P . (31)

Remark 6.1. Instead of taking X,Y to be χX , χY , it is usual to use smoothened characteristic
functions X̃, Ỹ in the Hall conductance formula (12). Equivalently, as in (13),

σHall(P ) = −2πi · Tr[PX̃ , PỸ ].

The expressions (28) and (27) still hold, with A,B,C replaced by the corresponding smoothened
characteristic functions Ã, B̃, C̃ (summing to 1). The invariance property (31) allows us to
conclude that

Tr[PX̃ , PỸ ] = Tr[PX , PY ].
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7 Explicit index calculation for Landau level

Subsequently we work with the standard (holomorphic) Bargmann space

HBarg = span

{
zne−

|z|2
2 : n ∈ N

}
,

which is the LLL eigenspace for b = 2. We write P for the orthogonal projection from L2(C) =
L2(R2;µLeb) → HBarg. It is known that the integral kernel of P , with respect to Lebesgue
measure, is

p(z, w) =
1

π
e−

|z|2+|w|2
2 ezw̄. (32)

=
1

π
e−

1
2
|z−w|2eiw∧z, w ∧ z := wxzy − zxwy, (33)

Note that p(·, ·) is smooth and rapidly decaying away from the diagonal.

In [2308.02819], we proved that for general idempotents P = P 2 ∈ B(C) ⊂ C∗
Roe(C), the

following pairing formula makes sense, and is integral,

2πi · Tr[PX , PY ] ∈ Z. (34)

Here, X,Y are polynomially transverse half-planes, and PX = PχXP etc. are the compressions
to the Bargmann space.

7.1 Explicit “elementary” calculation for Bargmann projection.

Our goal is to calculate Eq. (34) explicitly, for P the Bargmann space projection, and X,Y the
right half-plane and upper half-plane respectively. In this case, the expression (34) is a pairing
of the Dirac coarse index (represented by P ) with a cyclic/coarse cohomology class associated
to X,Y . Roe’s abstract coarse index theorem can then be used to deduce

2πi · Tr[PX , PY ] = 1. (35)

Let us compute this directly by “elementary” means.
Since we have the explicit expression for p(·, ·) from (32), we might try to directly integrate

the kernel of [PX , PY ] along the diagonal. But the terms PXPY and PY PX are generally not
trace class, and their kernels will have divergent integrals along the diagonal.

To circumvent this, we use the alternative formula Eq. (13), which reads

[PX , PY ] = P
[
[X,P ], [Y, P ]

]
= P [X,P ][Y, P ]− P [Y, P ][X,P ]. (36)

Since
[X,P ] = XPX +XPXc −XPX −XcPX = XPXc −XcPX (37)

decays rapidly away from X ∩ Xc, while [Y, P ] similarly decays rapidly away from Y ∩ Y c,
the products [X,P ][Y, P ] and [Y, P ][X,P ] decay rapidly away from the origin. Thus the latter
are trace class, by the locally trace class and approximately finite-propagation properties of
P ∈ B(C) (details provided in [arXiv:2308.02819]). We note in passing that this also shows,
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via Eq. (36), that [PX , PY ] is trace class. Crucially, the extra P in (13) means that Lidskii’s
theorem does not apply, and it is possible for [PX , PY ] to have non-vanishing trace.

In summary,

Tr[PX , PY ] = Tr
(
P
[
[X,P ], [Y, P ]

])
(38)

=

∫
u,v,w∈C

p(u, v)p(v, w)p(w, u)
(
X(v)−X(w)

)(
Y (w)− Y (u)

)
− (X ↔ Y ), (39)

where p(·, ·) given by (32). This integral now makes sense, but to compute it, we must invoke
a symmetry argument, inspired by §4 of Avron–Seiler–Simon.

From the formula (33), we deduce that p(·, ·) has the translation covariance

p(z − t, w − t) = Ut(z)p(z, w)Ut(w)
−1, t ∈ R2 ∼= C, (40)

where Ut : R2 → U(1) is the gauge transformation8

Ut(z) = exp
(
iz ∧ t

)
.

This implies that

p(u, v)p(v, w)p(w, u) = p(u− w, v − w)p(v − w, 0)p(0, u− w), u, v, w ∈ C.

Then the formula (39) simplifies to

Tr[PX , PY ] =

∫
u,v,w∈C

p(u, v)p(v, w)p(w, u)
(
X(v)−X(w)

)(
Y (w)− Y (u)

)
− (X ↔ Y )

=

∫
u,v,w∈C

p(u− w, v − w)p(v − w, 0)p(0, u− w)
(
X(v)−X(w)

)(
Y (w)− Y (u)

)
− (X ↔ Y )

substitute
=

∫
u,v,w∈C

p(u, v)p(v, 0)p(0, u)
(
X(v + w)−X(w)

)(
Y (w)− Y (u+ w)

)
− (X ↔ Y )

(41)

Using the rapid decrease of p(·, ·), we may do the w-integral first. This integral is independent
of P , and has a simple geometric meaning:∫

w∈C

(
X(v + w)−X(w)

)(
Y (w)− Y (u+ w)

)
− (X ↔ Y )

=

∫
wx∈R

(
χ[0,∞)(vx + wx)− χ[0,∞)(wx)

) ∫
wy∈R

(
χ[0,∞)(wy)− χ[0,∞)(uy + wy)

)
− (x↔ y)

= (vx)(−uy)− (vy)(−ux)
= u ∧ v. (42)

8The covariance property of p is just a restatement of the magnetic translation symmetry of P , and the gauge
transformation Ut(·) is that appearing in the formula (15) for magnetic translations.
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Using this geometric identity, Eq. (41) becomes

Tr[PX , PY ]

=

∫
u,v∈C

p(u, v)p(v, 0)p(0, u)u ∧ v (43)

(32)
=

1

π3

∫
u,v∈C

e−(|u|2+|v|2)euv̄u ∧ v

=
1

π3

∫
r1,r2∈[0,∞)

r1r2 e
−(r21+r22)

∫
θ1,θ2∈[0,2π]

er1r2e
i(θ1−θ2)

r1r2
1

2i
(ei(θ2−θ1) − e−i(θ2−θ1))

=
1

π3
1

2i

∫ ∞

0

∫ ∞

0
dr1 dr2 (r1r2)

2e−(r21+r22)

∫ 2π

0
dθ1

∫
S1

er1r2ᾱ(α− ᾱ)dα
iα

(α = ei(θ2−θ1))

=
1

π3
1

2i
(2π)

∫ ∞

0

∫ ∞

0
dr1 dr2 (r1r2)

2e−(r21+r22) · (2πi)
(r1r2
i

)
(residue theorem)

=
1

π3
1

2i
(2π)(2π)

(∫
r∈[0,∞)

dr r3e−r2

︸ ︷︷ ︸
1/2

)2

=
1

2πi
. (44)

Remark 7.1. Let us replace X = χX with a smooth switch function of x. This means the
left limit is 0, right limit is 1, with interpolating region within a vertical strip of finite width.
Similarly for Y . Everything in this section still holds. (That the geometric identity (42) still
holds deserves special mention.)

Remark 7.2. The expression −i[PX , PY ], with smooth switch functions X,Y , was called the
adiabatic curvature in Definition 6.3 of Avron–Seiler–Simon. It was not shown that [PX , PY ] is
trace class, so the authors had to truncate using boxesKR of side length 2R centred at the origin,
and considered limR→∞Tr

(
KR[PX , PY ]KR

)
. This limit was called Hall charge transport. The

manipulations up to Eq. (43) work generally for “homogeneous” P with magnetic translation
symmetry, and it was shown that the expression equals 1

2πi times the Fredholm index of P z
|z|P

(thus integral), the latter index being interpreted as charge deficiency (related to spectral flow).
Then for P the Bargmann projection, they compute the index to be ±1 by working with the
explicit basis of eigenfunctions.

In [arXiv:2308.02819], we showed that [PX , PY ] is indeed trace class, so the above integral
kernel calculations directly compute its actual trace. Furthermore, as explained in this paper,
the integrality and stability of this trace is extremely general, and is not limited to homogeneous
P .
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8 Quantum kilogram

� Large-scale index theory justified deforming true dirty experiment to idealized model,
keeping σHall invariant (thus integral). We must still do one explicit calculation (e.g. a
clean Landau level) to see that it is non-zero.

� Allowed deformations are not “topology preserving” ones, but “large-scale geometry pre-
serving”. (“Topological insulator” is a misnomer.)

� For infinite-sized sample, σHall is exactly quantized to integer multiples of e2

h .

� Real sample is finite-sized, but macroscopic. So get very good approximation to exact
integer of infinite-sized sample.

� So precise (10−10 uncertainty) that σ−1
Hall has been used as fundamental unit of electrical

resistance, h
e2
, for some time.

� Another macroscopic experiment, Josephson junction, gives h
2e =(fundamental voltage)×(second)

very accurately.

(No microscopic explanation yet, to my knowledge.)

� Both experiments got Nobel prizes. Together, they give the best available access to h (and
e), via macroscopic electrical measurements.

Grand irony: Although quantum mechanical, we cannot measure h well with microscopic
measurements (uncertainty principle). Instead, we see it macrosopically, e.g., blackbody radia-
tion corrections, QHE, Josephson,. . .

8.1 Kilogram

The s(econd) and m(etre) are defined as

s = 9192631770 ticks of Caesium atomic clock

m =
(speed of light)× s

299792458

(Semi-)Riemannian metric on space(time) gives distances as real number × reference space/time
distance unit. Speed of light converts between space unit and time unit.

Mechanics involves motion of matter, based on a property called “mass”. Prior to 2019, the
reference unit of mass was

Old kg = local prototype in Paris.

After QM came around (1920s to present), h has been estimated in various ways to be

h = 6.626 . . .?? . . .× 10−34 · (Old kg) ·m2 s−1. (45)

In principle, h is a universal constant, which converts space/time units to mass units. We
could fix a choice for the number, and define “universal mass standard” kgh as whatever mass
balances the above equation.

However, if we don’t know how to access h reliably and accurately, then we dont have access
to kgh, so such a definition would be useless in practice!
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QHE is the experimental breakthrough which solved this problem of accurate access to h.
(There is also the clever physics-engineering business of converting the “electrical signatures”
of h, e to mass, by a “Watt balance”, or “Kibble balance”.) In 2019, kilogram was officially
redefined via

h = 6.62607015× 10−34 · (kgh) ·m2 s−1, (46)

The numerical factor was picked to ensure that kgh is best-known approximation to Old-kg.
Now kgh is quantum by definition, and exists forever and everywhere, without deteriorating

like the Old-kg!
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