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Main result (with M. Ludewig arXiv:2306.?????)

M metric space, P = P2 any rapid decrease projection on L2(M).

← Y →

↓X
↑

← Y →

↓X
↑

Tr[PχXP,PχYP] ∈ i
2π · Z

Physics �proof�: Quantized to 10−9 accuracy!

Maths: ⟨ Coarse partition ; K -theory ⟩.
Measures delocalization of P.
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1D partitioned/odd coarse index (sketch)

• World's most famous commutator:

[Position,Momentum︸ ︷︷ ︸
−i

d
dx=D

] = i .

• Cayley transform U = exp(πiχ(D)).

Tr(U∗[Π+,U]) = Tr(U∗Π+U − Π+)
why??
= 1.

Discrete shift S :

Π− Π+

• • • • • •|

|

Tr(S∗ [Π+,S ]︸ ︷︷ ︸
�nite rank

) = Tr(S∗Π+S − Π+)
why??
∈ Z.
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I. Story-telling and Motivation
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Physics → Maths

• Hall, 1879: 2D sample M subject to ⊥ magnetic �eld.
Transverse response of charges to electric �eld in M:

σHall ∈ R.

• Weyl, 1929: Gauge principle (in quantum mechanics).

• Landau, 1930: QM of magnetic Laplacian1 on R2: Spectrum
�quantizes� to a set of in�nitely-degenerate Landau levels.

•b •3b •5b •7b . . .

• Schrödinger, 1932:

1∇∗
b∇b = −(∂2

x + ∂2
y ) + 2ibx∂y + b2x2
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Physics → Maths

• Early 80s surprise: QHE at low temperatures, large �eld,

σHall ∈ Z.

• 90s: Bellissard+: NCG, cyclic theory for NC-2-torus.

• Ludewig+Kubota+T, 2020s:

[PLandau] = [Dirac coarse index].

• Today: Coarse index↭ quantization of trace (thus σHall).
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2020s: Amorphous phenomenon needs �coarse� index theory!

�Small-scale structure� irrelevant! QHE works on bumpy samples.

N. Mitchell et al, Nature
Phys. (2018)
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2000s: Coarse geometry was anticipated (A. Kitaev)
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Coarse cohomology and geometry

Finite propagation operators⇝ Roe C ∗-algebras.
�Middle ground� needed. . .
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Coarse boundary of maths/physics

• Maths: Properties of points�space. Coarse index
obstructions (e.g. no psc metrics as corollary).

• Physics: Operators�wavefunctions. Coarse index counts
something ⇝ large-scale spectral phenomena!

• Twisted Diracs exhibit coarse/higher index explicitly2!

• Quantization involves gauge: (Planck)/(electron charge)2.

2For Zd , higher index is families index over moduli of BZd (�T-duality�).
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II: Coarse cohomology
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(Integral) coarse cohomology of M

• q-cochains are maps φ : Mq+1 → Z with usual δ-operator.

δ(f0 ⊗ f1) = 1⊗ f0 ⊗ f1 − f0 ⊗ 1⊗ f1 + f0 ⊗ f1 ⊗ 1.

• Coarse 0-cochain = compactly-supported f .

• Generally, φ = f0 ⊗ . . .⊗ fq is coarse if:

q⋂
i=0

Pen(Supp(fi );R) is compact, ∀R ≥ 0.

∂X

∂Y
AB

C
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Coarse cohomology � partitions

• Antisymmetrized coarse complex → HX •(M).

• Partitions A ⊔ B ⊔ C = M de�ne non-trivial cohomology
classes!

Pen(A;R) ∩ Pen(B;R) ∩ Pen(C ;R) compact ∀R > 0.

φA,B,C := χA ⊗ χB ⊗ χC + antisymm.

• Compare Schick�Zadeh multi-partitioned manifold index
theorem.

How does [φA,B,C ] interact with operators on M?
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Cobordism invariance

AB

C = C ′ ⊔ D

AB

C ′ D

[φA,B,C ] =



[φB,C ′⊔D,A],

[φA,B⊔C ′,D ],

[φD,A ⊔ B︸ ︷︷ ︸
Y

,C ′ ],

[φC ′,D ⊔ A︸ ︷︷ ︸
X

,B ],

∈ HX 2(M).
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Pairing coarse cochains with �nite propagation operators

• L0, . . . , Lq ∈ B�n(M) locally trace class3 and �nite

propagation:

⟨f0 ⊗ . . .⊗ fq; L0, . . . , Lq⟩ := Tr
(
(f0L) . . . (fqLq)

)
<∞.

• Coboundary�Projection trivializes,

⟨δφ;P⟩ ≡ ⟨δφ;P, . . . ,P︸ ︷︷ ︸
q+1

⟩ = 0, P = P2 ∈ B�n(M), q even.

• Partition-projection pairing:

⟨A,B,C ;P⟩ := ⟨[φA,B,C ];P⟩,
= Tr

(
χAPχBPχCP + antisymm

)
.

3On L2(M); fL and Lf are trace class whenever f has compact support.
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Pairing is a commutator-trace

⟨A,B,C ;P⟩ ≡ Tr
(
χAPχBPχCP + antisymm

)
= . . . = Tr[PχAP,PχBP].

AB

C

γaγb

γc

γsmall

Commutator-trace equals to
�sum over loop-amplitudes�: ∑

anticlockwise γ

−
∑

clockwise γ


P(γa, γb)P(γb, γc)P(γc , γa)
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Meaning of commutator trace � Kubo form

Cobordism invariance leads to another formulation:

2⟨A,B,C ;P⟩ = Tr[PχXP,PχYP]
Kubo≡ i

2π · σHall(P)

Quantum response along ∂Y when electric �eld applied along ∂X .

Experimentally: this trace is

• Finite for a large class of ∞-dimensional P.

• Integer multiple of a universal constant.

• Stable against perturbations in M-geometry and/or P.

Rigorous explanation only known4 for M = R2 or M = Γ = Z2.
Real sample curvature variation ≫ 10−9. . .

4Hyperbolic: CHMMM+T
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Triviality of pairing

The pairing is zero when

• P is �nite rank/trace class.

• PχXP or PχYP is trace class (any X ,Y ).

• PχXPχYP is trace class. (Lidskii)

• P has �nite propagation.

• P = P (need gauge-connection!)

Only �fully delocalized� part of P can contribute.
�Localized noisy states� �ltered out � plateaux5

Need in�nite propagation P to get �integer ̸= 0�.

Roe C ∗-algebras not suitable for Tr(·) . . .

5Exact rounding o� was the surprise that led to Nobel prize.
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III: Fréchet algebra of rapid
decrease operators6

6Polynomial volume growth of M assumed.
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Fréchet spaces of rapid decrease operators

De�nition: B(M) is space of bounded operators on L2(M) with
�nite �decay seminorms� for all ν ≥ 0:

ρν(L) := sup
rad(V ),rad(W )≤1

||χV LχW︸ ︷︷ ︸
matrix
elements

||Tr(1+ d(V ,W ))ν <∞

For each Z ⊂ M, de�ne B(M;Z ) ⊂ B(M) as subspace with

ρν,Z (L) := sup
rad(V ),rad(W )≤1

||χV LχW ||Tr
(
1+d(V ,Z )

)ν(
1+d(W ,Z )

)ν
<∞
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Fréchet algebras of rapid decrease operators

• Automatically locally trace class: B�n(M) ⊂ B(M).

• B(M;Z ) not closed ideal in B(M).
(Di�erent topologies for di�erent Z !)

• Algebra property not obvious.

• �Natural� seminorms are not submultiplicative.

• Nevertheless, we establish that B(M;Z ) are m-convex
Fréchet algebras, so they have their own holomorphic
functional calculi.
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Two localization theorems

• If Z ⊂ M is compact, then

B(M;Z ) ⊂ {trace class}.

• If Z0, . . . ,Zq ⊂ M are poly-coarsely transverse,

q⋂
i=0

Pen(Zi ; r) ⊂ Pen

(
q⋂

i=0

Zi ;R(r)

)
, ∀ r > 0,

with R at most polynomial in r , then

B(M;Z0) · . . . ·B(M;Zq) = B
(
M;

q⋂
i=0

Zi

)
,

with continuous multiplication.

19 / 25



IV: Proof of integrality
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Back to main goal

For any P = P2 ∈ B(M), and ∂X , ∂Y poly-coarsely transverse,
write PX := PχXP and PY := PχYP. We want to prove:

Tr[PX ,PY ] ∈ i
2π · Z

(Also want cobordism invariance, homotopy invariance, promote to
K -theory.)

Clearly: PX is X -localized, and PY is Y -localized.

What about [PX ,PY ]?
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Localization argument

• PX fails to remain a projection by an error near ∂X :

PX − P2
X = P χXP(1− χX )︸ ︷︷ ︸

∂X -localized

P ∈ B(M; ∂X ).

• Holomorphic calculus leads to

e2πiz − 1 = z(z − 1)f (z)

e2πiPX − 1 = PX (1− PX )︸ ︷︷ ︸
B(M;∂X )

f (PX )︸ ︷︷ ︸
B(M)+

∈ B(M; ∂X ).

• Similarly for Y ,

e2πiPY − 1 ∈ B(M; ∂Y ).
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Localization ⇒ Integrality

• Our localization theorems now apply,

(e2πiPX − 1︸ ︷︷ ︸
∂X

) · (e2πiPY − 1︸ ︷︷ ︸
∂Y

) ∈ B(M; ∂X ∩ ∂Y︸ ︷︷ ︸
compact

) ⊂ trace class.

• Kitaev's conjecture: this trivializes the Fredholm determinant,

det
(
e2πiPX e2πiPY e−2πiPX e−2πiPY

)
= 1.

• By Pincus�Helton�Howe (BCH formula), above is equivalent
to

exp
(
Tr[2πi PX , 2πi PY ]

)
= 1 ⇒ Tr[PX ,PY ] ∈ i

2πZ.
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Kitaev determinant formula '06; Proof: Elgart�Fraas (2023)

If S ,T are invertible and

(S−1)(T−1), (T−1)(S−1), (S∗−1)(T−1), (T−1)(S∗−1)

are trace class, then det(STS−1T−1) = 1.

• Our work provides a big natural class of examples:

(e2πiPX − 1)(e2πiPY − 1) is trace class, etc.

for any RD projection P on L2(M), and any poly-coarsely
transverse axes ∂X , ∂Y .

• Then Tr[PX ,PY ] is quantized!
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Interesting P come from physics!

• Need to couple Dirac/Schrödinger to large gauge �eld to
obtain non-trivial P.

• Basic example: Landau-level spectral projection P.

[PLandau] = [ker(Db)] = coarse-ind(Dirac) ̸= 0 ∈ K0(C
∗(M)).

• Coarse index obstructs existence of localized basis for
Range(P). (L+T, '22).

• Coarse-MV principle implies spectral-gap �lling theorem7 for
the magnetic Laplacian restricted to any ≈ half-space X .

• • • •Spec on M
• • • •Spec on X

7Ludewig+Kubota+T, CMP '21, '22.
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Discussion

• Working with B(M) rather than C ∗-algebras is crucial for
quantized trace formula for P.

• For K -theory: Is B(M) spectral in C ∗(M)?
Actually, su�ces that [P] ̸= 0 in K0(C

∗(M)) (Baum�Connes).

• HX •
poly di�erent from standard one?

• Deliberately avoided cyclic cohomology: KO-torsion?
Extension to unknown operator space. . .

• Full coarse invariance?

• dim > 2?

25 / 25


