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Wavelet operator and block model

Recall a single-level synthesis operator of wavelet system

W ∗ = [W ∗a0 , . . . ,W
∗
aL ] with W ∗a`c = a` ⊗ (c ↑p).

The system X associated with W ∗ can be expressed as

X := {Xn}n∈Z, where Xn = [a1(· − np), . . . , aL(· − np)].
Suppose that the filter bank is finitely supported such that

supp(a`) ⊆ Ω = [0 : T − 1], ` = 0, . . . , L− 1.

Then, define the matrix form D ∈ RT×L of the filter bank by

D = (a0[Ω], a1[Ω], . . . , aL−1[Ω]).

Consider analyzing f ∈ `2(Z) by analysis operator W

c = Wf

which can be expressed in terms of blocks of c with step size p:

c[0 : L,Ωn] = Df [Ωn], ∀ Ωn = [np : np+ T − 1].
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KSVD and frames

For a sequence `2(Z), partitioning it to finitely supported blocks
(with possible overlap):

{fn}n∈Z ⊂ RT .

The K-SVD method by Aaron et al. is to learn a dictionary
D ∈ RT×M which sparsifies {fk}, via solving

min
{‖D`=1‖}L`=1,{cn}n

∑

n

1

2
‖fk −Dcn‖22 + λ‖ck‖0.

Suppose that (Remark: Condition (i) is not guaranteed in model)

(i) span{D1, . . . , DM} = RT
(ii) A‖f‖22 ≤

∑
k ‖fk‖22 ≤ B‖f‖22.

Then the system {Dk, n}n,k forms a frame for `2(Z), where Dk,n

denotes the translated Dk w.r.t. fn.



Mathematical
Representation

of Big Visual
Data: A

Data-driven
Perspective

Ji Hui

Section I: linear
representation in
Hilbert space

Section 2: Block
systems with
Gabor structure

Section 3:
Unitary Extension
Principle and
multi-scale
representation

Section 4:
Sparse recovery
and inverse
problems

Section 5:
Dictionary
learning and
frames

Section 6:
Structured
dictionary
learning and
non-linear
representation

Section 7:
Numerical
solvers for related
optimizations

Data-driven tight frame

Data-driven frames
No closed-form Linear expansion
Completeness of D in RT is difficult to be guaranteed.

Data-driven tight frames
fast linear expansion: f =

∑
k〈f, xk〉xk

UEP on D for generating tight frames w/ multi-scale.

A general data-driven tight frame model

min
D,{cn}n

∑

n

1

2
‖fk −Dcn‖22 + λ‖ck‖0.

where the filter bank D satisfies the UEP.

The wavelet system generated by D forms a wavelet tight frames
as long as {fk}k is a uniform (overlapped) partition of f .
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A simple and efficient construction

Consider a un-decimal discrete wavelet tight frame, i.e.,

X := {Xn}n∈Z, where Xn = [a0[· − n], . . . , aL−1[· − n]].

The UEP for such a system is simplified to
L−1∑

`=0

∑

n

a`[n+ k]a`[n] = δk.

Consider a finitely supported filter bank {a0, . . . , aL−1} with
supp(a`) ⊂ [0 : T − 1]. Define a dictionary D ∈ RT×L

D` = a`−1[0 : T − 1], ` = 1, . . . , L.

Theorem (Local and global)

The filter bank {a0, . . . , aL−1} generates an un-decimal wavelet
tight frame for `2(Z), provided that { 1√

T
D`} forms a tight frame for

RT , i.e. DD∗ = T−1I.
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Variational model for dictionary learning

The sparsity-based model for data-driven tight frame

min
D,{ck}

∑

k

‖fk −Dck‖22 + µ‖ck‖0, s.t. DD∗ = T−1IL,

which is equivalent to the following real-valued dictionary learning
model (D ←

√
TD):

min
D,C
‖Y −DC‖2F + λ‖C‖0, s.t. DD> = I,

where Y =
√
T [. . . , f−1, f0, f1, . . . ] and C = [. . . , c−1, c0, c1, . . . ],

The optimization problem is a challenging non-convex
problem.
When D is a over-complete tight frame, the subproblem of
calculating the sparse code C under D is a NP-hard problem.
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Fast methods for orthogonal dictionary learning

A further simplification by consider a square matrix D ∈ RT×T .

D∗D = DD∗ = I =⇒ min
D∗D=I,{ck}

∑

k

‖C −D∗Y ‖22 + λ|C‖0,

Alternating iteration scheme: for k = 0, 1, 2, . . .,
{

P1 : Ck+1 := argminC‖C −D∗Y ‖2F + λ‖C‖0
P2 : Dk+1 := argminD∗D=I‖Y −DC‖2F

Each step in the iteration has closed-form solution
{

P1 : Ck+1 := Γ√λ(D∗Y )
P2 : Dk+1 := UV ∗,

where Γµ denote the hard-thresholding operator:

Γµ(x) = x if |x| > µ and 0 otherwise,

and (U, V ) denotes the orthogonal matrices of SVD of Y C∗k such
that Y C∗k = UΣV ∗.
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Demonstration of data-driven filter bank

Images

Data-driven filter banks



Mathematical
Representation

of Big Visual
Data: A

Data-driven
Perspective

Ji Hui

Section I: linear
representation in
Hilbert space

Section 2: Block
systems with
Gabor structure

Section 3:
Unitary Extension
Principle and
multi-scale
representation

Section 4:
Sparse recovery
and inverse
problems

Section 5:
Dictionary
learning and
frames

Section 6:
Structured
dictionary
learning and
non-linear
representation

Section 7:
Numerical
solvers for related
optimizations

Reference

1 K. Kreutz-Delgado, J. Murray, B. Rao, K. Engan, T. Lee, T. Sejnowski,
Dictionary learning algorithms for sparse representation, Neural
Computation 15 (2) (2003)

2 J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Supervised
dictionary learning, NIPS, 2009

3 M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An algorithm for designing
overcomplete dictionaries for sparse representation, IEEE Trans. Signal
Process., 54 (11), 2006.

4 M. Elad, M. Ahron, Image denoising via sparse and redundant
representations over learned dictionaries, IEEE Trans. Image Processing, 54
(12) (2006)

5 J. Cai, H. Ji, Z. Shen and G. Ye, Data-driven tight frame construction and
image denoising, Applied and Computational Harmonic Analysis, 37(1),
2014

6 Y. Quan, H. Ji and Z. Shen, Data-driven multi-scale non-local wavelet frame
construction and image recovery, Journal of Scientific Computing, 63(2),
2015

7 C. Bao, H. Ji and Z. Shen, Convergence analysis for iterative data-driven
tight frame construction scheme, Applied and Computational Harmonic
Analysis, 2015


	Section I: linear representation in Hilbert space
	Section 2: Block systems with Gabor structure
	Section 3: Unitary Extension Principle and multi-scale representation
	Section 4: Sparse recovery and inverse problems
	Section 5: Dictionary learning and frames
	Section 6: Structured dictionary learning and non-linear representation
	Section 7: Numerical solvers for related optimizations

