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Abstract. Convolution has played a prominent role in various applications in science and
engineering for many years and has become a key operation in many neural networks. There has
been a recent growth of interest in generalizing convolutions on 3D surfaces, often represented as
compact manifolds. However, existing approaches cannot preserve all the desirable properties of
Euclidean convolutions, namely: compactly supported filters, directionality, transferability across
different manifolds. This paper develops a new generalization of the convolution operation, referred
to as parallel transport convolution (PTC), on Riemannian manifolds and their discrete counterparts.
PTC is designed based on parallel transportation that can translate information along a manifold
and intrinsically preserve directionality. Furthermore, PTC allows for the construction of compactly
supported filters and is also robust to manifold deformations. This enables us to perform wavelet-like
operations and to define convolutional neural networks on curved domains.
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1. Introduction. Convolution is a fundamental mathematical operation that
arises in many applications in science and engineering. Its ability to effectively extract
local features, as well as its ease of use, has made it the cornerstone of many important
techniques such as numerical partial differential equations and wavelets [11, 27, 31].
More recently, convolution plays a fundamentally important role in convolutional
neural networks (CNN) [27] which have made remarkable progress and significantly
advanced the state-of-the-art in image processing, analysis and recognition [27, 1, 24,
9, 18, 38, 29, 41].

In Euclidean space Rn, the convolution of a function f with a kernel (or filter) K
is defined as:

(1.1) (f ∗K)(x) :=

∫
Rn

K(x− y)f(y)dy.

Unlike signals or images whose domain is shift invariant (such as images in the plane),
functions defined on curved domains do not always have shift-invariance. To define
robust convolutional operators on these curved domains, the key challenge is to prop-
erly define the translation operation. This is one of the main obstacles of generalizing
CNN to manifolds.

There has been a recent surge of research in designing CNNs on manifolds or
graphs. We refer the interested readers to [5] for a review of recent progress in this
area. These approaches can be classified into three categories: spectral, patch-based
and group action methods. Spectral methods are based on projecting a signal onto
the eigen (Fourier) space and using the convolution theorem to define convolution.
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Patch-based methods use a patch operator to interpolate local geodesic discs on a
certain given template. Group action-based methods are defined on homogeneous
space with transitive group action. Here, we briefly review some of these approaches.

Spectral methods for manifold convolutions are based on the Fourier transform.
The convolution theorem states that, for any two functions f and g: F(f ∗ g) =
F(f) · F(g) where F is the Fourier transform, and · denotes pointwise multiplication.
This theorem can be naturally generalized to functions on manifolds using the Laplace-
Beltrami (LB) eigensystem. This method has proven effective to handle functions on
a fixed domain and can be applied to graphs as well [16, 6, 12, 17]. However, these
methods have two fundamental limitations. First, the uncertainly principle states
that a function can have compact support in either the time or frequency domain,
but not both. These methods normally use only a finite number of eigenfunctions
in the spectral domain. As a result, the kernels that arise from these methods are
not localized (i.e. not compactly supported in the spatial domain). The second
major drawback to these methods is that since they rely on the LB eigensystem of
the domain, any deformation of the domain will change the LB eigensystem, which
in turn changes the filters. The high-frequency LB eigenfunctions of a manifold are
extremely sensitive to even small deformations. This means that anything designed
for or learned on one manifold can only be applied to problems defined on the same
domain. This limits the transferability of the spectral-based methods and makes them
inefficient for working on large collections of shapes, although some recent work has
been done to overcome some of these drawbacks [15, 4].

Patch-based methods were originally proposed in [32]. In this work, the authors
propose using a local patch operator to interpolate local geodesic discs of the manifold
to a fixed template and develop a Geodesic Convolutional Neural Network (GCNN).
Then for each point on the manifold, the convolution is calculated as the multiplica-
tion between the values of the kernel and the extracted patch on the template. To
do so, they create a local polar coordinate system at each point. One drawback to
this approach is that there is no natural way to choose the origin of the polar co-
ordinate. To overcome this, the authors consider an angular pooling operation that
evaluates all rotations of their kernel at each point and selects the orientation which
maximizes the convolution in a point-wise fashion. However, since the angular pooling
operation is computed independently at each point, the selected orientation does not
reflect the geometric structure of the base manifold and may not be consistent even
for nearby points. More recently, [3] proposes an anisotropic convolutional neural
network (ACNN) by replacing the aforementioned patch operator with an operator
based on anisotropic heat kernels with the direction of anisotropy fixed on the prin-
ciple curvature at each point. Although this introduces a new hyper-parameter (the
level of anisotropy), it allows the kernels to be directionally aware. However, filters
developed for applications on one manifold can only be applied to manifolds in which
the local directions of principal curvature are the same. In [34], the authors proposed
a mixture model network (MoNet) whereby they learn a patch operator to interpolate
the functional value to a template. The convolution kernel is set to be a Gaussian
function with learnable mean and covariance matrices. Note that MoNet requires a
choice of local coordinates that may suffer from the same drawback as GCNN and
ACNN.

Group action-based methods are recently discussed in [23, 10, 7]. A typical appli-
cation of these methods is to extend CNN on the unit sphere [10], where convolutional
operations can be defined by transferring kernels on the unit sphere through the ro-
tation group. This idea can be generalized to a manifold M with a transitive group
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action G, where any two points p, q ∈ M can be connected by some group element,
i.e. there exists g ∈ G such that p = g · q. In this setting, the manifold is called a ho-
mogeneous space which is essentially equivalent to a quotient group G/Gp where Gp
is the stabilizer of the group action at p. However, the general manifolds considered
in this paper often do not have an associated transitive group action. Therefore, it is
still necessary to consider a new method to apply convolution on manifolds without
group action structure.

Method Filter Type Support Directional Transferable Deformable
Spectral [6] Spectral Global 4 8 8
TFG [12] Spectral Global 4 8 8
WFT [40] Spectral Local 4 8 8
GCNN [32] Patch Local 8 4 4
ACNN [3] Patch Local 4 4 8
MDGEC [35] Patch Local 4 4 8

PTC Geodesic Local 4 4 4
Table 1

Comparison on different generalizations of convolutional operator on general manifolds.

In the Euclidean setting, convolution operators frequently used in practice have
compactly supported filters that allow for fast and efficient computations on both
CPUs and GPUs. Furthermore, they are directionally aware, deformable, and can be
easily transferred from one signal domain to another. Previous attempts to generalize
the convolution operator on manifolds have failed to preserve one or more of these key
properties. In this paper, we propose a new way of defining the convolution operation
on manifolds based on parallel transportation. We shall refer to the proposed convo-
lution as the parallel transportation convolution (PTC). The proposed PTC is able
to preserve all of the aforementioned key proprieties of Euclidean convolutions. This
spatially defined convolution operation enjoys the flexibility of conducting isotropic
or anisotropic diffusion, and it also enables us to perform wavelet-like operations and
create convolutional neural networks on manifolds. Additionally, we show that PTC
simplifies to the Euclidean convolution when the underlying domain is flat. There-
fore, the PTC can be used to define natural generalizations of common Euclidean
convolution-like operations on manifolds.

To be more precise, we seek a general convolution operator of the form:

(1.2) (f ∗M K)(x) :=

∫
M
K(x, y)f(y)dMy.

where K(x, ·) is the parallel transport of a compact support kernel K(x0, ·) to x. In
the Euclidean case (1.1), the term x− y encapsulates the direction from x to y, while
on a manifold such a vector can be understood as a tangent direction at x pointing
to y. The crucial idea of PTC is to define a kernel function K(x, y) which is able to
encode the direction x − y using parallel transportation in a way incorporating the
manifold structure naturally.

Table 1 compares the proposed PTC with previous approaches. Since the group
action methods are limited to homogenous spaces, which do not fit our objective of
designing convolution on more general manifolds, we do not include these methods in
the table. A method is called directional if the filters are able to characterize non-
isotropic features of the data. A method is called transferable if the filters can be
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learned on a manifold and then applied to another consistently. Spectral methods are
not transferable as manifold deformations or re-ordering of Laplace-Beltrami eigen-
systems cause issues, and graph-based methods fail as they are sensitive to samples
even from the same surface. Finally, a technique is called deformable if non-isometric
deformations in the manifold (i.e. those which change properties such as curvature
or local distances) do not drastically affect the convolution. Methods which rely on
spectral convolutions are not deformable since the LB eigensystem is unstable and
the ACNN [3] is not deformable as small deformations (such as those studied in 6.3)
change the orientation of the filters.

The method of multi-directional geodesic equivariant convolution [35] is also based
on parallel transportation but has a few drawbacks which can be overcome by our
method. Their method requires the use of so-called angular max pooling. This may be
overly sensitive to small deformations in the data, and it may also introduce disconti-
nuities in the orientation of the filters. Thus, their network architectures need many
more channels and pooling layers to achieve similar performance. The method in [43]
also involves parallel frames via the locally flat connections to define convolution-like
operations. This method attempts to overcome the problem of singularities in the
field using some smoothness conditions to move the singularities to geometrically sig-
nificant points. Alternatively, our method is based on solving the Eikonal equation
rather than smoothing specific approximated solutions. We use multiple vector fields
as discussed in Remark 4.1 to overcome the problem of singularities. Furthermore,
we would also like to remark that the arXiv version of our work predates that of both
aforementioned papers.

The rest of this paper is organized as follows. In section 2, we discuss the neces-
sary mathematical background of differential manifolds and parallel transportation of
vector fields on manifolds. Then, we introduce the proposed PTC for both smooth and
discretized manifolds in section 3. In section 4, we introduce notions of strided, trans-
posed convolutions and convolutional neural networks on manifolds and also discuss
how to implement these tools in practice. In section 5, several numerical experiments
illustrate the effectiveness of the proposed method. Finally, concluding remarks are
made in section 6.

2. Mathematical Background. In this section, we discuss some background
of differential manifolds and parallel transportation. This provides a motivation and
theoretical preparation for the proposed convolutional operation.

2.1. Manifolds, Tangent Spaces and the Exponential Map. Let M be a
two dimensional differential manifold associated with a metric gM. For simplicity we
assume that (M, gM) is embedded in R3. We write the set of all tangent vectors at
any point x ∈ M as TxM which we refer to as the tangent plane of M at x. The

disjoint union of all tangent planes,
⊔
x

{(x, v) ∈M×R3 | x ∈M, v ∈ TxM}, forms a

four dimensional differential manifold called the tangent bundle TM ofM. A vector
field X is a smooth assignment X :M→ TM such that X(x) ∈ TxM, ∀x ∈M. We
denote the collection of all smooth vector fields on M as C∞(M, TM).

Let Tx,δM = {v ∈ TxM | 〈v, v〉gM ≤ δ} be a δ-neighborhood of the tangent space
at a given point x. The exponential map, exp : Tx,δM → Mx,δ, maps vectors from
the tangent space back onto a nearby region Mx,δ = {y ∈ M | dM(x, y) ≤ δ} of x
on the manifold. Formally, given v ∈ Tx,δM there exists a unique geodesic curve γ
with γ(0) = x and γ′(0) = v such that expx(v) = γ(1). Note that this map is defined
in the local neighborhood where the differential equation: γ′(0) = v with initial
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condition γ(0) = x has a unique solution. The size of this neighborhood depends on
the local geometry of the manifold. In fact, the exponential map defines a one-to-one
correspondence between Tx,δM and Mx,δ if δ is smaller than the injective radius of
M [22, 8]. Since this map is a bijection, there is a natural inverse (sometimes called
the logistic map) which we denote as exp−1x :Mx,δ → Tx,δM.

2.2. Parallel Transportation. Parallel transportation is a method of translat-
ing a vector, based an affine connection, along a smooth curve so the resulting vector
is ‘parallel’. An affine connection translates the tangent spaces of points on a manifold
in a way that allows us to differentiate vector fields along curves. Formally, an affine
connection is a bilinear map ∇ : C∞(M, TM)×C∞(M, TM)→ C∞(M, TM), such
that for all smooth functions f, g and all vector fields X,Y, Z on M satisfy:

(2.1)

 ∇fX+gY Z = f∇XZ + g∇Y Z
∇X(aY + bZ) = a∇XY + b∇XZ a, b ∈ R
∇X(fY ) = df(X)Y + f∇XY

In particular, an affine connection is called the Levi-Civita connection if it is tor-
sion free (∇XY − ∇YX = [X,Y ]) and compatible with the metric ( X〈Y, Z〉gM =
〈∇XY,Z〉gM + 〈Y,∇XZ〉gM). In this case, the transport induced by the connection
preserves both the length of the transported vector and the angle with the path that
it is transported along.

A curve γ : [0, `] →M on M is called geodesic if ∇γ̇(t)γ̇(t) = 0. More precisely,

using local coordinate system, we can write γ̇(t) =

2∑
i=1

dxi

dt
∂xi, then plugging in the

covariant derivative leads to the following ordinary differential equation for a geodesic
curve:

(2.2)
d2xk(t)

dt2
+

2∑
i,j=1

Γkij
dxi(t)

dt

dxj(t)

dt
= 0, k = 1, 2

where Γki,j is the Christoffel symbols associated with the local coordinate system.
For any two points x0 and x1 on a complete manifold M, there will be a geodesic
γ : [0, `] → M connecting x0 and x1. A vector field X(t) on γ(t) is called parallel
if ∇γ̇X = 0. Therefore, given any vector v ∈ Tx0

M, we can transport v to a vector
v′ in Tx1M by defining v′ = X(`) from the solution of the initial value problem

∇γ̇(t)X(t) = 0 with X(0) = v. In other words, if we write X(t) =
∑2
i=1 a

i(t)∂xi, the

problem of solving X reduces to find the appropriate coefficients {ak(t)} satisfying
the parallel transport equation. This can be written as the following first order linear
system:

(2.3)


dak(t)

dt
+

2∑
i,j=1

dγi

dt
aj(t)Γkij = 0, k = 1, 2

∑2
i=1 a

i(0)∂xi = v

Solving this equation finds a parallel vector field X along γ(t) which provides parallel
transportation of v = X(0) ∈ Tx0

M to X(`) ∈ Tx1
M. We denote the parallel

transportation of a vector from x0 to x1 along the geodesic as Px1
x0

: Tx0,δM→ Tx1,δM.
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3. Parallel Transport Convolution (PTC). In this section, we introduce
parallel transport convolution on manifolds which provides a fundamental important
building block of designing convolutional neural networks on manifolds. After that,
we shall propose a numerical discretization of PTC.

3.1. Mathematic definition of PTC. Unlike one-dimensional signals or im-
ages whose base space is shift invariant, many interesting geometric objects modeled
as curved manifolds do not have shift-invariance. This is an essential barrier to adopt-
ing CNNs to conduct learning on manifolds and graphs except for a few recent works
where convolution is defined in the frequency space of the LB operator [6, 39, 36, 37].
However, these methods only manipulate the LB eigenvalues by splitting the high
dimension information to LB eigenfunctions. Limitations include that it is always
isotropic due to the LB operator and can only approximate the even-order differen-
tial operators [12]. In addition, there is another recent method discussed in [32], in
which convolution is directly considered on the spatial domain using local integral on
geodesic disc, although it does not involve manifold structure as transportation on
manifolds is not considered. The lack of an appropriate method of defining convolu-
tion on manifolds motivates us to introduce the following way of defining convolution
on manifolds through parallel transportation. This geometric way of defining con-
volution naturally integrates manifold structures and enables us to apply established
learning techniques in Euclidean domains to their non-euclidean counterparts.

Let K(x0, ·) : Mx0,δ → R be a compactly supported kernel function centered at
x0 with radius δ. We assume K(x0, y) = 0 for y /∈Mx0,δ and require the radius of the
compact support parameter δ be smaller than the injective radius ofM to guarantee
the bijectivity of the exponential map. Note that this is a very mild assumption,
since most modern CNN architectures use filters which are much smaller than the
entire image. It is also important to remark that parameterization of K(x0, ·) can be
determined by user. It may be hand designed for specific applications, or be learned
as a component of a neural network.

Our idea of defining convolution on manifolds relies on transporting this com-
pactly supported kernel K(x0, ·) to every other point onM in a way of reflecting the
manifold geometry. More specifically, given any point x ∈ M, we first construct a
vector field transportation Pxx0

: Tx0,δM → Tx,δM using the parallel transportation
discussed in Section 2.2. Then K(x0, ·) can be transported on M as:

(3.1)
K(x, ·) :Mx,δ → R

y 7→ K
(
x0, expx0

◦(Pxx0
)−1 ◦ exp−1x (y)

)
Note that the above definition is analogous to convolution in the Euclidean space
(1.1). Here, the exponential map exp−1x (y) mimics the vector x − y, and Pxx0

is a
generalizes the translation operation. In fact, it can be easily checked that the above
definition is compatible with Euclidean case by setting the manifold M to be R2.

By plugging (3.1) into (1.2), we can now formally define the parallel transport
convolution operation of f which a filter k, centered at x0:

(f ∗M K)(x) :=

∫
M
f(y) K(x, y) dMy

=

∫
M
f(y) K

(
x0, expx0

◦(Pxx0
)−1 ◦ exp−1x (y)

)
dMy

(3.2)

As natural extensions, this approach can also be used to define dilations, reflections
and rotations of the kernel by simply manipulating the reference vector exp−1x (y).
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More specifically, shrinking or expanding the kernel by a factor of s is defined by
multiplying the lengths of the vectors in the tangent space by s. If s is chosen to be
negative then the kernel is reflected through its center and dilated by a factor of |s|.
Similarly, rotating the kernel can be achieved by multiplying a rotation matrix Rθ to
the reference vectors on the tangent plane. In summary, the scaling of K by s with a
rotation of θ is defined as:

(3.3) Ks,θ(x, y) :=
1

Cx
K
(
x0, expx0

◦(Pxx0
)−1(s Rθ exp−1x (y)

))
where Rθ is a rotation matrix and

1

Cx
is a normalization constant that can be used

to preserve volume of the kernel.

Theorem 3.1. Parallel transport convolution is invariant under isomorphism.

Proof. By definition isomorphisms preserve the Riemannian metric and therefore
distances and geodesic paths. Then both the paths Pxx0

and the metric dMy are
invariant so is (3.2).

3.2. Numerical Discretization. In stead of solving the system of ODEs (2.3)
on manifolds, we novelly propose the following method to compute parallel trans-
port by considering transition matrices among local frames generated by the vec-
tor field obtained from the distance function on manifolds. Our idea is motivated
from the following fact. Given smooth vector fields {~b1,~b2}, one can define linear
transformation among tangent planes L(γ)ts : Tγ(s)M → Tγ(t)M, then the corre-
sponding parallel transport through the associated infinitesimal connection ∇γ̇V =
limh→0

1
h (L(γ)h0 (Vγ(0))−Vγ(0)) can be induced [21]. Therefore, construction of parallel

transport is essentially equivalent to design vector fields on manifolds.
For convenience, we represent a two-dimensional manifoldM using triangle mesh

{V,E, T}. Here V = {vi ∈ R3}ni=1 denotes vertices and T = {τs}ls=1 denotes faces.

For each triangle τs, we construct a local orthonormal frame Fs = {~b1s,~b2s, ~ns} where
~b1s,

~b2s, reflecting the intrinsic information, are tangent to τs, and ~ns, reflecting the
extrinsic information, is orthogonal to τs. For an edge adjacent with τs and τt, we
write Rst as an orthonormal transition matrix such that RstFt = Fs. Then any vector
in Span{~b1s,~b2s} can be transported to Span{~b1t ,~b2t} using the transition matrix Rst.
This can be viewed as a discretization of connection and used to transport a vector on
the tangent space of one given point to all other points. The compatibility condition
of all Rst discussed in [42] can guarantee that no ambiguity will be introduced in
this way. We remark this idea can be also be used for manifolds represented as point
clouds by combining with the local mesh method developed in [26].

After the transportation is conducted, the convolution kernel can be transported
to a new point by interpolating the transported vectors in the local tangent space at
the target point. Computationally, we define a sparse matrix K where the ith column
is the transportation of the kernel to the ith vertex. Thus, we have the following
definition of discrete parallel transport convolution:

(3.4) (f ∗M K)(x) := KTMF

where F is column vector representation the function f at each vertex and M is the
mass matrix. Note that once we have computed the vector field of the geodesic equa-
tion, the transportation of the kernel to each new center and multiplication with F is
independent and can, therefore, be parallelized efficiently. Additionally, by discretiz-
ing the kernel function K as a fixed stencil, we can precompute the transportation
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and interpolation of the stencil once before training. Then, PTC can be computed
very efficiently using sparse matrices products. We provide detailed implementation
about computing these sparse matrices in Appendix A.

Figure 1 illustrates the effect of the proposed method of transporting a kernel
function on a manifold. This result shows that the proposed method produces an
analogy of the behavior of a kernel function K(x − y) operating in the Euclidean
domain. More importantly, we would like to emphasize that number of degrees of
freedom in PTC is essentially the same as the classical convolution on the Euclidean
domain.

(a) (b) (c) (d)

Fig. 1. A compactly supported kernel (a) is transported on a manifold from the FAUST data
set [2] through translation (b), translation + dilation (c) and translation + rotation (d).

4. Convolutional Neural Networks on Manifolds. In this section, we dis-
cuss two more important ingredients in common CNN architectures: stride and trans-
posed convolution and discuss. After that, we describe basic layers for CNNs on
manifolds.

4.1. Strided PTC. In the discrete Euclidean setting, the stride of a convolution
is the distance, usually measured in pixels, in which the kernel is translated on the
image between each multiplication with the images [13]. The numerical discretization
of PTC presented so far evaluates the transported kernel K at each point on the
discretized point cloud (or vertex of the mesh). When the manifold is uniformly sam-
pled, this results in a consistent distance between centers of the transported patch,
and therefore a consistent stride. However, when the surface is discretized with in-
consistent sampling, the distance between evaluation points will also be inconsistent.
We overcome this inconsistency by including the mass matrix into the discrete PTC
formulation (3.4), which normalizes the integral by the size of the local area elements.

Our proposed strided PTC formulation is based on the following observation:
A Euclidean strided convolution is evaluated by transporting a kernel to an ‘evenly
spaced’ subset of points from the euclidean domain. If conducted without padding,
then this creates a contracted information and the resulting output of the convolution
is both more compact (information from pixels that are far apart in the input become
closer in the output) and smaller (in the number of total number of pixels) than
the input. To mimic this effect, we compute a heretical sub-sampling of the mesh
(sometimes called mesh coarsening) through the farthest point sampling (FPS) [33]
method. Each level of subsampling corresponds to each level of strided convolution.
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Let the original discrete manifold be represented as a set of points M0, and each
hierarchical sub-sampling be computed such that M0 ⊃ M1 ⊃ M2... ⊃ Mk. Then
the convolution from Mi to Mi+1 can be defined as:

(4.1) (f ∗Mi↓Mi+1 K)(x) =
∑
z∈Mi

K(x, z)f(z)mi(z) ∀x ∈Mi+1

where mi(z) is the local mass element at z from the Mi level of sampling. These
mass elements can be recomputed from the sub-sample point-cloud Mi or can be
aggregated by assigning each of the mass elements from the Mi−1th sampling to its
nearest neighbor in Mi sampling.

4.2. Transposed PTC. Transposed convolution is often viewed as the opposite
(or more formally as the adjoint) of strided convolution as it is a convolution that
expands the size of the input. In the Euclidean setting, this is achieved by padding
a signal (most often with zeros) then preforming convolution with a fixed filter. This
operation leads to a dilation of information. To mimic this operation, we reverse the
subsampling scheme presented in 4.1 and define a convolution that takes signals from
the ith level to the (i − 1)th level. Given a signal f defined on Mi and a kernel K,
the transposed convolution of f from Mi to Mi−1 is defined as:

(4.2) (f ∗Mi↑Mi−1 K)(x) =
∑

z∈Mi−1

K(x, z)f(z)mi−1(z) ∀x ∈Mi−1

To achieve this, we need to extend f to all of the points in Mi−1. This can be done
either through zero padding, analogous to the most common Euclidean operations or
via harmonic extension. In either case, once the function f is well defined on the
up-sampled mesh, the convolution is as simple as plugging in the correct mass matrix
into equation (3.4).

4.3. Convolutional neural networks on manifolds through PTC. Using
the proposed PTC, we can define convolutional neural networks on manifolds. We
shall refer to these networks as PTCNets. Similar as CNNs on Euclidean domains, a
PTCNet consists of an input and an output layer, as well as multiple hidden layers
including fully connected layers, nonlinear layers, pooling layers and PTC layers listed
as follows.
• Fully Connected: fouti (x) =

∑N
j=1 wijf

in
j (x), i = 1, · · · , L. This layer connects

every neuron in one layer to every neuron in the previous layer. The coefficient
matrix (wij) parameterizes this layer and will be trained by a training data set.
• Vector Connected (VC): fout =

∑
j +1nwjf∗inj . This layer linearly combines

channels independent of the ordering of the discretization of points. This can also
be thought of as a special case of the fully connected layer, in which each column
of the weight matrix is a constant.
• ReLu: fouti (x) = max{0, f ini (x)}, i = 1, · · · , L. This is a fixed layer applying

the nonlinear Rectified Linear Units function max{0, x} to each input.
• PTC: fouti,α (x) =

∫
Kα(x, y)f ini (y) dy ≈ KαMF ini , α = 1, · · · ,m. This layer

applies the proposed PTC to the input, passes the result to the next layer. By
choosing the correct mass matrix, these convolutions can be strided or transposed.
Each Kα is determined by the proposed PTC on manifolds with an initial convolu-
tion kernel Kα(x0, ·), which parametrize the parallel transport convolution process
and will be learned based on a training data set.



10 S. C. SCHONSHECK, B. DONG, AND R. LAI

• Vector Field Pooling: fouti (x) = maxα f
in
i,α(x). The pooling layer can be im-

plemented using several non-linear functions, among which the max-pooling is the
most common way. By pooling over multiple vector fields, we can avoid troubles
caused by singularities in the vector field. See section 5.4 for more details.

Using these layers, it is straightforward to adapt established network architec-
tures in Euclidean domain cases to manifolds case as the only change is to replace
conventional convolution by PTC. In addition, back-propagation can be achieved by
taking derivation of K. The compact support of the convolution kernel is represented
as a sparse matrix which makes computation efficient.

Remark 4.1 (Vector Fields). Thus far we have only considered transportation
along the geodesic from some chosen seed point. Alternatively, an affine connection
can be defined by an assignment Ξ as a family of linear transformations on tangent
spaces along any smooth curve on M. Consider γyx a smooth arc joining two, not
necessarily distinct, points from x to y, define Ξ(γyx) : TxM → TyM. If Ξ(γyx)
satisfies the following properties:

1) Ξ(γyx) is non-singular,
2) limy→x Ξ(γyx) = Id,
3) Ξ(γzx) = Ξ(γzy)Ξ(γyx),
4) Ξ is Frechét differentiable in terms of γ, x and y.

Then, the vector ~vy is obtained by parallel displacement of ~vx along γyx is provided as
~vy = Ξ(γyx)~vx. Consider V is a tangent vector field along γ, the associated infinitesimal

connection ∇γ̇V = limh→0
1
h (Ξ(γ

γ(0)
γ(h))Vγ(h) − Vγ(0)) can be induced from Ξ [21]. In

practice, we can compute the parallel transportation along any other vector field. For
some applications, it may be more natural to use another vector field. To do so, we
follow the same process except using this new vector field to form the first basis vector
in V . This can be extremely beneficial in dealing with areas in which our geodesic
vector field has a singularity. Around the singularity, the direction of the vector field
is often highly variable. We can define another vector field that is more regular in this
area (but may have singularities elsewhere) to analyze information near the singularity
in the first field. The problem of designing and controlling the singularities of vector
fields on surfaces is a well-studied problem for which many approaches already exist
(see [14] for a review of such techniques). It is important to note that if we would
like the results of our training to be generalizable (i.e. when working with multiple
domains), then we need the vector fields to be generalizable as well. Another option
is to use the average distance vector field. Finally, we could use the vector field given
by principal directions of curvature. To do this, we use the geodesic vector field to fix
the ambiguity in the first principal directions of curvature so that both vectors lie in
the same half-plane as in [3]. Empirically, this works well in cases where the different
manifolds are close to each other (see sections 5.2, 5.6), but fails in cases where the
manifolds are less similar (see section 5.4). For these reasons using geodesic distances
from canonically chosen points is a natural choice. This choice of paths is both highly
non-trivial and problem-dependent. In the future, we will further explore options for
making this choice by explicitly quantifying the stability of various choices of vector
fields under different deformations.

5. Numerical Experiments. To illustrate the effectiveness of the proposed
PTC, we conduct numerical experiments, including processing images on manifolds
using PTC, classifying images on manifolds using PTCNets, demonstrating varia-
tional autoencoders on manifolds and learning features on manifolds for registration.
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All numerical experiments on MNIST data are implemented in MATLAB on a PC
with a 32GB RAM and 3.5GHz CPU, while the final experiment is implemented in
Tensorflow with a NVIDA GTX 1080 Ti graphics card. We remark that these ex-
periments aim to demonstrate the capabilities of the proposed PTC for manipulating
functions on curved domains by naturally extending existing wavelet and learning
methods from Euclidean domains to curved domains. It is by no means to show that
the experiments achieve state-of-the-art results.

Fig. 2. First Row: Convolutions without rotation on a test image. Second Row: Convolutions
with rotation on test image. Third Row: Convolutions with rotation on a cameraman image. Fourth
row: Conventional Euclidean convolution and the edge detector used in PTC.

5.1. Wavelet-like Operations. In the first experiment, we demonstrate the
effectiveness of our approach by performing simple signal processing tasks on mani-
folds using handcrafted filters. Then we compare the PTC results to those produced
by traditional techniques applied to Euclidean domains. First, we apply PTC with a
handcrafted edge detection filter to images on a manifold. By convolving this filter
with the input image, we obtain an output feature function whose higher values in-
dicate similarity to the predefined edge. In the first row of Figure 2, it is clear that
the proposed convolution successfully highlights the edges with a similar orientation
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to the input filter. In the second row of Figure 2, we allow additional rotations as
we discussed in (3.3). We observe that the additional rotation flexibility can reliably
capture all of the edges regardless of orientations. This illustrates the directional
awareness of our method.

Furthermore, we apply this edge detector using PTC to a more realistic problem
in the third row of Figure 2. It shows that the results are very close to those produced
in an analogous Euclidean setting (fourth row). In the third column, we show the
feature map raised to the fifth power for better contrast, and the last column shows
a flattened version for better visualization.

5.2. Single Manifold MNIST. In this test, we conduct experiments to demon-
strate the effectiveness of PTCNets to handle signals on manifolds. The most highly
celebrated early application of CNNs was the recognition of handwritten digits [28].
We map all MNIST data to a curved manifold plotted in the left image of Figure 3.
We use a simple network architecture consisting of a single convolution layer with
16 filters followed by a ReLu non-linear layer and then a fully connected layer that
outputs a 10-dimensional vector of predictions. We apply this network architecture to
four scenarios, including MNIST data on a Euclidean domain using traditional convo-
lution, MNIST data on a Euclidean domain using GCNN, ACNN, spectral convolution
and the proposed PTC.

Network Domain Accuracy
Traditional Euclidean 98.85
Flat PTCNet Euclidean 98.10
GCNN Manifold 96.22
ACNN Manifold 97.12
Spectral Manifold 95.35
PTCNet Manifold 97.96

Fig. 3. Comparison of our PCTNet to Euclidean case, GCNN, ACNN and a spectral based
method on a single manifold.

Each network is implemented in MATLAB using only elementary functions and is
trained using batch stochastic gradient descent with batch size 50 and a fixed learning
rate α = 10−3. We also use the same random seed for the batch selection and the
same initialization. We choose such a simple training regime in order to make the
effects of different convolution operations as clear as possible. We measure the results
by the overall network error after 5,000 iterations.

The table in Figure 3 shows the accuracy of the traditional CNN on a flat domain,
a spectral net applied to a simple manifold, as well as our network applied to both a
Euclidean domain (Flat PTCNet) and the manifold. The similar performance of Flat
PTCnet to traditional CNN illustrates that our method is an appropriate generaliza-
tion of convolution from flat domains to curved domains. To test the effectiveness
of the proposed PTC, we compare our results with those obtained from GCNN and
ACNN based on the same network structure. We observe that our method outper-
forms the spectral network, GCNN, and ACNN for this classification task on a single
curved domain.

5.3. Multi-Manifold MNIST. One of the advantages of our method is that
filters that are learned on one manifold can be applied to different domains. The spec-
tral convolution-based methods do not have this transferability as different domains
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are unlikely to share the same eigensystem. In this experiment, we first directly apply
the network learned by the PTCNet, GCNN, ACNN and Spectral networks from Sec-
tion 5.2 to a new manifold. As we illustrate in the first row of the table in Fig. 4, the
accuracy of the spectral convolution-based method is dramatically reduced since the
two manifolds have quite different eigensystems. Meanwhile, our PTCNet can still
provide the most accurate results among all methods since the underlying geodesic
vector fields of these manifolds are more stable to deformations than eigensystems
are.

Training Success Rate
Spectral 88.50

Single Manifold GCN 95.56
Multiple Maniofld GCN 96.97
Single Manifold ACNN 92.52

Multiple Maniofld ACNN 91.97
Single Manifold PTC 95.65

Multiple Manifold PTC 97.32

Fig. 4. Top table: Comparison of results from learning on single and multiple domains and
then testing on a new manifold. Bottom: Manifolds used for muli-mainfold tests. The first four are
used for training and the last is used for testing.

Furthermore, we conduct a new experiment in which we train our PTCNet on a
variety of manifolds and test on different manifolds as shown in the bottom picture
of Figure 4, where the first four manifolds are used as training domains, and the fifth
one is used for testing. Notice that these deformation are non-isometric. From these
experiments, it is clear that spectral methods and methods which require curvature
to determine their alignment do not perform as well as our method. However, the
geodesic vector fields of the manifolds are quite similar, and therefore filters learned
through our technique should apply to the new problem. As we can see in the last
row of the Table in Figure 4, the network achieves a 97.32% success rate since train-
ing on multiple manifolds allows PTC network to learn greater invariance to local
deformation in the metric, which enables great transferability.

5.4. Singularities of vector fields. In each of the previous experiments, the
vector field used to translate the convolutional kernels is chosen to be the gradient
of the geodesic from one corner of the manifold. Although our convolution is well
defined everywhere on these manifolds, the filters may be more variable near this
singularity. To investigate the effects that these singularities may have on, we next
test our network using different types of vector fields for the pervious experiments on
the MINST data. PTC1 uses the vector field chosen as in the previous experiments.
PTC2 uses a vector field with a singularity in the center of the domain. The next
test (PTC3) has two separate vector fields, each with a singularity at a different point
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on the interior of the domain. For this test, half the kernels are assigned to one
vector field and half to the other. The last test uses four vector fields (PTC4), each
with a singularity at a different point on the interior of the manifold. Table 2 shows
the results of using these vector fields on the single and multiple manifold problems
described previously. We observe that the presence of singularity can negatively affect
the performance while using multiple vector fields can overcome these difficulties.

Implementation VF Sings per VF Single: Accuracy Multi: Accuracy
Spectral - - 92.10 88.50
PTC1 1 0 97.96 97.32
PTC2 1 1 94.92 94.51
PTC3 2 1 95.89 95.02
PTC4 4 1 96.01 95.28

Table 2
Success rate (SR) comparison of several of our networks on a single (the 4th coloum) and on

multiple manifolds (the 5th coloumn).

5.5. MNSIT Convolutional Variational Auto-Encoder (CVAE). Vari-
atinonal Auto-encoders (VAE) [20] are a generic tool used for data compression and
generation. Given some input signal x, one wishes to compute a encoder function
E : x 7→ x̂ which greatly reduces the dimension of x and a decoder function D : x̂ 7→ x
which recovers x. Variatonal autoe-encoders also require that the latent variable x
follow some unit normal distribution: x̂ ∼ N(0, I). This requirement allows for the
creation of new data by passing random samples from N(0, I) into the decoder as x̂.
A auto-encoder is also called convolutional, if the feature extraction in the encoder is
done through strided convolution, and the upsampling in the decoder is done through
transposed convolution.

In this test, we use the MNSIT handwritten digit database to validate our pro-
posed definition by creating an CVAE on a manifold embedding of the MNSIT data
set. We denote a PTC convolution layer as PTCaB where a is the number of points
in the discretized domain and B is the number of filters in this level. Then our
architecture for the encoder is:

x→ PTC78416→ PTC19616→ PTC4916→ FC(10, 2) = (µ,Σ)

Similarly the decoder is defined by:

x̂→ N(µ,Σ)→ FC(49, 1)→ PTC4916→ PTC19616→ PTC78416→
∑

axis=0

= xout

The network is trained by simultaneously minimizing the KL divergence between
N(µ,Σ) and the L2 loss between x and xout. Figure 5 shows several examples on
pairs of input signals and their recover as well as several figures generated by randomly
sampling latenet variables from the unit normal distribution.

One additional advantage of this framework is that, since we only use fully con-
nected layers at the coarsest level of sampling, we only need coarse correspondences
to apply a trained model to a new manifold. Since the PTC layers are agnostic to
re-indexing of the data points, and geodesics (excluding the cut locus) are stable un-
der small deformations , we can use the filters learned on one domain to apply to
another. The fully connected layer still requires a correspondence to be consistent.
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Fig. 5. PTC-VAE. Row 1: Input Image, Row 2: Recovered Image

Model MSE
VAE-Flat .0941
PTC-Single .0956
PTC-Transfer .0977

Fig. 6. Left: Reconstruction errors from test set for traditional flat VAE, PTC trained on
a single manifold and transfer ed PTC, Right: Images Generated by randomly sampling latent
variables as input to trained model and applying PTC to new surface not used during training.

Fortunately, the sparse correspondences required by this approach are much easier to
compute than the dense correspondences, which would be required in a method with-
out intrinsic down/upsampling. Figure 6 shows the reconstruction errors on the test
set for a standard VAE, a PTC-VAE, and the PTC-transferred onto a new manifold.
On the right side we show an example of several additional digits on a new manifold,
given by a model trained on the previous surface.

5.6. Feature Learning for Shape Registration. One important application
of convolution neural networks in shape processing is the creation of geometric features
[5]. The goal of these networks is to output descriptor functions, F :M→ R, which
accurately describe the local and global geometry of a manifold. In this section we
implement a network based on the ’ShapeNet2’ architecture originally presented in
[32] for shape registration, substituting in our proposed definition of convolution. We
remark that this architecture is not state-of-the-art, but provides a good framework
for comparing geometric convolutions. In this network we input a 150-dimensional
geometry vector into a vector connected layer which linearly combines these input
features into a 16-dimensional signal. This signal is then passed through two layers
of PTC (each followed by a Relu non-linearity) with 16 filters in each layer. The final
features are the output of the second convolution layer. The network is trained by
minimizing the following triplet loss:

L(Θ) =
∑

(S1,S2)

‖F (S1; Θ)− F (S2; Θ)‖2

+ λ
∑

(S1,S3)

(µ1 − ‖F (S1; Θ)− F (S3; Θ))‖)2
(5.1)
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Fig. 7. Left: Example feature functions for shape correspondence on the Faust dataset. Right:
geodesic errors in predicted correspondence of out method and several others.

where {S1, S2} are similar pairs of shapes, {S1, S3} are dissimilar and µ is the user
parameter representing the margin. We evaluated this model the Faust dataset which
contain 100 real-world scans (each with n = 6890 points) of 10 individuals in 10
poses [2]. We use the first 80 figures for training, 10 for validation, and 10 for testing.
Using the sparse matrix operations described in the appendix, each forward and back-
ward propagation through a two-layer network, defined on a mesh containing 6890
points, can be calculated in less than half a second. The whole training process is
completed in 8 hours using the ADAM algorithm [19]. Figure 7 shows three of the
output feature functions across different individuals in the dataset, where the first
7 individuals (10 surfaces for each individual) are used for training, the 8th and 9th

individuals are used for validation, and the last individual is used for testing. These
consistent features lead to satisfactory registration results by simply conducting the
nearest point search in the feature space. Figure 7 shows our registration perfor-
mance, measured by the geodesic error between the predicted correspondence and
the actual correspondence, compared to error from using the heat kernel signatures
which were used as the input layer. We compare results with the GCNN and ACNN
implementation of the ShapeNet2 [32, 3].

We note that the comparison here more focuses on illustrate the effectiveness of
a new methodology but claiming to achieve state-of-the-art results since many SOTA
methods rely on network architecture designs. For instance, some other advanced
architectures for shape correspondence [30, 25] lead to better results as they involve
solving some version (often relaxed) of the quadratic assignment problem based on
some starting map. We intentionally try to use relatively simple network structures
and demonstrate that our method of defining geometric convolutions outperforms
other methods on relatively simple architectures. We thought this can more clearly
indicate the effectiveness of our methods.

6. Conclusion. In this paper, we propose a generalization of the convolution op-
eration on smooth manifolds using parallel transportation and discuss its numerical
implementation. Using the proposed PTC, we have performed wavelet-like opera-
tions and built convolutional neural networks on curved domains. Our numerical
experiments have shown that the PTC can perform as well as Euclidean methods on
curved manifolds and is capable of including directional awareness, handling problems
involving deformable manifolds, in particular, learning features for deformable mani-
folds registration. In our future works, we will apply our PTC to different applications
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of comparing, classifying, and understanding manifold-structured data by combining
it with recent advances of deep learning architectures.

Appendix A: Computation of K matrix. The matrix K contains the fil-
ter weights for the convolutional operation interpolated from the stencil onto the
mesh/point cloud. Consider the case in which we have a single channel of n points
and a single filter with radius d. Then K will be a n-by-n matrix where the ith row
represents the transportation of the filter to the ith point. If there are m points on
the discretized manifold within the d-radius around the ith point, the row will have
exactly m non-zero entries. These entries will be given by the linear interpolation of
the filter weights to the manifold pointscomputed in the tangent plane. Psuedocode
for this operation is presented in Algorithm 7.1. Here we use subscripts to indicate
local indexes in the frame denoted by the superscript :

Algorithm 6.1 Compute K matrix

1: Define stencil with m points at local coordinates {cj} and maximum radius δ
2: Compute vector field Vi
3: Initialize K as empty n× n matrix
4: for each point xi on the manifold do
5: Find all points xj withing a δ radius of xi
6: Computing the local coordinates yij of the points xj in the frame Vi
7: Compute the linear interpolation weights wij from ci to yi
8: Set Kij = wij
9: end for

10: return K

Appendix B: Efficient computation of PTC layers. Since the limitation of
spare matrix product implementation in TensorFlow and PyTorch, we use the follow-
ing method to implement the proposed convolution. More specifically, we consider a
mesh with n points, a signal with q channels F = (F1, · · · , Fq) ∈ Rn×q and p filters
each of which has q input channels denoted K = {K11, · · · ,K1p, · · · ,Kq1, · · · ,Kqp}.
We would like to compute convolution F ? K =

∑q
i=1 Fi ? Kij ∈ Rn×p. Given a

mesh with the mass matrix M , we write Ii as the index set of the neighborhood of
the i point and denote Wi ∈ R|Ii|×k the parallel transportation operation to the i-
th point. The following method provides a fast, memory-efficient implementation of
PTC convolution in TensorFlow and PyTorch.

We write Zi = FTi M ∈ Rn×1, i = 1, · · · , q and let L =
∑
i |Ii|. We define Zi as

a L × L sparse matrix whose support at the k-th row is provided by Ik with value
Zi(Ik), formally we write:

Zi =


Zi(I1)
Zi(I2)

...
Zi(In)

 , Z =



Z1

Z2 0. . .

0
. . .

Zq
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In addition, we define

W =



W1

W2

...

...
Wn

 ,W̄ =


WK11 · · · WK1p

WK21 · · · WK2p

...
. . .

...
WKq1 · · · WKqp


where W̄ = reshape(WK, [Lq, p]). Finally, the PTC can be computed as

(F ?K) =

( ∑
axis=3

reshape(ZW̄, [p, n, q])

)T
Using the above sparse matrix operations, the computation complexity of the proposed
PTC is the same scale as the standard convolution in Euclidean domains.
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