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Abstract

Let K be a finite extension of Q,. We study the locally Q,-analytic representations 7 of
GL,,(K) of integral weights that appear in spaces of p-adic automorphic representations. We
conjecture that the translation of m to the singular block has an internal structure which is
compatible with certain algebraic representations of GL,,, analogously to the mod p local-global
compatibility conjecture of Breuil-Herzig-Hu-Morra-Schraen. We next make some conjectures
and speculations on the wall-crossings of 7. In particular, when 7 is associated to a two dimen-
sional de Rham Galois representation, we make conjectures and speculations on the relation
between the Hodge filtrations of p and the wall-crossings of w, which have a flavour of the
Breuil-Strauch conjecture. We collect some results towards the conjectures and speculations.
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1 Introduction

Let K be a finite extension of Q,. The p-adic Langlands program aims at understanding the
correspondence between certain p-adic representations of GL,(K) and the n-dimensional p-adic
representations of Galg, the absolute Galois group of K. For the p-adic representations of GL, (K),
one approach is to consider unitary Banach representations. These representations possess an
integral structure, presumbed to be compatible with the integral structure on the Galois side,
thereby closely aligning with the mod p Langlands program. Another approach focuses on the
locally Qp-analytic representations of GL,(K). This aspect has the advantage of making the p-
adic Hodge theoretic property of the Galois representations more transparent. Note that one can
pass from unitary Banach representations to locally Q,-analytic representations by taking locally
Qp-analytic vectors.

A correspondence for both aspects was established for GL2(Q),) through the work of Berger,
Breuil, Colmez, Pasktunas et al. Subsequently, significant progress has been made for both aspects
concerning GL, (K). In our discussion, we highlight some of them that relate to the results in this
paper. Despite the correspondence being somewhat mysterious, in [4], using Taylor-Wiles-Kisin
patching method, one can associate to a Galg-representation p a unitary Banach representation
7(p). We denote by m(p) := 7(p)& 2" its locally Qp-analytic vectors of 7(p). The construction
depends on a lot of auxiliary global data. The study of the (global-local) compatibility between
7(p) (or m(p)) and the local p is a central problem in p-adic Langlands program.

For 7(p), in the recent breakthrough work [22], it is conjectured (and proved in some cases of
GLy(K)) that (the mod p reduction of) 7(p) has a symmetric internal structure related to certain
algebraic representation of GL,,. On the locally analytic setting, a key starting point is that when
p is de Rham, the locally algebraic vectors of m(p) can be characterized using the Weil-Deigne
representation associated to p via the classical local Langlands correspondence. Passing from p to
its Weil-Deligne representation results in a loss of information on Hodge filtration. Therefore, a
major focus in the locally analytic aspect of p-adic Langlands program is to recover the information
on Hodge filtration in the larger 7(p). Towards this, in potentially crystalline case, there were results
on Breuil’s locally analytis socle conjecture (cf. [19], [15], [67]), and furthermore on the finite slope



part of m(p) ([21]), all of which are related to the relative position of Hodge filtrations and Weil
filtrations. In semi-stable case, there were results on L-invariants, those parametrizing the Hodge-
filtration ([35] [14] [47]). And finally in [13] (see also [16]), Breuil made a conjecture on how the
extension group in some subrepresentations of 7(p) may be related with the Hodge filtrations. We
remark that all these results are about a small piece of 7(p), which is already very complicated and
seems to exhibit a nature quite different from the Banach setting.

In the paper, we propose an approach to study the entire 7(p). Note first by [39, Thm. 1.5],
7m(p) admits an infinitesimal character x. It appears that, although the explicit structure m(p) is
dauntingly complicated, its translation into the singular block, denoted by m(A), should have a
much simpler and cleaner structure (see Conjecture 1.1 (1) for the precise definition, and see [50]
for a general formalism of translations of locally analytic representations). A rough reason is that
a large amount of the irreducible constituents of m(p) are annihilated under the translation. We
conjecture that the information lost in this step is precisely the Hodge filtration information on
p. Subsequently, we retranslate m(A) back to the weight x-block and explore how the interplay
between the resulting representation and 7(p) might reveal the information of Hodge filtration.

We introduce some notation before giving more details. Let E be a sufficiently large finite
extension of Q,, which will be the coefficient field of the representations. Let X := {0 : K — E}.
Let D := Diig(p) be the associated (¢,I')-module over the Robba ring Rk g (associated to K
with E-coefficients). We will frequently write 7(D) for w(p) (to emphasize the relation between
locally analytic representations and (¢, I')-modules over Robba rings). Assume p has integral Sen
weights h = (b1, > -+ > hpo)oen,. Let O == (n—1,--- ,0)pexy, and X := h — 0. Let
ok = gl,(K) ®q, E, and Z be the centre of U(gx). For an integral weight 1, we denote by x,,
the infinitesimal character of Zx acting on U(gx) ®u(s,) # where b is the Lie algebra of upper
triangular Borel subgroup B, and bx := b(K) ®q, E. If u is moreover dominant (with respect
to B), denote by L(u) the algebraic representation of Res(gp GL,, of highest weight . By [39,
Thm. 1.5], Zx acts on w(p) via .

By Fontaine’s classification of Byg-representations [46], there exists a unique (¢,I')-module A
of constant weights 0 such that D[}] = A[] (cf. Lemma 2.1). Throughout the paper, we assume
A has distinct irreducible constituents. When D is de Rham, A is the so-called p-adic differential
equation associated to D ([6]). In this case, passing from D to A, one loses exactly the information
on Hodge filtrations. Another extreme example is that when dimg Dyr (D), = 1 for all o. In this
case, one can recover D from A: D is the unique (¢,I')-submodule of A[1] of Sen weights h.

Conjecture 1.1 (Singular skeleton). (1) The locally Q,-analytic representation T/\_QKW(D) =
(7(D) ®r L(h)V)[Zx = x—6,]) of GL,(K) depends only on A, which we denote by w(A).
(2) The representation w(A) has finite length and is weakly compatible with A.

The notion of the compatibility in (2) is borrowed from [22]. We give a quick explanation.
If A is irreducible, this just means 7(A) is also irreducible. When A is reducible, a filtration of
submodules of A (with irreducible graded pieces) corresponds to a standard parabolic subgroup P
of GL,, together with a Zariski closed subgroup P C P (containing the standard Levi subgroup
Mp of P) encoding the relation between the filtration with the canonical socle filtration. Then
one can look the restriction of the fundamental algebraic representation L® of GL,(K) to P(K),
and define the notion of good subrepresentations of L% 5 those whose restriction to Z, (Qp) <
Zpm,(K) is a direct sum of certain isotypic components of L%| Znip (Qp)> where Z)s, is the centre
of Mp. The compatible property means there is a nice one-to-one correspondence between the
subrepresentations of 7(A) and the good subrepresentations of L®| 5. In particular, the irreducible



constituents of w(A) are in one-to-one correspondence with the isotypic components of L% Znip-

For example, if A is generic potentially crystabelline hence semi-simple, then P = Mp and T(A)
would be also semi-simple. In contrary, m(D) itself usually has a lot of internal extensions. If n = 2
and A is generic crystabelline, 7(A) would be the direct sum of two locally Qp-analytic principal
series and (dx — 1)-number of supersingular representations.

Theorem 1.2. Conjecture 1.1 holds for GL2(Qp).

For GL2(Qp), by [27], 7(p) coincides with the Banach representation associated to p via the
p-adic Langlands correspondence ([29]). By [37], m(A) is just the locally analytic representation
associated to A via the locally analytic p-adic Langlands correspondence (cf. [30]), and all the
properties in (2) are directly derived from the known facts in the correspondence (cf. [30, §. 0.3],
[31, Thm. 0.3 (i)]). The argument in [37] crucially uses Colmez’s construction of 7(p). However,
when p appears in the completed cohomology group of modular curves, it seems plausible to use
Pan’s geometric approach [57] to prove (1). For (2), the finite length property (of m(A)) can be
proved using global method. In fact, by [6, Thm. 1.5] (or Corollary D.17), the canonical dimension
of m(p) is 1,'s0 is 7(A) (cf. Corollary 3.8). As any irreducible constituent of 7(A) can not be
locally algebraic hence has dimension at least 1, m(A) has finite length. For m(D) itself, it was
known 7(D) has finite length (cf. [31]), but I don’t know a proof without using the p-adic local
Langlands correspondence (as w(D) can have zero dimensional subquotients, in contrast to m(A)).

There is a natural equivalence of categories between p-adic differential equations and Weil-
Deligne representations ([6, Thm. A], [25, Prop. 4.1]). Consequently, when D is de Rham, the
correspondence A < 7(A) may be viewed as a singular weight version of the classical local Lang-
lands correspondence. Denoting by 7o (A) the smooth representation of GL,,(K) corresponding to
A, we may recover moo(A) from 7w(A) in the following way (where (—) z,. denotes the Zx-coinvariant
quotient).

Conjecture 1.3. There exists v > 1 such that ((m(A) ®p L(0k))z, )" = moo(A)®.

The conjecture holds for GL2(Q)) with r = 2. In general, one should have r > n!. When n = 2,
one may even expect r = 2dx. Under certain hypotheses, we show it is the case when K = Q2
and p is generic crystabelline (cf. (56)).

When A is trianguline, mimicking [20], we can associate to A an explicit locally Qp-analytic
representation m(A)® of GL,(K). Remark that the compatibility between 7(A)® and A is ex-
actly the same as the compatibility between 7(p)**d and p’ for ordinary Galg:-representations p’,
studied in [20]. See Example 3.23 for some examples. Conjecture 1.1 (2) implies that 7(A)® is a
subrepresentation of m(A). Under some assumptions, we prove it is indeed the case (cf. Theorem
3.24, Theorem 3.32):

Theorem 1.4 (Local-global compatibility). Suppose D appears on the patched eigenvariety of [18].

(1) Let D be trianguline and generic.”> Suppose all the refinements of D appear on the patched
eigenvariety, then m(A)S — (7(D) ®@p L(h)V)[ZKk = X—_o,]-

(2) Let D be semi-stable non-crystalline (up to twist) with N"~1 # 0, and suppose D is non-
critical. Then 7(A)® — (7(D) ®@r L(h)Y)[Zx = X—oy]-

!The canonical dimension is usually defined for duals of the representations, considering them as modules over
the distribution algebra. However, we adopt the same terminology for a representation itself.
2The trianguline D is called generic, if the irreducible constituents Ry, z(¢:) of A are distinct and (j)i(ﬁ;l # |- 1E5



For trianguline and generic D, we do know that all the refinements of D appear on the so-called
trianguline variety, the Galois avatar of the patched eigenvariety. When D is crystabelline and
generic, by [17] [19], D appearing on the patched eigenvariety implies all of its refinements appear. In
this case, 7(A)S is simply a direct sum of n!(= #3,,)-locally analytic principal series, corresponding
to the n!-distinct refinements of D. In contrast, if we consider the maximal subrepresentation of
m(D) whose irreducible constituents are subquotients of locally analytic principal series, then its
structure would be far more complicated (see [20], [35], Theorem C.6). In fact, as the information
on the Hodge filtration of D is lost in A, the extra socle phenomenon (cf. [12]) and the L-invariant
problem should all disappear in 7(A).

Now we translate m(A) back to the x-block. By the result of Bernstein-Gelfand on projective
generator ([7]) (cf. Proposition 3.1), the natural injection ({—} denoting the generalized eigenspace)

m(A) = (1(D) ®p L(h)")[2k = X-o,] = (7(D) @p L) "){ZK = x—0 }
is an isomorphism. In particular, 7(A) is a direct summand of 7(D) ®p L(h)Y. Let
O(r(D)) == ((r(D) ®p Lh)"){Zk = x—0, } ®& L(h)){Zx = x»} = (7(A) @p L(h)){Zx = x»},

which is hence a direct summand of 7(D)®p L(h)Y ®g L(h). The representation ©(m(D)) is usually
referred to as a wall-crossing of m(D). Remark that Conjecture 1.1 (1) implies ©(mw (D)) depends
only on A and A. The diagonal map £ — L(h)Y ®g L(h) = Endg(L(h)) (resp. the trace map
L(h)Y ®@g L(h) — F) induces a GL,, (K )-equivariant map

t:7m(D) — O(w(D)) (resp. k: O(w(D)) — w(D)).

As Zg acts on m(D) via x», the map & factors through (A, A) := ©(n(D))y, — (D) where (—)y,
denotes the (Zx = x))-coinvariant quotient. We denote by mo(A, A) C ©x(D) be the image of «.
It is clear that Zx acts on both (A, \) and mo(A, A) via the character x.

Conjecture 1.5. (1) mo(A,\) and (A, \) depend only on A and .
(2) The map k : w(A,X\) — w(D) is surjective.
(3) Assume h is strictly dominant. The followings are equivalent:
(i) dimg Dar(p)e =1 for all o0 € Yk,
(ii) 7(AN) 5 7(D),

(iii) w(D) — mo (A, A).

The m(A, A)-part in (1) is clearly a direct consequence of Conjecture 1.1 (1). (2) is equivalent to
the surjectivity of ©(m(D)) — w(D). Note while it is obvious that 7(D)®g L(h)" ®g L(h) — m(D),
the surjectivity is not straightforward when restricted to the direct facgtor ©(w(D)). By the
conjecture, we have

(A, N)—>7(D)—»70 (A, N). (1)

As (A, \) and (A, A) are both conjectured to depend only on A and A while (D) should carry
the full information of D, the above two quotient maps should carry the information on the Hodge
filtration of D. Conjecture 1.5 (1) (2) imply that w(A, \) is a universal object: for any (étale)
(p,I')-module D" of Sen weights h such that D’[1/t] = A[1/t], we should have w(A,\) — «(D’).
The statement in (3) is compatible with the Galois phenomenon: (1) is equivalent to that D is
determined by A and A. Remark that (3) is closely related to the “local avatar” of the Fontaine-
Mazur conjecture: p is de Rham of distinct Hodge-Tate weights if and only if 7(D) has non-zero



locally algebraic vectors (e.g. see the discussion below Theorem 1.6). Finally, for general D, one
may expect that w(A,\) and 7(D) always have the same irreducible constituents (with possibly
different multiplicities).

Theorem 1.6. (1) Conjecture 1.5 holds for GL2(Q)).
(2) Under mild hypotheses, Conjecture 1.5 (2) and the part “(i) = (ii) = (iii)” of (3) hold for
GL2(Qyp2).

The GL2(Qp)-case follows from the results in [37] and [31]. By a Lie calculation for gly in
the appendix, Ker(:), Ker(x|r(a,x)) and Coker(x) are all generated by U(gl, ,)-finite vectors, for
o € Y (where gl, ;o = HUGEK gly ;). When K is unramified over Qp, by Appendix D, the dual
m(D)* is Cohen-Macaulay of dimension dx under mild hypotheses. When dx = 2, using results
in [6] and the essential self-duality of 7(D)* (cf. Appendix D), one can show that any U(gl, ,)-
finite sub of m(D)* has dimension at most one, which has to be zero as w(D)* is Cohen-Macaulay
hence pure. Together with the aforementioned Lie result, we see Coker[r(A,A) — m(D)] = 0 (see
Theorem 4.31). If dimg Dgr(D), = 1, then w(D) would not have non-zero U(g,)-finite vectors (cf.
Proposition 4.15). Using certain duality, one can deduce m(A,\) does not have non-zero U(g,)-
finite vectors neither. We then deduce, again using the Lie results, that (ii) and (iii) in (3) hold
(see Theorem 4.33). Note that the same arguments also (re)prove Conjecture 1.5 (2) and (i) = (ii)
= (iii) in (3) for GL2(Q)) without using (¢, I')-modules.

We discuss how the maps (1) may reveal the Hodge filtration. We first look at the GL2(Q))-case.
Suppose D is de Rham, by [37] [31], ¢ and ~ give non-split exact sequences:

0 — Too(A) @5 L(N) — 1(A,\) = 7(D) — 0, (2)

0 — Too(A) ®p L(\) — 7(D) == m(A, \) — 0. (3)

By [16] [36], we actually have natural isomorphisms
HomGLQ(Qp)(WOO(A) ®r L(A),7(A, ) = Hom, (A, RE/thlth), (4)

EXti,(0,) (M0(A, 1), Too(A) @ L(X)) = Extl, py (Re/t" "2, A). (5)

The isomorphism class [r(D)] corresponds respectively to the class [t~"2D] (here we use the iso-
morphism class of the kernel to denote an isomorphism Hom-class) via (4) and [t=" D] via (5). By
[16, Lem. 5.1.1, Prop. 5.1.2], there is a natural isomorphism of E-vector spaces

EXt%%F) (RE/thl_h2> A) — DdR(A)v (6)

sending the F-line E[D’] to the one dimensional Fil"'="2 Dyr(D’) € Dgqr(D') = Dgr(A). By
an easy variation of the arguments of loc. cit., there is also a natural isomorphism between
Hom(, (A, R/ th=h2) and Dgr(A) satisfying similar properties. Throughout the paper, rather
than using the terms “Hodge filtration” directly, we will primarily use the terms of (¢, I')-modules.
It is recommended for the reader to keep in mind the isomorphism in (6), particularly noting their
close relation.

We move to the case of GL2(Q,2). We first look at the Galois side. Let ¥ = {o,7}. Using
Fontaine’s classification of Bgr-representation of Galg, one can show there is a unique rank two
(¢, I')-module D, over Rg g of constant Sen 7-weight 0, and Sen o-weights h, such that Dg[%] =
D[%] We write Dy := A and Dy, := D. We assume h is strictly dominant (i.e. D has distinct Sen
weights). Remark that when D is de Rham non-crystabelline, it is not difficult to see D is uniquely
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determined by D, and D,. However, it does not hold when D is crystabelline; in such cases, there
is an extra parameter (that we call a Hodge parameter) which parametrizes the relative position
of the Hodge filtrations for different embeddings.

For the GL2(Q,2)-side, roughly speaking, the exact sequences (2) (3) will expand to two squares.
In fact, using the wall-crossing functors for the embeddings, we can construct two (commutative)
squares consisting of exact sequences, denoted respectively by [T (7(D)), &~ (7(D)):

(A, 0, \) —> (A, 0,\) —> 7(Dgy, 0, \) mo(A, 0, \) —> mo(Dy, 0, \) —> m (A, 0, \)

(A, 7, \) ——> (A, \) ——71(Dy, A) mo(Dry A) ——— (D) ——— (D7, A)

7(Dy, 7, \) —> 1(D7ry \) ——— m(D) mo(A, 7, \) —> 7o(Dy, \) —— 1o (A, \) - (7)

Indeed, for each o1 € Xk, 7(Dy,, A) and 7o(Dy,, \) are constructed exactly in the same way as
m(A, ) and mo(A, A), by replacing the algebraic representation L(h) by its oj-factor L,, (hy,).
And all the other terms are the respective kernels. The “D,” (same for D, A, D,) in the notation
suggests the corresponding representation conjecturally depends only on D,. The second label
“o” (and similarly for “77, “}”), within the parentheses of some representations, signifies that
the representation is locally o-analytic, up to twist by an algebraic representation (where “locally
(~analytic” = “smooth”). A representation without such a label, like (A, \), is considered just
locally Q,-analytic. For general K, a similar construction yields two dx-dimensional hypercubes.

For further details, we refer to § 4.2 (note that some notation may differ).

The following conjecture describes how the squares are related with the Hodge-filtrations of
D. We only discuss the horizontal sequences, the vertical sequences being similar. We refer to
Conjecture 4.19 in the context for a version for general GLg(K).

Conjecture 1.7 (Hodge filtration hypercubes). Suppose A is de Rham.

1 A isind bl
(1) (Going from A to D,) Let r = Z.S INACCOMPOSEDE  There are natural isomorphisms
2 A is decomposable

(where t, € Rk i is the o-factor of t defined in [51, Notation 6.27]):

Homgy, () (1(A, 0, ), 7(A, 0, \)) = Homu ) (A, Rec,p/ta""">7),
Homgyy () (7(A,7,),7(A,A)) = Homy ry (A, Ricp/ts" 7)™,
(resp. Bxthiye (mo(A, 0, X), m0(A,0,0)) < Ext, p) (15> Ricp/t5"", A),
Exty, ) (10(A, B, A), mo(A, 7, ) = Extl, ) (te™ Ric.p/te™", A)@")

satisfying that for any de Rham rank two (¢,T)-module D' of weight h with D(/Z) = A, the iso-
morphism classes® [w(D.,,0, )] and [x(D',N)] (resp. [mo(Dl,0, )] and [mo(D,,N)]) are sent to

3Again, we use the kernel to denote an isomorphism class in Hom.



[t;hQ’”Df,] and [to P2, 7 DL]®" (resp. [t;hl"’D;] and [ts hl"D’]@’”) respectively, where D! is defined
n a stmilar way as D,.

1 D, isind bl
(2) (Going from D, to D) Let r = 4 z.s pnaecomposanie. There are natural isomorphisms:
2 D, is decomposable

Homgr, (k) (7(Dy, 7, A), (Dr, A)) = Hom,py (Dr, Ry, /tht 7)),

~ ho.r hi,r
(resp. ExtéLQ(K) (m0(Dr, A), mo(Dr, T, A\)) — Ext%%r) (t7" "Rk, /tr" ,DT)@T>,

satisfying that for any de Rham rank two (¢,T')-module D" of weight h with D. = D, the isomor-
phism class [w(D")] is sent to [t; hQTD’]@T (resp. [t;hl’TD’]@’).

In short, to go from A to D, one can first use horizontal (resp. vertical) sequences to go from
A to D, (resp. to D;), and then apply vertical (resp. horizontal) sequences to go from D, (resp.
from D;) to D. The conjecture generalizes [13, Conj. 1.1] (see also [16, Conj. 5.3.1]), which can
be viewed as a generalization of the Breuil-Strauch conjecture (and its Hom-version). Indeed, the
extensions conjectured in [13, Conj. 1.1] should be the left vertical and upper horizontal sequences
in 7 (w(D)) (i.e. the third isomorphism in Conjecture 1.7 (2)). We refer to Remark 4.20 (4)
for a discussion on how these are related with Hodge filtrations. The curious reader may find the
multiplicity = in the conjecture a little strange, but it would fit well with a hypothetical multi-
variable (¢, T')-module avatar of E%(7(D)) (see also the discussion below Theorem 1.8). When
A is crystabelline and D, non-split, the isomorphisms in (3) reveal the Hodge parameter of D.
Towards Conjecture 1.7, we have the following theorem:

Theorem 1.8. Suppose K = Q,2, and A is generic and crystabelline. We have under Hypothesis
444 (we omit the subscript GLa(K) for Hom and Ext!):

(1) dimp Hom (7(A, 0, A), (A, 0,\)) = dimpg Ext' (m0(A, 0, A), m0(A, 0, \)) =
(2) dimg Hom (w(A, 7, A), 7(A, A)) = dimg Ext! (mo(A, A), m0(A, 7, 0)) = 4.
. ) 2 D;non-split
(3) dimg Hom (W(DT, T,A), (D, )\)) = dimp Ext! (7T0(D7-, A), mo(Dr, T, )\)) = { ,
4 D, split.

When [K : Q] = 2 and n(D) is cut out from the completed cohomology of unitary Shimura
curves (and 7(D)™2!8 =£ 0),* the results in [59] (generalizing [56]) give a full description of w(Dy, o, \)
and (D7, 7, \), which turn out to consist of subquotients of locally Q,-analytic principal series.
This strongly suggests a similar conclusion for the general crystabelline GL2(Q)2)-case, and we
adopt as Hypothesis 4.44. Via a close study of [0*(m(D)) in § 4.2.3 and using a local-global
compatibility result on “surplus” locally algebraic constituents in § C, we deduce a full and concrete
description of all the representations in [0 (7(D)) except for those that are “genuinely” locally Q,-
analytic: w(M, \) and mo(M, A) for M € {A, Dy, D, D}. Theorem 1.8 (1) follows from the classical
facts on extensions of locally analytic principal series (e.g. see [64]). The proof of (2) and (3) are
however not so straightforward (see Proposition 4.47, Theorem 4.51), as the representations 7(M, \)
in (2) and (3) contain the hypothetical supersingular constituents. We refer to § 4.2.4 for more
discussions on the internal structure of 7(D) using [J*(7(D)) (see in particular, the diagrams in
(56) and (57)).

We now turn to several topics closely related to the results discussed above, which have not
been explored in this paper. We anticipate working on some of them in the future.

“This is in fact a bit different from the setting of [4]. However, all the discussed results generalize to it as well.



In [16], we defined a locally analytic generalization of Colmez’s functor. Applying the functor
respectively on the sequences (2) and (3), we get exact sequences 0 — t~"2D — A — Rp/thi—2 —
0, and 0 - A — ™MD — th2Rp/th — 0 (which in fact induce isomorphisms (4) and (5)). One
may ask for a (¢, T')-module avatar of (0% (7(D)). Note however, say when [K : Q] = 2, the naive

D
—~— 7h02 /
to' ’ DO'

Ot (r(D)) (and similarly for [ (7 (D)). Instead, the hypercubes appear to be more compatible
with (hypothetical) multi-variable (¢, T')-modules. This would particularly explain the multiplicity

r in Conjecture 1.7. See [23] for the mod p setting.

square built using the (¢, I')-modules yhazy—he2 g A does not fit well with
o T

For GL2(Q,), the sequences (2) (3) admit geometric realizations, see [41] (for the de Rham non-
trianguline case in the cohomology of Drinfeld spaces) and [56, § 7.3] (in the completed cohomology
of modular curves). We expect the hypercubes 1% (7(D)) also admit geometric realizations.

Finally, for general GL, (K), one may also consider factorizing the maps ¢ and x using various
wall-crossing functors, which will provide a bunch of representation. A natural question is how
these representations reveal the information on Hodge filtrations when D is de Rham. We leave
further exploration of this topic for future work.

We refer to the body of the context for more detailed and precise statements. One main
difference from what’s mentioned in the introduction is that we use the wall-crossing functors on
the dual of 7(D), not directly on 7(D) itself.
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Notation

Let K be a finite extension of Q,, and E be a sufficiently large finite extension of @, containing all
the Galois conjugate of K. Let X :={0: K < Q,} = {0: K < E}. Let dx := [K : Q,], and fx
be the unramified degree of K over Q,. Let valg : K* — Z be the normalized additive valuation
(sending uniformizers to 1), and |- | : K* — E* be the normalized multiplicative valuation (that
is the unramified character sending uniformizers to p~f%). We normalize the local class field theory
by sending a uniformizer of K to a (lift of) geometric Frobenius. Let ¢ : Galx — Q, to denote the
cyclotomic character, that we also view as a character of K*. We let Rk g be the E-coeflicients
Robba ring associated to K, and when K = Q,, we write Rg := Rq, E-

Let T' C GL, be the subgroup of diagonal matrices, X (T') := Hom(T, G,,) which is isomorphic
to @' |Ze;, where e; denotes the character diag(xy,---,zy) +— z;. Let B C GL, be the Borel
subgroup of upper triangular matrices. Let R = {e; —ej,i # j} C X(T') be the set of roots of
(GL,,T), and R* the set of positive roots (with respect to B), i.e. Rt = {e; —e;,i < j}. Let
0= (n—1,n—2,---,0) be the half-sum of the positive roots. For a simple root o = e; — €;41 of
GL,, let A\, :=e1+ - +¢;, which is a fundamental weight of GL,,. Let # = S,, be the Weil group
of GLy,, which acts naturally on R via w(e; — €j) = e,y — €w(j)- Let gl,, t, b be the Lie algebra of



GL,, T, B respectively. Let Z be the centre of U(g).

For a standard parabolic subgroup P O B of GL,. Let Mp O T be the standard Levi subgroup
of P, which has the form Mp = Mp; X --- x Mpy, with Mp; = GL,,. Denote by S(P) C S the
set of simple roots of Mp, R(P)T C R* the set of positive roots of Mp. Let # (P) be the Weyl
group of Mp.

For an algebraic group H over Q,, (which we also view as an algebraic group over extensions of Q,,
by base-change), denote by H Gal(K/Qp) .= Res(gp H. We let #k be the Weyl group of GLS’ al(K/Qp)

For the Lie algebra h of H over K, let hx := b ®g, F which is the Lie algebra of HGAK/Qp) gyer
E. Let Zk be the centre of U(glmK), we have Zg = Qgexny 2o Where Z, = Z Qg E. We let

Ok :=(n—1,---,0)sex,, which is the sum of positive roots of GLS’al(K/QP).

For an integral weight A of T'(K), let M () := U(gl,, x)®u(p,)A and M~ (N) := U(gln,K)®U(h;()>‘
where b~ is the Lie algebra of the opposite Borel subgroup B~. Let L(X) (resp. L™ (X)) be the

simple quotient of M (A) (resp. of M~ (\)). If X\ is dominant (with respect to B), then L(\) is
ple q (A) (resp (N) ( P )s ()

finite dimensional, which is actually the algebraic representation of GLS al(K/Qp) of highest weight

A. We use z* to denote the algebraic character T(K) of weight A, i.e. if A\ = (Mo )i=1,-- n, then
oEY K
ZA = ®;7':10-)‘i,c7.

For an integral weight A of T'(K'), we let x) be the infinitesimal character of Zx associated to A,
that is the character of Zx on M (X). Denote by Mod(U(gx)y,) C Mod(U(gx)) the full subcategory
of U(gk)-modules, consisting of those on which Z acts by x\. For integral weights X, y, let T} :
Mod(U(gk)y,) = Mod(U(gxk)) be the translation functor sending M to (M ®g L(v)){ZKk = Xpu}»
where v is the (unique) dominant weight in {w(X — p) | w € #k}, and {Zx = x,} denotes the
generalized eigenspace.

Besides the standard action of #% on the weights, we will also frequently use the dot action of
Wi on the weights: w - A = w(\ + 0k ) — 0. In particular, w - (—0x) = —0k.

For alocally K-analytic group H, denote by D(H, E) the locally Q,-analytic distribution algebra
of H over E (cf. [61, § 2]), which is the strong dual of the space C%~12(H, E) of locally Q,-analytic
E-valued functions on H. Denote by My the category of abstract D(H, E)-module. For a locally
Qp-analytic representation V' of H on space of compact type, denote by V* the strong dual of V,
which is naturally equipped with a separately continuous D(H, E)-action (cf. loc. cit.). There is a
natural Qp-linear action of the Lie algebra h of H on V (resp. V*), which induces a U(hx)-action
on V (resp. V*).

2 (p,I')-modules of constant weights

We discuss the change of weights of (¢, I')-modules. Let D be a (¢, I')-module of rank n over Rx g.
Suppose D has integer Sen weights h = (k15 > -+ > hyo)sesy -

Lemma 2.1. There ezists a unique (¢,I")-module A of constant Hodge-Tate weight 0 over Rk g

such that A[}] = D[3].

Proof. Consider the B-pair (W (D), W3 (D)) associated to D (cf. [5]). By Fontaine’s classification
of Bag-representations of Galg (cf. [46, Thm. 3.19]), there exists a Bj;-subrepresentation A C
Wi[1/t] such that A has constant Sen weight 0. Let A be the (¢,T')-module associated to the
B-pair (W, (D), A), which clearly satisfies the properties in the lemma. The uniqueness follows

10



from the uniqueness of A, which is a direct consequence of [46, Thm. 3.19]. One can also prove it
as follows. let A’ be another (¢, I')-module satisfying the same properties. For any n > 0, by [16,

Lem. 5.1.1], H(Ow ) (A)Y @Ry A) = H(O(p ) ((A)Y @Ry tT"A) is an isomorphism. We deduce

Hom( )(A, A) ; Hom(%p) (A/, A[l/ﬂ)

In particular, the tautological injection A’ — A[1/t] factors through an injection A’ < A, which
has to be an isomorphism by comparing the Sen weights. O

Remark 2.2. (1) Suppose D is de Rham, then A is the so-called p-adic differential equation
associated to D (cf. [6]). Passing from D to A, we lose exactly the information of Hodge filtrations
of D.

(2) If dimg Dgr(D)s = 1 for all o € X (which is actually the most non-de Rham case, as D
has integral Sen weights), then by [46, Thm. 3.19], one can show that [ [,y t;h""’D is the unique
(¢, I')-submodule of A of Sen weights (h1,oc — hng, -+ ,0)sex, . In particular, in this case, passing
from D to A does not lose extra information of D than the Sen weights.

We define the irreducible constituents for a (¢, I')-module A of constant weights 0 over Rk f.
We call a ﬁltration F ={0= %A C - C FA = A} of saturated (¢, I')-submodules of A
minimal if gr; % are all irreducible. Note that all these gr; .# have constant Sen weight 0.

Lemma 2.3. Let % be a minimal filtration of A, then the set {gr; F }; is independent of the choice
of minimal filtrations on A.

Proof. Suppose %’ is another minimal filtration on A. Using dévissage, there exists i such that
Hom, r)(F0A, gr; -#') # 0. As both .#pA and gr; .#" are irreducible of constant weight 0, we see
FoA = gr; F'. Then we can repeat the argument for A/ #yA (with the induced filtrations .# and
F"). The lemma follows by induction. O

We call elements in {gr; % } irreducible constituents of A. Similarly, a filtration of (¢,T)-
submodules over Rk, g[3] of A[1] is called minimal, if the graded pieces are irreducible, which are
called irreducible constituents of A[%] For a filtration .# on A, we define a filtration .F[}] of
(¢,T)-module over Ry g[+] on A[2]. The following lemma is clear.

Lemma 2.4. The map % — [%] is a bijection of the minimal filtrations on A and the minimal

filtrations on A[1].

For a minimal filtration .% of A, we let Pz O B be the associated standard parabolic subgroup
of GLy. For i =1,--- ,n, we let (i) € {1,--- ,k} such that e;; € Mp,_ g(;) (the 8(i)-th factor of
the Levi subgroup Mp,, of Pz). In the following, we assume the irreducible constituents of A are
all distinct. Put Cz be the subset of R* consisting of e; — e; for 4,5 € {1--- ,n}, i < j which
satisfies that A admits a subquotient A" such that soc A" = grg ;) 7 and cosocA’ = grg ;) 7.

Lemma 2.5. The set Cg is a closed subset of RT relative to Pz in the sense of [22, Def. 2.5.1].

Proof. 1t is trivial that R}Cg C Cg. Suppose e; — e; and e; — e both lie in Cz. Let M; be the
submodule of A of cosocle grg(;iy %, and Ma be the quotient of A of socle grg;). Ase; —e; € Cz
(resp. e; —ejr € Cz), Aj is an irreducible constituent of My (resp. M;p). As the irreducible
constituents of A are assumed to be distinct, the composition M7 < A — M> is non-zero. Its image
has socle grg(;) 7 and cosocle grg(;r) #. So e;—ey € Cz. Forw € # (Pz) and e;—ej € Cx \RPf;7

we see B(i) < B(j). As B(w(i)) = B(i) and B(w(j)) = B(J), we deduce e ;) —ey(j) € Cx \RP?. O
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Remark 2.6. Assume A is de Rham, and let WD(A) be the associated Weil-Deligne representation.
Then Cz is closely related to the monodromy operator N on WD(A). For ezample, if N = 0, then
the (any) minimal filtration F on A splits and Cz = R(Pg)™.

Let ]59 C Pz be the Zariski closed subgroup of Pz (containing Mp,, ) associated to Cz by [22,
Lem. 2.3.1.4]. Let

W, = {we W | w(S(P5)) C S,w(Cs\ R(P#)") C R*}. (8)
For w € # such that w(S(Pz)) C S, let “P# be the standard parabolic subgroup of simple roots
w(S(Pz)). For such w, and i,5 € {1,--- ,n}, if 5(i) = B(j), then B(w(i)) = B(w(j)). Hence
w corresponds to an element w? € Si. It is easy to see the map w — w? is a bijection from
{weW | w(S(Pz)) C S} to S.

Lemma 2.7. (1) Let w € # such that w(S(P#)) C S. Then w € #j_ if and only if there exists
a filtration F' on A such that gr; 7' = gr(,e)-13;) F .
(2) Let w € W, and F' be the associated filtration on A as in (1). Then Py ="Pgz and

Pgr = wpgzwfl.

Proof. (1) Suppose w € Wf,g. As w(e;—ey,-1(1)) = €w(s) —€1, it is easy to see any e; —e,,—1(1) for i <
w™!(1) can not lie in Cz. So grag,-1(1))-F = 8r(we)-1(1) Z is a submodule of A, denoted by F{A.
Let n; := #67'({i}). As w(S(P#)) C S, w ' (14j) =w (1) +j for all 0 < j < ngg-101y) — 1.
Consider henceforth w_l(nﬁ(,wfl(l)) + 1). By similar arguments for e; — Cur(ng,—1(1y)+1)7 WE Se€
BEB(w (1 (1) +1) T = glysy-1(2) F is a submodule of A/ FJA. We put F#,A the submodule of
A with irreducible constituents %A and 8T (wt)-1(2) # . Continuing with the argument, we get the
wanted filtration .Z'.

Conversely, if e; — e; € Cg, it suffices to show w(i) < w(j). As w(S(Pz)) C S, it suffices to
show wi(B(i)) < w(B(4)) if B(i) < B(j) and e; — e; € Cz. If wH(B(i)) > w (B(j)), then gra) F =
Bty -1 (wi(8()) F = Slus(sy)) F = A/ﬁ;hw(j))_l, where the latter contains gr,: gy # =
gra) ¥ as irreducible constituent. But as we assume all the irreducible constituents of A are
distinct, this implies there can not exist subquotients of A of socle grg(;) # and of cosocle grg ;) #,
contradicting e; —e; € Cz.

(2) follows by definition. O

Now we consider the case where Pz = B, which is usually refereed to as the trianguline case.
There exist smooth characters ¢; : K* — E* such that A; = Rk p(¢;). For w € #, recall a

smooth character of T(K), w(¢) := @ d,-1(; is called a refinement of A[] (resp. of A) if A[7]

resp. A) admits a successive extension of R g(¢y-1(1)[2] (resp. of Rk g(dy-1(5)). In particular,
) ( ) ’ ( )

t
¢ = R, ¢; is a refinement of A[}].
Lemma 2.8. For w € W, the followings are equivalent.
(1) w(p) is a refinement of A[%]
(2) w(¢) is a refinement of A.
(3) w(Cz) C RT.

Proof. By Lemma 2.7 (1), (2) < (3). We show (1) < (2). If (¢,,-1(;)) is a refinement of A, by
inverting ¢, it is also clear (¢,,-1(;)) is a refinement of A[3]. Suppose F' is a filtration on A[}] such
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that gr, #' = RK’E((z)w—l(i))[%]. Then /A := AN .Z/A[3] defines a filtration of saturated (o,T')-
submodules of A. Hence .#/A and gr; .#’ also have constant Sen weights zero for alli = 0,--- ,n—1.
As griﬂ\’A%griﬁz’A[%], gr; F'A =2 Rk g(bw-1())- O

Remark 2.9. By similar arguments and comparing the Sen weights, w(¢) is a refinement ofA[%] =
D[%] is equivalent to that there exists w' € Wk such that D admits a filtration of i-th graded piece
isomorphic to RK’E(wafl(i)Zw,(h)i). In this case, w(¢) = (¢y,-1(;)) s usually referred to as a
refinement of D. Note that when passing from D to A, the information of w' is lost.

3 Conjectures and results on the singular skeletons

Let m(D) be the locally Qp-analytic representation of GL, (K) associated (via the theory p-adic
automorphic representations, cf. [4]) to an n-dimension Galg-representation p of integral Sen
weights. We consider the translation of 7(D) to the singular block. We discuss some basis properties
of the translation to singular block in § 3.1. In § 3.2, we propose a local-global compatibility
conjecture on the translation, which may be viewed as a locally analytic version of [22, Conj. 2.5.1].
In § 3.3, we prove some results towards the conjecture on the finite slope part.

3.1 Translation to the singular block
3.1.1 Preliminaries

Let A be an integral weight of tx such that wp- A is anti-dominant. Consider the translation functor
T, "% =T,% : Mod(U(gx)y,) — Mod(U(gx))
M — (M QR L(—@K—u@')\)){ZK :X_QK}.
Proposition 3.1. For M € Mod(U(gk)y, ), the map
(M ®@p L(=0k —wo- \)[Zx = X—0,]] — (M @5 L(=0K —wo- )){Zk = x—0,.} = T " (M) (9)

18 an isomorphism.

Proof. First we prove the statement holds for Verma modules in Mod(U(gk )y, ). For w € #k,
M(w-A) ®p L(—0g —wp - A) admits a filtration with quotients isomorphic to M (w - A 4+ ) where
p run through weights of L(—0x — wq - A) (cf. [49, Thm. 3.6]). If M(w - X + p) is a generalized
X—0,-eigenspace of Zg, we have yp = —0 —w- X. As the weight —0 —w- A = (wwo)(—0x —wo - \)
has multiplicity one in L(—0x — wp - A). We deduce T;eKM(w “A\) = M(—0k), in particular (9) is
an isomorphism for M = M (w - ).

Now for general M, it suffices to show that Zj-action on T} Ox (M) is semi-simple. Consider
the set Hom(T Ox STy O ) of the endomorphisms of the functor 7', 9% There is a natural morphism
f:Z2x — Hom(T/\_aK, T/\_GK), induced by the Zx -action on each T)\_QK(M’). We have hence

Z — Hom(T}, "% T57%) 2 Homyg) (T5 "% M(X), Ty, "€ M (X)) = Homy q) (M (—0x), M(—0x)),

where the first isomorphism follows from [7, Thm. 3.5]. We deduce the map Zx — Hom(T, Ok N Ox)
factors through Zx/J_g, , where J_gy,, C Zk is the maximal ideal corresponding to x_g, . As the
map Zx — Homyqg) (T O pp, N O ) obviously factors through f, T\ % \f is annihilated by
J_p,.. The proposition follows. O
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0
Remark 3.2. Note we have (by the proof) T)\_GKL(U) ) w7 o
L(—0k) w=wy
We next discuss translations of parabolic inductions to the singular block. Let P be a standard
parabolic subgroup of GL,,, with Mp D T the standard Levi subgroup.

Lemma 3.3. Let my, be a space of compact type over E, equipped with a locally Qp-analytic
representation of Mp(K), and V' be an algebraic representation of Resgp GL,,. Then we have an
isomorphism

(I 1y mar) ™ @p V =5 (nd () mar, 05 V)& f oo = [g o flg) 0] (10)

where P~ (K) acts on the second V' via restriction of the G(K)-action.

Proof. 1t is easy to check the map is well-defined. We construct an inverse of the map. Let
€1, - ,em be a basis of V. For F € (IndP (I(g) T™Mp OF V)QP*‘B‘“7 let fi : GLy(K) — marp, such
that F'(g) = Y.~ fi(9) ® g(e;). Note that f; is locally Qp-analytic. Indeed, f; is equal to the

F(g)®g(e¥
composition GL, (K) w e @V @ VY — mar,. It is then straightforward to check

the map F — >, f; ® e; gives an inverse of (10). The lemma follows. O

Let my, be the Lie algebra of Mp. Denote by Zn, x the centre of U(my r). The Harish-Chandra

isomorphism for gl, and m, induce an isomorphism Zx = Z 7 K)K V'K For a weight p of tg, we

denote by xarp,u the associated character of Zy, r. Let mar, be a space of compact type over E
equipped with a locally Q,-analytic representation of Mp(K'). Let A be as in the beginning of the
section, and assume that Zn, x acts on mpy, via the character xarp w2 for some w € #¥ (noting
there is no ambiguity for the dot action: we always use the gl,,-dot action, and when w € #'(P)g,
its gl,,-dot action coincides with its my g-dot action).

Lemma 3.4. Zx acts on (Indg%?[(g) WMP)QP*an via the character xx = Xw--

Proof. Tt suffices to show Zx acts on the dual ((IndGL’E(f) Tap) @78 via yye. Let H :=

GL,(Ok), and Py := HN P~ (K). By [53, Prop. 5.3] (see also [65, Prop. 2.1]), there is a natural
D(H, E)-equivariant map

D(H, E) ©p(p- g Thp — ((IndGLTE(I?) marp) )

which moreover has dense image. It suffices to show Zx acts on the source via x)+. But this
follows easily from the Harish-Chandra isomorphisms and the fact that Zx lies in the centre of

D(GLy(K), E) (cf. [52]). 0

We choose w such that w - A is anti-dominant for my, g (With Xz, -2 unchanged). Indeed, we
just need to multiply the original w on the left by a certain element in #(P)x. Then —0x —w - A
is dominant for m, x, and we have TJ?\K(—) = (—®p L(-0x —w-AN)p{Zmy,xk = 0k} = (— QF

L(—0x —w - \)p)[Zn, k = —0k], where the second isomorphism follows by the same argument as
in Proposition 3.1.

Proposition 3.5. We have a natural isomorphism

70K (In dGLn( )

—an ~v GLTL K -
T, bty mup) BT 2 (Ind 1,5

P—(K) TwA (marp)) e om,
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Proof. By Lemma 3.3, we have

—0 GLn (K —an ~ GLn (K —an
T (Ind G270 mage )@ 22 (Ind G0 s, 0 L(—0 — wo - )% {2 = X, }-
We can write 7y, ®p L(—0x —wo - A) as a successive extension of (7, @ L(1) pP){ Zmy,x = X~}
where L(u)p run through irreducible factors of L(—0x — wo - A\)|arp(k)- By Lemma 3.4, only the

]GDI:’(II((I? )%, Let L(u)p be such that
(map @ L(1) PH{ Zmy,k = XMp,—0x } 7 0. By [7, Thm. 2.5], there exist a weight p' in L(u)p and
w' € W (P)k such that w'- (w-A) 4+ = —0 hence p/ = —0x — (wW'w) - A = (W'wwp)(—0x —wp - )
is an extremal weight in L(—0x —wp - A). Using the # (P) x-action, we see —fx —w - A appears in
L(p)p. As =0 —w- X = (wwp)(—0x —wp- ) is a highest weight with respect to (wwg)b g (wwg) ™!,
and (wwp)bx (wwp) ™ Nmy g = b Nmy i (by our assumption on w), we see —0x —w- A is a highest
weight with respect to bx Nmy . Hence L(p)p = L(—0x —w - X\)p. As the weight —0x —w - A

has multiplicity one in L(—0x — wq - A), we get

term with x, = Xamp,—6, can contribute to T/\_QK (Ind

(Indg%y(lég) TMp OF L(—HK —w - )\))Qp_an{ZK = X—9K}
~Y GLn K Q —an
= (Indp—([({))(ﬂ-MP Qp L(—0x —w - A)p){ Zn, x = X—GK}) o
The proposition follows. ]

Next we discuss the effect of the translations on duals. We first consider the Schneider-
Teitelbaum duals. We write G := GL,(K) and let H be an open (compact) uniform subgroup
of G. Let C?p _la(G, E) be the space of locally Qp-analytic functions on G with compact support,
which is equipped with a natural locally convex topology and is a space of compact type (cf. [63,
Rem. 2.1]). Let D.(G, E) := C2* (G, E)*. By the dicussion in [63, § 2], the right (resp. left)
translation of G on C _1a(G, E) induces a separately continuous right (resp. left) D(G, E)-module
structure on D (G, E). We denote by M¢ the category of abstract left D(G, E)-modules.

Proposition 3.6. Let M € Mg and V' be a finite dimensional G-representation. There is a natural
isomorphism in D*(Mg):

RHomp(g g) (M ®@p V,D.(G, E)) — RHomp(g ) (M, De(G, E)) @ V",

where the right hand side is equipped with the diagonal action, the (left) D(G, E)-action on the left
hand side and on the first term of the right hand side is induced via the natural involution from the
right D(G, E)-action on D.(G, E).

Proof. As the functor — @V : Mg — Mg is exact and preserves projective objects, it suffices to
show there are natural isomorphisms of left D(G, E)-modules

HomD(G’E) (M RF VV, DC(G, E)) = HomD(G’E) (M, V\/ KE DC(G, E))
= Homp(g,g) (M, D(G, E)) @ V¥ (11)

where the D(G, E)-action on the second term is induced via involution from its right action on
D.(G, E) and the trivial action on V'V (the other actions being the same as in the proposition).
Indeed the first isomorphism of E-vector spaces follows from [1, Thm. 6.3.1]. It sends f to the

composition M — M @V @ VV Joid, D.(G,E) ® VV. Tt is clear that the isomorphism is

15



D(G, E)-equivariant. The map C(c@”_la(G, V) — C(CQ”_la(G, V), f—[g — g(f(g))] is a topological
isomorphism, which is G-equivariant if G acts on the first term via (¢f)(h) = gf(hg) and on
the second term via (gf)(h) = f(hg), and is also G-equivariant if G acts on the first term via
(gf)(h) = f(g~'h) and on the second term via (gf)(h) = gf(¢g 'h). Taking dual we get an
isomorphism

§:D(G,E)@p VY =5 D.(G,E)®p V" (12)
which, by the above discussion, is an isomorphism of D(G, E)-bi-modules: j((XuY") @ (Y'v)) =
Xj(p@v)Y*, where X, Y € D(G, E), Y* denotes the involution of Y, and on the right hand side X

acts diagonally and Y* only acts on D.(G, E) by right multiplication. It then induces the second
D(G, E)-equivariant isomorphism in (11). The proposition follows. O

By the definition of D(G, E)-action, it is clear that if Zx acts on M via x,, for an integral
weight pi1, then Zx acts on Exty; g (M,D.(G, E)) via x,z. Proposition 3.6 implies:

Corollary 3.7. Let p1, 2 be two integral weights, and assume Zy acts on M via x,,. Then we
have
Exth g ) (T2 M, De(G, E)) = T/j‘; (Exthg ) (M, De(G, E))).

Proof. One just needs to show that if v is the dominant weight in the #x-orbit of uo — p1, then
v* is the dominant weight in the #k-orbit of p5 — puj. But this is clear. O

For a left D(H, E)-module M, the grade of M is defined by
Jor,E)y (M) :=min{l > 0 | EthD(H,E)(MaD(H7 E)) # 0}.

Recall that M is called pure, if Extly ;g (Exth gy (M, D(H, E))) = 0 for any | # jp (s g)(M).
And M is called Cohen-Macaulay, if ExtlD(HE)(M,D(H E)) # 0 if and only if | = jpg,g)(M).
If M is coadmissible, by [62, Thm. 8.9], jpm,g)(M) < n?dy if M # 0. We define dim M :=
n?dy — Joa,p)(M). By [62, Prop. 8.7], the coadmissible M admits a natural dimension filtration

(similarly as finitely generated modules over a noetherian Auslander regular ring). By Proposition
3.6 and [63, Prop. 2.3], we have:

Corollary 3.8. Let M € Mg be a coadmissible D(H, E)-module, and V' be a finite dimensional
representation of G, then dim M ®p V = dim M. Moreover, M is pure (resp. Cohen-Macaulay) if
and only if M ®@p V is pure (resp. Cohen-Macaulay).

Now we consider the topological dual. Let V' a a locally Q,-analytic representation of G' on
space of compact type. Let p1, us be two integral weights. Suppose Zx acts on V' via X, , which
implies that Zx acts on V* via x,.

Lemma 3.9. There is a natural isomorphism Ty = (THEV)*.
H1

Proof. Let v be the dominant weight in the class {w(pe — p1) }wewy - Let e1,--- e, be a basis
of L(p), and ef,--- ,eX be the dual basis of L(u)Y = L(u*). Consider the map Hom®™(V @p
L(p), E) = Hom™(V, E) ©p L(p*), f — S, f; © ef with f(X0, v @ ;) = Y7, filvi). The
map is clearly a topological isomorphism. It is straightforward to check it is also G-equivariant.
By comparing the generalized eigenspaces for Zg, the lemma follows. O
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3.1.2 Singular skeleton

Let p : Galg — GL,(FE) be a continuous representation. We assume p has integral Sen weights

h = (hiy)i=1,.. n (h being dominant). Let 7(p) be the unitary Banach GL, (K)-representation
oYK
associated to p in [4] (see [4, § 2.10, § 6]). We refer to loc. cit. for details. But note the

construction of 7(p) depends on many auxiliary data, and it is even not clear if it is always non-
zero. We assume however 7(p) # 0. For example, this is the case if n = 2 and K/Q, is unramified
by [3, Thm. 1.3] (under mild assumptions). Remark that when K = Q,, 7(p) coincides with the
GL2(Qp)-representation associated to p via the p-adic Langlands correspondence (cf. [27]). We use
this fact without further mention. Let D := Dyig(p) be the associated (¢, I')-module (of rank n)
over R, g, and m(D) be the locally Qp-analytic vectors of 7(p). By [60, Thm. 7.1 (i)], 7(D) is
dense in 7(p).

Let XA :=h — 6k (hence A\; ; = h; s —n +14). Note that A is dominant if and only if h is strictly
dominant. Note also wp - A is antidominant (in the sense of [49]). Recall the following theorem of

[6]:
Theorem 3.10. Zx acts on w(D) via the character x.

Remark 3.11. For a (¢,T')-module D" of rank n over Rk g, let 6pr : K* — E be the character
such that RKVE(éD/sn(n;l)) = A"D'. By similar (and easier) density arguments as in [6], the centre

Z(K) of GLy(K) acts on w(D) via the character ép.

Let A be the unique(y,I')-module of constant weight 0 over Rk, such that A[] = D[1]
(Lemma 2.1). Throughout the paper, we assume A has distinct irreducible constituents. Note that

—0g —wo - A = —wo(h) = (=hpt1-i0)i=1,.. n is dominant.

oEX K
Conjecture 3.12. The GL,(K)-representation Tq;oqf)fﬁ(D) = (n(D) ®p L(—wo(h))[Zx = X—04]
depends only on A.

We denote 7(A) := (7(D) ®g L(—wo(h)))[Z2x = Xx—0,] (but noting the construction of 7(A) is
global, and depends a priori on a choice of Galois representations). We have by [37, Thm. 1.1 (1)]
(for D indecomposable case) and [37, Thm. 3.8] (for splitting D): °

Theorem 3.13. The conjecture holds for GLa(Qp). In fact, m(A) is the locally analytic represen-
tation associated to A wvia the p-adic Langlands correspondence.’

Remark 3.14. (1) If p itself has constant Sen weight 0, then w(A) = 7(D).

(2) For any irreducible A (of constant weights 0), there exists a smooth character of K* such
that A @, Ri,p(p) is étale hence isomorphic to Dyig(p) for some Galg-representation p. We
put in this case

m(A) :=7(D) ®p ¢ odet.

In particular, we have a candidate w(A) for any such A. If A is of rank 1 hence isomorphic to

Rk, (@) for some ¢, we have T(A) = ¢.
(3) By Remark 3.11, m(A) has central character da.

5As we assume A has distinct irreducible constituents, D does not contain pathological submodules in the sense
of [31].

I A = Rp(¢1) & Ri(@2), we put m(A) i= (Ind ;> (¢1e7") @ ¢2)™ @ (Indyy 277 (626 7") @ 1)
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3.2 Local-global compatibility conjectures

We discuss the internal structure of 7(A). In particular, we conjecture it is compatible with certain
algebraic representation of GL,, (and the internal structure of A), which is completely analogous
to the mod p conjecture of [22].

3.2.1 Good subquotients of L®

For a =e; —e;41 € 5, let Ay :=e1 + -+ + ¢; which is a fundamental weight of GL,,. Put

L® = ®0€EK (®a€SL()‘a)U) (13)

Gal(K/Qp)

that is the tensor product of all fundamental representations of GLy, . In this section, we

briefly recall good subquotients of L® introduced and studied in [22, § 2.2].

Let P be a standard parabolic subgroup of GL,. For a = ¢; — ej11 € S(P), put A\g,p =
Zej—eHleR(P)Jr ej, which are fundamental weights for Mp such that (o, 3) <0 for g € S\ S(P).
Let 0p := 3" cs(p) Aas and 0F := 0q — Op (noting 0 = Y ,cq Aa). By the discussion below [22,
(45)], O naturally extends to an element Homg (Mp,Gyy,). If Mp =2 My x --- Mg with M; = GL,,,
we denote by (6F); the corresponding character of M;.

Gal(K Q)

Consider L?| Zu, (on which Zyy, acts via the diagonal map Zy, — Zy; For an

isotypic component C'p of L®| Zar,,» ODE CaN associate as in [22, § 2.2.2] a standard parabolic subgroup
P(Cp) and a (non-empty) set #(Cp) C {w € # | w(S(P)) C S} (cf. [22, (39)]). We refer the
reader to loc. cit. for the precise definition. Let w € # such that w(S(P)) C S, denote by “P the
standard parabolic subgroup associated to the subset w(S(P)) C S. Remark that for w € #(Cp),
we have WP C P(Cp) (cf. [22, (40)], in particular, #S(P(Cp)) > #S(P)), and if “P = P(Cp),
then #(Cp) = {w} (cf. [22, Lem. 2.2.3.1]).

Note that Cp inherits a natural action of MGaI(K/QP) ([22, Lem. 2.2.1.2]), and we refer to [22,
Thm. 2.2.3.9] for a description of the correspondmg (algebraic) representation. For w € # such

that w(S(P)) C S, and an algebraic representation R of M Cal(K/Qp) , let w(R) be the algebraic

representation of MS?,HK/QP) with w(R)(g) = R(w™tgw) (noting Mwp = wMpw~1!). The image of

Cp under the diagonal action of w on L% is isomorphic to w(Cp) as representation of MS ;I(K/ Q)

Write Mp(c,)y = My x --- Mg with M; = GL;,, and let Ll® be the algebraic representation of M;
defined as in (13) with GL,, replaced by M;. For w € #'(Cp), PN Mp(c,) is a standard parabolic

subgroup of Mp(c,) hence has the form Hf (PP); C Hf L M;. By [22, Thm. 2.2.3.9], there exist

an isotypic component C, ; of LZ® ] Iy, 3 algebraic representation of M, (G al()K/ ) for j = 1,---.,d,
such that '
w(Cp) = @1 (Cuy @ (07 P)i @ - @ (67P),)) (14)
Gal(K/Qp)

Gal(K/Qp ~ 11, MGaI (K/Qp)

as algebraic representation of M, (wP);

Let P be a Zariski closed algebraic subgroup of P containing Mp, let X D R(P)" be the
associated closed subset of R*. Let

W :={weW |wS(P)) CSwX\ R(P)Y)Cc RT}. (15)
As in [22, Def. 2.2.1.3], a subquotient (resp. subrepresentation, resp. quotient) of L®| BGal(K/Qp)

is called good if its restriction to Zps, is a direct sum of the isotypic components of L%| Znip -
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By [22, Lem. 2.2.1.5], there exists a filtration on L%|zcaix/q, by good subrepresentations such
that the graded pieces exhaust the isotypic components of L% Znip- On the graded pieces, the

PCal(K/Qp)_action factors through the natural action of MSal(K/Q”) via PGal(K/Qp) _, Mgal(K/Q").

3.2.2 Compatibility of 7(A) and A

Imitating [22, § 2.4], we define the notion of compatibility with A for locally Q,-analytic represen-
tations of GL,(K).

Let 7 be a finite length admissible locally Q,-analytic representation of GL, (K) over E. Let
P be a standard parabolic subgroup of GL,,, P be a Zariski-closed subgroup of P containing Mp.
Suppose that there exists a bijection ® of partially ordered sets from the set of subrepresentations
of 7 to the set of good subrepresentations of L®|scair/a,) (both ordered by inclusions). Note that
® induces a bijection, stilled denoted by &, from the set of subquotients of 7 to the set of direct

sums of isotypic components of L®|ZMP (by [22, Lem. 2.2.1.5]). Let w € #% (cf. (15)), hence
wPw™! is a Zariski closed subgroup of “P (cf. [22, Lem. 2.3.1.7]). We define w(®) to be the
(bijective) map from the set of subrepresentations of 7 to the set of good subrepresentations (with
respect to Y P) of L®|(w1;w_1)c;a1@/@p) sending 7 to w(®(m)), where w(®(m))(g) = ®(7)(w~'gw) for

g € wPw!

Compatible with P Now we define the notion of compatibility with P. Roughly speaking,
this amounts to saying that m admits a filtration, indexed and ordered by good subrepresentations
of L®| paal(/0,) Whose graded pieces have similar symmetric and “parabolic” structure as good
subquotients of L®| paal(k/ap) - Precisely, we call 7 is compatible with P if there exists a bijection ®
of partially ordered sets from the set of subrepresentations of 7 to the set of good subrepresentations
of L®| pcair/a,) (ordered by inclusions) such that for any ws € #7, any standard parabolic subgroup
@ containing “P P and any isotypic component Cg of L®]ZMQ, writing Mp(cy) = M1 X --- X My
with M; = GL,,, the followings hold:
(1) Any wz(®)~1(Cg) has the form (recalling §7(€@) here is a character Mpcy)(K) — KX)

wp( ) (CQ) (I dg?cn() )( ) (CQ) RF e 1o HP(CQ))Qp_an

where 7(Cq) is a Mp(c,)-representation of the form 7(Cq) = m(Cq) ® - - - @7m4(Cq) for some finite
length admissible locally Q,-analytic representations m;(Cq) of My(K) over E.

(2) For any w € # such that w(S(P(Cq))) C 5, let m(Cq) be as in (1), and w(n(Cq)) be
the representation of Mup(c,)(K) = pr(CQ)(K)w_l defined by w(m(Cg))(g) := 7(Cq)(wgw).
Then 7(w(Cq)) = w(w(Cq)) where m(w(Cgq)) is given as in (i) for the isotypic component w(Cq)
of L®’Zwa<cQ)'

(3) Let wg € #'(Cq). As in (14), there exist an isotypic component Cy, ; of L?‘ZM(UJQQ). as

algebraic representation of M ?ﬂzg/ ) uch that

wo(CQ) = Ly (Cugi @ (07CP); @ - - @ (9P(CP)),))

Gal(K/Qp)

as algebraic representation of MS;IC(QK/ Q) =1L M %Zl é( /Q) " The bijection ® satisfies that the

restriction of wz(®) to the set of wz(®)~1(Cy) comes from d bijections ws(P)w,,; of partially
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ordered sets between the set of M;(K)-subrepresentations of 7;(Cg) (see (1)) and the set of good

subrepresentations of Cl, | ( calk/gy) 10 the following sense (noting “eWPP C “RWPP C
Q,i

Ye@Q C P(Cq)): for any good subquotient Cg, of CQ’(w~ﬁ(w~)*1)Gal(K/@P>7 wﬁ(®)_1(C’c’2) has the
P P
form

- ~ GLn (K _ P(CQ) _an
wi(®)71(Ch) = (Indp(cé),)(m(w’l@---@wg) ®p(e oz V)P

with 7, € §; and C’b corresponds to the following algebraic representation of (waﬁlg)gaI(K/ ) _

wow~ o\ Gal(K
[I2, (weve Pygat/ o)

R (W(P) g i(mh) @ (079, @ -+ @ (7)), ).

Gal(K/Qp)

(4) For each isotypic component Cp of L®| Zup the Mp(cp)-representation m(Cp) is topologi-
cally irreducible and supersingular, i.e. is not isomorphic to any subquotient of a parabolic induced
representation for some proper parabolic subgroups of Mpc,).

Compatible with A Let A be a (¢, I')-module of constant Sen weight 0 of rank n over Rk g
with pairwise distinct irreducible constituents. Let % be a minimal filtration of A and P := Pz
be the standard parabolic subgroup associated to .%#. Let P C P be the Zariski closed subgroup
associated to C'z (cf. Lemma 2.5). We call 7 is weakly compatible with A, if 7 is compatible with
P via a bijection ® from the set of subrepresentations of 7 to the set of good subrepresentations
of L¥®| Zaip which satisfies moreover the following properties. Let wz and Cg be as in (1) of the
precedent paragraph, and let wg € #(Cq). For i =1,--- ,d, we have:

(la) If (waﬁﬁ)Qvi = M;, there exists hence ip € {1,--- ,k}, such that wqw sends the simple
roots of (Mp);, to the simple roots of M;. Then 7;(Cq) = m(A;,) (cf. Remark 3.14 (3)).

(1b) If K = Qp, n; = 2, and (waﬁﬁ)Qvi # M; (which has to be a Borel subgroup of GLg = M;),
writing s; = Z;;B nj, we have rk Ay ) -1(s,) = 1Kk Awgu)-1(s,+1) = 1 and there exists a (unique)
subquotient Ay, ; of A with irreducible constituents given by A, Qwp)~1(s;) and A
In this case, we assume m;(Cq) = T(Ayg,i) (cf. Remark 3.14 (1)).

Note that by Lemma 2.7, the compatibility conditions do not depend on the choice of the
minimal filtration .%.

wQwp)~(si+1)”

Conjecture 3.15. The representation mw(A) has finite length and is weakly compatible with A.
Theorem 3.16. Conjecture 3.15 holds for GL2(Q)).

Proof. By [37], m(A) is no other than the locally analytic representation associated to A. The
crystabelline case follows from the footnote in Theorem 3.13. By [30], if A is isomorphic to a non-
split extension [Rg(¢1)—REg(x2)], then 7m(A) is isomorphic to a non-split extension of the form
[(Inngj2 (d1671) ® o) n— (Imd%Ij2 (¢2e™1) ® ¢1)@ 1], hence (weakly) compatible with A. If
A is irreducible, by [31, Thm. 2.16] w(A) is topologically irreducible, hence also compatible with
A. O

Remark 3.17. (1) The conjecture is inspired by [22, Conj. 2.5.1]. In fact, if A and all its irre-
ducible constituents A; are étale, then w(A) (resp. w(4A;)) is the locally Qp-analytic vectors of the
unitary Banach representation 7(A) (resp. m(A;)). In this case, Conjecture 3.15 is compatible with
(the Banach version of ) [22, Conj. 2.5.1].
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(2) For GL2(Q,), one can also prove the finite length property of w(A) without using (¢,I")-
modules. Indeed, by [6, Thm. 1.5] (or Corollary D.17), dim7(D)* < 1 hence dimw(A)* < 1. As
m(A) can’t have non-zero locally algebaric subquotients (by looking at the Z-action), w(A) has finite
length.

(3) By the compatibility condition (1), for an isotypic component Cp of L®|ZMP, we have

o~1(Cp) = (Indp il o m(Cp) @p et 0 9P (16)

As Zk acts on ®~1(Cp) via x_p,, we deduce ZMpcpx GCls 0N ©(Cp) via XMp (e p)—=0p(cp) K (e.g.
by [28, Thm. 2.6]). This is compatible with condition (1a). The conjecture also tacitly implies the
parabolic induction in (16) is topologically irreducible. One may expect this always holds: if wr,

is a topologically irreducible locally Qp-anayltic representation of Mp(K) on which Zn, k acts by

XMp,—65» then (IndGL'(‘( )) WMP)QP_B‘H would be topologically irreducible. For example, it holds when

P =B by [55].

(4) For a subquotient A’ of A, it could happen that any (¢,T')-module D with D[%] = A'[%]
is not isocline. If it happens, it is not clear to me how to associate to A’ a candidate w(A') (in
contrary to Remark 3.1/ (2)) expect when rk A" =2 and K = Q,, (see [30]). So we only consider
the compatibility between w(A) and the irreducible constituents of A (in (1a)), and that between
m(A) and rank two subquotients of A when K = Q, (in (1b)). This is one of the reasons that we
call such conditions weak compatibility.

(5) The compatible conditions in [22, Def. 2.4.2.7] are formulated using the Colmez-Breuil
functors ([10]) from smooth mod p representations of GLy(K) to mod p (pro-)(¢,T')-modules . One
may expect an analogue of such functors in the locally analytic setting.

Example 3.18. We give some examples on the conjectural structure of w(A). The pattern is
exactly the same as the mod p setting in [22, § 2.4], and we refer to loc. cit. for more examples
and details. For a smooth character ¢ of T(K), put 3(¢) := ®@i—_,04| - |5 "

(1) Let n = 2 and suppose A is an extension of Rk g(¢2) by Ri g(¢1). In this case P = B,
and L®|r has the form Co—Ci—---—Cy,., where C; are isotypic components of L®|p, P(C;) =

B = 0,d
Z‘ K . If A is non-split, m(A) has the following form:
GLQ ZZl,"-,dK—l

FE2 (L7 (0k), 2(61 @ ¢2)) = M9 — 1 — -+ — Tape = Fa? (L™ (0), 3(d2 @ 61))
where w; = ®~1(C;). If A splits or equivalently, A is crystabelline, then m(A) has the form:

dr—1

Ft2 (L (0k), (61 ® ¢2)) & F* (L (0 ), (62 © ¢1)) @ i,

We may expect these m; only depend on A®S.

(2) Let n =3, K = Qp, and A be trianguline, given by an successive extension of R g(¢i). In
this case, L®|7 has T isotypic components: there is a unique one Css such that P(Css) = GL3 and
for the others C;, P(C;) = B. If A admits a unique refinement, then w(A) has the form (we omit
L~ (k) in FG™(-))

Fyr(0(52(9)) Fye(s(s251(9))
GLs T~ 1 — T _ar,
]:B, (](¢)) ® (CSS) ]:B, (](U)o(ﬁ))

F5 (5(51(9))) Fpm ((s152(0))
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Another extreme case is when A = EB?:lRK,E((;ﬁi), or equivalently, A is crystabelline. In this case,

‘w(A) has the form @wey//fggf“(L_(OK),](w(qﬁ))) @ & 1(Css). Again one may expect =1 (Csg)
only depends on {¢;}.

(3) We finally give a non-trianguline example. Suppose n =3, K = Q,,, and A is a non-split

exlfension [0) a1 (I/nk one ; 2'.E (¢) by an 2.7 { 6(1uCiDl€ 7 (“Lk tw() ”L()(]Ule A . Let 1 < 0 GL > )
(} 1
GL] *

0 CL ) .Then L®|p, has the form C1—Css—C>, where P(C;) = P;, and P(Csg) = GL3.
2
Hence w(A) should have the following structure:

Py =

GL3(Qp) _9 an -1 GL3(Qp) 1 an
(IndPI_(Qp’; (pe™?) @ m(A)™ — & 1 (Css) — (IndPZ_(pr; (m(A) ®@p e odet) ® ¢)™.

3.3 Finite slope part

In this section, we consider the case where A is isomorphic to a successive extension of rank
one (¢, I')-modules. In this case, Conjecture 3.15 implies that 7(A) contains a subrepresentation,
denoted by m(A)®, whose irreducible constituents are given by locally Qp-analytic principal series.
We give an explicit description of W(A)fs, and show that in many circumstances that the explicit
7(A)® is indeed a subrepresentaiton of w(A) (whose definition a priori depends on the global setup
and the choice of p).

Let .# be a minimal filtration of A, and assume the associate parabolic subgroup P = B. There
exist smooth characters ¢; : K* — E* such that gr;.% = Ry g(¢i). Let C := Cz and B¢ be the
associated Zariski closed subgroup of B. Put Ao := dg > cg Ao As in [20, Def. 2.2.6], a weight in
L®|7 is called ordinary if it is equal to w()\g) for some w € #. We have by [20, Thm. 2.2.4]:

Theorem 3.19. The only weights that occur with multiplicity 1 in L®|r are the ordinary weights.

Proof. The case for K = Q, is proved in [20, Thm. 2.2.4]. From which, we easily deduce that
for general K, if a weight is not ordinary, then it has multiplicity strictly bigger than 1. As the
ordinary weights in Q,-case are all extremal, i.e. a highest weight for a certain Borel subgroup, an
ordinary weight for general K is also a highest weight. Together with [20, Lem. 2.2.3], it is not

difficult to see an ordinary weight (for general K) occur with multiplicity 1. O
We define (L®| BGal(K/@p))ord to be the maximal Bgal(K/ Q )—subrepresentation such that all its
C

weights (restricted to B¢ via the diagonal map) are ordinary. We recall an explicit construction
of (L®]Bc;a1(x/@p))°rd ([20, § 2.3, § 2.4]). For w € #p,, let I C w=(S) N C be a subset of pairwise
orthogoncz;l roots. Denote by G the Levi subgroup containing T with roots exactly +1. Then
Gr = Tre x [],e; GL2 where Tye & (Gm)”_Qm, and B N G also decomposes as Tje times the
product of the induced Borel B, in each GLg. Similarly, T = T7e x [] acr Lo where Ty, is the
corresponding split torus in GLy. Put L; := w(\)|7,. ® (RaLq) where L, is the B,-representation
defined as the unique non-split extension of w(\)|r, by (saw)(N)|z,. If I’ C I (hence I’ also consists
of pairwise orthogonal roots), then Ly C L;. Put

Ly = lim Ly.
1

The following theorem is due to Breuil-Herzig.
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69wGWBC L(’L)Urd K = Qp

Theorem 3.20. We have (L®’Bga‘“</@p>)0rd = {EB v drw(A) K #Q,
we Bo P

Proof. The Qp-case is [20, Thm. 2.4.1]. Assume K # Q,. By the same argument of Step 1 of the
proof of [20, Thm. 2.4.1], SOCBGal(K/Q,,)(L®]Bca1(x/@p>)°rd = Dueny, dxw(N) (as Bo-representation).
C C

Let e € (L®|BGa1(K/@p))Ord. As (L®|BGa1(K/Qp))0rd can be spanned by weight vectors (of ordinary
C

weights) for T. We can and do assume e is an weight vector for 7', which, by Theorem 3.19, has
the form ®;~1§160i where each e, is a weight vector (unique up to scalars) of weight w(\) for Ty,
(with a common w for all ;). Consider the Bc ,,-subrepesentation of LY generated by e,,. If it
is not equal to Ee,,, then one easily gets a non-zero weight vector (for T') in (L®| Bc;aux/@p))ord of
the weight of the form (dg — 1)w(A) + X with A" # w(\), which is however not an orginary weight.
The theorem follows. ]

Let ¢ := @7, ¢; be a refinement of A. Put x := ¢(e7 ' 00) : T(K) — E*, hence x = j(¢)z%.
Recall for w € V/n, w(¢) = g Py-1(;), and we put w(x) = w(g) (et 0 0) = j(w(p))z%%. By [55,
Thm. (iv)], we have:

Lemma 3.21. For w € #,, (Indglj’zﬁg)w(x))(@p—an = }'SI:“(L_(HK),](w(gb))) is topologically

wrreducible and pairwise distinct.

For K # Q,, for w € #g,, we set (A, )8 = (In dGL'(L( ))w(X))QP*an and (A, ¢)®
Ouwewy, T(A, #)® (which is hence semi-simple).

For K = Q,. Let w € #p,, and I C w™!(S) N C which is a subset of pairwise orthogonal
coroots. We put

(A, 9)c; = (X)) (™! 0 0))|re @8 (Bacrm(Au.a)) (17)

where Ay o is the rank 2 subquotient of A with irreducible constituents given by A,-1(; and
Ay-1(i1), With @ = €; — e;41, and m(Ay,q) is the associated locally analytic representation of
GL2(Qp). Note that m(Ay ) is the unique non-split extension of the form

(Indiy 2 (0131 @ Bum1(41) @ — (Ind G20 (114171 @ 1)) &0

GLn —an S 3 S
Set w(A,¢)r = (Indigi (™) o w(A,9)a) %, w(A,9) = lim, w(A,6);, and 7(A, )" =
EBwEWBCT((A, #)5. By Lemma 2.8, w € #p,, is equivalent to that w(¢) is a refinement of A. By
definition, it is straightforward to see m(A,w(¢)) = (A, ¢)®, which we also denote by W(A)fj(d)).

Thus we have 7(A)f = EB¢/7T(A)£§,, with ¢’ running over the refinements of A. The following
conjecture is a direct consequence of Conjecture 3.15.

Conjecture 3.22. Let D be a trianguline étale (p,I')-module of Sen weight h such that D[%] =

A[}]. Then w(A)S is a subrepresentation of TA_GKW(D)-

In the next sections, we collect some results towards the conjecture. We end this section by
some examples, and we invite the reader to compare them with [9, Ex. 2.1.5, 2.2.2].

Example 3.23. (1) Suppose A is crystabelline, hence A = & R p(¢i) and B =T. We have

T(A)® = ey, (Indg 7y w(y))B2n.
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(2) Suppose K # Q,. In this case m(A)S is semi-simple and isomorphic to

@ F e (L™ (0x), ()

where ¢ runs though refinements of A.

(3) Suppose n = 3, K = Q, and fir a refinement ¢ of A. If Bc = B, then n(A)® has the
llowi
following form ——
Fp (L (0K),9(51()))

—_—

FU (L™ (0k), 1(9))

—_—

FOL3 (L~ (0k), 2(s2(6)))-

If B = , then ©(A)® has the form (noting A has 3 refinements in this case)

O O ¥
O ¥ ¥
* O O

(PS5 (L7 (01), (0) — FG2 (L7 (0x),2(51(9))) ) @ FE (L (6x), 52(6)))
& (FE (L 0r),a(s251(6)) — FF2 (L7 (0k) a(s2152(0))) )

(4) Suppose n = 4, K = Q, and fir a refinement ¢. Suppose Bo = B, then w(A)® has the
following form

FSM (L™ (0k), 9(51(9)))
/ T
Ft (L™ (0k), 9(¢) ———— F5o4 (L™ (0x), 2(52(9))) Fl (L™ (k). o(s155(0)))
\ /

Fol (L™ (0k), 2(s3(0)))

3.3.1 Generic trianguline case

Keep assuming A is a trianguline (¢, I')-module of constant weight 0 of rank n over R g. We call
A generic if d)iqu_l ¢ {1,qli(1} for i # j.

Let D be as in Conjecture 3.22, p be the associated Gali-representation. We assume moreover
the Jacquet-Emerton module Jg(w(D)) # 0 (cf. [42]), which is equivalent to that D appears in
the patched eigenvariety of Breuil-Hellmann-Schraen [18]. As we deal with a single p-adic field K,
we use the setting of [35, § 4.1] (that is a slight variant of [18]) and let £ be the corresponding
patched eigenvariety (that was denoted by X (p) in [35, § 4.1], p being a mod p reduction of p).
A refinement ¢ of D is called appearing on the patched eigenvariety if there exists an algebraic
character z# of T(K) such that (p,(¢)opzt) € €. Let Xiyi(p) be the trianguline variety of [17,
§ 2.2] (where we drop the framing “[0” in the notation). As ¢ is a refinement of D (and is generic),
by the construction of Xii(p) (cf. [18, § 2.2] and Remark 2.9), there exists w € #% such that
(p, 9z M) lies in Xiyi(p). We prove the following theorem in the section.

Theorem 3.24. Suppose all the refinements of D appear on the patched eigenvariety, then Con-
jecture 3.22 holds, i.e. m(A)® — (7(D) @ L(—wo(h)))[Zx = X—ox]
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Remark 3.25. Note that if D is crystabelline, then A =2 @' |A; (and Bc =T). In this case, by
[17] [19] (for strictly dominant h, or equivalently for regular X), [67] [68] (for non-regular X\), the
second assumption is equivalent to Jp(mw(D)) # 0.

We have j(¢)dp = Q¢ - }{’ For w € #), denote by &, := (®?:1¢¢)z“’(h), and Y, =
5wop(e™l 0 0) = 2 *)(¢)dp. By assumption and [18, Prop. 2.9, Thm. 3.21], there exists w € #x
with maximal length such that (p, x) € £.7 In particular, for w' > w, (p, xuw) ¢ €. By definition,
the point (p, xu) gives rise to an injection of T'(K)-representation

zw"\](d))ég = Xw — JB(7(D)),

which by Breuil’s adjunction formula ([12, Thm. 4.3]), induces a non-zero GL,, (K )-equivariant map
(where (—)Y is the dual in the BGG category O)

FSUn (M~ (—w - N, 5(¢)) — 7(D).

By the structure of Orlik-Strauch representations [55, Thm.] and the fact ¢ is generic, the map
factors though an injection

FEE (L™ (=w' - X), 9(6)) — (D), (18)

for certain w’ > w. However, by [11, Thm. 4.3], this implies x}, < Jp(7(D)) hence (p, xu') € E.
By (the maximal length) assumption on w, we have w’ = w. Now consider the representation

(Ind$n 8 6, (e7Lo0))@—an 22 FGLn (M~ (—w-A), 5(¢)). By [12, Cor. 3.3], socar,, (k) ((Inda{8) 5, (e 1o

B~ (K) B~ (K)
0))r—an) = fg’Ij"(L*(—w - A),2(¢)). By [65, Thm.], all the other irreducible constituents of
(Indg%’ég) 6w(e7! 00))% " has the form fngn(L*(—w’ - A),2(9))) for w’ > w, which hence can
not inject into w(D) (by assumption on w). By [21, Prop. 4.8] (see also Etale 1 in [13, § 6.4]), we
deduce

GLyp (K — —an ~ n(JT—
Homgy, (g,) ((IndB-(%))fsw(S L00))% = 7(D)) = Homgy,, (g, (Fgo" (L™ (—w- ), 2(4)), 7(D)).
(19)
The injection (18) (noting w’ = w) induces hence an injection

(nd527 5 0 (e 00)) %~ s 7 (D). (20)

Applying T)\_QK on both sides and using [50, Thm. 4.1.12], we get

FEEML7(0k), 2(9)) = (Indg 1) (™1 0.0)) %7 < m(A).

By assumption in the theorem (and using Lemma 3.21), we see
socaL, (1) T(A)" 2 @y(Ind 1) g™ 0 0) %7 s 7(A) (21)

where ¢ run over refinements of D. This finishes the proof for K # Q, (noting m(A)® is semi-simple
in this case).

To prove the K = Qp-case, we first construct some representations. It is sufficient to show
F(A)(f; — 7(A) for each refinement ¢. We fix ¢, and let w be as above. Let I C S be as in the
discussion below Theorem 3.19 (consisting of pairwise orthogonal roots).

"One may expect that &, is a trianguline parameter of Dyig(p). But we don’t need this in the paper.
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Lemma 3.26. We have w > [] c; 5o =: 51.

Proof. 1t suffices to show each s, appears in w for o € I. If s, does not appear in w, then w - A is
P,-dominant. We have then (cf. [55, Thm.])

Fprn (L7 (—w-2), (@) = Flm (L7 (—w - ), (Indj gy, g, (@)(6)))
> FS (L (- X),2(50(0)))

The injection (18) then induces 2 *)(s4¢)0p — Jg(7(D)). By the global triangulation theory [51]
[54], this implies s4(¢) is a refinement of D, contradicting o € I. O

For a = e;—ej1 € I, as ¢ is generic, there exists a unique non-split extension D; ;11 of Rg(i11)
by Re(d;) where ;11 = ¢; 112" and §; = ¢;2"+1 (recalling h; > hiy1). Let 7(D;,i+1) be the locally
analytic GLg(Q))-representation corresponding to D; ;41, which has the following form

(I dGLg Qp ¢z ”16_1 ® ¢i+12hi)(@p—an o (IndgEZ(((@Q;S) ¢i+lzhi5_l ® ¢izhi+1 )Qp—an, (22)

where the extension is the unique non-split one. Consider the parabolic induction (where P; =

BG[):

QL. N _ Qp—an
(¢, A (I dp (é%%;(@ ) (8177 ® (Baerm(Diit))) ©p (74 o HPI)) s

We have (by (22))

FEon (M (=51 2),(8)) = (Ind =g 6,y (7o 0)) %

~ GLn = GL —an -~ Qp—an
> (A5G0, (0,) Ol © Boer(ndz GR (90" n1e ™) @ i) &) @ (7 00™))
— 7T(¢7 )‘)I

As w > sy, we have a natural surjection (induced by M~ (—w - \) < M~ (—=s7 - A)).

pr : (Indpy (%) 8, (7 0.0)) %7 —s (Ind 5Ly ) 6, (7 0 0)) %72,

Let m(¢,w, A\)r be the (unique) quotient of 7(¢$, A);/ Ker pr such that the composition

(Indiy 78 8, (=™ 0. 0)) %™ —— (6, A)1/ Ker pr — (¢, w, \)s

is injective and induces an isomorphism on socle. Note by [12, Cor. 3.3], socqr, (g, )(Indng(g@’;) dw(e™

0)) %o = Fln (L~ (—w - ), 5(9)).
Proposition 3.27. We have T)\_eﬂ(qb, A & W(A)§s7 and the natural projection w(¢p, \)1 — w(P, w, A)1
induces an isomorphism

(o, N) = Ty (g, w, M

Proof. We have

Qp—an
(6, M) 2 (ndGr @) 120 (Bl @ Baern(Dii))) @5 (' 00™))

GLn _ Qp—an S
= (nd ) o) (Blre ® Baerm(Bigsn)) @5 (71 067)) " = 2(A)F,
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where the first isomorphism follows from Proposition 3.5, and the second from the isomorphism

- ~Y — ~ GLn _
((hirlojrifl,hﬂri)W(Di,i—l-l) = m(Aii+1) by [37]. Hence SOCGL,(Qp) Ty 97T(¢, A = (IndB,(f@%) P(e Lo

6))@~2" which has multiplicity one as irreducible constituent. The projection 7(¢, A\); — 7(¢, w, \)r
induces a surjective map

T (o, N — Ty n(p,w, \)r. (23)

As we have (the second isomorphism following again from Proposition 3.5, or [50, Thm. 4.1.12])

- ~ n - —anl ~v - GLTL — —an
s0¢aL, (@) 5 (6, N1 2 (Ind§lr, | d(e™ 0 0) %™ 2 10 (Ind (31 %) 5, (71 0 6))%
— T)TGW(QSa w, )‘)I

(23) has to be an isomorphism. The proposition follows. ]

We get the following corollary, being of interest in its own right.

Corollary 3.28. For any J C I, the representation ]:g%” (L= (—wg - A),3(ss(4))) appears as irre-
ducible constituent in w(¢p,w, \)s.

Proof. By Remark 3.2 and [50, Thm. 4.1.12], the only irreducible constituent of 7(¢,\); that is
translated to 5" (L™ (6), (s.(4))) under Ty, is 5 (L~ (—wo- ), 2(ss(¢))) and has multiplicity
one. As fgI:"(L*(Q),](sJ(@)) appears in T)\_HW(qﬁ,w,)\)I by Proposition 3.27, fgI:"(L*(—wo .
)\),](SJ(QS))) has to appear in 7T(¢7w7 A)I O

In general, for J C I, we have

- GLn(Qp N _ Qp—an
(e, \) g = (IndB,(((@Q;)éJ(Qp) (5’TJC o2 (®aeJ7T(Di,i+1))) ®E€ o HPJ) ’

-~ (Indg%’b[ (5‘TIC ® (@aeJW(Di7i+1)) & (@aGI\J(IndgE2 ((bizhiE*l) ® (¢i+1zh¢+1))an)) ®e lo QPI)

— (IndﬁE"G, (‘ﬂTzc®(®a€J7T(Di,i+l))®(@\)ael\J(IndgEQ(@Zhi“g_l)®(¢i+1zhi))an))®5_109PI)
— TF(d)v )‘)Ia (24)

where the third map is induced by the natural surjection (Inng:Q((bizhis_l) ® (gip12M+1))an —

(Inngj2 (2167 )@ 12")20. By construction, it is easy to see (24) induces a map 7(é, w, \) ; <
(¢, w, \) 1, which restricts to an isomorphism on the socle hence is injective.

For () # J C I, by assumption, s;j(¢) is not a refinement of D. The following lemma is hence
an easy consequence of the global triangulation theory.

Lemma 3.29. For () # J C I, and any algebraic character z* of T(K), (p,1(sj(9))z") & E.
Consequently,

Homy ) (5(55(4))d52", Jp(n(D))) = 0.

Proposition 3.30. The restriction map

Homgy,, (q,) (7(¢, w, X)1,7(D)) — Homgy,, (qg,) (FEE (L™ (—w - N), 5(9)), 7(D))

s a bijection.
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Proof. By (19), it suffices to show

G n — —an
Homey,, (g,) (7(¢,w, N1, (D)) < Homer,, g, (Indg ) 8w (e 0 )% x(D)).

But this follows by [21, Prop. 4.8] (noting the condition (iii) is satisfied by Lemma 3.29). O

By the proposition, the injection uniquely extends to an injection 7 (¢, w, A); < m(D). By vary-
ing I varying and using the discussion below (24), it uniquely extends to an injection hgl ; (P, w, \) —
7(D). Finally, by applying T % and Proposition 3.27, the injection (21) extends to an injection
W(A)(f; — m(A). The theorem follows.

Remark 3.31. Although the element w is rather auxiliary in the proof, it is an important invariant
of Dyig(p). For example, when D is crystabelline, w reflects the relative position of the Hodge
filtration and Weil filtration (associated to ¢) (cf. [12] [19] [67]). As the information on Hodge
filtration of p is lost in A, it should not be surprising that the information of w disappears in w(A).

3.3.2 Steinberg case

Theorem 3.32. Suppose h is strictly dominant, D is semi-stable non-crystalline with the mon-
odromy N"=1 £ 0 (on D (D)), D is non-critical, and D appears on the patched eigenvariety, then
m(A)S < T %7 (D).

Note that by the assumption, A admits a unique refinement .%. In fact, there exists a smooth
character 17 of K* such that A is a successive non-split extension of Ry (1| - | *). The set

C := Cgz is equal to R". By definition socGLn(K)W(A)fS ~ (In qGLn(K) 27 0xp o det)Qp*aﬂ o

B~ (K)
(In dgLTé()) 270 )Y&—an @ -y o det. We have as in [35, Lem. 4.6]:

Lemma 3.33. Let x be a locally Qp-analytic character of T(K), then Hompr) (X, Jp(m(D))) # 0
if and only if x = 2 5p(n o det).

Let St := (Indj; ({5 1)/ ¥ oo p(Indp 25 1), S%(0) := St @pL(N),

SH)™ 1= (Indr ) )@/ 3™ (Gl [(x) p)@on,
POB

where L(\)p is the representation of Mp(K) of weight A. It is clear St>(\) < St*(\).
Lemma 3.34. ° We have socgy,, (i) St*"(A) = St>°(X).
Proof. Denote by 0 the zero weight of tx. As the translation T° /\Q induces an equivalence of categories

(cf. [50, Thm. 3.2.1]), we reduce to the case where A = 0. We write St*" := St**(0) and St :=
St>°(0). Put ((Ind —)% denoting the continuous induction)

ggeont . ( GLn CO/ Z In dGLn(K 0,
POB

which is a unitary Banach representation with the supreme norm. It is clear that St < St It
is sufficient to show that any irreducible constituent ]—"g'{“" (L™ (w-0),7p) of St* (or more generally,

8] thank Zicheng Qian for drawing my attention to the continuous Steinberg representation.
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GLn (K)

of (Ind 1)@ =21 with w # 1 does not admit a GLj,(K)-invariant lattice where 7p is a certain

B (K)
subquotient of (Indé’i ((I[?)m Lp () 1)°°. As the central character of 7p is trivial, this follows easily
from [12, Cor. 3.5]. O

By Lemma 3.33, we have an injection 2*d5(n o det) — Jg(m(D)), which induces an injection
(e.g. see [35, Prop. 4.7])
St>*(\) @ n o det — (D). (25)

Again using Lemma 3.33 and similar argument as for the generic case (using [21, Prop. 4.8]), the
embedding (25) extends uniquely to an embedding

St*™(A) ®g n o det — 7(D) (26)

Lemma 3.35. We have T/\_GK St (A) = (Indglfég) 270K )Qp—an,

Proof. By [50, Thm. 4.1.12], Ty % (Ind X (5) 22 @—an o (1nqGlnlB) =0 )Qan It suffices to

B~ (K) B~(K)
show for P 2 B, T\ Ox (Indglj’(}(g) L(\)p)®~2 = (. This follows from Proposition 3.5 and the
fact T/\_GKL()\)p =0 (cf. Remark 3.2). O

By the lemma, the injection (26) induces
SOCGL,, (K) m(A)S = (Indglj’(’gg) 270 @ (o det) — T;HKW(D) = 7(A).
This finishes the proof of Theorem 3.32 when K # Q,.

Assume henceforth K = Q,, we first construct a representation 7(D)® in a similar way as 7(A)
Fori=0,---,n—1, let D; ;11 be the subquotient of D, which is an extension of Rpg(n|-|" ¢~ 12"i+1)
by Re(n| - [*7*2"). Let m(D;;+1) be the locally analytic GLa2(Q,)-representation associated to
D; j+1. Recall that w(D; ;1) is an extension of the form (where Ao, = (A, A\j1) for a = e;—e;41 € 5)

fs

nodet @p[St5"(A\a) — L(Aa) — (Imd?j2 Al T g gt L yan, (27)

Let I C S be a subset of pairwise orthogonal roots. Consider

)Qp*an. (28)

p = (S (B (D1 141)) © (Bepmer sl [124) 05 (7 007)
By [55, Thm.], it is easy to see St™()\) ® (1 o det) has multiplicity one in 7;. Let 7(D)% be the
quotient of 7y of socle St™(\) @ (nodet). As St*"(\) ® (n o det) is a quotient of

)pran

nodet®g ( Indg;z([(}(%)j) (@ael Stan(Aa))) ® (®ei—€i+1§§1| ’ |nK7izhi) 029 5) e togl

)

the latter being a subrepresentation of 77 (using (27)) and socar,, (k) St™ (A) @(nodet) = St™(\)®F
(n o det), we deduce St*(\) @ (o det) < m(D)%.

For J C I, and e; — e;41 € I'\ J, the natural composition
(I (] - [555 0 ] [3 1241 ) (=71 0.6))™ — 0 det @i St —— (D)

induces a natural map m; — 77 hence m(D)% — 7(D)® which has to be injective, as the both
have socle St>(\) ®g n o det with multiplicity one (as irreducible constituent). We define finally
(D))" := hﬂ . 7(D)%, with I running through subsets of S of pairwise orthogonal roots.
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Lemma 3.36. We have T/\_GW(D)fS‘ =~ r(A)S.

Proof. Let I C S be a subset of pairwise orthogonal roots. By Proposition 3.5 and [37], T} On =

(A5, As SO0CQL, (Q,) m(A)l = (IndGL’E(Q§) 2= = @ podet, which has multiplicity one in 7(A)®.

The quotient map m; — 7(D)% induces 7(A)%F — T 97(D); which has to be an isomorphism as
the both have the same socle (with multiplicity one as irreducible constituent). By taking direct
limit, the lemma follows. ]

Recall for each D;H, one can associate a Fontaine-Mazur L-invariant £; € E. For each L;,
one can associate as in [35] a locally analytic representation St*" (A, £;) which is isomorphic to an

extension of v3° ®p L(\) by St*(X), where v (IndGL” @) D*/>0- P IndGL"(Q”) 1)*®is a

P (Qp) Q™ (Qp)
generalised Steinberg representation, P; being the minimal parabolic subgroup associated to i. Let
St (X, L)@ pnodet := @ 7 St (A, L)@ pnodet. As the subrepresentation nodet @[St3™(Aq)—

Stan ()
L(\y)] of m(Dj iq1) is just St* (A, £;) (for GL2(Q))), it is not difficult to see (e.g from the explicit
construction in [35, Rem. 2.18]) there is a natural injection St*" (X, £;) ® g n o det — W(D)Esei_eiﬂ}
hence St*(\, L) ®g n o det — w(D)®. By [35, Thm. 1.2] and Lemma 3.34, the injection (25)

uniquely extends to an injection
St*™(\, L) @ n o det — (D) (29)

By an easy variant of the argument in [13, § 6.4] (see also [58, Prop. 7.4]), the injection (29)
extends uniquely to an injection m(D)® < 7(D). Indeed, for the irreducible constituents of
(D)5 /(St* (X, L) @ n o det), we don’t need the argument in Etape 3 of [13, § 6.4], hence the
extension of the injection is unique. Applying T 9 and using Lemma 3.36, the theorem follows.

Remark 3.37. Note that the simple L-invariants of D play an auxiliary role in the proof, and they
are actually invisible in w(A)S.

4 Wall-crossing and Hodge filtration

Keep assuming D is an étale (¢, I')-module of rank n over Rk g of integral Sen weights h. We
study the interplay between 7(D) and its wall-crossing Ti‘eK T, % (D) = T:\OKW(A), in particular
its possible relation with the Hodge filtrations of D when D is de Rham.

4.1 Wall-crossings of 7(D)

Applying the wall-crossing functors to (D), we obtain various locally Q,-analytic representations of
GL,,(K). We make some conjectures and speculations on these representations. As we find it more
convenient to work on the dual side, throughout the section, we mainly consider the translations
of m(D)* (see Remark 3.34 (1) for a related discussion).

By Lemma 3.9, m(A)* & sz(w(D)*. There are natural maps of functors ¢ : id — Ta)‘;:Tf% and
i T TVE — id induced by B = L(—u(h)) ®p L(—wo(h))" and L(—wo(h))®p L(—wo(h))" — B

respectively.

Conjecture 4.1. (1) The natural map ¢ : 7(D)* — (Te)‘iw(A)*)[ZK =] =: (A, \)* is injective.
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(2) 7(A,X\)* and the image mo(A,\)* of k : Té\;:ﬂ(A)* — m(D)* only depend on A and .
(8) Assume that h is strictly dominant. The followings are equivalent:

(i) dimg Dar(p)e =1 for all o0 € Yk,

(ii) o (A, N)* = 7(D)",

(iii) m(D)* = w(A, N\)*.

Remark 4.2. (1) We can also construct w(A,X) = (w(A,N)*)* and mo(A, ) = (mo(A, N)*)* from
the translation of w(A). Indeed, we have similar maps (' : (D) — Ti\éKﬂ-(A) and k' : Ti‘eKﬂ'(A) —
w(D). Using the argument in the proof of Lemma 3.9, ' (resp. k') coincides with the dual of k
(resp. of v). Hence ' factors through the quotient mo(A,\) of (D), and ' factors though its
Xr-covariant quotient (A, X). Congecture /.1 (1) is equivalent to that k' is surjective.

(2) Conjecture 4.1 (1) indicates that w(A, \) is a “universal” object (depending only on A and
A). Namely, for any étale (¢,T)-module D' of Sen weights h with D'[1] = A[}], w(D’) should be a
quotient of w(A,\).

(3) Suppose A is de Rham, and h is strictly dominant (hence X\ is dominant). Let moo(A) be
the smooth GL,, (K )-representation associated to A via the classical local Langlands correspondence.
We conjecture that there exists r > 1 such that

T(A,N)8 = (100 (A) @ L(A)) "

(4) Suppose A is de Rham, and h is strictly dominant (hence A is dominant). The quotient
map K’ : w(A,\) — 7(D) should decode the information of Hodge filtrations of D. Note that when
n > 2 or K # Qp, the kernel of k' should also carry some information of Hodge filtrations of
p (see discussions in § 4.2.4). Similarly, the cokernel w(D)/mo(A,X) should carry some piece of
information on Hodge filtrations, which together with its extension group by mo(A, X), would reveal
the full information of p.

(5) There should exist certain Schneider-Teitelbaum dualities between m(A, X\)* and mo(A, N)*
(see for example Conjecture /.24, Theorem 4./1).

(6) Conjecture 4.1 (3) is closely related to the “local avatar” of the Fontaine-Mazur conjecture:
p is de Rham of distinct Hodge-Tate weights if and only if w(D) has non-zero locally algebraic
vectors. Indeed, when n = 2 and K = Q,, Cokerk is exvactly the dual of the locally algebraic
subrepresentation of (D) (see Proposition /.13) hence (ii) is equivalent to that w(D) does not
have non-zero locally algebraic vectors.

(7) Assume D is generic crystabelline and X is dominant. Let m(D)®™ C w(D) be its finite slope
part given in [21, § 5]. By the proof of Theorem 3.2/, ©(A)® is no other than TA_GKW(D)fS. We
have hence natural commutative diagrams (k', /' being as in the above (1), and K, tf, being defined
in a similar way with ©(D) replaced by (D)®)

TL\GKW(A)fS — Ti‘gKﬂ'(A) ©(D)s —— (D)
©(D)s —— (D) TAy m(A)S —— T w(A)

By results in [49] (on the wall-crossing of Verma modules) and [50, Thm. 4.1.2], we have an
isomorphism cosocGLn(K)(TieKw(A)fs) = @qs}-g}" (L= (=wo - A),5(¢)) and

T2, T(A)S = @ FSE (M~ (=N), 2()) = ®eF g (L™ (—wo - N), 1(8)).
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We also have TL\GKW(A)fS[ZK = x| @(lgng”(M_(—)\)v,j(qb)) and socqr,, (K) Ti‘GKTI'(A)fS
ngn(L_(—wo - A),2(¢)). Moreover, it is not difficult to see ki, factors though

DT g (M (=X),3(9)) — BF g (M~ (—wy - A), 3(¢)) — m(D)"

where wy € Wi is the mazimal length element such that }'SI:" (L™ (—wg - ), 9(¢)) = w(D). In
particular, ki, is surjective if and only if socGLn(K)ﬂ(D)fs >~ (D), in contrast to that r' is
conjectured to be always surjective. Indeed, the composition Ti‘gKﬂ'(A)fS — TL\QK s 7(D) already
carries the information on wg. This also suggests that the translation of the “supersingular” con-
stituents could have Orlik-Strauch representations as constituents when K # Qp or n > 2. For i,
one can show that Im(ef,) = EB¢]:]§%” (L™ (—wo - A), 3(¢)).-

(8) Finally remark that we may use various wall-crossing functors (for the walls in the Weyl
chamber) to obtain more representations. We will study these for GLo(K) in the next section.

Theorem 4.3. The conjecture holds for GL2(Q)).

Proof. The theorem follows from results in [37]. We include a proof for the reader’s convenience.
The case where A is itself singular is trivial, we assume the weight A is regular. Twisting D by a
certain character, we can and do assume h = (k,0) with k € Z>1. Let ¢ = h%2 —2h+4utu™ € U(gl,)

(1) ?) Recall D is equipped with a natural gly,-action with

3=k—1and c=k?—1 (cf. [30, § 3.2.1], see also [37, Prop. 2.13]). We have T)\_e =(—®g Vi)[c=
—1)®g 2% odet. By [37, Prop. 2.19 (1) |, T/\_QD ~ A. By Lemma A.3, we have an exact sequence

be the Casimir element, and 3 = (

0— AY — TMNA — A — 0, (30)

where Af := (TA,A)[c = k% — 1] (hence ¢ factors through D < AF), and where k : T2)A — D

factors through an injection A” < D. Note that Af and A® are all (¢, I')-modules of rank 2 (which
we can precisely describe as in [37, Prop. 2.19]). Let dp be the continuous character such that
Re(dpe) = A2D. By the discussion above [37, Prop. 3.1], the involution wp on D¥=0 (cf. [30,
Thm. 0.1 & § 4.3.1]) induces an involution on (Ti‘eT;GD)wZO hence on (A#)¥=0 and (A”)¥=09. Using
these involutions, we have a GL2(Q))-equivariant exact sequence (cf. [37, § 3.1]):

0 — AF Ry, PH(Q,) — (T29A) Ky, P1(Qy) — A" Ky, P(Q,) — 0.

We have (TA,A) K5, PL(Q,) = Ti‘GT)\_G(D X5, P1(Qp)). By similar arguments as in [37, Thm. 3.4],
we have

0 —— (AN ®p dp odet ——— T2T5(n(D)* @ 6p odet) ——— mo(A,\)* @ 6p odet ——— 0

! ! !

0 —— A'Rs, PH(Q,) — (T2, A) K5, PH(Qp) N A’ K5, P1(Q,) — 50

And the maps ¢, k for 7(D)* are compatible with the respective maps for D. As D does not have
non-zero U(gly)-finite vectors (using X is invertible in Rg), by Lemma A.1, ¢ : D — TQ\QT;GD is
injective. Hence D X5, P'(Q,) — AfXs, P1(Q,), and (1) follows. By [37, Prop. 2.19], it is easy to
see A? just depends on A and ), so does mo(A, \)*. Finally, by [37, Prop. 2.19 (3) (4)], D is not
de Rham if and only if A* 2 D if and only if Af = D. (3) follows. O
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Remark 4.4. (1) By Lemma A.1, the statement in (1) for GLa(Qp) is a consequence of the
following:
w(D)* does not have non-zero U(g)-finite vectors. (31)

For this, we (tacitly) used in the proof the fact that 7(D)* ®p 6p o det injects into D K5, PH(Q,).
However, (31) is also a direct consequence that w(D)*, as coadmissible D(H, E)-module, is pure
of dimension 1. Later, we will use a similar argument to prove (1) for GL2(Q,2) (under mild
assumptions).

(2) Certain parts of the statement in (3) can also be dealt with using global method (without
using (¢, T')-modules), see Remark 4.3/.

(8) Our proof of the statement in (2) crucially relies on Colmez’s construction of m(D) wvia
(¢, T')-modules. However, when w(D) appears in the completed cohomology of modular curves (with
trivial coefficient), then TL\QT/(OW(D) appears in the completed cohomology with non-trivial coeffi-
cients (cf. [44, Thm. 2.2.17]). In this setting, one may expect a geometric proof of (2) via Pan’s

approach (cf. [56] [57]).

4.2 Hodge filtration hypercubes for GL,(K)

We consider the case of GLo(K). Applying various wall-crossing functors to 7(D), we construct two
hypercubes consisting of locally Q,-analytic representations of GLy(K'). We discuss their possible
relation with the Hodge filtration of p. We show some properties of the hypercubes, notably for
K = Q2. We then use the hypercubes to investigate the internal structure of (D).

4.2.1 Formal constructions

Let A be a dominant integral weight of tx. We use some functors on Mod(U(gx)y,) to factorize
the maps k and ¢ in the precedent section.

We introduce some notation. Throughout this section, let g := gl,. For I C X, and a Lie
algebra A over K, denote by Ay := [[,.; A ®Ko E. When I is a singleton, we use its element
to denote it. We denote by A; := (As)ser, and 0; = (1,0),¢7, as weights of t;. For an integral
dominant weight p; of t;, we denote by Lj(uy) the algebraic representation of gy of weight pj.
Hence Li(ptr) = ®oerLo (o). Let sp:=1],c; 50 € #i.

Let Z, be the centre of U(g,), hence Z; := ®,c1Z, is the centre of U(gs). As before, we use
X);» X—0, to denote the central characters (of Zr) associated to A;, —0 respectively. Consider
the translation functor T;Ia’ : Mod(U(gr)y,,) = Mod(U(gr)x_,, ), which we also view as a functor
on Mod(U(gly, s)y, ) for J O I. Using the decomposition Z; = ®crZ, and L(—0; — sy - Af) =
ReerLls(—05 — S5 - As), it is clear that {TA_UH” }ser commute, and T;IHI = [loer T/\_Ue". In fact, by

similar reasoning, the translation functors for different embeddings commute. Put Oy := Ti‘gl T, 01 ,

which we view as a functor Mod(U(gk)y,) = Mod(U(gk)y, ). Then ©,, for ¢ € K commute, and
we have O = [[,cx ©o. Finally, it is easy to see the wall-crossing functor ©; does not change if
—0; is replaced by —07.

There are natural maps ¢ : id — Oy, k7 : O — id, induced by ¢; : E < Li(—0; — s;- A1) ®p
Li(—0r —sr- A1)V, and k7 : Li(—0; — sy - A\j) @g Li(—0;r — s; - A\1)¥ — F respectively. Denote by
19? = 07(—)[Zx = x)] = Oy, which is left exact. Note id — Oy factors through id — 19?. Denote
by ¥, the functor sending M to Im[©;(M) — M].

Lemma 4.5. (1) 9f9F =919F and 9597 =97t
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(2) 9707 =979, and 979, =9,.
(8) For I C Sk, we have V7 =[] ;94 and 97 = [[,e; 95 -
Proof. As ©,0, = 0,0, and Z = ®, 2./, the first part of (1) and (3) easily follow. The second

part of (1) and (2) follow from Lemma A.5 (1) (2) respectively. For M € Mod(U(gk )y, ), we have
a commutative diagram with surjective vertical maps

0,0,M — 0,M
| |
0,9, M —— ;M

T O

hence ¥, =979 . The rest part of (2) and (3) follow. O
We put Vi = ﬁg :=id. For I C Yk, we denote by

Vi = Coker (Y 9, = 97) = Coker (Y 9} ,y = 97), Vi := Coker (Y95 —id).

1I'cl oel oel
Lemma 4.6. We have V; =[[,c;V

Proof. For ¢ € I, we have a commutative diagram

Oc(Xrenfoy V7)) — O —— QUV;\{U} — 0

! ! !

! l !

V;(ZTEI\{O’} 19;) I V; — v (V_

Noy) — 0

The lemma follows. O

Lemma 4.7. Let M € Mod(U(gk)y,) and 0 #1 C Xk.
(1) Ker[M — 9] M| is generated by U(g,)-finite vectors for o € 1.
(2) VM are V; M are generated by U(gr)-finite vectors.

Proof. The case I = {o} follows from Lemma A.1. (1) follows by factorising M — 97 M as

M =95 M =9 05 M — - — 9] M.

o2 Vo1

(2) follows from the singleton case together with the surjective maps 97 M /9] n {U}M — V1M and
M/9;M — VM for o € I. O

We use the maps {V;9} — v}i_u{o_}ﬁ—;\{a_}}lmJ:@ (induced by 97 — VI) and the maps

{V+19+ — V+19 JUfo }} m J (induced by id — 19+) to build a dg-dimensional hypercube, de-
J
noted by % such that the centres of its d-dimensional faces (that are d-dimensional hypercubes)

are given by {V+19+} with #J = d (and INJ = ). For example, the centre of the entire hypercube

34



is ﬁ;K, the 2"~ Ddx yertexes are given by {VT} 1csy» and the centres of the 1-dimensional faces

are {V; 9%} seni ... Note that for INJ =0, and o ¢ I U J, the following sequence is exact:
Icyk\{o}

Viv; — Vit — Vigm?s — 0. (32)

Similarly, the maps {V;¥; — V;ﬁ;\{a}}mjzw (induced by ¥, — id) and the maps {V;¥; —
oeJ

\N {0}19}} 1nJj—¢ (induced by the natural quotient maps) form an dx-dimenisonal hypercube,
ceSg\(TUT)

denoted by [1~ such that the centres of its d-dimensional faces are given by {V 97} with #(IU.J) =

2dg —d (and INJ = ). For example, the centre of the entire hypercube is id, the 2(n—Ddk yertexes

are given by {V;ﬁgK\I}ICgK, and the centres of the 1-dimensional faces are {V; 9} oenp .
1UJ=%\{o}
For INJ =0, o € J, the following sequence is exact
Vit — ViV — Ve s — 0 (33)
Remark 4.8. In general, the functors V? and 19?} (resp. V7 and 97 ) may not commute. However,
one may expect they commute when applied to w(D)*. See Conjecture 4.19 (1).

Example 4.9. We give an example for dx = 3 to illustrate the above construction. We use 123
to label the embeddings in Y. Then the cube [JT has the form:

Vi Vidy Vi
A A A
0 0y \EEH
v A A
id 95 vi
Vidg Vi3 Vg
A A A
0 Ds V3l
A A A
03 03 \EEA
VE Viriiﬁg v123
A A A
Vi V301 Vis9i
A A A
Vi Vi3 V3s
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L1~ has the following form:

Vi Vivs Vi3
A A A
V3 93 Vs
v A v
Viag U V95
Vi3 Vi Vi
v Vi v
05 id A\
A 7 A
95 i V3T
VigVs Vis Vizs
A A A
Vs Vi Vs
A A A
ViU Vi r Vi

Example 4.10. (1) We apply the functors to the Verma modules M(\) = ®penMo(Ns) and
M (sx, - X). For o € ¥k, denote by Py(sy - \s) the projective envelop of Ly(ss - As) in the BGG
category Oy, which is a non-split extension of Ls(sy - A) by My(A\s). Denote by Pr(sr- A1) =
®oerPs(sq - Ag) which is actually the projective envelop of Li(sr - Ar) in Op,. We have

eO'MO'()\O') = @O'LO'(SO' . AO‘) = PO'(SO' . Aa)v (34)
hence ©,Ly(Ay) = 0. We then deduce
M) J=10

0 otherwise

VIgFM(\) = {
so LT (M (X)) just has M () in one corner and 0 in other parts. We also have

V30  M(AN) 29,V M(A) = Li(s1 - A\r) ®p Li(Ar) @ My, (un(As e\ qu))s

and the sequence (33) is just the following natural eract sequence tensor with Li(s; - A\j) Qg
Lpioy(Angoy) ®E Ms\ (rug)(As o\ (1u))
0 — Ly(S6 - Ao) — My(Ny) — Ly(As) — 0. (35)

For M(sy, - \), we have
M<SEK . )\) J :(Z)

V39, M(ss, - \) =
S (ZK ) {0 otherwise

so now 7 (M(sx, - A)) has M(ss, - A) in one corner and 0 elsewhere. Meanwhile,
VIO M(ssy - ) Z 0V M (ss, - A) = Mr(A1) © Li(Ay) @ My, 100y (S5,0\(107) - As\(1u))»

and the sequence (32) in this case is induced from (35) by tensoring with the other terms.

(2) Let M := ((IndgEQ(%)j(qS)z)‘)@P_an)* where ¢ = ¢1 @ ¢o satisfies 1oy # 1, unrg (qxc) .
By the discussion in (1) and [55], we see the hypercube (3~ (M) is no other than the dual of the
hypercube considered in [8, § 4].

36



Let o be another dominant weight, in particular, A and p lies in the same Weyl chamber. Recall
the functor T)‘f induces an equivalence of categories with inverse given by T ;i\ To distinguish the
functors, we add A (resp. u) in the subscript for the above functors to emphasize that they are
functors on Mod(U(gx)y,) (resp. Mod(U(gx)y,))-

Lemma 4.11. We have T) (V] 95 )T{ = V1,07,

Proof. 1t is clear that T;i\@I,qu = O . Together with T;‘Tf = id, we see Tﬁ‘ﬁ?MTf = 19?3 and
TV, I8 = V7, for I C k. Finally TV} 97 )TN = (TpVy, TO(T05 TV) = Vo, O

4.2.2 O (x(D)*) and H(7(D)*)

Let D be an étale (¢, I')-module of rank 2 over R g of Sen weights h. Assume h is strictly dominant
hence ) is dominant. We apply the above construction to w(D)*, and denote by L1 (w(D)*) and
E™ (7(D)*) the resulting diagrams (of the strong dual of admissible locally analytic representations).
We show some properties of (1% (7(D)*). We also propose some conjectures.

Lemma 4.12. Let V be a locally Q,-analytic representation of GLa(K) on space of compact type,
and suppose Z, acts on 'V wvia x,. Then Ti\ggTA_f"V does not have non-zero U(gy)-finite subrep-
resentations or U(gy)-finite quotient representations.

Proof. The statement for*subrepresentataons follows from Lemma A.4. We have by Lemma 3.9
T :\gJT/\_G boy o (Ti\g*T;ﬂ”V*)*. As T :\g*T/\_f)"V* does not have non-zero U(g,)-finite vectors

(Lemma A.4), T:\gUT N 92V does not have non-zero U(g,)-finite quotient representations. O

Proposition 4.13. Let V be a locally Qp-analytic representation of GLa(K) on space of compact
type on which Zk acts by xx, and let I,J C Xg, INJ =0. Then (V; (9,V*))* is the U(gr)-finite
subrepresentation of (9, V*)*.

Proof. By Lemma 4.7, V9, V* is generated by U(gs)-finite vectors. By Lemma 4.6, (V (9,V™))* =
Noer (V5 (0;V*))*. It suffices to show the statement for I = {o}. The natural surjective map
T 1597 (95V*) — 95 (9;V*) induces (9 (97V*))* < T 1% ((9;V*)*). As the latter doe
not have non-zero U(gr)-finite subrepresentations by Lemma 4.12, neither does (9 (9, V*))*. To-
gether with the tautological exact sequence

0 — (Vo (05V7)" — (05V7)" — (05 (9;V7))" = 0

we deduce any U(g,)-finite vector of (97, V*)* is contained in (9 (97, V*))*. The proposition follows.
O

By Lemma 4.7 and Proposition 4.13, we have:

Corollary 4.14. Let I,J C Xk, INJ = .
1) Viota(D)* and V79;7(D)* are Ulgr)-finite. In particular, (V& w(D)*)* are locally
1Y vy Sk
algebraic representations.

(2) (Vi 9,m(D)*)* is the U(gr)-finite subrepresentation of (¥;m(D)*)*. In particular, we have
Vs, (D) = m(D)klex.
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Proposition 4.15. Let 0 € ¥k, and suppose ng\{a}W(D)* # 0. Then D is ¥ \ {o}-de Rham,
i.e. dimg Dgr(D)r =2 for all T # 0.

Proof. Recall that 7(D) = IE~~3[m] where II., is the patched Banach representation of [4],
equipped with an action of the patched Galois deformation ring Rso, (—)%~~2" means the subspace
of locally R..-analytic vectors in the sense of [18, § 3.1], and m is a maximal ideal of R[1/p]
corresponding to p. We refer to the references for the precise definitions. Let Ro& be the global
section of the generic fibre X, := (Spf Roo)™® (that is a Fréchet-Stein algebra). By an easy variant
of [4, Thm. 5.2.4], the points on X, whose associated Galg-representation is ¥x \ {o}-de Rham
of weights hy;,\ 1,y form a Zariski-closed subspace Xoo(hy,\(5}) Of Xoo. Let RoE(hy,\(4}) be its
global sections, being a quotient of RYE.

Consider ITfe—(\7) = (IIHe @ LEK\{U}()\ZK\{J})V) By the same arguments of
[39, Thm. 8.4 and § 7], the locally o-algebraic vectors (for the GLy(K)-action) ITfee—an(\o)lale
are dense in TTE=30(\7). As the Reg-action on ITf=—an(\7)ale factors through Re&(hy,\(4}), 50
does its action on IIf=~2%(\7). By assumption, VEK\{J}TF(D)* # 0 on which Zg acts by x«,

o—la

hence (7(D) ®g LEK\{J}()\ZK\{U}))UA& # 0. In particular, ITf==2"(\?)[m] # 0. The proposition
follows. O

Remark 4.16. When ©(D) comes from the completed cohomology of unitary Shimura modular
curves, a similar statement is also obtained by [59] generalizing Pan’s geometric method.

We discuss the Galois data in [T ((D)*) and [~ (7(D)*). First, by the same argument as for
Lemma 2.1, we have

Lemma 4.17. For I C Yk, there exists a unique (p,I")-module Dy of rank 2 over Ri.e such that

Di[}] = D[1] and the Sen o-weights of Dy are hy if o € I, and (0,0) if o ¢ I.

Remark 4.18. Suppose D is de Rham. Passing from D to Dy, we lose exactly the information of
Hodge filtrations at o € I of D.

For o0 € ¥k, let t, € Rk g be the element defined in [51, Notation 6.27]. For I C Y and
o € Xk \ I, we have two natural exact sequences

O',liha',Q

0—>t;h0’2D1U{U} —)D[—)'R}QE/tZ — 0,

he he he
0—ts ’1D[ — DIU{O'} —r to ’QRKJ_@/tJ ’I'RK7E — 0.

Conjecture 4.19 (Hodge filtration hypercubes). (1) For I,J C g, INJ =0, V{9 n(D)* =
IIVIT(D)* and Vy9;m(D)* = 9,V n(D)*. Moreover let 0 € Sk \ (IUJ) (resp. o € J) the
sequence (32) (resp. (33)) applied to w(D)* coincides with

0 — Vivhn(D)* — 95 (VI9in(D)*) — VIH(Vi9in(D)") — 0
(resp. 0 —> 9, (V703 (3 m(D)") — V05 (y7(D) —> Vo (V05 (47(D)7) — 0).

(2) For I,J C Sk, INJ =0, the (U(gr)-finite) representations V{95 m(D)* and V;9;m(D)*
only depend on D, \(1u.y, which we denote respectively by Wi(DzK\(IuJ), Yk \I,\)*. Moreover,
Wi(DEK\(IuJ), Y \I,\)*#0 if and only if D is I[-de Rham.
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(3) Let 0 € ¥k, I,J C X \{o} (resp. I,J C X, 0 € J), INJ = 0. Suppose D is o-de
Rham. For subsets I',J C X, I'NJ =0, put

#XExg\I')+1 D is crystabelline, and Dy \(rrury s split
err 1 =
rJ 1 otherwise.

There is a natural isomorphism

Homgr,, (k) <7T+<DEK\(IUJU{U})7 S\, A)* 7 (Ds\(qusoger)s 2x \ (T U{0}), )\)*)

~ ho,1—ho @ o
— Hom, 1y (Dy0\(1usu{o), RicB/te™! 7)1V o0

(7’681)- Extér, ) (T (Do B\ (LU{0}), N 77 (Dg ooy Bx \ 1, A))

~ ho ho ho S5 o o
—_— EXt%(P,F) (tcr ’2RK,E/to' 71ata' JDZK\(]UJ)) IoA7h I })

such that the class [V{95m(D')*] (resp. [V;ﬂ;\{J}W(D’)*}) is sent to [t;h"’QD’ZK\(IUJ)]@EIUM}J
(resp. to [DIEK\(IUJ\{U})]EBEIU{U}’J\{"}) for any o-de Rham rank two (p,T')-module D' of weight h

with Dy, 1\ (105010)) = Pei\auaugey) (resp- with DS 0y = Doy )-

Remark 4.20. (1) The label “Cx \ I” in Wi(DzK\(Iuj), Y\ I, \)* signifies the embeddings o, for
which the representation is “genuinely analytic”, i.e. not U(g,)-finite. The number ey ; should be
equal to the number of direct summands in Wi(DZK\(Iuj), S\, \)*.

(2) Let 0 € Yk and assume hy, is strictly dominant. Conjecture 4.19 (1)(2) implies the fol-
lowings are equivalent (which refines Conjecture 4.1 (8)): (i) dim Dgr(D), = 1, (i) ©(D)* =
Vrm(D)*, (iii) 9; m(D)* = n(D)*.

(8) Suppose D is the de Rham. For o € X, the conjectural exact sequence

0— 7 (A0, — 7 (Dg,0,\) — 7 (A, 0,\)" — 0
should be (the dual of ) the extension considered in [13, Conj. 1.1] for GLy(K) (noting m— (A, 0, \) =
Too(A) ®E L(X)).
(4) Conjecture /.19 (3) is formulated using Hom and Ext! of (¢, T)-modules. But we also have

an equivalent version in terms of Hodge filtrations. In fact, let I, J, and o be as in (3), by similar
arguments as in [16, Lem. 5.1.1, Prop. 5.1.2], there is a natural isomorphism of E-vector spaces’

hot—ha2y ~
Hom(y, 1y (Ds 0\ (1usufo}): RE,E/te™" ™ 7?) = Dar.o (Ds e\ (1us0{o}))

he hoa ho ~
(7’6510- Ext%@,p) (te™*Ri,e/te”" 16" D\ (1u.7)) — Ddr,o (DEK\(IUJ)))

which sends the E-line [f] (resp. the E-line [D']) to Fil® Dyr ,(Ker f) C Dar.o (Ds; i\ (1usu{o}))
(resp. to E-line Fil™ o2 Dgr,o(D') C Dar,o(D’) = Dyr,» (DZK\(Iuj))). Combining these isomor-
phisms with those in Conjecture 4.19 (3), we then get a version on Hodge filtrations.

Theorem 4.21. Conjecture 4.19 holds for GL2(Q)p).

9For the first isomorphism, we also use a natural isomorphism Dar,o (Ds i\ (1u50{0})) = Dar,s (DEK\(IUJU{G}))V,
see [36, Rem. 1.2].
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Proof. We let o be the unique embedding. As one of I, J has to be empty, (1) is clear. For (2),
the case where I = () was already dealt with in Theorem 4.3. We know D is de Rham if and only
if 7(D)#e* = Vor(D)* # 0. If D is not de Rham, by Theorem 4.3, ¥E7(D)* = 7(D)*, hence
VEr(D)* = 0. Suppose D is de Rham, by [37, Thm. 3.6, Rem. 3.7] and [31, Thm. 0.6], the exact
sequences (1% (7(D)*) are respectively given by

0— m(D)* — (AN — (oo (A) @ L(N)* — 0, (36)
0 — m(AN)* — m(D)* — (7o (A) @ L(N))* — 0. (37)
Let F be the functor defined in [16] (see [36, § 2] for a quick summary in the case of GL2(Q,)). By
[16, Thm. 5.4.2] [36, Thm. 2.1, Cor. 2.4], we see F' induces the isomorphisms in (3). O

Remark 4.22. (1) By applying the functor F of [16] to (36) and (37), we can actually obtain two
exact sequences of (p,I')-modules:

0—t D A —— RE/thl_h2 — 0,

0 — thM"A — D —thRy/tMREL — 0,

which are no other than 0D by [37, Prop. 2.9]. It is then natural to expect a multi-variable
(o, T)-module avatar of 3w (D)*. See [23] for multi-variable (¢, T')-modules in the mod p setting.

(2) The sequences (36) (37) admit geometric realizations, see [{1] (for the de Rham non-
trianguline case) and [57, § 7.8] (for the general case). We expect the hypercubes EF (m(D)*)
also admits a geometric realization.

We study representations in % (7(D)*). For a D(GLa(K), E)-module M, that is coadmis-
sible as D(H, E)-module for some compact open subgroup H of GLg(K), we put E{(M) :=
Ext%(GLZ(K)’E)(M, D.(GLy(K), E)) to be the i-th Schneider-Teitelbaum dual of M ([63]). The
following hypothesis will be crucially used (recalling dp is the central character of w(D)). By
Corollary D.17, the hypothesis holds when K is unramified over Q, under some mild hypothesis.

*

Hypothesis 4.23. Suppose w(D)* is Cohen-Macaulay of dimension d, and 7(D)
self-dual, i.e. E3¥m(D)* = 7(D)* ®p ép o det.

1s essentially

The following conjecture generalizes Hypothesis 4.23.

Conjecture 4.24. Let I,J C Yg, INJ = 0, then V?ﬂfﬁ(D)* is zero or Cohen-Macaulay of
dimension (dx — #1). Moreover, E3dK+#I(VIi19§7T(D)*) = Vioin(D)* ®k op.

Lemma 4.25. Let M be a D(GLy(K), E)-module on which Zx acts via xx+, then the map E{(©; M) —
EY(M) induced by v : M — O M coincides with E*(QO; M) = 0;E (M) & E'M.

Proof. As O7 is exact and preserves projective objects, it suffices to show the statement for ¢ = 0.
By (the proof of) Proposition 3.6, it suffices to show that for an algebraic representation V' of
GLy(K), and f € Hompgr,(k),p) (M, De(GLa2(K), E) @ V @ V), the induced map (the last map
induced by W @ g WY — Efor W =V @ V.

M= MegVepVY 2% (D(CLyK), E)@0p Ver VY) g (Vog VY) - D(CLy(K), E)

coincides with M % D.(GLy(K),E) 2V @ VY — D.(GL2(K), E). It is straightforward to check
it (using W @g WY — E coincides with (V @ VV)@r (Ve V') > EQp E X E). O
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Lemma 4.26. Let M be a D(GL2(K), E)-module on which Zi acts by x«. Suppose M is coad-
missible over D(H, E) and Cohen-Macaulay of dimension d. Then the followings are equivalent:
(1) dim V;E4M) <d—1,
(2) 1y : M — 95 M is injective.

Proof. By taking duals and using O, (M) is Cohen-Macaulay (Corollary 3.8), the exact sequence
0 = 9FEYM) — O,EY( M) — 9;E4M) — 0 induces

0 — B4, EYM)) = BEYO,EY(M)) — ELOFEYM)) — ET LW, EYM)) — 0.

Consider 0 — ¥;E4M) — EYM) — V,E4M) — 0. We see (1) is equivalent to that the
induced map E4(E4(M)) — E4(95;E4(M)) is injective. However, by Lemma 4.25, the composition
EYEYM)) — B4, EYM)) — E4YO,EY(M)) coincides with M — 9F. The lemma follows. [

Applying Lemma 4.26 to M = w(D)*, we get:

Proposition 4.27. Assume Hypothesis 4.23. For o € Xk, the followings are equivalent:
(1) dimV 7n(D)* < dg —1;
(2) 1y : m(D)* — 95w (D)* is injective.

Remark 4.28. When K = Q,, V™ r(D)* is locally algebraic hence dim V™ n(D)* =0 (cf. [62]).
The proposition then gives an alternative proof of the injectivity of ¢.

Let 0 € ¥ k. The following proposition is due to Dospinescu-Schraen-Paskunas ([6]).

Proposition 4.29. Let H be a uniform open subgroup of GLa(K), M be a finitely generated
E[[H]] := Og[[H]] ®0, E-module on which Zyg := Z(K) N H acts by a certain character. Let
M =M ®gw) D(H, E), and N be a subquotient of M. Suppose dimM < 3dy, Zk acts on N by
a certain character x and N is U(gZK\{U})—ﬁm'te. Then dim N < 1.

Proof. As N is U(gs,\{s})-finite on which Zx acts by x,, there exists an irreducible algebraic
representation V' of GLg(K') such that N = (N @ VV)*x\{e} @ V. Replacing M by M g VV
and N by (N ®@g V") x\e} and using Proposition 3.6 (and a similar version for F[[H|]-modules),
we reduce to the case where N is locally o-analytic. Let Hy := H N SLg(K), by Lemma D.5,
dimgz,) M < 3dk hence M is a torsion module over E[[H1]] ([6, Lem. 3.9]). By [6, Prop. 6.14]
(and the proof), it suffices to show dimp(g, gy N < 1. Suppose dimp g, gy N > 2. As N is locally
o-analytic, by Corollary B.4, dimp_ (g, gy N > 2. Let x, := x|z, By [6, Cor. 6.11] (and shrinking
H if needed), we deduce

HomD(Hl,E) (N7 DG(Hla E)Xg) # 0, (38)

where Dy (H1, E)y, = Dy(H1,E) @z, ., E. However, M is torsion over E[[H1]], hence N is anni-
hilated by a certain non-zero element in E[[H;]], contradicting (38) by the proof of [6, Prop. 6.15]
(using [6, Thm. 4.1, 5.1], see in particular the proof of [6, Lem. 6.16]). The proposition follows. [

Corollary 4.30. Assume Hypothesis 4.23. Let o € X, then dim V;K\{U}W(D)* <1.

Proof. Apply Proposition 4.29 to M = (7(D) ®g L(h)¥ ®g L(h))" (which is also Cohen-Macaulay
of dimension dx by similar arguments as in Proposition 3.6). O
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4.2.3 [ (7(D)*) for GLy(K) with [K : Q,] =2

Throughout the section, we assume dxg = 2 and Hypothesis 4.23. We study the dimensions and
dualities of the representations in ¥ (p)*. Note that when K = Qp2, it is proved in Appendix D
that Hypothesis 4.23 holds under mild assumptions.

Theorem 4.31. (1) For o € Yk, the map 1, : 7(D)* — 9Fn(D)* is injective.
(2) The map v : w(D)* — ﬁ;Kw(D)* is injective.

Proof. (1) follows from Corollary 4.30 and Proposition 4.27 (or a similar argument as below). Let
T € X, T # 0. The map ¢ factors as 7(D)* % 97 n(D)* = 979 n(D)*. By Proposition 4.29,
any U(g,)-finite subquotient of 7(D)*® g L(h,)" ®g L(h,) (hence of ©,7(D)* and of ¥} 7(D)*) has
dimension no bigger than 1. However, as 9 7(D)* — ©Zm(D)* the latter being Cohen-Macaulay
of dimension dg, 97 m(D)* is pure of dimension dx = 2. We deduce 97 7(D)* can not have non-
zero U(g,)-finite subrepresentation. By Lemma 4.7 (1), 95 7(D)* = 979 n(D)* is injective. (2)
follows. O

We will frequently use the following lemma.

Lemma 4.32. Let M, N be two D(GL2(K), E)-module on which Zx acts by x=. Suppose M
and N are admissible over D(H, E) for a compact open subgroup H of GLa(K), and are Cohen-
Macaulay of grade j > 3dx = 6 (or equivalently of dimension < 2) such that /(M) = N and
FE/(N) = M. Let o € Yk, suppose dim(VEM) < 4dx —j — 1 and dim(VEN) < 4dg — j — 1, then
we have (the same holds with M and N exchanged):

(1) dim¥EM = dim9EN = 4ddg — j.

(2) BV (0; M) =2 9FN and E/*Y(V, M) = VIN.

(8) 95 M is Cohen-Macaulay, and NV M is zero or Cohen-Macaulay of dimension 4dyx —j — 1.
Moreover EZTL (9, M) = EIT2(V_ M), and there are exact sequences

0— 9, N — B/ (0T M) — EI(V, M) — 0,

0 — EVT3(V;M) — VN — E7TYVIM) — 0.

In particular, if VN # 0, then E/T2(V, M) = 0 is equivalent to VN is pure of dimension
4dx — j — 1. If the latter holds, then 9, M is Cohen-Macaulay with B/ (9, M) = 9F N, and V,; M
is zero or Cohen-Macaulay of dimension 4dx — j — 1 with B9 (VM) = VIN.

Proof. Note first E/T3(M’) = 0 for any admissible D(H, E)-module M’ (as j + 3 > 4dg + 1). As
dim(VEM) < 4dg — j — 1, the exact sequence (by Lemma 4.26) 0 — M — 9 M — VIM — 0
(resp. 0 = 9, M — M — VM — 0) induces by taking duals:

0— E/ (0T M) = B/ (M) — B/ (VEM) - BN (9F M) — 0, (39)
(resp. 0 — EI (M) — B/ (9, M) — E/*1(V,; M) — 0), (40)

and E/T2(VEIM) = EIT2(9F M) (resp. EIHL (9, M) = EIT2(V, M), E/T2(9, M) = 0). Taking
dual to the exact sequence 0 — 95 M — ©,M — 9, M — 0 and using Corollary 3.8, we get

0 — B/ (9, M) = E/(O,M) — EI(9F M) — E7T1 (9, M) — 0, (41)
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and B/ (9 M) = EIT2(9, M), E72(9F M) = 0. Putting these together we see E/TH(9F M) =
EI2(9F M) = Ei+2(VEM) = 0, hence 9f M and V} M are Cohen-Macaulay. The same discussion
holds with M replaced by N. We obtain (1) and the first part of (3).

Now we use the duality between M and N. Compare (39) with 0 - VN — N — V_N —
0. As EVTY(VEIM) is U(g,)-finite, there is an injection Vo N — E/(97M). By Lemma 4.25,
the composition E/(0,M) — E/ (97 M) < E/(M) coincides with ©,N — N. Identifying their
kernel and image, and using (39) (41), we get E/ (9, M) = 97 N and the exact sequences in (3).
Finally comparing (40) with 0 — N — 97N — VIN — 0 and using E/ (9, M) = 9T N, we see
EITY (VM) = VIN. O

We deduce the following theorem towards Conjecture 4.1 (3):
Theorem 4.33. (1) Let 0 € X and suppose dimg Dgr(D), = 1. Then 9, 7(D)* = m(D)* =
ym(D)*. Consequently if dimg Dar(D), = dimp Dar(D). = 1, then Jg _m(D)* S =
ﬁ;KW(D)*.

(2) For o € Yk, if 9;n(D)* = w(D)*, then n(D)* = 9 w(D)*. Consequently if U5 m(D)* =
7(D)* then m(D)* = 19§K7T(D)*.

Proof. (2) follows from Lemma 4.32 (2) (applied to M = 7(D)* and N = 7(D)* ®g dp). Together
with Proposition 4.15, (1) also follows. O

Remark 4.34. The same argument gives an alternative proof of (i) = (ii) < (iii) in Conjecture
4.1 (3) for GL2(Qp) (without using (¢,I")-modules).

In the rest of the section, we furthermore assume the following hypothesis.

Hypothesis 4.35. Assume V_mw(D)* is pure for o € ¥k.

As dimV 7(D)* < 1, by [2, Cor. 9.1], the hypothesis is equivalent to that V_ 7 (D)* does
not have non-zero locally algebraic sub. When 7(D) is cut off from the completed cohomology of
unitary Shimura curves and 7(D)%8 #£ 0, it is showed in [59] [66] that Hypothesis 4.35 holds when
D is de Rham (see also Hypothesis 4.44 and Remark 4.45). Under Hypothesis 4.35, we have by
Lemma 4.32 (applied to M = w(D)*):

Proposition 4.36. For o € Y.

(1) 9Em(D)* are Cohen-Macaulay of dimension dy, and E3%% (97 (D)*) = 9T n(D)* @ dp.

(2) VEr(D)* are zero or Cohen-Macaulay of dimension dx — 1, and E3x+1Vir(D)*) =
E3x IV Er(D)*.

Write ¥ = {o,7}. By Proposition 4.29, any U(g,)-finite subquotient of ©x, 7w (D)* has di-
mension no bigger than 1. This, together with Proposition 4.36, allow to apply Lemma 4.32 (for
7) to 97 (D)*. We obtain:

Proposition 4.37. (1) dim 9’97 w(D)* = dg for ?,7? € {+,—}.
(2) B3 (9797 (D)*) 2 9197 7(D)* @ §p and E3x1(V_9Er(D)*) =2 VIIIn(D)* @k ép.

(3) 9F9Em(D)* is Cohen-Macaulay, and VF9Em(D)* is zero or Cohen-Macaulay of dimension
dig —1 = 1. Moreover B3+ (9-9En(D)*) = B3 +2(V_9F1(D)*) and we have exact sequences

0 — 9 9E7(D)* @p dp — B3R (0T0Fn(D)*) — B3 T2(V_9Fr(D)*) — 0,
0 — E3x2(V_9Fn(D)") — VI 9:n(D)* ®@p 6p — EXxTY(VI9Tr(D)*) — 0.
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Similarly, we apply Lemma 4.32 to VI (7(D)*). One difference from the precedent proposition
is that the last part in Lemma 4.32 (3) now automatically holds (as j > 3dk).

Proposition 4.38. (1) 9.V2rw(D)* is Cohen-Macaulay of dimension 1 for ?,7? € {+,—}. More-
over, B3+ (9rVEn(D)*) 2 9-VIn(D)* ®p dp and E3« 1 (9-VEr(D)*) = 9FVIin(D)*.

(2) VN1 (D)* is zero or Cohen-Macaulay of dimension 0 for ?,?? € {+,—}. Moreover,
B3+ (9 vEn(D)*) 2 9-VIin(D)* @ 6p and B3« (9-VEin(D)*) = 9+ VIn(D)*.

Now we discuss the commutativity between “c-operators” and “r-operators”.
Proposition 4.39. (1) We have VI9in(D)* = 9f(Vin(D)*) and VH(Vin(D)*) = V5 n(D)*.

(2) We have Vin(D)* < 9FVin(D)* and the exact sequence (obtained by applying VF to
0 — 7(D)* = ¥fm(D)* — Vin(D)* = 0)

Vin(D)* — Vidin(D)* — V5, m(D)* — 0

coincides with (the 0 — id — 9f — VI — 0 sequence applied to VI (D)*)

0 — Vin(D)* — 91 (Vin(D)*) — VI (VIn(D)*) — 0.

Proof. We have a commutative diagram

0 —— O,m(D)* —— O,(in(D)*) —— O,(VIin(D)*) —— 0

| 1 | e

0 —— (D) —— Ifr(D)* —— VIiz(D)* —— 0.

g

From which, we deduce an exact sequence

0 — 9F7(D)* — 9T n(D)* — 9TVIn(D)* S Vor(D)* — VIoFn(D)* — VIVIia(D)* — 0.
(43)
As VIw(D)* is U(gy)-finite, so is 97 Vin(D)*. While, V_7(D)* is U(g,)-finite. We see Im(4) is
locally algebraic hence zero dimensional. However V_7(D)* is zero or pure of dimension 1. Hence
9 = 0. The first isomorphism in (1) follows. Using § = 0, we have furthermore a commutative
diagram of exact sequences (which is just [JT7(D)*, using Proposition 4.36 (2) for the right vertical
sequence)

0 —— 9ra(D)* —— 9F9Fn(D)* —— 9TVIR(D)* —— 0 (44)

0 —— Vin(D)* —— Viotr(D)* —— ViVin(D)¥ —— 0

0 0 0.
From the diagram (and exchanging ¢ and 7 if needed), the second part of (1) and (2) follow. O
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Using é = 0 in the proof, we also obtain a commutative diagram of exact sequences
0 0 0

0 —— 9;m(D)* —— 979 n(D)* —— I;Vin(D)* —— 0

T

0 —— (DY —— I9In(D)* —— Virg(D)}* —— 0 (45)

g g

0 —— V. n(D)* —— V.9 n(D)* —— V

T g

0 0 0.

Taking dual to bottom horizontal exact sequences and using Proposition 4.36 (2), 4.37 (1) and 4.38
(2) we get

0— Vi, n(D)* — Vin(D)* = ViV, n(D)* — E*<t(V_ 9 (D)) @pdpt — 0. (46)
Hypothesis 4.40. Assume V_ 9 7(D)* and V-9, 7(D)* are zero or pure of dimension 1.

The hypothesis is equivalent to that V_J-7(D)* and V9, 7(D)* do not have non-zero locally
algebraic sub. In the next sequence, we will show the hypothesis holds for some crystabelline generic
D (cf. Proposition 4.46). We can finally prove:

Theorem 4.41. Assume Hypothesis 4.35 and Hypothesis 4.40, then Conjecture /.24 and Conjecture
4.19 (1) hold.

Proof. As VZ9_m(D)* is zero or pure of dimension 1, by the exact sequences in Proposition 4.37
(3), E3x+2(V-9tr(D)*) = 0 (hence V79 m(D)* is Cohen-Macaulay), E3?x+(VI9tfn(D)*) =
V-9, m(D)* ®p 0p and E3K (919 7(D)*) = 979 n(D)* ®p 0p. Hence V79, m(D)* (resp.
9797 w(D)*) is zero or Cohen-Macaulay of dimension 1 (resp. of dimension dxg = 2). This
together with the exact sequences in Proposition 4.37 (3) (again) imply E3¢x (9F9Fn(D)*) =
9-9;m(D)* ®p 0p and E3TY(VHY-n(D)*) = V-9 m(D)* ®p dp. With Proposition 4.36, 4.37
and 4.38, these (and the counterparts exchanging ¢ and 7) prove Conjecture 4.24.

The “4” part of Conjecture 4.19 (1) has been obtained in Proposition 4.39. Consider the
commutative diagram

0 — 0,9, 7(D)* —— O,n(D)" —— O,(V n(D)*) —— 0

| | !

0 —— JI,;7(D)* —— =n(D)* —— V,ym(D)* —— 0.
which induces

0 = 9F9;m(D)* — 9Tn(D)* = 9V n(D)* L Vovon(D)* — Virn(D)* — VIVor(D)" — 0.
(47)
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By the same argument as in the proof of Proposition 4.39, Im(¢') is locally algebraic. As V-9, w(D)*
is assumed pure, &’ = 0. We deduce V-9 7(D)* =2 ¢, V_7(D)* and a commutative diagram of
exact sequences (which is just ™7 (D)%)

0 —— JI;7n(D) —— n(D) —— Vom(D)* —— 0 (48)

0 —— VU n(D)* —— V_n(D)* —— V-V 7n(D)* —— 0

This concludes the proof. ]

Remark 4.42. (1) Suppose D is de Rham, then w(D)* have the following structure:
V-V m(D)*
5, m(D)" (D)l
I VIon(D)*

(2) If one replaces w(D)* by a certain self-extension 7 = [w(D)*—n(D)*], it seems possible
that Hypothesis /.23 still holds, while Hypotheses 4.35 and /.40 do not hold anymore.

4.2.4 Crystabelline (D) for GLy(K) with [K : Q,] =2

In the section we use L% (7(D)*) to study = (D)*.

We first recall some formulas of the Schneider-Teitelbaum dual of locally analytic principal

series. Let 1) = 41 ® 12 be a smooth character of T(K) such that ¢19,' # 1,] - |2, Then
(Indgliz((;{)) 1 ® 1h9)™ is irreducible. By [63, Prop. 6.5], we have

: FE2 (M~ (—wow - M), 7Y [ @ |- k)" i=3dk
BN (Fpl (M~ (—w-X),¢)") =7 P ’ K

( B ( ( ) ¥) ) {O otherwise.
Using an easy dévissage, we deduce the following proposition.
Proposition 4.43. ForI C ¥k, w; € #a 1, ngZ(MI_(—wI-)\1)®EL§K\I(—)\EK\I),w)* 15 Cohen-
Macaulay of grade 3dyx + #1 and

G - - *
B (FR (M (—wr - Ar) @5 Ly (FAsen), 9)°)

= Fpl* (M (—wowr - ) @5 Ly (X500, 07 - [ @ - k)™
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Suppose D is crystabelline of regular Sen weights (i.e. h is strictly dominant), and let ¢, =

$1 ® d2, ¢, = ¢2 @ ¢1 be the two refinements of D. Assume D is generic, i.e. prdyt # 1, ]i@ We
recall some locally Q,-analytic representations associated to D in [8]. For o € ¥, the refinement
¢, = ¢1 ® ¢2 is called o-critical if Dy = Rk, p(pr10(2 )ho.2) @ R p(pa0(2)he1) (similarly for ?,)-
Note the two refinements qbl and ¢>2 can not be o-critical on the same time for a fixed embeddmg
o, as hg1 # hopo. If qﬁ is o-critical, we put

7(Dgy 0, A) i= ((Indi %) 56 )o(2)77 ) =@ (Ind) 5 5(6,)0(2)*) ™™ ) @ p Ly, (o) A (o))

If D is o-critical for ¢,, we define m(Dgy,0,A) in a similar way exchanging ¢, and ¢,. If D is not
o-critical, i.e. not o-critical for either 91 or ?2, then D, is isomorphic to the unique non-split de
Rham extension

Dy = [Ri p(¢10(2)")—Rik 5(¢20(2)"7?)] = [Ri p($20(2)" ) =Rk p(d10(2)"2)]. (49

Indeed, by [33, § 1.2], dimpg Ext}] (Ri,e(¢io(2)"2), Rk g(pj0(2)"1)) =1 for {i,j} = {1,2}, and
it is clear that if D is not o-critical, D, is a non-split extension as in (49). In this case, we put

(Do, 2) 1= L\ (o} Asie\(o})

GLa (K o—an GL2 (K +\o—an
b (558 200 1) B a0 ) GRS 58,)0 (27,

For simplicity, write PS; ., := }'SEQ(L_(—U) “A),(¢,)), and alg := PS1 1 = PSy (which should be
the locally algebraic subrepresentation of 7w(D)). Then 7(D,, o, A) has the form

a1,c PSLSU

alg %

PSy.., - (50)

where a; , € Ext!(PS; 5, ,alg) = E (cf. [64]). So a;, = 0 means the corresponding extension splits,
which is equivalent to that the corresponding refinement is o-critical.

Suppose alg < 7(D), by [21] (see also [32] in the case of unitary Shimura curves), it then
extends to an injection 7(Dy, 0, A) < (D), which, by Corollary 4.14 (2), induces an injection

7(Day 7, ) > (Vi oy 7(D))* = 7 (Dgr 0, ) 1)
Hypothesis 4.44. The map (51) is an isomorphism, for all o € Y.

Remark 4.45. By the recent work [59] (generalzing [57]), when p appears in the cohomology of
unitary Shimura curves, Hypothesis 4.44 holds.

Let Moo be the patched module of [4], so I, = Hom@E™ (M, E).

Proposition 4.46. Assume Hypothesis /.23 My is flat over Roo, and dg = 2.'9 Then Hypothesis
4.44 implies Hypotheses 4.35 and 4.40 both hold.

10Which is known when K = Qp2 under mild assumption.
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Proof. Hypothesis 4.35 is clear, since m(Dy, 0, A) does not have non-zero locally algebraic quotient

by definition. By Hypothesis 4.44, Proposition 4.43 and Proposition 4.36, one directly calculates
* A * GL2(K *

VIVIr(D)* 2 alg” = ((Ind 208 )(6,))® @p L(V)" for 2,77 € {+,-},

7 (Dg,0,\)* = Vin(D)* = BN (Vo n(D)*) ®g 65" = 7 (Do, 0, M) (2 7(Dg, 0, A)*),

(A, 0, \)* =9I Vin(D)* (52)
~ G o \o—an G o \o—an *
= (a5l s(6,)0(2)>) 7" @ (g2 1(0,)0 (=) ™™) @5 Lr(Ar) )
~ [PS},, —alg] @ [PS},, —alg].

If V29 7(D)* is not pure, by the second exact sequence in Proposition 4.37, E3?&+2(V -9t w(D)*) #
0. By (46), we deduce E3?x+2(V-9fm(D)*) @ 6" has to be isomorphic to ViV, 7(D)* = alg*.
On the other hand, we have by Proposition 4.39 (1), Proposition 4.38 (1):

B (T r(D)) @ 051 = B (95 VEr(D)) o5 651 = 9, Vo n(D) = PSY.,, & PS;,, .
Using again Proposition 4.37 (3), we get an exact sequence
0 — alg® — V9, 7(D)" — (PS1,5, ®PSa5,)" — 0.

Recall the dual of VZ9_ 7(D)* is the maximal U(g,)-finite subrepresentation of (J m(D)*)* =
m(D)/V n(D) = w(D)/n(D-,7,\). By the above exact sequence, we see 7(D) contains a subrep-
resentation of the form

alg—(PSLsg D PS2,SJ D PSl,S-r D PSQ’S_’_ )— alg.
But this contradicts Theorem C.1. O

In the following, we assume [K : Q,] = 2, M is flat over R, Hypothesis 4.23 and Hypothesis
4.44. Let ¥ = {o,7}. As in the proof of Proposition 4.46, we have an explicit description of
7H(A, o0, N, 7 (A, 0, \)*, 7F(D,, 0, \)*. Also, it is straightforward to see

dimpg Hom (7 (A, 0, A)*, 77 (A, 0, \)*) = dimpg Ext! (77 (A,0,\)*, 77 (A, 0,0)*) = 2.

All these (together with the discussion in “Cas cristallin” of [13, § 3.2]) confirm the corresponding
part of Conjecture 4.19 (2) (3). We mover to 7+ (A, Xg, \)*) = ﬂ;KW(D)*. We describe the U(gy)-
finite quotient of ﬁ;KW(D)* (noting the representation should have supersingular constituents).
Using [T (7(D)*) and Theorem 4.41, we have an exact sequence

0 — V3, m(D)"/n(D)* — 9FVin(D)* © 97V in(D)" — Vi m(D)" — 0.

Thus ﬁ;KW(D)*/W(D)* is isomorphic to an extension of (alg®3)* by ®i=1,2(PS} 5, ®PS]_ ). Simi-
larly, using [0~ (7w(D)*), we have an exact sequence

0 — m(D)* /iy, (D) — I;m(D)" &I 7(D)" — Vg _7w(D)" — 0.

Hence m(D)*/ds, m(D)* is isomorphic to an extension of alg™ by @;=1,2(PS;, ®PS;, ). In fact,

we have TI'(D)*/T9£K7T(D)* = (Tr*(DU, 0, A\) @algm (Dr, T, )\))* (which depends on D, and D), and
95, 7(D) /7(D)" = B (x(D)" /95, 7(D)") &1 675"
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By Lemma 4.5 (1) (2), E]+(19;K7T(D)*) and L7 (Jy m(D)*) have a trivial structure. The fol-
lowing proposition shows D_(ﬁgKﬂ'(D)*) and D+(19§K7r(D)*) coincide:

05, 95, m(D)* — 9795 (D) — V9795 _w(D)* I3, (D) —— 9595, 7(D)" — Vidg, n(D)*
05 9%, w(D)* —— 9% _w(D)* —— V9% _w(D)* 9195, m(D) —> 9% 05 w(D)" — Vividg m(D)*

| | | | | |

V9,95 m(D)* — V9% n(D)* — Vg 93 w(D)* Viog w(D)" — VIiog w(D)* - Vi 95 (D) -

Proposition 4.47. (1) We have isomorphisms Vs, _m(D)* = ﬁgKﬁ;KW(D)*, ﬁ;KﬁgKW(D)* =
0% w(D)*, 9,05 w(D)* = 9 9 m(D)* = 919, m(D)* = 9fdg w(D)*. Consequently, the two
hypercubes Diﬁng(D)* are isomorphic (in an obvious sense).

(2) All the vertical and horizontal sequences in Di(ﬁiKﬂ(D)*) are exact after adding 0 at
two ends, and have the form 0 — 9 M — M — V_M — 0 and meantime have the form
0— M —95,M — VM —o0.

(3) V0% w(D)* =t (A, 7, \)*®2 (the same holds with o, T exchanged), and Vs, 03, m(D)* =
alg®®1. Consequently, 19;}(7T<D)*/19£K7F(D)* has cosocle alg™®*
of alg"®" by (®i=12 PS},, ®PS;, )2

9,5

and s isomorphic to an extension

Proof. (1): As ﬂ;KW(D)*/W(D)* (resp. m(D)* /s, m(D)*) is generated by U(g,)-finite vectors and
U(g-)-finite vectors, Oy, (ﬁ;Kﬂ'(D)*/W(D)*) = 0 (resp. Ox,(n(D)*/ds m(D)*) = 0). We then
deduce Jy m(D)* = 19£K29§K7T(D)* (resp. ﬁ;KﬁEKW(D)* = ﬁng(D)*). By Lemma A.5 (4)
and Lemma 4.5 (3), 9fdy _m(D)* = 979, m(D)*. By Lemma A.5 (3) and the fact Jf7(D)* does
not have non-zero U(g,)-finite sub (see the proof of Theorem 4.31), ﬁ;ﬁ;Kw(D)* ~ 9 9 w(D)*.
By (47) (noting 6’ = 0) and the fact 97 V_ w(D)* is U(g,)-finite (as V, 7(D)* is so), we deduce
99 w(D)* — 919, w(D)* and V9 m(D)* — 91V m(D)* (where if one is an isomorphism, the
other is as well). By direct calculation, we have
0FV, (D) = [PS], —alg*] @ [PS;, —alg"] =7 (A, 7,A)". (53)
By (43), we then see that V9 7(D)* has the same constituents as ¥V, 7(D)* hence V9t 7(D)* =
IEVom(D)* and 9,9 w(D)* = 99, m(D)*. (1) follows.
(3): We first describe V;ﬂ;Kﬂ'(D)*. Consider the commutative diagram
0 —— 0,0 71(D)* —— 0,95 _m(D)* —— O,(Vidfn(D)*) —— 0
0 —— 9fn(D)* —— 9§ n(D)* —— VIdin(D)* —— 0.
As VI9tn(D)* is U(g,)-finite, O, (VI9 m(D)*) = 0. We deduce an exact sequence
0 — V9 m(D)* — V05 7(D)" — Vid m(D)* — 0. (54)

This, together with (1), (53) and (52), imply that V;’ﬂ;Kﬂ'(D)* is a self-extension of 71 (A, 7, \)*.

*

By the discussion above the proposition, the constituents of ’ﬁ;Kﬂ'(D)* [Vg, m(D)* consist of 4

copies of alg” and 2-copies of @;=12(PS;; ©PS;; ), and we have
dimpg Homgy, (i) (95, 7(D)*, alg®) > 3. (55)
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We analyse the possible structure of V;ﬁ;KW(D)*. Recall PS; ; = [alg—PS; 5. ], and 77 (A, 7, ) =
PSi @ PSa; (see the proof of Proposition 4.46). Denote by Extilmc’Z C Ext! the subgroup con-
sisting of extensions with both infinitesimal character and central character (for GLy(K)). Then

0 i
dimpg Extilnf,Z(PS’;T,PS;T) = {1 17&3 Moreover, when i = j = 1, the unique (up to isomor-

i=7
phism) non-split self-extension (with central and infinitesimal character) of PS; . is the dual of the
representation

PS;r = (Indg2 ) 5(0,)7(2) @p (14 16)) ™ @p Lo(\o)

where ¢ : T(K) — FE is the additive character sending (a,d) to valg(a/d). As V;ﬂgKW(D)* €
EXtilnfyz(W+(A,T, A)*, 7t (A, 7,0)*) and using (55), we see V;ﬁ;KW(D)* is either isomorphic to
7t (A, 7, )52 or PSZ’T692 @P;S;T for {i,7} = {1,2}.
Recall that ﬁ;Kﬂ'(D)*/ﬂiKﬂ'(D)* is essentially self-dual. If
vy m(D)* /05, m(D)* —» V 0% m(D)* = PS;E? @Ps;

4.7
applying B35 +1(—) and (an easy variant of) [63, Prop. 6.5], we get an injection
PS,, — ﬂ;KW(D)*/ﬂgKW(D)*,

a contradiction. So Vo u% w(D)* = at(A,7,\)*%2 and V5 9% 7w(D)* 2 alg®®*. The rest of (3
easily follows. 7o v ( ) S ) ° @)

(2): First, it is clear that all the four maps at the left-upper corner of B‘(ﬂ;KW(D)*) are
all injective. By (3), it is not difficult to see the U(g,)-finite quotient V- ﬁ;??;KTF(D)* is iso-
morphic to (PS}, @PS5, )®?, and the map V;ﬂ;ﬂ;Kﬂ(D)* — V;ﬁ;Kﬂ(D)* factors through
an isomorphism V;ﬁ;ﬁ;Kﬂ(D)* = ﬁ;V;'ﬁ;KW(D)*. The same holds with o and 7 exchanged.
We see all the horizontal and vertical sequences in D_(’l?;Kﬂ'(D)*) are exact and have the form
0—=9J_ M —M—V_M— 0. Looking at D+(19§K7r(D)*), it is clear that the top two horizontal

sequences and the left two vertical sequences have the form 0 — M’ — 91, M’ — VI, M" — 0.
Finally, similar statements (easily) hold for the bottom and right sequences by using the explicit
structure of the representations. O

Remark 4.48. By the proposition, m(A,\)* = 0§KW(D)* has the following structure:

PS* B2

1,54

/ 2 sSo
Uy, m(D)* gh ot
\ S* @
1,s+

N
N

PS* D2 (56)

2,80
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We may furthermore expect

T(A, ) /mo(AN)" = ﬂ;Kw(D)*/ﬂng(D)* %>

PSi. PS3., PS;., PSi.,
(T ae)o () o (e o (e
« - — — —

PS;,. PSS, PS? PS;

1,5+ 2,5+

In fact, by the knowledge on principal series (see below), it is not difficult to get the first two
direct summands. The second two appear more subtle, as it should come from the translation of the
supersingular constituent in m(A).

Corollary 4.49. Let i € {1,2}.
(1) dimpg EXt%}LQ(K) (PS},,, U5, m(D)*) = dimg Homqr, g (V5 95, 7(D)*, PS; ) = 2

2,877 1,81

(2) dimp Extéy, g (PS] o, 005, m(D)*) = dimp Homay, k) (0%, 7(D)*, PS},) = 2.

Proof. (1) By the proposition and (52), the maximal U(g,)-finite quotient V_ (J; ﬂ;KTF(D)*) of
07 0% m(D)* = 9395, m(D)* is isomorphic to (PS}, ®PS; )®2. The Hom-part in (1) follows.
By Lemma A.4, Homgp, x)(PS],, , 9595, m(D)*) = 0. In particular, all the subs of ¥y m(D)*
given by an extension of PS;, by dy m(D)* are non-split. Let V' be the sub of 29;L19§K7T(D)*
given by the extension of two copies of PS;; by 19£K7T(D)*. We claim it is the universal extension
of PS;, by Jg m(D)*. In fact, for any non-split extension W = [Jg m(D)*—PS;, |, we have
by Lemma A.1 (1): W — 9fW = 9Fdg m(D)*. As for j # i, Homgy,x) (5, 7(D)*, PSj, ) =
Homgp, (k) (PSi sz, PSj5.) = 0, we see Homgr, k) (W, PS} ;) = 0 and the injection factors through
V. The claim hence the Ext-part follow.

(2) As VU5, = (PS}, @& PS5 ,)%%, the Hom-part follows. As 19;_19£K7T(D)* = ﬁ;ﬂ;Kw(D)*,
the Ext-part follows by the same argument as in (1). O

Corollary 4.50. We have 9} 7(D)*/9-m(D)* = 71(Dy, o, \)*2.

Proof. We have an exact sequence 0 — V_7w(D)* — 91 n(D)* /9. 7(D)* — Vin(D)* — 0. Hence
9Fm(D)* /9= m(D)* is a self-extension of 7(D,, 0, \)* = 7%(D,, 0, \)*. We also know

(1) Zk and Z(K) act on 9 m(D)* /9. m(D)* by a character,

(2) dimg Hom(dFw(D)*, alg*) = 2 (by Proposition 4.47 (3), using 9} 7 (D)* /9. 7(D)* is a sub-
quotient of ﬁ;KW(D)*/ﬁiKT{'(D)*).

We have a natural map f : Exty(7(Dy, 0, \)*, 7(Dgy,0,\)*) — Exty(alg*, 7(Dy,0,\)*). By (2),
f(Wfm(D)* /977 (D)*]) = 0. When D is not o-critical, by dévissage, f is an isomorphism hence
9 w(D)* /97 m(D)*] splits. If D is o-critical for ¢,, the kernel is one dimensional and generated by
the representation

)

(PS;,)®2 & ((Ind5 20 3(6,)0(2)* (14 eval) @ (1 — evaly)) " ©p Lr(Ar)".

However, again by Proposition 4.47 (3), it can not be a subquotient of ﬁ;KW(D)*/’ﬁiKﬂ'(D)*. The
corollary follows. O
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The following theorem provides a strong evidence towards Conjecture 4.19 (3) (where we omit
GL2(K) in Hom and Ext):

Theorem 4.51. (1) dimg Hom (7t (A, 0, \)*, 77 (A, 0, \)*) = dimg Ext} (77 (A, 0, \)*, 77 (A, 0, \)*) =
2

(2) dimg Hom(m+ (A, X, \)*, 7t (A, 7,A)*) = dimg Ext! (77 (A, 7, \)*, 77 (A, S, \)*) = 4.

(3) If D is not o-critical, then:

dimg Hom (7T+(DJ, Y, A, 77 (Dy, 0, /\)*) = dimp Ext! (Wi(Da, o, N1 (Dy, Xk, )\)*) =2.
If D is o-critical, then:
dimg Hom (7%(Dg, Xk, A\)*, 77 (Ds, 0, A)*) = dimpg Ext! (77 (D, 0, N)*, 7 (Do, X, A)¥) = 4.

Proof. (1) follows by [8, Thm. 4.1 (3)]. (2) is a direct consequence of Corollary 4.49.

(3) The Hom-part follows from Corollary 4.50. The Ext part follows by the same argument as
1 D is not o-critical
in Corollary 4.49 (1), noting dimg Endgy, (k) (7(Dgy,0,A) = ?S He fj.crl e Indeed, the
2 D is o-critical

argument shows that 979 m(D)* =2 919 7(D)* is actually the universal extension of w(D,, o, \)*
by 97w (D)*. O

Remark 4.52. Note w(D)* corresponds to a line in the E-vector spaces in (3). This gives a
realisation of the Hodge parameter of D, which, roughly speaking, measures the relative position of
the Hodge filtrations for different embeddings.

We look at the representation Jy _m(D)*. Let PS; := (Indglf(%) z)‘](g.))QP_an. Recall that PS;}
PS; .

has the form (cf. [8, Thm. 4.1]): S;FSUST/ \alg*- By [21] or (20) (see also [32] for
:I.DSZ'7S(7

the unitary Shimura curves case), it is easy to see ¥y, _m(D)* - PSj, , @PS;, , . Let SS{ ;| be

the kernel of the map. Using the fact that J5 _7(D)* doesn’t have non-zero U(g,/,)-finite quotients
and results on extensions of locally analytic principal series, one can actually show that SS;_, does

not have non-zero quotient which is a subquotient of certain locally analytic principal series.

Corollary 4.53. Suppose D is not o-critical. Then fori = 1,2, dimg ExtéLz(K) (PS;, ,SS: . )=

4,87 So St

1,8¢ ) 7,805

Proof. By dévissage and EXtéLz(K) (PS;, ,PSi, . ) =0 fori+# j, we have

* * — * f * *
SS3,s,) — Extir, gy (PSis, 95, m(D)*) == Exteyp, i) (PS,, s PSE,.s.)-

%,So 1,85 St

0 — Extgp, k) (PS;

4,857

As D is not o-critical, by [21], 7(D)* has a sub of the form g _7(D)*—PS;, . which admits a

1,80
non-split quotient PS;, . —PS;, . Hence f is surjective. By Corollary 4.49 (1) and the fact
dimpg EthGL2(K)(PS;:S(y7PS;(,SO-ST) = 1, the corollary follows. O

We finally take Conjecture 3.15 into consideration and make some speculations. Let PS; _g, :

(Indgljz(([g) z_eKj(g))Qp_an. Conjecture 3.15 implies 7(A) has the form PS; _g,, @ PSa g, ®SS_g, .
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By [50, Thm. 4.2.12], Tﬁ;;( PS; 4. [Zx = xa+] = PS]. As ng}w(A)*[ZK = xa+] = 05, m(D)* =
ﬁ;KﬁgKﬂ(D)*, we see Tj\e} SS* 4. [ZKr = xa] & ﬁ;K SS;, s, with the following form

*

p 1,5+
/ S2,sg\
SSk . — \alg*,@2
iPS* 7
1,s¢
PS3 .
We have Ext%;Lz(K) (T (A, N)*, 05 m(D)*) = Biz1,2 ExtéLQ(K)(PS;:sg,ﬂng(D)*), Conjecture 4.19

(3) suggests there should be a natural isomorphism of the 2-dimensional vector spaces
1 — ? 1 _
Extep, i) (PS1 s, U5, (D)) — Extgp, k) (PSy,,, U5, m(D)").
One may furthermore expect the above isomorphism comes from natural isomorphisms of one
dimensional E-vector spaces for i # j:

1 * * ? 1 * *
EXtGLQ(K) (PSi’SO_,PS' ) —j EXtGLQ(K) (PS y SSSgSq—)‘

1,808t 2,80

Together with (50) and the discussions in [8, § 4], ¥, 7w (D)* should have the following form
PS

*
15057 al,T

pPS*
a2,7’ 17
SS* —

SoSt ai r

*
a2 r PS?,

So

/

So

\

PS3

2,865t

Finally, assume the isomorphism in Remark 4.48 (1) holds. All these speculations suggest that
m(D)* has the following form

a1,0 PST:‘S‘T
/
PS?SUST a2 o T ai r
2,7 PSTvSJ ai,
/ \
SS:gs‘,— al,o az.r alg*
\ /
o1 PSEVST a2,
Psg,sasf as)
\

PS;.,. (57)

where each labelled line is a possibly-split extension, and the same label means that one splits if
and only if the other one splits. We remark that such a form was antecedently speculated in a
personal note of Breuil (back to 2008!).

We finally give a quick discussion for some other cases.
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Crystabelline case with general K One may make similar speculations for general finite
extension K of Q,. In fact, the hypercubes (0% (7(D)*) appear to have the following inductive
feature with respect to di. For I C ¥, and a U(gy,,\)-finite U(gs, )-module M, we can define
a #I-dimensional hypercube, denoted by EI?EM , by just using the wall-crossing functors for o € I.
Then vagK\Iﬂ'(D)* appears to have a similar symmetric structure as %7 (D’)* for a rank two
(p,I')-module over Ry p with dgr = #I. In the generic crystabelline case, one may expect
ﬂ;VgK\IW(D)* has the form PS}, @®SSj,, @ - ®SS}, ., ®PS;,,. For example, when [K :
Qp) = 3, @ (w(D)*) should have the following structure (where we only keep Vidgn ;m(D)* and
m(D)*, so each line means an extension, where the first number in the subscript counts PS or SS,
and where we also enumerate the embeddings, and s, just means sy, Sy, Ss.)""

PS7 s, ®SSE,, ®PSS ,, ————————— PST ,, ®PS;
/ /
PST o10s B SST 105 BSS5 6105 PSS 410y —— PST ., ®SSE,, PS5 .,
or(D)*
PST s, ®PS; alg™
/ /
PS; ., ®SS;,®PS;,, ———— PS; . @PS; .,

We propose the following conjecture on the multiplicities of Orlik-Strauch representations in (A, \) =
ﬂ;KW(D)* for general GLa(K) in generic crystabelline case.

Conjecture 4.54 (Multiplicities). Suppose A is crystabelline and generic, and let 91’ 92 be the two
refinements of A. Then w(A, ) contains a locally Q,-analytic representation which is a successive

extension of (Too(A) @p L(A))®2dK and

D (F5& (15 (sesli(-20,0(0)) ™ eFGY (L5 (-srA)esLi (-2, 2(6,) ™)
|J]=i

fori=1,--- ,dg.
Remark 4.55. By the discussion above the comjecture, one may expect that for a generic crys-
tabelline D of reqular Sen weights, 7(D)* has Z?fo(d[( +1—1) (df) = (295 + dg 295~V -number

of (multiplicity free) irreducible constituents, and m(A,\)* has foo(d;( +1—14)2° (df) = (39 4
dx 3% =YY -number of irreducible constituents.

de Rham non-trianguline case Assume now D is de Rham non-trianguline (and h is strictly
dominant). For simplicity, we still write alg = moo(A) ®g L(A), that is the locally algebraic

"1The form was also speculated in a personal note of Breuil around 2008.
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subrepresentation of (D). The discussion in the crystabelline case in the precedent section suggests
the following speculative structure of the representations in (3% (7(D)*) for de Rham non-trianguline
D for [K : Qp) =2:

SSP2* SS§,

(A, A" §8*

So St

o4+, m(D)": g8

alg So St /alg*
SSEE}Q’* SS;,
For general K, and a de Rham non-trianguline (¢, I')-module D of regular Sen weights, one may
expect 7(D)* has 29% -number of (multiplicity free) irreducible constituents and 7(A, A\)* has 39x-
number for irreducible constituents. We invite the reader to compare it with Remark 4.55.

For K = Q,, using *7n(D)*, we can reprove the following result on extension group ([36,
Thm. 2.5]:

Proposition 4.56. dimg Homgy,(q,)(7(A, )", alg”) = dimg ExtéLz(@p)(alg*, mo(A, \)*) = 2.

Proof. As alg® = V™ r(D)*, the result on smooth dual and [63, Cor. 3.6] imply V7 (D)* = alg*.
As Ext}(alg*, alg®) = 0, (A, \)* = 9F7(D)* is an extension of (alg)*®? by mo(A, \)* = 9~ n(D)*.
The proposition then follows by similar argument in Corollary 4.49 (showing that w(A, \)* is the
universal extension of alg® by mo(A, A)*). O

A Lie calculations for gl,

0 1 00 10
) + . - — =
We collect some facts on gly-modules. Let u™ : (0 0>, U (1 0)7 3 <0 1) and

h = <(1) _01> Let A be an integral dominnat weight. Let M € Mod(U(gl2)XA), and consider

M5 TAT M 5 M.
Lemma A.1. (1) Ker(c) is the submodule of M generated by U(gly)-finite vectors.
(2) Coker(k) is generated by U(gly)-finite vectors.

Proof. Let My C M be the submodule generated by U(gl,)-finite vectors. It is easy to see 7'y oMy =
0. As the map My — M — TE‘GT;OH.)\M factors through TfaT/\*GMO =0, My C Ker(e).

Let 0 := (0,0). Then T)% induces an equivalence of categories Mod(U(gly)y, ) — Mod(U(gly)y,)
(with inverse Ty') and sends L()) to the trivial representation L(0) = L We also have TQ)‘T%TO_ GTg =
T, Ty 9 We reduce to prove the gly-action is trivial on Ker(¢) and Coker(x) when A = 0. B

Assume henceforth A = 0, hence —0 — wp -0 = (0, —1) and L(—60 — wp - 0) ®pg det is isomorphic
to standard 2-dimensional representation Vi of gly. Let eg be a lowest weight vector of Vi and

er = uteyg. Let ef € V)Y be the dual basis of e; (so e = —uTe] is a highest weight vector of
V}Y). We have by the calculation in [37, Lem. 2.17]: (ngM) ®@gdet = (M @ Vi)[c = —1] =

{1}0 X eg+v1 ®er ’ (b — 2y = 2uT vy, (b + 2)’1}1 = —2u’v0}, and T%HTQ_"M = TQ_QM RE Vlv. By
direct calculations, we have

t(v) = —2uTvRey+hv®e;) e + (hvRey —2u" v R er) @ e,
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K(—(vg ®eg+1v1 @ e1) ®ef + (v @ep +v] ®ep) R efy) = v — v1.
It is clear that Ker(t) = M[gly, = 0]. We see

_ L (b - 2)a = 2uta’ (b 2)y = —2u"y/ }
Im(k) = {gg +y ‘ dz’,y" € M such that {QU_CL‘ — (b1 2) & {2u+y — (h—2)y .

In particular, for any v € M, utv € Im(x) (with z = utv, 2’ = 1hv) and u"v € Im(k) (with
y=u"v,y =—1hv). We easily deduce the gly-action on M/ Im(x) is trivial. O

Let M? := (Ti‘eTA_eM) [Z = x|, and M? := Im(k). It is clear that the map ¢ factors through
v: M — M

Lemma A.2. The cokernal M*/TIm(1) is generated by U(gly)-finite vectors.

Proof. Similarly as in the proof of the above lemma, we reduce to the case A = 0. We have

M = {v:—(vo®eg+vl®el)®e>{+(v6®eo+vi®el)®63 (58)

{(h — 2)vg = 2uT v} & {hv() = —2(v1 +u ") }

€Ty’ MapVyY
u e hur = 2v) + 2ut v} (h+2)v] = —2u"v;

Recall the condition —(vo ® eg +v1 ® e1) ® € + (v) @ eg + V| ® e1) @ efy € Ty’ @ V}” also implies
(h — 2)vo = 2uT vy, (h+2)vy = —2u"wy. For v € M* as in (58), we calculate

utv = —(utvg @ ep + (vo +uTv1) ®er) ®ei + ((vo +uTvy) ®ep + (v1 + v) +utv)) ®er) @ e

1
= 5( — (2utvg ® eg + hvg @ e1) @ ef + (hvg ® eg — 2u vy R e1) ® e(’;) € Im(e),

ho = —((h —2)vg @ eg + hvy @ e1) ® e} + (hvy @ e + (h+2)v] R e1) @ e
= —2utv1 ®eg+hvy ®er) @ef + (hvy R ey — 2u" v @ e1) @ ef € Im(1).

We deduce easily that the gly-action on M*/TIm(s) is trivial. O

Lemma A.3. Suppose M does not have non-zero U(gly)-finite vectors, then the Casimir operator
con TL\GT;OM induces an ezxact sequence

0 — M* — TAT M — M° — 0.
Proof. We reduce to the case A = 0. Tt suffices to show Ker(k) = M*. Let v = —(vp ®@ eg + v1 ®
e1) @ el + (vh @ eg + v ®er) ® el € MF, it suffices to show v}y = v1. However, by the equations in

(58), we have ut (v —v1) = u™ (v — v1) = h(v) — v1) = 0 hence v}) — v1 = 0 by the assumption on
M. O

Lemma A.4. The module T:\HT)TOM does not have non-zero U(gly)-finite vectors.
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Proof. Similarly as in the proof of Lemma A.1, we reduce to the case where A = 0. Let v =
—(vp®ep+v1®e1) e+ (VyRey+v]Rer) el € T%TQ_QM =(Me@gWV)[Z=x_9®pV)’ We
have

utv = —utvg®eg®@ef — (vo+utv) ®er ®ef + (vo + u+v6) ® ep ® efy + (v1 + v} + ut ) ®er ® e

wv = —(uTvgtv+u)) ey @ef — (uTvr +0)) ®ep ®@ef + (uTv) +0)) @eg@ef +uTv] ®e ® e
hv = —(h—2)vRey®e] —hvy ®er Vel + huy ®eg ® e+ (h + 2)v] @ er @ €.

As ¢ annihilates M, uTv = hv = 0 (resp. w v = hv = 0) implies utvy = 0, hvg = 2vy (resp.

u~v] = 0, hvy = —2v]) hence vg = 0 (resp. v| = 0). Then we deduce utv; = hv; = uv; =0

(resp. utv) = u~v)) = hvjy = 0). The lemma follows. O

Lemma A.5. (1) The map v : M* — (M*)* is an isomorphism.

(2) k: (M")° — M is an isomorphism.

(8) If M does not have non-zero U(gly)-finite vectors, M — M?* induces an isomorphism M’ =
(MP).

(4) M" < M induces an isomorphism (M°)* = ME.
Proof. (1) By Lemma A.1(1) and Lemma A.2, and the fact that T)\_QM’ = 0 if M’ is U(g)-finite,

the map M — M* induces an isomorphism Ti‘eT)\_ ‘M =T L\GTA_ Ot Taking x\-eigenspace, we
deduce M* =5 (M*)! and the following diagram commutes

M —— M
| |
M= ( Mﬁ)ﬁ
It suffices to show the bottom map, denoted by ¢/, coincides with .. However, as their restrictions

to M are equal, and M?*/M is generated by U(gly)-finite vectors, we see Im (s — 1) is generated by
U(gly)-finite vectors. By Lemma A.4, J/ = ¢.

(2) By Lemma A.1 (2), the map M® < M induces a commutative diagram

~

—0 7 rb —6
TATOM " T 1M
| |
M — M
We deduce the left  is surjective. (2) follows.
(3) Similarly, by Lemma A.1 (1), the map M — M?* induces a commutative diagram

-0 ~ -6
AT M —=— T2, T3 M*
dl |
M — M?

By assumption, ¢ is injective. (3) follows.
(4) follows from Lemma A.1 (2). O
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B Schneider-Teitelbaum dual for locally J-analytic representa-
tions

Let G be a locally K-analytic group of dimension . We collect some results on the dimensions and
Schneider-Teitelbuam duals for locally J-analytic representations of G for the lack of references.

Note we can view G as a (Qp-analytic group of dimension dgr. Let g be the Lie algebra of
G (over K). For o € Yk, denote by g, := g ®ks E. In general, for J C X, denote by
g7 = [l,cs 9, and o/ =11, 780. Denote by I; the kernel of U(g) — U(gy), which is also
generated by the kernel of U(g’) — E via the natural injection U(g”’) < U(g)). Let C’/~12(G, E)
be the subspace of C%~# (G, E) of locally J-analytic functions, those that are annihilated by I;.
Let Dy(G, E) := C'71%(G, E)* be the locally J-analytic distribution algebra. We have U(gy) <
D;s(G,E) and D,;(G,E) = D(G,E)/I;D(G, E). Indeed, as D«(G, E) = @geinDi(H, E)dy (the
isomorphism being gy, -equivariant) for a compact open subgroup H of G, we only need to show
Dj(H,E) = D(H,E)/I;. But it follows from [64, Prop. 2.18] and the discuss following it. Let H
be a compact open subgroup of G, recall that D(H, E) is equipped with a family of multiplicative
norms {gs}1_,.q (cf. [62, § 4]). Denote by Ds(H, E) (resp. Ug(gx)) the completion of D(H, E)
(resp. U(gx)) with respect to gs.

Following [63, § 2], put D, .(G, E) := C/™1%(G, E)* hence D; (G, E) = [ec/n Di(gH, E) for
a compact open subgroup H of G. We assume G/H is countable. By the discussion in [63, § 2],
c’ ~12(@, E) is equipped with a natural topology of space of compact type. Moreover, the right and

left translation of G on C/~1%(G, F) induces separately continuous D;(G, F)-module structures on
Dy.(G,E).

Proposition B.1. We have

'D(LC(G,E) q = 0

Hy(s’ D(C. E)) = {DJ(G’E) =0 0 .

>0’ and Hy(g”, D.(G, E)) = {
Proof. The proof is due to Zhixiang Wu. Let H be a compact open subgroup of G. It suffices to
prove a similar statement for D(H, E). We consider the Chevalley-Eilenberg resolution A®g”’ ®g
U(g”) — E of the trivial U(g’)-module E, which induces A*g’” @ U(gr) — U(gs). For s € p@,
% < s < 1, taking completion with respect to g5, the complex A®g’ @ Us(gr) is also exact
except at the degree 0 with Hy = Us(gx)/IsUs(9k). Applying — ®u,(g,) Ps(H, E) and using
[52, Thm. 1.4.2], the complex A*g’ ®p D,(H, E) is still exact except at the degree 0 with Hy =
Ds(H,E)/I1;Ds(H,E). By taking inverse limit over s and using the topological Mittag-Leffler
property, we finally obtain a complex A°g’ @ D(H, E) which is exact except at the degree 0 with
Hy = D(H,E)/I;D(H,E) = D;(H,E). It is clear the complex calculates the g/-homology of
DJ(H7 E) q= 0

D(H, E), hence H,(g/,D(H, E)) =
q>0

. The proposition follows. O

By the proposition and the same argument as in the proof of [63, Cor. 3.6], for M € Mg, 5, we
have an isomorphism in D (Mg):

RHomp(g ) (M, De(G, E)) = RHomp (¢, gy (M, RHomp gy (Ds(G, E),De(G, E))). (59

On the other hand, by the same argument as for [63, Prop. 3.5] (using the resolution A®g’ @
D(H,E) — Dy(H,E)), we have:
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Proposition B.2. RHomp g g (DJ(G, E), DC(G)®E‘DG7J) is naturally quasi-isomorphic to Dy .(G)® g
|AG7J’;(1 concentrated in degree r(dx —#J), where Ag j := A =#D) g7 s equipped with a natural
D(G, E)-action extending the adjoint action of G, and 0¢g.; = Ag ®F ‘AG’J’I_{I.

By the same argument in the proof of [63, Cor. 3.6], the proposition together with (59) imply:
Corollary B.3. The following diagram commutes
D*Mg,s) —— D"(Mg)
RHomDJ(G,B(-,DJ,C(G,E)®E551[—r(dK—#J)])l lRHomD(c,E)(~7DC(G,E)®EDG,J)
D*(Mg ;) —= D (Mg).

Corollary B.4. For M € Mg, s, we have Extly . o (M, Dy (H, E)) = Extpy'i # (M, D(H, B)),

, (H,E)
in particular, ExtJD( (M,D(H,E)) € Mg,;.

H,E)

C Surplus locally algebraic constituents

We discuss the phenomenon of “surplus” locally algebraic constituents, those that appear in
7(D)/m(D)™e. We show that for GLg, there don’t exist such constituents right after a certain
locally @Qp-analytic subrepresentation (D) of m(D) (assuming M, is flat over Ro,), while for
general GL,, there are quite many with a lower bound (2" — @ — 1)dg

First let D be a rank 2 generic crystabelline étale (o, I')-module over Rk g. We use the notation

“alg”, “m(Dy,0,\)” of § 4.2.4. Let m1(D) := @ZIEEK m(Dgy, 0, N).

Theorem C.1. Suppose My, is flat over Roo. Let V' be an extension of alg by m1(D). Then V is
not a subrepresentation of w(D).

Note that the representation V', however, can be a subrepresentation of a certain self-extension
of 7(D). By [3] (see also Corollary D.15), M, is flat over Ry, when K is unramified over Q, under
mild hypothesis.

Proof. Recall m(D) = MZ~~%[m] where m is a maximal ideal of R.[1/p] associated to p. We
assume 71 (D) < 7(D) (otherwise there is noting to prove). We write x = (z,x2%) € (Spf Roo)"8 =
(Spf Rﬁm)rig x (Spf RS, )8 (where R%, is the prime to  part of the patched deformation ring, ¢ is the
chosen p-adic place p of [4], and p is a mod p reduction of p), and m,, mze to be the respectively
associated maximal ideal of R%[l /p] and R&,[1/p]. Let a, := mip +mye. We consider Il [a;]. The
proof is a bit long, and we give a summarization. We first construct in Step 1 the universal extension
&(alg, (D)) of alg by m1(D). Furthermore, using local-global compatibility for triangulation
deformations, we show it can be injected into Il[ay]. If V — 7(D), the aforementioned injection
will “split” V' and lead to an extra multiplicity of alg in Il [a,], contradiction.

Step 1: We work out Extéh( K)(alg,m(D)), and gives an explicit construction of the universal
extension of alg by m (D). First it is easy to see (e.g. see [14, Lem. 3.16])

dimpg ExtéLQ(K)(alg, m1(D)) = dimpg ExtéLQ(KLZ(alg, m (D)) +di + 1.
Moreover we have an exact sequence by dévissage (see § 4.2.4 for PS; ;)

0— Extlz(alg, alg) — Extlz(alg, (D)) = Bi=12.0e5x Extlz(alg, PSis,) — ExtQZ(alg, alg).
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Using [65, Prop. 4.7], it is not difficult to see ExtéLQ(K)Z(alg, alg) = 0 and dimp ExtéLz(K)Z(alg, alg) =
1. By [65, Cor. 4.9] and similar arguments as in [35, Lem. 2.28|, dimpg ExtéL2(K)(alg,PS,-7sa) =1
Hence dimp Ext(;(alg, m1(D)) = 2 + 3dg. We construct a basis of it as follows. For o € Y, let
Hom, (K>, F) C Hom(K*, E) be the 2-dimensional subspace of locally c-analytic characters (cf.
[33, § 1.3.1]). Let PS;, := (IndGLQ(( )) (g)a(z))“’)"_an ®F Ly o\ (o} (Ani\{o}) (Which is the unique
non-split extension of PS; s, by alg). We similarly define PSs ,. Similarly as in [35, Prop. 2.30], we
have

Hom, (K*, E) = Extgy, k) z(alg, PS10) (60)

where the map is given as follows: for a, € Hom, (K>, E), consider the representation over E[e] /e

(IndgLi(K)) @i)a(z)Ao ®E((1—|—eag)®(1—eag)))g an®ELEK\{U}()\ZK\{J}) which is a self-extension
of PSi,. Then (60) sends a, to the corresponding subquotient in the self-extension, denoted by
Tl,a,- We define mp 4, in a similar way. We fix ¢, € Hom,(K*, E) such that 1, and the smooth
character valg form a basis of Hom, (K™, E). If PS;, < 7(Dy,0,\) — m(D), let mi(D,1,0)
be the push-forward of 7, along the injection (depending on the choice of 1, of course); if
PSis, = m(Dg,0,A) — m(D) (i.e. ajr = 0), we use m(D,i,0) to denote the push-forward
of }"GLQ( S (=X\)Y @p LEK\{U}(—AZK\{U})J(@)) (being the unique non-split extension of alg
by PS; ) via the injection. We let m(D,0,%,) denote the extension of alg by (D) appearing
in m(D) ® + etpy) o det. Let m(D,001) (resp m1(D, 002)) be the push-forward of zﬁél =

g (1
(I dng(K 1(,) ®F (14 evalp) ® (1— evalE))> ®p L(\) (resp. alg2 = alg®p(1l+ evalg) odet)
via alg < m1(D). Then

i=1,2 Za:eo’zlff
&(alg, m(D)) == P m(D,00;) ®rypy P m(D,i,0)
71'1(D) 7r1(D)

is the universal extension of alg by 71 (D).

Step 2: We recall the description of the locally algebraic vectors Il.o[a,]®® by [4, Thm. 4.19,
§ 4.28]. Let & be the inertial type D, and RD h- PE(¢) be the corresponding potentially crystalline
deformation ring. Recall by [4, § 4.28], the actlon of R';' on Hyo[a,]™8 (= (M) @p L)Y )™ @p
L(\), which is non-zero as m1(D) < 7w(D)) factors through REh PE(E). Let 1o be the smooth
character of GL2(Of) associated to . As (Spf RDh pcr(f))rlg is smooth at the point z, (and
(Spf R%,)"8 is smooth at z¥), by [4, Lem. 4.18], the dual of Homgr, 0, )(L(N) @& o, ao[az]) =
Homg,0,) (%0, Hoo ® L(A) Y [az]) is a free module of rank 1 over RD b P )[1/10]/1112 (hence has

dimension 4+dg over E). Let H := End(c- mdGL2 (O )Qbo) acting naturally on Homgr,, (0,) (%0, He® &

L(\)Y). There is a natural map H — REI b~ Pr(¢), which induces a surjective map on tangent spaces
at z, (cf. [4, § 4.1] [15, Prop. 4.2.9]). By [4, Thm. 4.19], the H-action on Homgr, (0, )(L(\) ®F

1o, s ]az]) factors through R%] ’hfpcr(f). We deduce hence an isomorphism (the first two factors
coming from the tangent space of H)

(algy Dag algy) © alg® K 5 T [ag] 5. (61)
Step 3: Using local-global compatibility for trianguline deformations of D, we construct an injec-

tion
&(alg, m (D)) @ alg®?tix 5 T [a,], (62)
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such that the intersection of its image and Il[m] is equal to m (D).

Step 3(a): For a rigid space X and y € X, we use T, X to denote the tangent space of X
at y. We construct a certain basis of T} (Spf Rg)rig. Recall Xgi(p) is the (framed) trianguline

variety. For each refinement ¢, one can associate a point (p, gzh) € Xui(p) — (Spf R%)rig x Tk
(where Ty is the rigid space parametrizing locally Q,-analytic characters of T'(K)). Recall the
map 1%, Xui(p) = e, (Spf RF)"8 is injective ([17, Lem. 4.16]). By [48, Prop. 3.7 (i)], T, Xui(p) +
T, Xui(p) = Ti,, (Spf RF)". Recall dimp Tr, Xii(p) = 4+3dx, and dimp T, (Spf RF)"® = 4+4dk.
There is an exact sequence

0 — W (p) — T, (Spf RS)™® L5 Extl, (D, D) — 0

where W (p) is the subspace “K(r)” in [17, Lem. 4.13], of dimension 4 — dimg End(,, r)(D). By the
proof of [17, Cor. 4.17], W(p) C T, X4i(p) for both z;. Let Ext;(D, D) be the subspace of de Rham

(hence crystalline) deformations. Then f’l(Exté(D,D)) has dimension 4 + dx and is identified
with the tangent space of (Spf Rg’h_pcr(f))rig at p. By [48, Lem. 3.5], f~!(Ext, (D, D)) C T, Xui(p)
for both i. For 0 € Xk, let ar := p ®p Ele]/e*(1 + €t,) that is an element in T} (Spf R%)rig. It
is easy to see a, € Ni=1 2T, Xui(p) (using (p @ Ele]/e2(1 + €y), 0i(1 + etby) € Tk, Xtri(p)). Let
€1, ,en214, be a basis of Ty (Spf R%]’hfpcr(ﬁ))rig. It is easy to see the sets {e;} and {as}oex,
are linearly independent. As dimg M;T%, X4i(p) = 4 + 2dk, {e;} and {a,} form a basis of it. For
each o and 1, if ¢, is not o-critical, then by [34, Lem. 2.4], there exists b, ; € T%, Xtri(p), such that
f(bsi) is £ \ {o}-de Rham and the natural map

T, Xui(p) — Hom(T(K), E) (63)

sends by,; to (1+€yy) ® (1 —€t,). If ¢, is o-critical, by [34, Thm. 2.4], there exists by; € 1%, Xui(p)
such that f(bs;) is i \ {o}-de Rham, o-Hodge-Tate non-de Rham and that b, ; is sent to zero
via (63). One can show that {e;}, {as}, {bs,i} form a basis of 1%, X1,i(p). Indeed, one just needs to
check there are linearly independent, but this follows easily from the theory of local model ([19]).
Consequently {e;}, {ac}, {bs;i}, i = 1,2 form a basis of T} (Spf Rﬁm)rig.

Step 3(b): Let £ be the patched eigenvariety in our setting (i.e. the X,(p) of [35, § 4.1]). The
dual of the Jacquet-Emerton module Jp(I15=~31) gives rise to a Cohen-Macaulay coherent sheaf
M over £. The injection alg < I, [m] gives to two classical points x; = (p,](g)égz’\, x¥) e € —
(Spf RﬁD)rig x Tk X (Spf R%,)"8, i = 1,2. Recall that &£ is smooth at the point z; ([17, Thm. 1.3]).
By the multiplicity one property for I, in [27], it is not difficult to show M is locally free of rank
1 in a neighbourhood of z; (for example, using the fact that the fibre of M at each non-critical
classical point is one-dimensional). There is a natural morphism & — X (p) % (Spf R%)"*® sending
x; to (2, 2¥) (cf. [18, Thm. 1.1]), which is a local isomorphism at x; by [19, Thm 1.5]. We view
{e;}, {ac}, {bs;} in the precedent step as elements in the tangent space of £ at z; (by adding 0 to
the R%,-factor).

Step 3(c): For an element t = (Dy, &;,a?) : Spec Ele]/e? < £ in the tangent space at x;, we have
an injection by definition
(575 — JB (Hoo [Clt]) (64)

where a; (resp. af’) is the associated ideal of Roo[1/p] (resp. R5:[1/p]). We apply the adjunction
for the Jacquet-Emerton functor. We only consider the case where t is zero for the RS,-factor, i.e.
af’ = mge (so that we identify ¢ with its corresponding factor in T}, Xi,i(p)). When ¢ lies the tangent
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space of (Spf R? ’h_pcr(ﬁ))rig , the map (64) factors through Jp (Il [a:]'®8), hence is balanced in the

sense of [43, Def. 0.8]. By [43, Thm. 0.13], it induces a non-zero map (see loc. cit. for Ig%?;g)(—)):

GLa(K
58 (60) — Tagla].
As 0z is locally algebraic, I GL?(I?(&) is a self-extension of alg. In fact the map is already included

n (61). If t = a,, it is easy to see (64) corresponds to
7T1(D) RE (1 + ewg) odet — Hoo[at}.

If t = bg;, suppose first ¢, is not o-critical. By the choice of ), and [34, Cor. 3.23], the map (64)
factors through (recalling f (bs,i) is Xk \ {o}-de Rham)

Jp (5™ (X)) @ Ly o\ (0} A\ o)) [ae])
= Jp(E="" ®@p Ly, (o} As e\ (o) )7 ®B Ly o\ (o} Asie\ (o)) [ae). - (65)

This together with the fact PS; s, is not a subrepresentation of Il [a;] imply that (64) is bal-

GLQ(K)((St)

anced. By definition, [ in this case is just the representation m;,, considered in Step

(1). Using push-forward to m1(D), we get m1(D,i,0) < Hso[ay]. Now suppose ¢, is o-critical. By
the choice of ¥,, 0y =2 § @ ¢ and the injection (64) again factors through (65). One difference is
that (64) is, however, no longer balanced. Pick an injection j : § < & — Jp(IlEe"2(\) @p
Ly 0\ {o} (A 0\ {o})[6:]) Whose image is not contained in Jp(IIf="2"m,])). Using Breuil’s adjunc-
tion formula [11, Thm. 4.3], the map j induces an injection (see also the proof of [34, Thm. 4.4]):
]:g%Q (M7 (—=Xo)Y ®E LZK\{U}(—AEK\{U})J(@)) < MB~—an[q,]. Using again the push-forward to
m1(D), we get m1(D,i,0) < Iso[ay] in this case. Putting all these together (and using Step 3(a)),
we get an injection as in (62). As My is assumed to be flat over R, we have an exact sequence
with respect to the basis {e;, ay, by }:

0 — [y - [feo—anfq) L, p(py@l+ide) g

It is not difficult to see that the induced injection given as above for each element in {e;, s, bs,},
composed with f, will induce an injection from alg to the corresponding direct summand in
7(D)®#H+4dK)  We then deduce the intersection of the image of (62) and I [m] is exactly 71 (D).

We finally prove the theorem. Suppose V — II(D). By (62), we get
V @, (p) &(alg, m (D)) & alg®®T) —— T [a,).

As &(alg, m1(D)) is universal, we have V @, (p) &(alg, m1(D)) = alg®& (alg, m1(D)). The above
injection then contradicts (61). O

We consider the case of GL,,(K). Assume D is a generic crystabelline (¢, I')-module of rank
n over Rk g (of regular Sen weights h). Let ¢1,---,¢, be the smooth characters of K* such
that A = @' \Ri r(¢i) (cf. § 2, recalling the generic assumption means ¢;¢; # 1, - }t<1) The
refinements of D are then given by {w(¢) = @ ¢y-1(;), w € Sp}. Fori=1,--- ,n—1,0€ X,
and a refinement w(¢), put (A = h — fx and see Example 3.18 for )

C’(w(gb), 50,1) : fGLn (LEK\{J}( )‘EK\U) ®F LU(_SU,i : )\),](w(qb)))
2 P (L (o) (“Asico) € Lo( s N, (2GS ) a(w(@)),
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where @; is the standard maximal parabolic subgroup with simple roots {1,---,n — 1} \ {i}.
Let % = {w™(1),--- ,w™'(i)}, it is clear by the last isomorphism that for a different refine-
ment w’(¢), if the associated set .#] is equal to .%;, then C(w(),ss:) = C(w'($), Se,i). Hence
we will also denote C(w(¢), ss,i) by C(Zi,ss:). By [65, Thm.], the (2" — 2)dg representa-
tions {C(Zi,50.4)} cEY K are now pairwise distinct. Let alg := fg%"(L_(—)\),]((é))

i=1,- n—1

FiC{1, n}#Fi=i _
(2 FGE (L™ (=), 5(w(9))) for all w). For w € Sy, let PS

tion of (Indglj’ég) 9(w($))2z*) @~ with the form

r(r:;;le be the (unique) subrepresenta-

PSIIRC 2 [alg— & pexny  C(w(9), 50,0)]-

=1, ,n—1

Indeed the existence and uniqueness follow easily from [55, Thm.] (and the easy fact on multi-

plicities of the corresponding simple modules in M~ (—X\)). We assume D is non-critical for all

the refinements. Put 71(D) be the unique quotient of the amalgam @Z’lgs " PSii}r&ple with socle alg.

Recall that each C(.%;, s5;) has multiplicity one in m;(D) (cf. [21, Prop. 5.9]). Indeed, m(D) is a
mple

subrepresentation of 7(D)® of loc. cit. Note also PS?)( %)

facts:

— 71(D) for all w. We collect some easy

Lemma C.2. (1) For any w € Sy, there is a natural isomorphism

Hom(T'(K), E) = Ext{y,, ) (alg, PS5 ). (66)

simple

In particular, dimg EXt%}Ln(K) (alg, PSw(¢) ) = ndg.
(2) We have dimpg ExtéLn(K)(alg, (D)) = (2" — 1)dg + n.

Proof. The lemma follows from similar (and easier) arguments as in [35, § 2.2, 2.3]. We only give a
sketch. Using Schraen’s spectral sequence [65, (4.39)] (and [65, (4.43), Thm. 4.10] with the classical
facts on Jacquet module of smooth principal series), we have a natural isomorphism

Hom(T(K), B) < Bxtly, ) (alg, (Indg i) (w(@)) =) %), (67)

Fy [35, Lem. 2.26], the right isomorphism is naturally isomorphic to ExtéLn (K) (alg, PS:I(I;I;le ), (1)
ollows.

By similar (and easier) arguments as in the proof of [35, Lem. 2.28], dimg Ext! (alg, C'(w(¢), s0.:))
1 for all w, s,;. Using [65, Prop. 4.7], dimpg ExtéLn(K)(alg,alg) = dg + n (where “1 + dg”
comes from the self-extensions of the central character), dimpg ExtéLn( K) 4(alg,alg) = n —1 and

Ext%Ln (k),z(2lg, alg) = 0 (where the subscript Z stands for “with central character”). By dévissage,
we have hence an exact sequence

0— ExtéLn(K)vz(alg, alg) — Ext};Ln(K)vz(alg, T (D)) = ®io7 ExtéLn(K)vz(alg, C(Zi,55:)) — 0.

(68)
So dimpg EXtéLn(K),Z(alg’ﬂ'l(D)) = (2" — 2)dx + n — 1. Finally, by the same argument in [14,
Lem. 3.16], we get dimpg EXtéLn(K) (alg, (D)) = ExtéLn(K)yz(alg, m(D))+drg+1=(2"—1)dg +
n. O
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Remark C.3. (1) We can ezplicit describe (66) as follows. For ¢ € Hom(T(K), E), consider the
following representations over Ele]/e*:

I (0w (@) 2 (1 + e)) — (Indig i) s(w ()2 (1 + ) # ™™
GLy, (K)

B~ (K)
of the induced representation on the right hand side generated by

(@) (L4 vedm — Jp((Indg i) sw(@) (1 +v0) ™).

where I (=) is Emerton’s representation defined in [43], that is the closed subrepresentation

It is not difficult to see (e.g. by [35, Lem. 4.12], and the discussion after (67)) IGL” )(](w(tb))z)‘(1+
Ye)) is contained in a unique extension PSSI?Igle(w) of alg by PS?;?:;;IE. The map (68) is then given

by sending ¥ to PSZI(I:;;le(Q/)).

(2) From the proof of Lemma C.2, it is easy to see that the following natural map (by push-
forward) is injective:

imple

ExtéLn(K)(alg, PSZ(@ ) —s ExtéLn(K) (alg, m1(D)).

And 3, Bxtly, o) (alg, PSSERC) = Extly, g (alg, m(D)).

Recall ExtéLn( K) Jalg (818, alg) = Homu (T(K), E), where Homos denotes the space of smooth

characters, and “lalg” in the subscript means “locally algebraic extensions”. Let aAfg be the universal
imple

locally algebraic extension of alg®” by alg. Let & (alg,PSf;( %) ) be the universal extension of

alg®™I% by PSSHZ;SIG, &(alg, (D)) be the universal extension of alg®™+(2"=Ddx) by 7 (D). We

have natural injections by push-forward

alg — & (alg, PSSP ) — &(alg, m1(D)).

By Remark C.3 (2), &(alg, 71(D)) can be generated by (the push-forward) of & ( alg, PSfir(’égle) with
w varying.

Suppose (D)™ =£ 0, hence 7(D)'"8 2 alg. For each refinement w(e), let zy, = (Ty,e, 2%) =
(9(w(9))op2?, p,x%) € € — (Spf R%,)™8 x (Spf Rﬁm)“g x Tx be the associated classical point on the
patched eigenvariety £. Let M be the coherent sheaf over £ associated to Jp(IIZ==2"). As D is
non-critical for all embeddings, £ is smooth at each point x,, and M is locally free of rank one at x,,
(using [17, Lem. 3.8] and the multiplicity one property in the construction in [4]). Let m,, m® be the
respective maximal ideal of R%[l /p] and R&[1/p] associated to z,,. Let a:=m? +m® C Reo[1/p].
We have dimgm/a = dimpmg,/m2 = n? 4+ n®dg. Consider [TE=~~an[q]. By definition, there is an
exact sequence (with respect to a basis of m/a)

0 — =" m] — TIfeoman[q] Ly 1Moo —an [m)on+ndic (69)

Let ITE~—an[q]; := f _l(alg@(”2+”2df‘ ) ). The following lemma follows from the same argument in
Step 2 of the proof of Theorem C.1 (based on [4, § 4.28]).

n(n—1)
2

Lemma C.4. We have I1R=—an[q]!#18 — [[Rec—an[q)lals o 5]g®(n*+ k=) @alg.

Recall by [21, Thm. 1.1], alg < 7(D) extends to a unique injection w1 (D) < 7(D).
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Proposition C.5. The injection 711 (D) «— E>=3[m] = 7(D) extends to an injection
& (alg, m1(D)) > M= ""[a]y.

Proof. The proof is similar (and easier, as we only deal with the non-critical case) as in the Step
3 (c) of the proof of Thm. C.1. We give a sketch. For each point z,,, the tangent map of & —
(Spf Rﬁm)rig x (Spf R%,)™ is injective (cf. [17, Lem. 4.16]), and the tangent map of € — Tk at zy,
is surjective (for example, using similar argument as in [35, Prop. 4.3] and [3, Thm. 2.5.10]). For
each 1 € Hom(T(K), E), let t = (D, 3(w(¢))dp2*(1 + 1), m?) : Spec Ele] /e — £ be an element in
the tangent space of £ at z,, (whose R%-factor is zero). By definition, it gives an injection

9(w(9)0p2 (1 +ve) — Jp(IIE=""[ar]) — Jp(ILi="""[a]) (70)

where a; is the ideal of R [1/p] associated to t. As M is locally free of rank one at x,,, we have in
particular

E = Homr(q,) (3(w(¢))dp2", Jp(n(D)™#)) 2= Homyp(q,) (s(w(¢))dpz", Jp(n(D))).

Together with (69), we see (70) actually has image in Jg(IIZ=~2%[a];). As D is non-critical at w,
(70) is balanced (see for example [35, Lem. 4.11]). By [43, Thm. 0.13], it induces an injection

s T ) (H(@)2(1+60)) s T "[a]s.

Letting v vary, and using (66) and Remark C.3 (1), all the above maps amalgamate to an injection

. simple Roc—an
Lo + 6 (alg, PSUENC ) —— T~ [ay.

Finally, letting x,, vary, and using Remark C.3 (2) (and the discussion after it), these ¢,,’s amalga-

mate to the wanted injection in the proposition. O

We finally get the following theorem, giving a lower bound of the multiplicities of alg in w(D):

Theorem C.6. Suppose D is non-critical for all refinements, and ©(D)*& £ 0. Then the multi-
plicity of alg in w(D) is no smaller than 1 + (2" — w —1)dk.

Proof. By the above proposiiton and Lemma C.4, we have an injection
n(n—1)
ég(algv Ut (D)) @ algEB(nz_‘—TldK—”) SN Hfooo_an{a]l.

By (69), we easily see the multiplicity of alg in 7(D) has to be no smaller than 1+ ((2" — 1)dx +
(n—=1)

n) + (n2 + "D g —n) — (n? 4+ n2dg) = 1+ (20 — 2 1)y, 0
Remark C.7. (1) The existence of surplus locally algebraic constituents in the very critical case
for GLs was previously announced by Hellmann-Hernandez-Schraen (see for example the discussion
below [45, Conj. 9.6.37]).

(2) The extension of surplus locally algebraic constituents with 71 (D) within w(D) carries certain
information of the Hodge filtration of D (even the full information when K = Q). We will discuss
this in a upcoming work ([38]).

65



References

1]

[2]

[10]

[11]

[12]

[13]

[14]

Shishir Agrawal and Matthias Strauch. From category O to locally analytic representations.
Journal of Algebra, 592:169-232, 2022.

Konstantin Ardakov and Simon Wadsley. On irreducible representations of compact p-adic
analytic groups. Annals of Mathematics, pages 453—-557, 2013.

Joél Bellaiche and Gaétan Chenevier. Families of Galois representations and Selmer groups.
Astérisque, 324:1-314, 2009.

Rebecca Bellovin. p-adic Hodge theory in rigid analytic families. Algebra Number Theory,
9(2):371-433, 2015.

Laurent Berger. Construction de (¢, I')-modules: représentations p-adiques et B-paires. Alge-
bra & Number Theory, 2(1):91-120, 2008.

Laurent Berger. Equations différentielles p-adiques et (p, N)-modules filtrés. Astérisque,
319:13-38, 2008.

J. N. Bernstein and S. I. Gelfand. Tensor products of finite and infinite dimensional represen-
tations of semisimple lie algebras. Compositio Mathematica, 41(2):245-285, 1980.

Christophe Breuil. Remarks on some locally Qp-analytic representations of GLy(F) in the
crystalline case. Non-abelian fundamental groups and Iwasawa theory, 393:212-238, 2010.

Christophe Breuil. The p-adic Langlands program in the ordinary case and fundamental
algebraic representations. 2012. Distinguished Lecture Series at Fields Institute of Toronto.

Christophe Breuil. Induction parabolique et (p,I')-modules. Algebra and Number theory,
9:2241-2291, 2015.

Christophe Breuil. Vers le socle localement analytique pour GL,,, II. Mathematische Annalen,
361:741-785, 2015.

Christophe Breuil. Vers le socle localement analytique pour GL,, 1. Annales de [’Institut
Fourier, 66:633-685, 2016.

Christophe Breuil. Ext' localement analytique et compatibilité local-global. American J. of
Math, 141:611-703, 2019.

Christophe Breuil and Yiwen Ding. Higher £-invariants for GL3(Q,) and local-global compat-
ibility. Cambridge Journal of Mathematics, 8(4):775-951, 2020.

Christophe Breuil and Yiwen Ding. Bernstein eigenvarieties. Peking Mathematical Journal,
pages 1-172, 2023.

Christophe Breuil and Yiwen Ding. Sur un probleme de compatibilité local-global localement
analytique. Memoirs of the Amer. Math. Soc., 290(1442), 2023.

Christophe Breuil, Eugen Hellmann, and Benjamin Schraen. Smoothness and classicality on
eigenvarieties. Inventiones mathematicae, 209(1):197-274, 2017.

66



[18]

[19]

[20]

[21]

22]

[23]

[24]

Christophe Breuil, Eugen Hellmann, and Benjamin Schraen. Une interprétation modulaire de
la variété trianguline. Mathematische Annalen, 367(3-4):1587-1645, 2017.

Christophe Breuil, Eugen Hellmann, and Benjamin Schraen. A local model for the trianguline
variety and applications. Publications mathématiques de I’IHES, 130:299-412, 2019.

Christophe Breuil and Florian Herzig. Ordinary representations of G(Q,) and fundamental
algebraic representations. Duke Mathematical Journal, 164(7):1271 — 1352.

Christophe Breuil and Florian Herzig. Towards the finite slope part for GL,. Int. Math. Res.
Not., pages 10495-10552, 2020.

Christophe Breuil, Florian Herzig, Yongquan Hu, Stefano Morra, and Benjamin Schraen. Con-
jectures and results on modular representations of GL,,(K) for a p-adic field K. arXiv preprint
arXiv:2102.06188, 2021.

Christophe Breuil, Florian Herzig, Yongquan Hu, Stefano Morra, and Benjamin Schraen. Mul-
tivariable (¢, Of)-modules and local-global compatibility. arXiv preprint arXiv:2211.00438,
2022.

Christophe Breuil, Florian Herzig, Yongquan Hu, Stefano Morra, and Benjamin Schraen.
Gelfand—Kirillov dimension and mod p cohomology for GLs. Invent. math., pages 1-128,
2023.

Christophe Breuil and Peter Schneider. First steps towards p-adic Langlands functoriality.
Journal fiir die reine und angewandte Mathematik (Crelles Journal), 2007(610):149-180, 2007.

Ana Caraiani, Matthew Emerton, Toby Gee, David Geraghty, Vytautas Pagktuinas, and
Sug Woo Shin. Patching and the p-adic local Langlands correspondence. Cambridge jour-
nal of mathematics, 4(2):197-287, 2016.

Ana Caraiani, Matthew Emerton, Toby Gee, David Geraghty, Vytautas Pagktunas, and
Sug Woo Shin. Patching and the p-adic langlands program for GL2(Qy). Compositio Mathe-
matica, 154(3):503-548, 2018.

William Casselman and M. Scott Osborne. The n-cohomology of representations with an
infinitesimal character. Compositio Mathematica, 31(2):219-227, 1975.

Pierre Colmez. Représentations de GL2(Q)) et (¢, I')-modules. Astérisque, 330:281-509, 2010.

Pierre Colmez. Représentation localement analytique de GL2(Q,) et (¢,I')-modules. Repre-
sentation theory, 20:187-248, 2016.

Pierre Colmez. Correspondance de Langlands locale p-adique et changement de poids. Journal
of the European Mathematical Society, 21(3):797-838, 2018.

Yiwen Ding. Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité
local-global. Mémoires de la SMF, 155:vii4+245 pages, 2017.

Yiwen Ding. L-invariants, partially de Rham families, and local-global compatibility. Annales
de UInstitut Fourier, 67(4):1457-1519, 2017.

Yiwen Ding. Companion points and locally analytic socle for GLy(L). Israel Journal of
Mathematics, 231:47-122, 2019.

67



Yiwen Ding. Simple L-invariants for GL,,. Transactions of the Amer. Math. Soc., 372(11):7993—
8042, 2019.

Yiwen Ding. Locally analytic Ext! for GLy (Qp) in de rham non-trianguline case. Representa-
tion Theory of the American Mathematical Society, 26(5):122-133, 2022.

Yiwen Ding. Change of weights for locally analytic representations of GL2(Qp,). arXiv preprint
arXiv:2307.04332, 2023.

Yiwen Ding. Towards a locally analytic p-adic langalnds correspondence in the crystabelline
case. 2024. in preparation.

Gabriel Dospinescu, Vytautas Paskunas, and Benjamin Schraen. Infinitesimal characters in
arithmetic families. arXiv preprint arXiv:2012.01041, 2020.

Gabriel Dospinescu, Vytautas Paskunas, and Benjamin Schraen. Gelfand-Kirillov dimension
and the p-adic Jacquet-Langlands correspondence. Journal fiir die reine und angewandte
Mathematik (Crelles Journal), 2023(801):57-114, 2023.

Gabriel Dospoinescu and Arthur-César Le Bras. Revétements du demi-plan de Drinfeld et
correspondance de Langlands p-adique. Annals of mathematics, 186(2):321-411, 2017.

Matthew Emerton. Jacquet modules of locally analytic representations of p-adic reductive

groups I. Construction and first properties. Annales scientifiques de I’Ecole normale supérieure,
39(5):775-839, 2006.

Matthew Emerton. Jacquet modules of locally analytic representations of p-adic reductive
groups II. The relation to parabolic induction. 2007. to appear in J. Institut Math. Jussieu.

Matthew Emerton. Locally analytic vectors in representations of locally p-adic analytic groups.
Memoirs of the Amer. Math. Soc., 248(1175), 2017.

Matthew Emerton, Toby Gee, and Eugen Hellmann. An introduction to the categorical p-adic
Langlands program. arXiv preprint arXiv:2210.01404, 2022.

Jean-Marc Fontaine. Arithmétique des représentations galoisiennes p-adiques. Astérisque,
(295):115 p., 2004.

Yigin He. Parabolic simple L-invariants. 2022. arXiv preprint arXiv: 2211.10847.

Valentin Hernandez and Benjamin Schraen. The infinite fern in higher dimensions. arXiv
preprint arXiw: 2210.10564, 2022.

James E Humphreys. Representations of semisimple Lie algebras in the BGG category O,
volume 94. American Mathematical Soc., 2008.

Akash Jena, Aranya Lahiri, and Matthias Strauch. Translation functors for locally analytic
representations. arXiv preprint arXiw:2107.08493, 2021.

Kiran S Kedlaya, Jonathan Pottharst, and Liang Xiao. Cohomology of arithmetic families of
(p,T')-modules. Journal of the American Mathematical Society, 27(4):1043-1115, 2014.

Jan Kohlhaase. Invariant distributions on p-adic analytic groups. Duke Mathematical Journal,
137(1):19 — 62, 2007.

68



[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Jan Kohlhaase. The cohomology of locally analytic representations. Journal fir die reine und
angewandte Mathematik (Crelles Journal), (651):187-240, 2011.

Ruochuan Liu. Triangulation of refined families. Commentarii Mathematici Helvetici,
90(4):831-904, 2015.

Sascha Orlik and Matthias Strauch. On Jordan-Holder series of some locally analytic repre-
sentations. Journal of the American Mathematical Society, 28(1):99-157, 2015.

Lue Pan. On locally analytic vectors of the completed cohomology of modular curves. Forum
of Mathematics, Pi, 10:e7, 2022.

Lue Pan. On locally analytic vectors of the completed cohomology of modular curves ii. arXiv
preprint arXiv:2209.06366, 2022.

Zicheng Qian. Dilogarithm and higher L-invariants for GL3(Qp). Represent. Theory, 25:344—
411, 2021.

Tian Qiu and Benchao Su. Locally analytic vectors in the completed cohomology of unitary
shimura curves. 2024. in preparation.

Peter Schneider and Jeremy Teitelbaum. Banach space representations and Iwasawa theory.
Israel journal of mathematics, 127(1):359-380, 2002.

Peter Schneider and Jeremy Teitelbaum. Locally analytic distributions and p-adic repre-
sentation theory, with applications to GLs. Journal of the American Mathematical Society,
15(2):443-468, 2002.

Peter Schneider and Jeremy Teitelbaum. Algebras of p-adic distributions and admissible rep-
resentations. Inventiones mathematicae, 153(1):145-196, 2003.

Peter Schneider and Jeremy Teitelbaum. Duality for admissible locally analytic representa-
tions. Representation Theory of the American Mathematical Society, 9(10):297-326, 2005.

Benjamin Schraen. Représentations p-adiques de GLa(L) et catégories dérivées. Israel Journal
of Mathematics, 176(1):307-361, 2010.

Benjamin Schraen. Représentations localement analytiques de GL3(Q,). Annales Scientifiques
de I’Ecole Normale Supérieure, 44(1):43-145, 2011.

Benchao Su. Translation and the locally analytic Ext! conjecture in the GLy(1)-case. 2024. in
preparation.

Zhixiang Wu. Local models for the trianguline variety and partially classical families. 2021.
https://arxiv.org/abs/2103.03823.

Zhixiang Wu. Companion points on the eigenvariety with non-regular weights. IMRN, 2022.

69


https://arxiv.org/abs/2103.03823

D Cohen-Macaulayness and duality of some p-adic representations

Yiwen Ding, Yongquan Hu, Haoran Wang

Abstract

Let K be an unramified extension of Q,. We show that the p-adic Banach space and locally
Qp-analytic representations of GLy(K') (associated to two dimensional Galois representations)
are Cohen-Macaulay and essentially self-dual.

Contents
D.1 Notations and preparations . . . . . . . . . . .. 70
D.2 Patched representations and duality . . . . . . . ... ... L 0 0oL 74
D.3 Applications to GLa . . . . . . . . e e 79

D.1 Notations and preparations

We fix a prime number p. Let E/Q, be a finite extension in @p, with ring of integers Op and
residue field F 9 Og/(wg) where wg is a fixed uniformizer of Op. We assume that E and F are
sufficiently large.

Let Gy be a compact p-adic analytic group. The ring-theoretic properties of the Iwasawa algebra
Og[[Go]] are established by the fundamental works of Lazard [13] and Venjakob [17]. In particular,
if Gy has no element of order p, then Og[[Gp]] is an Auslander regular ring of global dimension
gld(Og[[Go]]) = 1 + dimg, Go, where dimg, Gy is the dimension of G as a p-adic analytic group.
Let M be a nonzero left Og[[Go]]-module, the grade jg,(M) = jo(ic (M) of M over Og[[Go]] is
defined by

Jo(M) = inf{i € N | Exthy, g, (M, Opl[Gol]) # 0}.
We always have
0 < jig (M) < 1+ dimg, Go.

The dimension of M is defined by
0o (M) = do 4o (M) = gld(Og[[Gol]) — ja,(M) =1+ dimg, Go — jg,(M).

Recall that a finitely generated nonzero left Op[[Gol]-module M is Cohen-Macaulay if the module
Exto, 1coy) (M, Op[[Go]]) is nonzero for just one degree i. Denote by E[[Go]] := Og[[Go]] ®0o, E.

Let G be a p-adic analytic group with a fixed open compact subgroup Gy C G. Set

MG) = lim (Or/@EIG] @0y wp (6] O/ E([Goll) = O8lG] @016y OrlGoll
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thanks Ahmed Abbes for the invitation and LH.E.S. for the hospitality.
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The discussion in [12, §1] for k[G]®yc, k[[Go]] with k a discrete field, extends to O /@ [G]®0y, /wn (Go)
O /w}[[Gol]. In particular, O /@k[Gl®o, wn (o) Ok /@ [[Gol] and hence A(G) do not depend on
the choice of Gy. We consider finitely generated A(Gp)-modules which carries a jointly continuous
Opg-linear action of G defined in [7, Def. 2.1.6]. Recall that if M is such a module, we set

Je(M) = jogjice)(M), E'(M) = Ext} g, (M, A(Go)).

Then E*(M) carries naturally a jointly continuous action of G and is still finitely generated over
A(Go) by [12, §3]. The aim of this section is to extend some results of [11, §11.3] to a broader
setting.

Lemma D.1. Let (A,m) be a local Noetherian Og-algebra such that A is Gorenstein of Krull
dimension 1 and that the Og-algebra structure map induces an isomorphism Op/wp = A/m.
Assume x : A — Og is a surjective homomorphism of Og-algebras. Then Of is an A-module via
x, and there is an isomorphism of A-modules Op = Homy(Op, A).

Proof. Since A is Gorenstein of Krull dimension 1,
Hom(Op/wg, A) = Ext}(Op/we, A) =0, ExtY(Op/wg,A) = Op/wg.
The short exact sequence 0 — O — O — Of /wr — 0 gives an exact sequence of A-modules
0 — Homa(Op, A) =5 Homy(Op, A) = Op/wg — Exty (O, A) =5 Ext(Og, A) — 0.
By Nakayama’s lemma, we get Extk(OE, A) =0, and hence a short exact sequence of A-modules
0 — Homy (O, A) == Homy (O, A) — Op/wg — 0.

Applying Hom4(Og, —) to the short exact sequence of A-modules 0 — Ker(z) - A — O — 0,
we obtain a homomorphism of A-modules

(e HOHIA(OE,A) — HOIHA(OE,OE) = OE

which fits into a commutative diagram

0 —— Hom4(Op, A) —25 Homu(Og, A) —— Og /wp — 0

N

0 OE OE OE/WE*H).

By Nakayama’s lemma, Ker(a) = Coker(a)) = 0, and hence « is an isomorphism. O

Lemma D.2. Let (A,m) be a flat local Noetherian Og-algebra of Krull dimension 1 such that
the Og-algebra structure map induces an isomorphism Op/wp = A/m. Let M be a finitely gener-
ated A(Go)-module equipped with a homomorphism of Op-algebras ans : A — Endy(g,) (M) such
that M is flat over A, Cohen-Macaulay over A(Gq) of grade c. Let x : A — Op be a surjective
homomorphism of Og-algebras. Then M &4, O is Cohen-Macaulay over A(Gy) of grade c.

Proof. We may assume Gg has no element of order p by [9, Lem. A.7]. Then A(Gy) is Auslander

regular with finite global dimension. We first prove that M ®4 , Op/wg is Cohen-Macaulay over
A(Gp) of grade ¢ + 1. Since A is wpg-torsion free and M is flat over A, M ® 4 A/wp is finitely
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generated and Cohen-Macaulay over A(Gy) of grade ¢ + 1 by [9, Lem. A.15] and its proof. Since
A/wpg is an artinian ring, M ®4 A/wpg has a finite filtration with graded pieces isomorphic to
M ®4 A/m. As a consequence, jo,(M ®4 A/m) = jg,(M ®4 A/wg) = ¢+ 1 by [1, Prop. 1.8].
By [2, Ch. X, § 8.1, Cor. 2] M ®4 A/wp and M ® 4 A/m have the same projective dimension over
A(Gp). Hence M ® 4, Op/wr = M ®4 A/m is Cohen-Macaulay of grade ¢ + 1.

Consider the short exact sequence (obtained by the flatness of M over A)
00— M®az Op =5 M Az O — M @4 OE/’WE — 0.

Since M ® 4 » O /wg is Cohen-Macaulay of grade c+ 1, we have surjections wg : E{(M ®4,,Op) —»
E{(M ®4,, OF) for i # ¢, and a short exact sequence 0 — E¢(M ®4, Op) —> E¢(M ®4, Op) —
ETY M ®4,, Op/wg) — 0. Since M is finitely generated over A(Gy), so is E (M ®4, Og). Then
E{(M ®a4. Og) = 0 for i # ¢ by Nakayama’s lemma, and E¢(M ®4, Of) # 0. O

Proposition D.3. Let (A,m) be a local Noetherian Og-algebra which is Gorenstein of Krull
dimension d > 1 such that the Og-algebra structure map i : Op — A induces an isomor-
phism Op/wp = A/m. Let M, N be A(G)-modules equipped with homomorphisms of Og-algebras
ay A — Endpg) (M) and ay @ A — Endyq)(N) such that M and N are flat over A, finitely
generated and Cohen-Macaulay of grade ¢ over A(Gp). Assume € : M — ES(N) is an isomorphism
of A®p, A(G)-modules. Let v : A — Of be a surjective homomorphism of O-algebras. Then
M ®4, Op and N @4, Op are Cohen-Macaulay of grade ¢ +d — 1 over A(Gy). Moreover, the
isomorphism € induces an isomorphism of A(G)-modules M ® 4 , Op = Eetd-1(N ®Az OR).

Proof. Since A is assumed to be Gorenstein, it is Cohen-Macaulay. We also have A is flat over
Op as Homa(Op/wg, A) = 0. Let p := Ker(A — Og). One can choose x; € p, 1 <i <d—1

such that {z1,...,24_1,wg} is a regular sequence of A. Indeed, let {wg,y1,...,y4—1} be any
system of parameters of A. Since m = (wg) + p, we may choose z; € p so that z; = y; (mod w)g.
Then {wg,x1,...,24-1} is also a system of parameters of A, hence a regular sequence by [14,
Thm. 17.4(iii)]. Equivalently, {z1,...,24-1,wg} is a regular sequence of A. Since M (resp. N) is
flat over A, {z1,...,xq-1,wg} is an M-sequence (resp. N-sequence).

By a standard argument ([14, Exer. 18.1]), A/(z1,...,24-1) is a flat local Noetherian Op-
algebra which is Gorenstein of Krull dimension 1. Since M and N are flat over A, M /(z1,...,2q-1)
and N/(z1,...,x4-1) are Cohen-Macaulay over A(Gy) of grade ¢ + (d — 1), and are flat over
A/(x1,...,x4-1). By induction, € induces an isomorphism

M/(21,...,24-1) BTN/ (21, 2a-1)).

So we are reduced to the case where A has Krull dimension 1 and M, N are Cohen-Macaulay of
some grade j over A(Gp). By Lemma D.2 M ®4 , O and N ® 4 , Op are Cohen-Macaulay of grade
j. We choose a finite presentation of Of as A-module:

A" L A2 0p -0, (71)
which induces an exact sequence
0= EI(N®a, Op) = B (N@aA) D BI(N @y A").
It is easy to see that the map f* is equal to
fT .
(A= A") @ E/(N)
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where f7 denotes the transpose of f.

On the other hand, applying Hom4(—, A) to (71) gives an exact sequence

T
0 — Homa(Op, A) — AL A™.

Noticing that Homa(Opg, A) = Op by Lemma D.1, and that M is A-flat, we obtain an exact
sequence

T
0= M®4, 08— ML M

The explicit description of maps shows that the diagram

is commutative. Then e induces an isomorphism M ®4 , O = E/(N® Az OF). O

Corollary D.4. Under the assumption of Proposition D.3, (M ®4, Op)[1/wg| and (N ®a4
Og)[l/wEg]) are Cohen-Macaulay modules over E[[Go|]. And we have an isomorphism of A(G)[1/p]-
modules (M @4, Op)[l/wg] = B (N @4, Or)[1/wg]).

Proof. This follows from [17, Prop. 3.28]. O

The following lemma will be useful in our application.

Lemma D.5. Let M be a A(G)-module, finitely generated over A(Gy). Let s € Z>1 and suppose
M is equipped with a Zy-action via a certain character x. Then we have a natural G-equivariant
isomorphism of A(Zy x Go)-modules:

Ext{ g, (M, A(Go)) = ExtdﬁzX a0y (M, A(Zy x Go) (72)

where Zy, acts on the left hand side via x L

Proof. By induction, we are reduced to the case s = 1. We show first (72) for d = 0. Let
z € Og|[Z,]] be the generator of the ideal corresponding to x. Thus M is annihilated by x.
Consider the exact sequence

0— A(Zp X G()) i) A(Zp X G()) — A(Go) — 0.
Applying Homy (7, x o) (M, —), we get
0 — Homy(z, x o) (M, A(Zy x Go)) = Homyz, o) (M, A(Zy x Go)) = Homp(z, x o) (M, A(Gp))
= Exty g o) (Ms MZp x Go)) = Exty 5 a0y (M, A(Zy x Go)).

As M is annihilated by «x, the first two terms are zero, and the last map is also zero. We obtain
hence

Homy Gq) (M, A(Go)) 2= Hompz, x60) (M, A(Go)) = Extiyz «a) (M, A(Zp x Go)). (73)
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If M is a finitely generated projective A(Go)-module, then A(Z,)®¢,M is a finitely generated
projective A(Z, x Gp)-module. Applying Homy (7, «q,)(—; A(Zp x Go)) to the exact sequence

0= A(Zp)2o, M = ANZy) B0, M — M — 0,

we see Extly g0y (M, A(Zypx Go)) = 0for i # 1. Thus Ext} ¢ (=, A(Gp)) and Ext}\(z'pro)(—, A(Z,yx

Gy)) are both universal §-functors from finitely generated A(Go)-modules to A(Z, x Gp)-modules,
and hence are isomorphic by (73). O

D.2 Patched representations and duality

If F'is a field, we let Galp := Gal(F'/F) denote its absolute Galois group. If M is a linear-topological
Op-module, we let MY := Hom@&" (M, E/Og) denote its Pontryagin dual. If M is a torsion free
linear-topological @g-module, we let M? := Homg’gt(M ,Op) denote its Schikhof dual.

We use the setting of [4, §2.3] (with slight different notation). In particular, we have the

following data _
{F7ﬁ7 K7 F/F+7G7U17Sp7p7§77-}7

where
e K is a finite extension of Q,, F' is a CM field with maximal totally real subfield F'™ such that

all the finite places of F'™ are unramified in F, that all the p-adic places of F'T split in F,
and the completion of F'™ at the p-adic places are all isomorphic to K;

e S, is the set of p-adic places of F*, and p € Sy;
e v is a certain finite place of F* prime to p that splits in F;

e 7 : Galp — GL,(F) is a continuous representation and p : Galp+ — G,(F) is a suitable
globalization of 7 as in [4, § 2.1];

e G is a certain definite unitary group over F with a model over Op+;

e { is an integral dominant weight (with respect to the upper triangular Borel subgroup) of
Resgp GL,,, 7 is an inertial type of K, W ; be the representation of Hvesp\{p} G(OFJ) over O
associated to £ and 7. Note that the definition of W¢ » depends on the choice of an GL,(Of)-
stable O g-lattice of o (7)Y, where o(7) is the smooth type given by the inertial local Langlands
correspondence.

Let Gy be a compact open subgroup of GL,(K) with no element of order p. Let U? = UPU} =
[To, Uo XHveSp\{p} U, be a compact open subgroup of G(A%F) with U, = GL,(OF) for v € S\ {p}.

For k € Z>1 and a compact open subgroup U, of é((’)FJ), consider the O /wh-module

Ser(UPU, O)why) = {f : GIFON\G(AR:) — Wer /ol | flgu) = u' f(g), Vg € G(AZ ), u € UPU,}
(74)
where UPU,, acts on W ./ via the projection UPU, — [Toes,\py Uv- Put

Se.(UP,0)

lim S¢ (U, O0/wk) := limlim S¢ - (UPUy, O /).
k kE Uy

74



Denote by T(U?) the polynomial O-algebra generated by the spherical Hecke operators at places
v such that é((’)FJ) = GLy(Op+). Then Se.-(UPU,, O/wh,) and §§,T(Up, O) are equipped with a
natural action of T(U?). Denote by S¢ - (UPUy,, O/wh)¥ the Pontryagin dual of S¢ (UPU,, O/wk,).
Hence §5’T(Up, 0)d = Hm, h&lUp Se.+(UPU,, O/wh)V. Let & (resp. 7') be the dual of ¢ (resp. of 7).
We define Sgr - (UPUy, O/wh) ete. in a similar way replacing We » by Wer - 1= ng,r- The following
lemma is well-known.

Lemma D.6. Assume U? is sufficiently small in the sense of [5]. Let VP = T[,,,

open normal subgroup of UP, VP := VpU}DJ and V, be a compact open normal subgroup of Uy,. There
is a natural T(VP) x U, /V,, x UP /VP-equivariant isomorphism

V, be a compact

Homo (v, /vy xvr ve) (Ser(VoVP, Op /@)Y, Op/@pUp/Vy x UPJVP]) =5 Ser o (VaVP, O /wly)Y
(75)
Moreover, if V;J’ C V, is another compact open normal subgroup of Uy, then for + = &, 7 or &, 7/,
there is a natural isomorphism

S*(‘/;,VP’OE/w]kE)V o~ S*(‘/'J/VP,(’)E/W%)V B0 g[Uy/ V] Og[Uy/ V4]

and the following diagram commutes

~

Homo (v, /vy xue jve) (Ser(VJVP, Op/wh)Y, Op/@h[U )V x UP/VP]) = Se(VJVP,Op/wh)Y
1 \J
HOmOE[Up/‘/pXUp/Vp] (S&T(V;JVP,OE/?D%)V,OE/W%[U;)/V;) X Up/vp]) :> S§/7T/(‘/;JVP,OE/?D%)V.

Proof. Let L{}; C U}; be a compact open subgroup such that the action of L[}; on Wer/ w% and
Wer 71/ wh are both trivial. The statements in lemma follow easily from similar statements with
U} repaced by U). Let X := é(F*)\é(A%ﬂ)/(%Vpug) that is a finite set equipped with a right
(Up/VyxUP /VP)-action. We have (Uy/V,xUP/VP)-equivariant isomorphisms S¢ - (V, VU, O /') =
€ (X, We - /wh), and Sg o (V,VPUS, O /wh) = €(X, Wy - /wh) where € (—, —) denotes the set of
maps. Let [—, —] denote the pairing

C(X, We ., /wh) x € (X, Wer 1 [wly) — Op/wh

given by [f1, fo] = Y.ex(fi(2), f2(z)), where (—, —) denotes the natural pairing We ,/wh, x
ngvT//w% — Op/wk,. Finally, we define a pairing

(= =) (X, Wer o) x C(X, Wer 1 [wh) — Op/wg[Up/Vy x UP[V?]

given by (f1, f2) = ZhEUP/VpXUp/VP[flathHhil] € Op/wk[Uy/V, x UP/VP]. 1t is straightforward
to check that the pairing induces an isomorphism as in (75) and all the properties in the lemma

hold. O

By taking limit with respect to k € Z>1 and Uy, we deduce the following corollary (see [12, § 3]
for the GL, (K)-action).

Corollary D.7. Assume U? is sufficiently small. Let H be a compact open subgroup of GLy,(K),
and VP be a compact open normal subgroup of UP, there is a natural T(V?) x GL,(K) x UP/VP-
equivariant isomorphism

Homo,, ((mx0pwr/ve] (Ser (VP Op), Op([H]] @0, OplUP/VP]) 2 Sg (VP, Op)".
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Let ' : Galps+ — G, (F) be the representation isomorphic to p¢ (where p¢(g) = p(cge™?), ¢ being

the complex conjugation) such that (the GLy,, (F)-factor of) 7’|qa1, satisfies p'(g) = 2(g)' "w(p(g) 1) w,
0 - 0 1
0 --- 10
where € denotes the mod p reduction of the p-adic cyclotomic character € and w =
1 -~ 0 0
Let mj (resp. my) be the maximal ideal of T(U?) associated to p (resp. to p), which depends only

on (the GLy-factor of) the restriction plgal, : Galp — GL,(F) (resp. 7lcaly = plda, ©F gl It
is straightforward to see that (75) induces an isomorphism

Homo,, w, /v, xveve] (Ser(VoVF, Op )@k O /@5 [Up / Ve x UP [VP]) = S (K V?, OE/W%):%H

and the statements in lemma hold after taking the respective localizations. As p is automorphic
(in the sense of [8, Def. 5.3.1]), we deduce 7 is also automorphic. In particular, p’ is a suitable
globalisation of 7" ®p &1 7"

We recall the patching argument in [4]. Following [16], we use ultrafilters. For a finite place w
of F', we denote by p,, (resp. p),) the GLy,(F)-factor of the restriction p|galy,, (resp. p'lgaly, ). For
v € Sp,U{v1}, we denote by REI the maximal reduced and p-torsion free quotient of the universal O-
lifting ring of p; (= 7). For v € S, \{p}, we denote by Rgf " the reduced and p-torsion free quotient
of R%'N corresponding to potentially crystalline lifts of weight ¢ and inertial type 7. We define in
a similar way R%L and Rgflﬁ/. We have isomorphisms 7y : R% = ILD, and 75 : RD 6T R O

(for v € S, \ {p}) sending p’ to [g — e'7"(g)wp'(g71)Tw]. Let B¢ := RD (®gp\{p}R7 AT >®RD

5
and R'l°¢ .= Rglg@(@sp\{p}RﬁD%’é/’T,)@Rﬁ/ Then (73)yes,ufv,} induces an isomorphism 7 : Rloe &,
R'°¢. Let S denote the global deformation problem as in [4, § 2.4], R 5,5 be the universal deformation
ring and Rg 5 be the universal T-framed deformation ring with 7' = S, U {v1}. We define &’ in a
similar way as S with p, £ and 7 replaced by 7', £’ and 7’ respectively. Let R;v g and Rgf s be the
corresponding deformation rings. We have isomorphisms 7 : Rz s — Ry s and 7 : RDT = RETS,
defined in a similar way as above.

Let g > [FT: Q]% be as in [4, § 2.6]. For each N € Z>1, let Qn, Qnx be certain sets (of car-
dinality q) of primes of F' and F satisfying the properties in loc. cit. For each v € Qn and i = 0, 1,
we have compact open subgroups U;(Qn), C é(OFJ) (cf. loc. cit., noting Up(Qn)v/Ui1(QN )y =
7.)pN7Z). Let Sy be the deformation problem considered in loc. cit., and SégN be the similar
one with p, £ and 7 replaced by ¢/, & and 7’ respectively. Let R5.80, Rﬁ"SbN (resp. R%EQN
REI’T‘%N) be the corresponding universal deformation rings (resp. T-framed deformation rings).

Similarly as above, we have isomorphisms 7 : Rps0, = Ry Shy, and 7 : R .Say = RETS, . Let
g:=q—[F": @]@, and Ry = R°°[[z1,--,z,4]], R := R'°[[z1, - ,24]]. The isomor-
phism 7 extends to an isomorphism 7 : Ry — R/ sending x; to x;. Recall that RE gQN can be
topologically generated over R'°® by g elements (see [4, § 2.6]). We fix for each N a surjection

Ry — R%’ EQ , which then induces a surjection R, —» R, St such that the following diagram
’ N
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commutes:

Let Agy = (Z/pNZ)®4. By the definition of Sg,, (resp. Sgy)s there is a natural morphism
Op[Aqgy] = Rpsq,, (resp. OplAgy] — RF,‘% ). Moreover, letting 1 : Og[Ag,] — Or[Agy] be
N

the isomorphism sending [a] to [—a] for a € Ag,, the following diagram commutes

Oe[Aqy] — Rpso,

g d

Opldg,] — Ry,

For each N, we choose a surjection Og[[y1, -+ ,yq]] = OE[AQN] which induces a morphism (which
is the identity on the variables z;)

Soo = Og[lz1, -+, 22y, Y1, Ygl] — RET = RE,SQN®OEOE[[317"' s Zn2ar)]- (76)

Let 1 : Soo — Seo be the involution sending z;, y; to —z;, —¥; respectively. Remark that its
restriction on Og[[y1, - - ,yq]] extends n on Og[Ag,]. There is a unique morphism So, — RETS,

such that the diagram commutes:

Soo —— RIZ
pQN

| |
Soo —— RETSQN

For each N, and i = 0,1, let U;(Qn)P be the prime to p-part of U;(Qn)o of [4] (in particular,
Uo(QN)P /UL (QN)P =2 Agy). Let TS"YON be the Op-polynomial Hecke algebra as in [4, § 2.3]
(denoted by TPY@~uiv there). Denote by mg, (resp, m’QN) the maximal ideal of TSPY9N ag-
sociated to p (resp. to p”). For a compact open normal subgroup U, of Gy, let My (U, k) :=
DE(Se 7 (U1 Q) Up. Op /g, )” and M (Up. k) = pr(Ser (U (Qn )P U, O/, )V where
pr is the operator defined in [4, § 2.6]. Put My (U,) := lim, Mn (Uy, k), and My (Uy) - = lim, My (Up, k),
which are finite Og-modules equipped with a natural action of RPaSQN and Rpv Shy, respectively.

As pr is defined using Hecke operators at places in @y, we deduce from (75) a natural isomorphism
Homo ¢y /U, xAg ] (Mn(Uy, k), O/@h[Go/Uy x Agy]) = My (Up, k), (77)

which is Op[Go/Uy x Aqy] X Rp.s,, -equivariant, where Rp s, —acts on the right hand side via the
action induced by 7 : Rps, = Ry St

Now for each N, let M (U,) := RE'T ®R,

750, My (Uy) (resp. MIP(U,) := REVTS, ®Rv &

pSQ P Q Q

My (Uy)) which is hence equipped with an S-action via Soo — RﬁmgQ (resp. Soo — BLD\TS, ).
©PQN

For an open ideal I C Suo, let My 1(Up) := MY (Up) ®s.. Seo/I. We fix a non-principal ultraﬁlter

§ of Z>1, and let [[ 51 Seo/I — Soo/I be the localization at the maximal ideal corresponding to
5. Put Moo,I(Up) = (HN21 MN,I(Up)) ®HN21 Seo/I SOO/I, Moo,] = llmUp Moo,I(Up)a and My, =
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@1[ Moo 1 (resp. Méo,J(Up) = (HN21 Mjlv,I(Up)) O sy Seo/I Soo /1, Méo,j = yLnUp Méo,[(Up),
and M/ := ELHI M<I>o I). All these are equipped with a natural S-action. Recall My, and M/,
are equipped with a natural S-linear action of GL,,(K), and the both are finite type projective
Soo[[Go]]-modules. Moreover, My, (resp. M/,) is also equipped with a natural action of R (resp.
R._). The patching procedure of M, produces a morphism So, — Roo satisfying that the Rs-
action on My, is Soo-linear (e.g. see the arguments in [9, § 4.4]). Let Soc — R._ be the morphism

such that the diagram commutes:
Seo —— Rs

Ll
Seo — RL..

By looking at the action on each M/_ ;(U,) (or using the following proposition), one can show that
the R/ _-action on M/ is S-linear.

Proposition D.8. Let U, be a compact open normal subgroup of Gy, we have an Ro X Go/Up-
equivariant Syo-linear isomorphism

Homsm/I[Go/Up] (Moo,I(Up)asoo/I[GO/Up]) = éo,I(UP)v

where Ry acts on the right hand side via the induced action by n: Ry — RL,.

Proof. Let r be sufficiently large, such that for any N > r, I contains the kernel of Soc - Op[Ag,].
We have M7, ;(Up) = (I1ysr My 1(Up)) @11y Ses1 Soo/ I, * € {0 }. By (77), for all N > r, we
have a natural R X Go/U, equivariant isomorphism

Homg__/11¢o/u,] (Mn,1(Up), Seo/1[Go/Uy]) = My 1(Uy), (78)

where R, acts on the right hand side via 1 : Roo — RL, — RS,TSQ . Let R :=[[y>, Soo/I, and
) N -

Rz = S /I be the localization of R at the maximal ideal mz associated to §. The isomorphism
(78) induces

Homp ([T Mus(Uy), [T Se/11Go/Up)) = T Homs, s (My,1(Ty), Soc/T1Go/Ty]) = T My (D).
N>r N>r N>r N>r
It suffices to show the following map sending (fn) to (zx) — (fn(zn)) is an isomorphism:

Homp ( T Mw.W). 1 SOO/I[GO/U,JD ®n Rg

N>r N>r

% Hompy (] M.(Uy) @r Ry, (] Sx/T1Go/Uy)) @1 Rg).

N>r N>r

It is straightforward to see it is injective. For any f in the target, and (zn) € [[y>, M 1(Uyp),
as My 1(Up) has uniformly bounded cardinality, there exists J € § such that xy, N € J are all
equal, denoted by . One check the map (zn) — [[yc; f(Zo) X 0 is a preimage of f. The claim
follows. O

Corollary D.9. There is an Roo X GL,(K)-equivariant Sy -linear isomorphism
Homg, (o)) (Moo, Seo[[Gol]) = ML,

where Roo acts on M. vian: Rsx — RL_.
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Proof. This follows from Proposition D.S8. O

Theorem D.10. Assume that

e R is Gorenstein,

e M., and M/ are flat over Ro.

Then for any surjective homomorphism of Og-algebras x : Ros = Op, (Mo @R, » Op)[1/wE] and
(M., ®r.. » Or)[l/wg] are Cohen-Macaulay modules of grade de over E[[Gol], and there is
a GLy, (K)-equivariant isomorphism of E[[Go|]-modules

n(n2+1) dF

E (Mo ®Roo iz Op)[1/wE]) = (M, ®R,, 2 Or)[1/wE],

where di == [K : Q).

Proof. By taking A = Reo, M = M/, N = My, and G = Z] x GL,(Of) in Proposition D.3 and
using dim Ry = 1 + q + n?#T + %d}?, this follows from Corollary D.4, Corollary D.9 and
Lemma D.5. O

D.3 Applications to GL,

Assume n = 2 from now on. Let U = UPU, = [[ U, be a sufficiently small compact open subgroup
of G(A%, ) such that det(u) € U for all u € U. For f € S¢ (U, Op/wk,), consider the composition

[gr—>det(g)

G(F\G(AR.) I GEFNGAR) L We /b, (79)

Denote by Wg“; the representation over Or whose underlying Og-module is W -, with the action
given by g € Hvesp\{p} CNJ(OFJ) acting via det(g)~!g. It is straightforward to see (79) lies in

Sgi(U, Op /%), the module defined as in (74) with W, replaced by ngj We obtain hence a
bijection (letting Up,-vary)

Se.r(UP, Op /wls) = SEL(UP, Op /). (30)

For N € Z>1, let p"V be the universal representation of Galg+ over RESQW and yy denote the

character

det (puniv)

GLa(K) & GLa(Fy) % B Gali? — Gal “0™0,

1

Note the morphism 7~ coincides with Rp/’% = Rpsq,, P (e det(p))~tp (the same holds also
N

for the framed 7). By directly checking the TPY@N x GLQ(FE)-aCtiOH, we obtain the following
lemma.

Lemma D.11. For N € Zs>i, the isomorphism (80) (applied to U? = Uy (Qn)?) induces an iso-
morphism
Ser (U7, 08 /@ Ing,, = SEHU?, O/,
which is moreover GLy(K) X RESQN -equivariant if RESQN acts on the right hand side via 1 :
Rp.sq, = Rﬁ’,S’Q , and the GLa(K)-action on the right hand side is twisted by xn.
N
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We construct MZY in the same way as Moo with Sg . replaced by S£% (and Reo replaced by
R..). Let xp : GLa(Fy) — RZ be the character given by the composition

GLo(K) 9% 1 Galt Z% (2 )% R
2 K ﬁ'ﬁ (ooN

coincides with yn. By Lemma D.11, we

Note that the composition of x, with Ry — ET

Sqy
deduce the following proposition.

Proposition D.12. Keep the above situation. There is a GLa(K) X Roo-equivariant isomorphism
My = MEY

where Ry acts on MY wia n, and the GLy(K)-action on MY is twisted by the character prl.
In particular, for a surjective homomorphism of Og-algebras © : Ry — Og, there is a natural
GLy(K)-equivariant isomorphism

My ®Roo,93 OE = (Mggv ®Roo,$ OE) ®OE ($ © XP)_I'

Remark D.13. Let x be as in the above proposition, and p, be the associated Galp-representation.
Then x o xy = €(A%pz). By an easier variant of [6] (using the density of locally algebraic vectors in
ML), xo Xp s in fact the central character of (Moo QR « Ogp)?.

We compare MY with M/ . Recall Wy -/ := WgT. As representation of [[,cq \ (5 G(O i+ ) over
E, we have Wgﬁ Rop B = We 1 @0, E. Multiplying W 7+ be a certain p-th power, we can and
do assume there exists r € Z>1 such that p" Wy . C Wg‘ﬁ C We 7. For n sufficiently large, there

exist [ ], So\{p} C?(OFJ)—representations M, M (independent of n), finite over O, such that we
have an exact sequence

0— My = W Jwp — Wer o [wly — My — 0.
Applying the patching construction, we deduce an injection
MY — M,

which is R, x GLy(K)-equivariant and is bijective after inverting p (using M; and Mj are annihi-
lated by p" for a constant ). We get hence:

Corollary D.14. Keep the above situation. For a surjective homomorphism of Og-algebras x :
Ry — Og, there is a natural GLa2(K)-equivariant isomorphism

Mo @R » Opl/wE] 2 (ML, ®r. » Op(l/wE]) ®o, (z 0 xp) "

Corollary D.15. Assume K is unramified over Q, of degree dx. Assume the assumptions in [3,
Thm. 1.1] if p, is semisimple; assume the assumptions in [11, Thm 1.1] or [18, Thm. 1.1] if
Py is non-semisimple. Then for any surjective homomorphism of Og-algebras x : R — Og,
(Ms ®p..z Op)[1l/wg] is Cohen-Macaulay of grade 3dg over E[[Go]|, and there is a GLy(K)-
equivariant isomorphism of E[[Gol]-modules:

EgdK((Moo R Roo OE)[I/wE]) ~ (Moo QRoo,x C’)E)[l/wE] KSR (x o Xp)-
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Proof. Under the assumptions of the corollary, (M, /mp_ )" and (M. /mg_ )" both have Gelfand-
Kirillov dimension di by [3] [11] [18], where mp_ is the maximal ideal of Ro. Although [3] [11]
[18] work with patched modules associated to quaternion algebras over totally real field, the same
proof applies to our My, and M. . Then by [9, Prop. A.30] R is a regular local ring, and My,
and M/ are flat over Ro,. We conclude by Theorem D.10. O

Remark D.16. Under suitable assumptions, similar discussion may apply to some p-adic Banach
space representations of D>, where D is the nonsplit quaternion algebra over K. In particular, an
analogue statement of Corollary D.15 holds for patched modules described in [10, §5], under the
assumption of [10, Thm. 1.1].

Keep the assumption in Corollary D.15, and let 7(z) := Hom@®™(My ®p. Op,E). By
Corollary D.15 and [15, Prop. 7.2] (see also the proof of Lem. 2.2 of loc. cit.), we have

Corollary D.17. The dual (7(x)')* of the locally analytic subrepresentation of T(x) is a Cohen-
Macaulay module of grade 3dg over the distribution algebra D(Go, E), and B3 (1(z)*) = n(x)*®p

(o xp).

References

[1] Jan-Erik Bjork. The Auslander condition on Noetherian rings. In Séminaire d’Algébre Paul
Dubreil et Marie-Paul Malliavin, 39éme Année (Paris, 1987/1988), volume 1404 of Lecture
Notes in Math., pages 137-173. Springer, Berlin, 1989.

[2] N. Bourbaki. Eléments de mathématique. Algebre. Chapitre 10. Algébre homologique. Springer-
Verlag, Berlin, 2007. Reprint of the 1980 original [Masson, Paris; MR0610795].

[3] Christophe Breuil, Florian Herzig, Yongquan Hu, Stefano Morra, and Benjamin Schraen.
Gelfand-Kirillov dimension and mod p cohomology for GLga. Invent. Math., 234(1):1-128,
2023.

[4] Ana Caraiani, Matthew Emerton, Toby Gee, David Geraghty, Vytautas Pasktnas, and
Sug Woo Shin. Patching and the p-adic local Langlands correspondence. Camb. J. Math.,
4(2):197-287, 2016.

[5] Laurent Clozel, Michael Harris, and Richard Taylor. Automorphy for some l-adic lifts of
automorphic mod | Galois representations. Publ. Math. Inst. Hautes Etudes Sci., (108):1-181,
2008. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by
Marie-France Vignéras.

[6] Gabriel Dospinescu, Vytautas Paskunas, and Benjamin Schraen. Gelfand-Kirillov dimension
and the p-adic Jacquet-Langlands correspondence. J. Reine Angew. Math., 801:57-114, 2023.

[7] Matthew Emerton. Ordinary parts of admissible representations of p-adic reductive groups I.
Definition and first properties. Astérisque, (331):355-402, 2010.

[8] Matthew Emerton and Toby Gee. A geometric perspective on the Breuil-Mézard conjecture.
Journal of the Institute of Mathematics of Jussieu, 13(1):183-223, 2014.

[9] Toby Gee and James Newton. Patching and the completed homology of locally symmetric
spaces. J. Inst. Math. Jussieu, 21(2):395-458, 2022.

81



Yongquan Hu and Haoran Wang. On some mod p representations of quaternion algebra over
Qp. arXiw:2201.01464, 2022.

Yongquan Hu and Haoran Wang. On the modp cohomology for GLs: the non-semisimple
case. Camb. J. Math., 10(2):261-431, 2022.

Jan Kohlhaase. On the Iwasawa theory of the Lubin-Tate moduli space. Compos. Math.,
149(5):793-839, 2013.

Michel Lazard. Groupes analytiques p-adiques. Inst. Hautes Etudes Sci. Publ. Math., (26):389—
603, 1965.

Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, second edition, 1989. Translated from
the Japanese by M. Reid.

Tobias Schmidt and Matthias Strauch. Dimensions of some locally analytic representations.
Representation Theory of the American Mathematical Society, 20(2):14-38, 2016.

Peter Scholze. On the p-adic cohomology of the Lubin-Tate tower. Ann. Sci. Ec. Norm. Supér.
(4), 51(4):811-863, 2018. With an appendix by Michael Rapoport.

Otmar Venjakob. On the structure theory of the Iwasawa algebra of a p-adic Lie group. J.
Eur. Math. Soc., 4(3):271-311, 2002.

Yitong Wang. On the mod p cohomology for GLo. J. Algebra, 636:20-41, 2023.

82



	Introduction
	(,)-modules of constant weights
	Conjectures and results on the singular skeletons
	Translation to the singular block
	Preliminaries
	Singular skeleton

	Local-global compatibility conjectures
	Good subquotients of L
	Compatibility of () and 

	Finite slope part
	Generic trianguline case
	Steinberg case


	Wall-crossing and Hodge filtration
	Wall-crossings of (D)
	Hodge filtration hypercubes for `3́9`42`"̇613A``45`47`"603AGL2(K)
	Formal constructions
	+((D)*) and -((D)*)
	((D)*) for `3́9`42`"̇613A``45`47`"603AGL2(K) with [K:Qp]=2
	Crystabelline (D) for `3́9`42`"̇613A``45`47`"603AGL2(K) with [K:Qp]=2


	Lie calculations for `3́9`42`"̇613A``45`47`"603Agl2
	Schneider-Teitelbaum dual for locally J-analytic representations
	Surplus locally algebraic constituents
	Cohen-Macaulayness and duality by Yiwen Ding, Yongquan Hu, Haoran Wang
	Notations and preparations
	Patched representations and duality
	Applications to `3́9`42`"̇613A``45`47`"603AGL2


