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Introduction. This article intends to present an elementary introduction to 
the emerging structure theory of higher-dimensional algebraic varieties. Intro­
duction is probably not the right word; it is rather like a travel brochure 
describing the beauties of a long cruise, but neglecting to mention that the first 
half of the trip must be spent toiling in the stokehold. Perusal of brochures 
might give some compensation for lack of royal roads. 

Having this limited aim in mind, the prerequisities were kept very low. As a 
general rule, geometry is emphasized over algebra. Thus, for instance, nothing 
is used from abstract algebra. This had to be compensated by using more 
results from topology and complex variables than is customary in introductory 
algebraic geometry texts. Still, aside from some harder results used in occa­
sional examples, only basic notions and theorems are required. 

Throughout the history of algebraic geometry the emphasis constantly 
shifted between the algebraic and the geometric sides. The first major step was 
a detailed study of algebraic curves by Riemann. He approached the subject 
from geometry and analysis, and gave a quite satisfactory structure theory. 
Subsequently the German school, headed by Max Noether, introduced algebra 
to the subject and problems arising from algebraic geometry substantially 
influenced the development of commutative algebra, especially the works of 
Emmy Noether and Krull. 

During the same period the Italian school of Castelnuovo, Enriques, and 
Severi investigated the geometry of algebraic surfaces and achieved a satisfac­
tory structure theory. Their work, however, lacked the Hilbertian rigor, and 
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therefore started to fall into disrepute. When the students tried their hands at 
studying algebraic threefolds, their conclusions were frequently false and none 
of the proofs of the deep results stood up to even their own standards. 

Several attempts were made to place algebraic geometry on solid founda­
tions. After substantial achievements of van der Waerden, this was accom­
plished by Weil and Zariski through a systematic use of commutative algebra. 
A good indication of this style is the two-volume treatise, Commutative algebra, 
by Zariski and Samuel, which grew out of an attempt to write an introductory 
chapter to a planned algebraic geometry book. 

The approach via commutative algebra was further developed by Nagata, 
and it culminated in the unfinished magnum opus, Eléments de géométrie 
algébrique by Grothendieck. In his treatment, commutative algebra and alge­
braic number theory became special cases of algebraic geometry. A spectacular 
success of this point of view is Faltings' proof of the Mordell conjecture. 

By the end of the sixties, the foundational work was mostly done and 
attention turned toward more classical problems. First the theory of curves and 
surfaces was redone and completed. A structure theory of threefolds seemed, 
however, intractable. 

In 1972 Iitaka proposed some bold and interesting conjectures concerning 
higher-dimensional varieties. Along that path Ueno produced in 1977 the first 
structure theorem about threefolds. It was clear, however, that the scope of 
their approach was limited. One major stumbling block was the lack of a good 
analog of the so-called minimal models of surfaces. 

The major breakthrough came in 1980. Mori introduced several new ideas 
and accomplished the first major step toward proving the existence of minimal 
models. At the same time Reid defined and investigated minimal models 
(assuming their existence) and pointed out various ways of using them. Since 
then algebraic threefolds have been investigated intensively and recently these 
efforts resulted in the proof of several deep structure theorems. 

The aim of this article is to give an accessible outline of these results. 
Chapters 2-5 provide a short introduction to algebraic geometry. Chapter 6 

discusses the topology of algebraic varieties from the point of view of Mori's 
theory. Classically, one attempted to study a variety by studying its codi-
mension-one subvarieties. A fundamental observation of Mori's theory is that 
one should investigate the one-dimensional subvarieties as well. This turns out 
to be related to some simple topological properties of algebraic varieties. After 
some further introductory material, Chapter 8 gives a general discussion of the 
basic strategy and aim of the structure theory. Chapter 9 outHnes how most of 
this program can be accomplished for surfaces. Chapter 10 is devoted to Mori's 
seminal paper. These results are sufficient to complete the structure theory of 
surfaces, but they provide only the first step in general. In dimension three, 
Mori's program leads to the study of certain singular varieties. His results are 
reworked in this more general context in Chapter 11. The last remaining step, 
the Flip Theorem, is discussed in Chapter 12, and the last chapter is devoted to 
further results. 

Since this article is aimed at a general readership, I saw no point in giving 
references to technical research papers. Instead I provide a short annotated 
bibliography at the end which should satisfy the needs of most readers. 
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Part of this article was written while I enjoyed the hospitality of École 
Polytechnique. Financial support was also provided by the National Science 
Foundation (DMS-8503734). 

A prehminary version of this article was circulated in the fall of 1986. 
Several mistakes, inaccuracies and misprints were called to my attention by R. 
Friedman, L. Lempert, K. Matsuki, T. Oda, M. Reid, H. Rossi, Y. Shimizu, 
and G. Tian. H. Clemens and S. Mori pointed out several conceptual problems 
in the presentation which led to substantial revisions. I am very grateful for all 
their attention and help. 

2. What is algebraic geometry? 
2.1. STARTING POINT. After Descartes introduced coordinates on the plane, 

it became clear that simple and much studied geometric objects (e.g., lines and 
conies) can be defined by simple polynomial equations (linear, resp. quadratic). 
This suggests that as a next step one could try to study curves defined by 
higher-degree polynomials. Already Newton studied plane cubics in depth. 
Two problems, however, tended to make results cumbersome. The first one is 
the missing infinity. Two different lines mostly intersect in a point, but 
sometimes they are parallel. It turns out to be very convenient to claim that 
they intersect at infinity. This leads to the introduction of the projective plane 
RP2 . The other problem is apparent already with one-variable polynomials: 
the roots of a decent-looking polynomial can be lurking in the complex plane 
far away from the reals. Even when the real picture seems good, the explana­
tion of certain phenomena might be seen only by studying them over C: For 
example, why does the Taylor series of (1 + JC2)"1 refuse to converge every­
where? Therefore we replace R by C and get CP2. There is no reason to stop 
with dimension 2 and so we introduce: 

2.2. DEFINITION of CPn. As a point set this consists of (n + l)-tuples 
(x0:. ..:xn) such that (x0:...:xn) and (Xx0:... :Xxn) are identified for 
O ^ A e C W e exclude (0: . . . :0). 

Let Ut = {(x0:... :xn) e CPn | JC, # 0}. The map <j>t: Cn -* CP" given by 
O i , ...,)>„)-> (JY- . . . : jy.i:y i +v • • • yn)

 m a P s c"onto utin a 1 : 1 w a y - S i n c e 

(0 : . . . :0) is not in CPW, the Ut cover it, and using the usual topology of Cw, the 
maps <t>i put a topology on CP". It is easy to see that CPn becomes a real 
2n-dimensional compact manifold. Despite this we shall count complex dimen­
sions and say that Cn and CP" are «-dimensional. The usual notion of 
dimension will be referred to as real or topological dimension. This is twice the 
complex dimension. 

2.3. DEFINITION OF ALGEBRAIC VARIETIES. We want to consider subsets of 
CPW that can be defined by polynomial equations. An arbitrary polynomial 
f(x0,..., xn) would not do, because f(x0,..., xn) and f(Xx0,..., Xxn) need 
not be both zero. However, if ƒ is homogeneous of degree m, then 
f(Xx0, . . . , Xxn) = Xmf(x09..., xn) and the set of zeroes of ƒ in CPM makes 
sense. Therefore we say that a subset V c CPn is a projective algebraic variety 
if there are homogeneous polynomials f l 9 . . . , fk such that V = {(x) G 
CP" | fi(x) = • • • = fk(x) = 0}. One can easily see that the intersection or 
union of two projective algebraic varieties is again projective algebraic. 
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The difference of two projective varieties is not projective usually; these are 
called quasiprojective varieties. 

Of special interest are the varieties of the form V O Ut where V is projective. 
With the notation of 2.2, if V is defined by equations /x(x) = • • • = fk(x) = 0 
then $l\V) c Cn is defined by equations fj(yl9..., yi91, yi+l9..., yn) = 0, 
j = 1 , . . . , k. Such subsets of Cn are called affine varieties. The projective 
variety V can be thought of as being patched together from the affine varieties 

vn ut. 
2.4. DEFINITION. Algebraic geometry is the branch of mathematics that 

studies algebraic varieties. 
2.5. CONCEPTUAL PROBLEMS. It is not clear that it is reasonable to study 

algebraic varieties. The forced union of algebra and geometry might be a bad 
match. There are three basic questions that have to be answered satisfactorily 
in order to believe that we are after something interesting. 

(i) What is the relationship between the variety and its equations? Com­
pletely different equations might define the same variety! 

(ii) Why is the definition so global? Maybe we should work locally on CPn\ 
(iii) Are we doing intrinsic or extrinsic geometry? Why do we rely so much 

on the ambient space CP"? 
The rest of this chapter will be devoted to answering these questions. 

Answer to Problem (i) 

2.6. It is easier to study the affine case, i.e., varieties in Cn. As an illustration 
we consider the case of plane curves. Let H = {(x, y) e C 2 | h(x, y) = 0}, 
F = {(x, J ; ) G C 2 | / ( X , y) = 0}. We are interested in deciding when H c F. 

Let h = Ylhi be its decomposition into irreducible factors and Ht = {(x, y) 
G C 2 | ht{x, y) = 0}. Clearly H = \JHt and thus we have to study the 
conditions Ht c F. Let g be one of the /i/s, and G the corresponding curve. 

2.7. PROPOSITION. Let g, ƒ e C[x, y] and assume that g is irreducible. Let G, 
F be the corresponding curves. Then G a F iff g divides f. 

PROOF. In general this requires a little field theory, but the case g = x2 + y2 

— 1 gives a good illustration. First suppose that ƒ has rational coefficients and 
pick any transcendental number, say e. Pick e' such that g{e9e') = 0, i.e., e' 
= v l — e2.1 claim that f(e, e') = 0 iff g divides ƒ. We divide ƒ by g to get 

f(x> y) = (y2 + x2 ~ l)v(x, y) + yp{x) + q(x). 

If ƒ(>, e') = 0 then efp(e) + q(e) = 0. Substituting e' = V̂ l - e2 and getting 
rid of the square root gives 

{l-e*)p\e) = q\e). 

Since ƒ has rational coefficients so does p and q9 hence the above gives a 
polynomial identity for e, which is impossible unless the two sides are equal: 

(1 - x*)p*{x) = q\x). 

This is impossible since 1 - x2 is not a square, so p and q are identically zero. 
That is what we wanted. 
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If ƒ has nonrational coefficients, then instead of e we have to pick some 
e 0 e C that cannot satisfy any polynomial equation with the coefficients of ƒ. 
The existence of e0 follows easily from the fact that C is uncountable. This 
proves 2.7. 

Going back to h and ƒ we see that ht divides ƒ for every /, so h divides ƒ k . 
This implies that H c F iff h divides some power of ƒ. 

In general one has the following fundamental result: 

2.8. HILBERT'S NULLSTELLENSATZ. Let V a Cn be defined by the polynomials 
gx(x) = • • • = gk(x) = 0, and let ƒ be an arbitrary polynomial in n variables. 
Then f vanishes identically on V iff there exists a positive natural number m and 
polynomials h ; such that fm = h1g1 4- • • • + hkgk. 

In short, a polynomial vanishes on an algebraic variety only if it has a clear 
algebraic reason to do so. Similarly the equality or containment of two 
varieties is equivalent to the obvious algebraic conditions. 

Answer to Problem (ii) 
2.9. In order to get a more local definition one could consider subsets of CPn 

that are locally the zero sets of polynomials. This class is however too big; any 
open subset of CPW is in it. It is reasonable to restrict to closed subsets. One 
can further attempt to make it more local by considering power series instead 
of polynomials. This leads to the following definition. 

2.10. DEFINITION. A subset V c CPW is called an analytic subvariety if each 
point p of V has a neighborhood Bp such that V n Bp = {(x) e Bp \ fx(x) = 
• • • = fk(x) = 0} for some analytic functions f defined on Bp. (If Bp is small, 
then it is contained in some Ui, =* Cn, so it makes sense to talk about analytic 
functions on Bp.) 

It is clear that every algebraic variety is an analytic variety. It is quite a 
miracle that the converse is also true: 

2.11. THEOREM OF CHOW. Let V O CP" be a closed analytic subvariety. Then 
Vis algebraic, i.e., can be globally defined by polynomials. 

PROOF. We shall give a proof for V c CP2; the general case can be treated 
similarly. First we need some results about the local structure of analytic 
subvarieties of C2. The crux is the following: 

2.12. WEIERSTRASS PREPARATION THEOREM. Let f(x, y) be a holomorphic 
function around the origin. Assume that f (0,0) = 0 and f(0, y) # 0. Then there 
are power series b^x),..., bk(x) and u(x, y) such that u(0,0) # 0 and 

f(x, y) = {yk + bx(x)yk-1 + • • • +bk(x))u(x, y). 

PROOF. Since /(O, y) is not identically zero, there is a small e such that 
f(0, y) # 0 for \y\ = e, and hence for some S > 0 we have f(x, y) =£ 0 if 
|>>| = e, |x| < 8. For fixed x let rx(x),...,rk(x) be the roots of f(x, •) = 0 
inside the disc of radius e (a priori k might depend on x). By the residue 
theorem 
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If \x\ < 8 then the right-hand side gives a holomorphic function of x. In 
particular for m = 0, we get that k is independent of x. Let ax(x) , . . . , ok(x) 
be the elementary symmetric polynomials in the ^(JC)'S. These are polynomials 
in the sums of powers, hence holomorphic in x. 

Now by construction f(x9y) and yk - o1(x)yk~1 + • • • +(-l)kok(x) 
vanish on exactly the same set, hence their quotient u(x, y) is holomorphic 
and nonzero. This completes the proof. 

As a consequence we can describe the local structure of analytic subsets of 
C2: 

2.13. PROPOSITION. Let V be an analytic subvariety in the neighborhood of the 
origin of C2. Then V = U U Wy where U is a finite set and W = {(x, y) e 
C21 g(x9 y) = 0} is the zero set of one power series. 

PROOF. Let V be defined by fx = • • • = fm = 0. By a suitable change of 
coordinates one can assume that none of the / / s is identically zero on the 
j>-axis. By 2.12 each f. can be written as 

fi(x9y) = gi(x9y)ui(x9y)9 

where gt is a polynomial in y whose coefficients are power series in x. Since 
«,.(0,0) # 0, we have V = {(x, y) e C21 gx = • • • = gm = 0}, at least near the 
origin. 

Now let g12 be the g.c.d. of gx and g2 (as polynomials in y), and let 
Si = ^* * £i2 0 = 1> 2). Clearly we can write 

{(*, y) I gi = Si = 0} = {(*, ƒ ) I g12 = 0} U {(*, y)\hl = h2 = 0). 

I claim that the last set is finite. Indeed for any fixed x consider the resultant 
of hx(x, y) and h2(x, y). This is a certain polynomial in the coefficients of the 
/i/s, hence it varies holomorphically with x. Since hx and h2 are coprime, the 
resultant is not identically zero. Thus it has only finitely many zeroes near the 
origin. For each of these zeroes hx and h2 have only finitely many common 
roots. These are all the solutions of hx = h2 = 0. 

Now let g123 be the g.c.d. of g12 and g3, — Eventually we get that one can 
take g to be the g.c.d. of gl9..., gm. This completes the proof. 

2.14. It is of interest to see to what extent g is unique. Let g = hx • • • hs be 
its decomposition into irreducible factors. If ht(0,0) # 0, then since ht has no 
zeroes near the origin, it can be discarded. It is also clear that a factor should 
occur only once. This shows that one can choose a defining equation g such 
that for the irreducible decomposition g = hx • • • ht there are no multiple 
factors and ^,(0,0) = 0. The previous proof shows that this g is unique 
(although of course it depends on the choice of the local coordinates). 

Next we derive a more global version of 2.13: 

2.15. PROPOSITION. Let D c C be a connected open subset and V c D X C 
be a closed analytic subset without isolated points. Assume that the projection p: 
V -* D is proper. Then there is a unique power series without multiple f actors 

g-y' + a^y*-1* . . . +ak(x) 

such that V = {(x, y)<= DXC\ g(x, y) = 0}. 
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PROOF. For each u e V we pick the unique local defining equation gv as in 
2.14. For each x e D let (x,bx(x)X..., (x,bk(x)) be the points of V above x 
(with multiplicities dictated by the gv

9s). As in 2.12 we see that k is locally 
constant, hence constant since D is connected. Similarly we see that the 
elementary symmetric polynomials of the ft/s are locally holomorphic, giving 
g(jc, y). Uniqueness is again clear. 

2.16. Now we are ready to prove the theorem of Chow. 
By 2.13 one can write V = U U W, where U is locally finite (therefore finite) 

and W is locally defined by one equation. All we have to do is to show that W 
is algebraic. 

On CP2 we choose coordinates (z0:zl:z1\ and we can assume that (0:1:0) 
£ W. Our strategy is the following. Let p: CP2 - (0:1:0) -> CP1 be the 
projection (z0:21:z2) -> (z0:z2). 

z0 = 0 / \z2 = 0 

w 

(0:0:1)/ 1(1:0:0) 

ÏP 

(o!i) a**) 

FIGURE 1 

On U2 = CP2 - (z2 = 0) we have the coordinate chart y = z1/z2, x = 
z0/z2, and /? corresponds to the projection (JC, j>) -» x. Since TT is compact, p 
is proper on W, and therefore on f/2 n W. Hence by 2.15 we get that U2 O W 
can be defined by a unique equation yk + a1(x)yk~l + • • • = 0 , where the ^ 
are holomorphic in x. Our aim is to prove that the at are in fact polynomials 
in x. This follows once we know that they don't grow too fast as x ~> oo. 

To see this we look at the other chart UQ = CP2 - (z0 = 0) with coordinates 
u = zx/z0, v = z2/zQ. Here /> is the projection (w, y) -^ y. Therefore U0n W 
can be defined by an equation of the form um + bl(v)um~1 + •• • = 0 . 

On f/02 = U0C\ U2 we have two equations of W O £/02: one coming from t/0, 
the other form U2. By uniqueness these two equations agree, and this allows us 
to understand the behavior of at as x -> oo. 

Using w = y/x, v = 1/x, the second equation becomes (y/x)m + 
b1(l/x)(y/x)m~1 + • • • = 0 . This is not of the form we expect, but we can 
multiply through by xm (which is nowhere zero on U02) to get ym + 
xbl(l/x)ym~l + • • • = 0 . This must be the same as our original equation 
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yk + a1(x)yk~l + • • • = 0 . Hence k = m and 

tf ,-(.*) = x ' è ^ l / x ) . 

^.(l/jc) is holomorphic near oo, therefore at grows at most as x'; hence at is a 
polynomial of degree at most i. 

Therefore the homogeneous polynomial defining W is given by 

g(z09 zl9 z2) = z™ + z2al(z0/z2)z?1-1 + • • • + z2
nam(zQ/z2). 

This completes the proof. 
We proved in fact a bit more: 

2.17. COROLLARY. Let W c CP2 be a closed analytic subvariety without 
isolated points. Then W can be defined by one polynomial equation. 

The preceding results can be used to obtain some further nice connections 
between geometry and algebra. 

2.18. DEFINITION. An algebraic variety is called irreducible if it cannot be 
written as the union of two proper closed sub varieties. It is quite clear that CP" 
is irreducible. 

2.19. PROPOSITION. A plane curve G c CP2 is irreducible iff it can be defined 
by an irreducible equation. 

PROOF. Let g = g0 • • • g ibe the defining equation with no multiple factors. 
G = (gx = 0) U • • • U(g,. = 0) so if i > 2 then G is reducible. Conversely let 
G = G1 U G2. We can clearly assume that Gt has no isolated points. By 2.17 it 
is defined by an equation gt = 0. By 2.7 g{ | g; hence g is reducible. 

2.20. PROPOSITION. An irreducible algebraic variety is connected. 

PROOF. Let Vt be a connected component of V. Vt is clearly a closed analytic 
subvariety of CPn, hence algebraic by 2.11. This contradicts the irreducibility. 

There are two other simple but useful results concerning the topology of 
algebraic varieties. 

2.21. PROPOSITION. Let Ube an irreducible algebraic variety and let V =£ U be 
a closed subvariety. Then U - V is dense in U. 

PROOF. Assume that U is smooth. Then locally U looks like Cn and V is 
defined by equations ƒx = • • • = fk = 0. Cn - ( fx = 0) is smaller than CM -
(A = * ' * = fk~ 0) a n ( i it is clearly dense in Cn. The general case is consider­
ably harder. 

2.22. THEOREM. Let U be an algebraic variety and let Vbe a closed subvariety. 
IfWcz U — V is a closed subvariety, then W, the closure of W in U, is again an 
algebraic variety. 

PROOF. We do the simple case U = CPW, V = (x0 = 0). The general case is 
very similar. We may assume that W is irreducible. U - V = Cn and W is 
defined by equations / ) (x 1 /x 0 , . . . , xn/x0) = 0. If d is large, then xfifj are 
polynomials in x0,...9xn and they are homogeneous. They define a closed 
subvariety W' c CPW such that r n C " = W. In general W' is reducible, 
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but it has an irreducible component PT"_such that W c W". By 2.21, 
W=W" - (x0 = 0) is dense in W". Hence W = W". 

It is important to note that 2.22 is notoriously false for analytic varieties. 
One can try to define analytic varieties that do not a priori sit in CPW, and 

these indeed can be nonalgebraic (see Example 4.8). For simplicity we define 
the manifold case only. 

2.23. DEFINITION. A complex manifold of dimension « is a topological 
manifold M of real dimension In which is covered by coordinate charts 
\MJt = M, and for each chart we fix an injective homeomorphism <j>,: Ut -> Cn 

onto some open subset. A function ƒ on M is said to be holomorphic if ƒ ° <J>7X 

is holomorphic for every i. For this to make good sense we would like that on 
Ut n Uj the notion of holomorphy is the same viewed from Ut or from Uj. 
Therefore we have to impose the assumption that the Qd]1 a r e a ^ holomor­
phic. 

2.24. EXAMPLE. CPn is a complex manifold with the charts given in its 
definition 2.2. 

2.25. EXAMPLE. Let /(x) be holomorphic on Cn. Let F = (f(x) = 0). As­
sume that for every (x) e. F at least one of the partial derivatives df/dxt(x) is 
not zero. If, say, df/dxx(x) ¥= 0, then by the implicit function theorem the 
projection F -> C1"1 : (xl9..., xn) -> (x2,..., xn) is locally a homeomor­
phism near (x). This gives charts on F and one can check that this makes F 
into a complex manifold. 

This guides us in defining the notion of a smooth point for algebraic 
varieties. Since CPW is covered by copies of Cw, it is sufficient to define the 
notion for affine varieties. 

2.26. DEFINITION. Let V c Cn be an algebraic variety and let pGK.We say 
that V is smooth or nonsingular of dimension k at v if there is a Ck c C" 
such that, for a suitable projection p: Cn -* Ck, the map p: F-> Ck is a 
homeomorphism near v. The same will hold then for most choices of Ck and 
p. It is also clear that being smooth is an open condition. Points which are not 
smooth are called singular; they form a closed subset Sing V c V. This subset 
turns out to be algebraic. It is again quite clear that V — Sing F becomes a 
complex manifold with the obvious charts. 

The following result relates the number of defining equations and the 
dimension of an algebraic variety. 

2.27. THEOREM. Let K c C " be an algebraic variety and let f l 9 . . . , fk be 
polynomials. Let W be an irreducible component of V n (f± = • • • = fk = 0). 
Then 

<timW> d i m F - k. 

PROOF. It is clearly sufficient to prove this for k = 1. For simplicity let us 
assume that V is smooth so that we consider the case when ƒ is holomorphic 
on the unit ball of Cm (m = dimF). If (ƒ = 0) is not empty and not 
everything, then by a suitable choice of coordinates ƒ(0) = 0 and ƒ is not 
identically zero on the z1-axis. Thus for a suitable choice of e and 8, ƒ does not 
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vanish for \zx\ = e, \z2\ < S,. . . , \zm\ < 8. The integral 

2vr/y|Zi|==e ƒ 

counts the number of zeroes of ƒ(*, z 2 , . . . , zm) on the disc |z1| < £. It is 
continuous for \z2\ < ô , . . . , \zm\ < S, hence constant. By assumption 
iV(0,..., 0) > 0; therefore the projection of ( ƒ = 0) onto the (z2, • • • > ^W) plane 
is surjective near the origin. Thus dim( ƒ = 0) = m — 1. 

2.28. REMARK, (i) If V is smooth and W c V is an irreducible subvariety 
such that d imW= d i m F - 1, then locally W can be defined by a single 
equation. This is the higher-dimensional analog of 2.13. 

(ii) The previous remark does not hold for V singular (see 4.4). 
(iii) If V is smooth and dim W = dim F - 2, then W might not be definable 

by two equations (see 4.3). 
Answer to Problem (iii) 

2.29. The answer to this is not a nice theorem but rather a conceptual 
understanding. First of all, it is quite possible to build up algebraic geometry 
without any reference to CPW or Cn. The important fact is however that the 
intrinsic and extrinsic geometry of a variety are nearly inextricable. To start 
with first note that CPW is very rigid (a proof will be given in 7.18): 

2.30. PROPOSITION. AutCP" = ?GL(n + 1,C). 

Here AutCPM is the group of 1:1 self-maps of CPn that are given by 
polynomials, or, by a version of Chow's theorem, those that are locally given 
by power series. GL(« + 1,C) operates naturally on (n + l)-tuples, and this 
gives an action on CP". Scalar matrices operate trivially, therefore PGL(« + 1) 
operates on CPW. 

The crux of the matter is that there are no other automorphisms. Therefore, 
for instance, collineation is an abstract property of point sets in CPW! 

More complicated algebraic varieties usually have no automorphisms at all. 
2.31. An even more remarkable fact is that frequently algebraic varieties fit 

into some CP" in a unique way. For instance, if G c CP2 is an irreducible 
curve of degree at least 4, then there is only one way this curve can fit into 
CP2. So manifestly extrinsic properties of points of G such as being an 
inflection point or such as two points having a common tangent Une turn out 
to be intrinsic properties after all. 

The real importance of this principle is that it leads to a "linearization 
process" of algebraic varieties. I will explain it for algebraic curves only. The 
reader not familiar with curves should read §3 first. 

2.32. CHOW COORDINATES OF CURVES. Let C be a smooth projective curve of 
genus g > 2. We distinguish two cases. 

(i) C admits a 2:1 map onto CP1. Such curves are called hyperelliptic. It 
turns out that this map is essentially unique. There are exactly 2 g + 2 points in 
CP1 above which the map is 1:1. These points determine C. Thus we have a 
correspondence 

hyperelliptic curves "i ( sets of 2 g + 2 \ -
t } ** \ • • ™i / / A u t C P 1 . 

of genus g / \ points in CP1 ) / 
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2 g + 2 points can be viewed as the zero set of a degree 2 g + 2 homogeneous 
polynomial f(x, y). Thus we can write 

( hyperelhptic curves Ï ƒ degree 2 g + 2 homogeneous polynomials^ _ • _ _v 
r»f OAnnc o- I I w i t Vim i t trm1tir»lA rr»r»tc \ ' V ' / \ of genus g ƒ \ without multiple roots 

where GL(2, C) acts via 

Thus hyperelhptic curves can be understood via certain simple "linear objects," 
namely polynomials. 

(ii) C is not hyperelhptic. Then one can prove that there is an essentially 
unique embedding C c CP g _ 1 such that C is not contained in any hyperplane 
and that a general hyperplane intersects C in 2g + 2 points. Using this 
embedding we will associate a "linear object" to C Let V = {Efl/jc,-} = Cg be 
the space of homogeneous Unear polynomials on C P g l . Let Ch(C) c V X V 
be the set of pairs (ll912) e F X V such that (/x = 0) n (/2 = 0) n C # 0 . 

If we fix /2, then (/2 = 0) Pi C is a finite set of points. Thus (lx = 0) n 
(/2 = 0) H C # 0 imposes one condition on /x. Therefore Ch(C) is a codi-
mension one subset in F X F and as such it can be defined by a single 
equation ch(C)(al9...9ag9a'l9...9 a'g). The above considerations show that C 
can be reconstructed from ch(C). It is easy, to see that ch(C) is homogeneous 
of degree 2 g 4- 2 in either set of g-variables. Under the action of GL(g, C) on 
CP g _ 1 , it is transformed by 

{btJ)c\i{C){ak,a'k) = c h ( C ) ( E ^ A , E ^ x ) -
Thus we have an injection 

nonhyperelliptic "i ƒ bihomogeneous polynomials of degree "i , v 

curves of genus g ƒ \ (2g 4- 2,2g 4- 2) in 2g variables ƒ / ^ ° ' ^ ' 

This is not as nice as before since the image is very hard to describe. Still, it 
provides a good conceptual way of imagining all algebraic curves together and 
it can be developed into a very powerful method of investigating algebraic 
curves. 

2.33. This rigidity of maps provides a very strong tool to study algebraic 
varieties, but we also pay a high price for it. First of all, as we shall see, it is 
hard to find interesting maps. Then if we have a map it might be very hard to 
improve it. Standard perturbation methods of differential topology (e.g., 
transversahty lemmas, nearby Morse functions) will not work because there 
will be no perturbations. 

Therefore one is forced to study degenerate situations in great detail. 
Methods to handle such problems form the technical core of algebraic geome­
try, and are frequently very hard. In this survey I will gently ignore such 
problems, concentrating instead on the geometrically clear part of the argu­
ments. 

3. A little about curves. The simplest algebraic varieties are algebraic curves. 
They are very similar to one-dimensional complex manifolds. Since these have 
real dimension two, they are usually called Riemann surfaces. We now turn to 
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their study partly to have some example at hand, partly to explain certain facts 
that will be needed later. 

We shall concentrate on the complex manifold side of the theory. One 
reason for this is that the topological-analytic approach is conceptually easier. 
On the other hand, it turns out that for one-dimensional compact varieties the 
analytic and the algebraic theories are equivalent. 

3.1. TOPOLOGY OF CURVES. The underlying topological space is a surface. On 
any chart multiplication by yf^l gives an orientation, and this is independent 
of the chart chosen. Compact orientable surfaces are spheres with a certain 
number of handles. The only invariant is the number of handles, called the 
genus, denoted by g( ). 

3.2. g = 0. The underlying topological space is a sphere, and we know one 
such complex manifold: CP1. This turns out to be the only one; see 3.10. 

FIGURE 2 

3.3. g = 1. Books were written about this. 
(i) To start with, a sphere with one handle is a torus, which is S1 X S1 ~ 

R / Z X R / Z « C/Z + Z. This is a good way to get such examples: let cov <o2 

be R-independent complex numbers, and let L = {ncol + mco2|«, m e Z} be 
the lattice they generate. Identify two points of C if their difference is in L. 
This gives C/L. The shaded area of the picture is a fundamental parallelogram 
(i.e., its translates by L cover C). C/L can be thought of as the fundamental 
parallelogram with opposite sides identified. Note that on C the addition 
(x, y) -> x + y is holomorphic; therefore C is a complex Lie group. L is a 
subgroup of C, and this makes C/L into a compact complex Lie group. 

(ii) When will (w1, <o2) and (u'v <o2) give the same complex manifold? Let L 
and L' be the corresponding lattices and look at the diagram 

C C 
ï q i q' 

C/L ^ C/L ' 

Let ƒ be a 1:1 holomorphic map. /(O) need not be the origin in C/L', but 
we can compose ƒ with a translation in C/L' to achieve this. So assume 
that /(O) = 0. Let q'\ C -» C/L ' be the universal covering map. Then 
ƒ o q: C -> C /L ' can be lifted to ƒ *: C -> C. We can play the same game with 
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ƒ _ 1 and get ƒ_1*: C -> C. Clearly ƒ_1* is the inverse of ƒ *; therefore ƒ * is 
multiplication with some complex number /A. ƒ*(q~l(0)) = q'~l{0\ hence 
ƒ *(L) = L'; i.e., juL = L'. Conversely if \L = L' for some À, then this gives a 
1:1 map \ : C /L ^ C/L'. 

Starting with (col9 <o2) we can take JU, = coj1 or cô 1 to get (1, T) with 
ImT > 0. The corresponding lattice will be denoted by LT, and C/LT = ET. 

(iii) Every C/L is isomorphic to some ET. ET and LT, are isomorphic iff 

T' = ;—7 for some a,b,c,d e Z, ad - be = 1. 
CT + a 

PROOF. We already saw the first part. So to see the second let /i: Lr, -> LT 

be the multiplication. Then JUT' = #T + Z> • 1 and /x • 1 = cr + d • 1. The fact 
that JUT' and /i • 1 generate LT gives ad — be = ± 1 . One can check that the 
conditions on the imaginary parts force ad - be = + 1 . 

This shows a very special feature of complex manifolds: they can vary 
continuously. If r is changed a little bit, we get a different manifold! 

(iv) Functions on C/L. Let g be a meromorphic function on C/L. Then q*g 
is a meromorphic function on C such that q*g(z 4- c^) = q*g(z + co2) = 
q*g(z); i.e., #*g is doubly periodic. Conversely, such functions on C give 
functions on C/L. These are the so-called elliptic functions. The basic one is 

p(z) = z->+ Z [ (*-<o)- 2 -<H. 
u e L - 0 

With some work one can see that p is meromorphic on C, doubly periodic, and 
has poles exactly at L; these poles are double. Clearly p\z) is again doubly 
periodic, and it has triple poles at L. I claim that p and p' are related by some 
polynomial equation. The proof will be a bit unusual. 

Consider the map 

C - L - ^ C P 2 z^>(p(z):p'(z):l). 

This descends to a map (C/L) - 0 -> CP2 .1 intend to extend this over 0. The 
map is the same as z -> {p(z)/p'(z):\\\/p'{z)) which is defined at z = 0. 
Hence we have a map C/L -* CP2. The image is a compact analytic sub-
variety, hence by 2.11 it satisfies some polynomial equation /(JC0:X1:JC2) = 0. 
This gives f(p(z\p\z\\) = Q. 

In fact in this case one can write down the equation: 
(v) [p']2 = 4/?3 + ap + b for some fl^eC. Hence the image is a cubic 

curve. 
(vi) The last topic I want to mention is self-maps of ET. If n G Z then 

multiplication by n maps LT into itself. This gives a map n: ET -> ET. This is 
an «2:1 map, 

»-^)-{f + ̂ ^:o</,y<»}. 
3.4. g > 2. This case is more complicated and we shall discuss only two 

topics. One is the topology of maps between Riemann surfaces; the other is the 
analog of the Mittag-Leffler problem: find functions with prescribed poles. 
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Let C be a compact Riemann surface with a triangulation. Let /, /, v denote 
the number of triangles, resp. line segments, resp. vertices in this triangulation. 
It is easy to see that / — / + i? = 2 — 2g, where g is the genus. 

Now let F: C' -» C be a nonconstant holomorphic map between two 
Riemann surfaces. C" is covered by charts Ui9 and on each chart ƒ is given by a 
power series ft(z). ƒ is not a local homeomorphism at z e Ut iff / /(z) = 0; 
hence such points form a discrete set, finite if C' is compact. Let 5 c C b e the 
images of these points and consider a triangulation of C where B is part of the 
set of vertices. Let /, /, v be the corresponding numbers. We can pull back this 
triangulation to C . If ƒ is «:1 outside B then we get t' = nt, V = nl, p' < np. 
Therefore 

2 - 2g' = /' - /' + a' = «(2 - 2g) -(«/> -/>'). 

Hence 2g' — 2> nÇLg — 2). This at once gives 

3.5. PROPOSITION. Let f: C -* C' be a nonconstant map of algebraic curves. 
Then 

(i) g(C) > g(C'). In particular if C = CP1 then also C' = CP1. 
(ii) Ifg(C) — g(C') > 2 then f is an isomorphism. 

3.6. DEFINITION. Let C be a compact Riemann surface, ? , . e C a collection 
of points, and ni natural numbers. Let YÇLn^^) be the set of all meromorphic 
functions on C which have poles only at the P/s of multiplicity at most nt. 
Such functions clearly form a vector space, and the Mittag-Leffler problem 
asks for its dimension. 

3.7. PROPOSITION, dim T(£«,./>.) < 1 + E/i,-. 

PROOF. At each Pt we choose a local coordinate zt. For ƒ G rCEw^P,.) we 
consider the Laurent expansion of ƒ at the P/s, 

/ ( z ) = fl^z-"'+ ••• +0_1z"1+ . . . . 

At Pi there can be ni different negative exponents. Therefore dimlXE^P,) < 
dim T(0) + £«,. where T(0) is the space of holomorphic functions on C. By 
the maximum principle these are all constants; hence dim T( 0 ) = 1. 

A lower bound is much more interesting and difficult: 

3.8. THEOREM (RIEMANN). dimr(E«,P,) > £« , + 1 - g. If Znt > 2g - 1, 
then we have equality. 

PROOF. We shall only indicate the main steps of the argument. 
As a first step we shall search only for u = Re ƒ, which is a harmonic 

function. Pick a P = Pt and a 1 < k < «,. Assume that w is harmonic on 
C — P and has a A:th order pole at P; i.e., u behaves like Rez_/c. By definition 
of harmonic, Aw = (d2/dx2 4- d2/dy2)u = 0. The corresponding variational 
problem is the minimization of the Dirichlet integral 
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There are two problems with this. First, because of the pole of u at P, the 
above integral is divergent. The second, more serious, is to prove that if u is an 
extremal function of the above variational problem, then it is differentiable. 
This latter led to a major controversy in the 19th century which was settled 
only by Hubert. 

Let v = v{k,Pi) be the conjugate function of u and set f = f(k,Pt) = 
u(k, Pt) + vQT v(k9 Pt). The conjugate function is locally well defined only up 
to a constant, so ƒ is multiple-valued in general. 

The fundamental group of C has 2g generators yl9..., y2g, and by construc­
tion, ƒ satisfies f(yjz) = f(z) + p(j, k, Pt\ where p(j, k, Pt) is independent 
of z. 

The functions ƒ(&, P,) and the constants span a (£«, + l)-dimensional 
vector space F of multiple-valued functions, g e V is single-valued iff g(yjz) 
= g(z) for every j . This gives 2g linear conditions, and thus rÇX-P,-) > 
E/î,. + 1 — 2g. It turns out that only g of the conditions are independent, 
giving 3.8. 

3.9. COROLLARY. Every compact Riemann surface C can be embedded into 
some CPM, and therefore is algebraic. 

PROOF. Let fv...,fn be meromorphic functions on C and consider the map 
F: C -> CP", P -> ( fx(P):... : /n(P):l) . F is defined outside the poles of the 
/ / s . If Q e C is a pole of some ƒ„ assume that fx has the highest-order pole. 
Then 

F:P^ (ƒ , ( />) : . . . : /M (P) : l ) = ( l : / 2 ( P ) / A ( P ) : . . . : l / A ( P ) ) 

is defined at Ô; therefore F is defined everywhere. 
Assume that with this F we have F(R) = F(Q). Then we pick an fn+l such 

that it has a pole at P but not at Q. Consider 

F + : P - ( A ( P ) : . . . : / w ( P ) : / n + 1 ( P ) : l ) . 

If F(S) * F(T) then clearly F + (S) # P + ( r ) . Furthermore F+(R) * F+(Q). 
Splitting more and more points apart in this way, it is quite easy to see that 
eventually we get an injective map. (Here we need that C is compact.) 

Conscientious readers might also make the map to be an immersion. A 
similar technique will work. 

3.10. PROOF OF 3.2. Let C be a smooth curve of genus zero and let P G C. 
Then dim T(P) > 2, so there is a function ƒ on C with one simple pole. This 
gives a map ƒ : C -> CP1 which is 1:1 near oo, hence everywhere. 

3.11. SINGULARITIES. Let f(x, y) = 0 define an algebraic curve in C2. 
Assume that ƒ (0,0) = 0. If one of the partials of ƒ is not zero at the origin 
then by 2.25 ƒ defines a manifold near the origin. Otherwise it is singular at the 
origin. We give some examples: 

(i) x2 — y2 = 0: two intersecting Unes, called a node. 
(ii) x3 - y2 = 0, called a cusp. 
Note that p: C -> C2 given by t -> (72, t3) maps C onto (x3 - y2) = 0 in a 

1:1 way. The inverse is continuous, but not differentiable at the origin. One 
can say that the singularity has a parametrization by C. 
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(iii) x2n — y2 = 0. This is the union of xn - y = 0 and xn + y = 0, both 
smooth, 

(iv) JC3 + X 6 — j>4 = 0. This too has a parametrization. Let 

*(o=(i(-i+(i+4^n) i / 3 . 
This is a power series convergent for \t\ < 2"1/6. A -> C2, f -* (<J>(0>'3) 
parametrizes the singularity, where A is a small disc. 

In general every singularity can be parametrized, and we have the following: 

_3.12. THEOREM. Let C be a projective algebraic curve. Then there is a p: 
C -> C such that C is a smooth compact Riemann surface ( = projective curveby 
3.9) and p is an isomorphism above the smooth points of C. Moreover C is 
unique. It will be called the desingularization or normalization of C. 

3.13. DEFINITION. A possibly singular projective curve will be called rational 
if its formalization is isomorphic to CP1. If ƒ : CP1 -> D is a dominant map 
and D is_the normalization of D, then one can easily see that ƒ lifts to 
ƒ: CP1 -> D. By 3.5(i), D = CP1 and hence D is rational. 

Rational curves will play an important role in the sequel. 

4. Some examples. 
4.1. The simplest algebraic varieties are hypersurfaces. If /(JC0 , . . . , xn) is a 

homogeneous polynomial of degree m, then 

F = { ( x ) € E C P " | / ( x ) = 0} 

is an algebraic variety. As for plane curves, F is irreducible iff ƒ is. By 2.27 it 
has dimension n — 1. Essentially by Sard's theorem F is smooth for most 
choices of ƒ. An example that is very easy to work out is ƒ = x™ + • • • + x™. 
On the chart U0 we have coordinates zt = xt/x0 and the equation becomes 
1 + z{" + • • • +z™. The partial derivatives are mz™~1. All the partials are zero 
only at the origin, which is not on the hypersurface. Therefore ƒ defines a 
smooth variety. 

4.2. COMPLETE INTERSECTIONS. For homogeneous polynomials fl9..., fk9 let 

V(fu.... A ) - {(x) e CP" | A(x) = • • • = A(x) = 0}. 

One can see that for most choices of f l 9 . . . , fk9 the resulting variety is smooth 
and of dimension n - h (cf. 2.27). 

4.3. In C4 with coordinates x9 y9 w, v let V be the union of the (JC, y) and of 
the (w, v) planes. V is singular at the origin, smooth elsewhere. V can be 
defined by the equations xu = xv = yu = yv = 0. It can also be defined by 
three equations: xu = yv = xv + yu = 0. It is hard to prove, however, that it 
cannot be defined by two equations. 

By looking at the corresponding CP3, we see that this implies that the union 
of two skew Unes cannot be defined by two equations. It is however still 
unknown if there exists an irreducible curve C c C P 3 that cannot be defined 
by two equations. 

4.4. Again in C4 let V = {xy — uv = 0}. This contains the plane P = {x = 
u = 0}. However one more equation p is not enough to define P c V. Indeed 
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if P is given by xy — uv = p(x, y, w, v) = 0, then by 2.8 

*" = %\ -{xy- uv) +h'P> um = gi'(xy- uv) +h'P-

Substituting y = v = 0, we get 

x" =A -p(x,0,u,0), um =f2-p(x,0,u,0). 

This implies that p(x,0, w,0) is a constant. On the other hand, p vanishes at 
the origin; thus p(x, 0, w, 0) = 0, a contradiction. 

4.5. PRODUCTS. What is CPn X CPm? It is clearly not CP n + w . Let 
(x0:... :xn) and (y0:... :ym) be the respective coordinates. On cP ( w + 1 ) ( m + 1 ) _ 1 

we denote coordinates by ztJ (0 < / < «,0 <y < m). We define a map from 
the set CPM X CPm to CP^+1>(W+1>"1 by 

((x0:...:xn) X(y0:...:ym)) -> (z,y.), where zl7 = xf. • J'y • 

This is clearly an injection. The image can be defined by the obvious equations 
ZstZpq = ZsqZpn 

therefore it is an algebraic variety, called the product of CPn and CPW. It is 
exactly what one could expect. 

If CPM is covered by the charts Ul, = Cn and CPm is covered by the charts 
Uj s Cm, then CPn X CPW is covered by the charts Ut X Uj = Cn+m. 
If UtJ c CP(M+I><m+1)-1 is defined by ztj ± 0, then Ut X Uj = ^ y n 
(CPW X CPW). 

If F and PT are arbitrary algebraic varieties then we define V X W to be the 
corresponding subset of CPW X CPW. This coincides with any other reasonable 
definition of the product. 

4.6. The product CP1 X CP1 sits in CP3 defined by one equation UQUX = 
u2u3, which gives a smooth quadric surface. The two families of lines on it are 
given by u0 = Aw2> ux = X~lu3 and u0 = /AW3, ux = /A_1M2. 

4.7. One can easily find the higher-dimensional analogs of elliptic curves. Let 
wi> • • • > œ2n ^ e R-independent vectors in Cn. They generate a sublattice L c C " 
and Qn/L becomes a compact complex manifold, which is homeomorphic to 
(S1)2". As opposed to the case n = 1, the higher-dimensional ones are not all 
algebraic. The condition of being algebraic turns out to be very subtle. Let 
î2 = (co1,...,w2w) as an nXln matrix. Then the corresponding Cn/L is 
algebraic iff there exists a skew symmetric integral 2n X In matrix A such that 

(i) ÜA'Ü = 0 and 
(ii) yf-ÏÇlA'Q, is positive definite. 
Now it is difficult to claim that it is natural to single out for study those 

quotients Cn/L where the above conditions are satisfied. From the point of 
view of function theory, however, this is naturally forced upon us. A straight­
forward generalization of 3.9 shows that a compact complex manifold M is 
algebraic iff for any pv..., pk e M, there is a meromorphic function f on M 
such that f(pj) # f(Pj) (and all are finite). Therefore Cn/L is algebraic if and 
only if there are plenty of L-periodic functions on Cn. 

4.8. HOPF SURFACE. The results mentioned in the previous section are hard 
to prove. Here we present a simpler example of a nonalgebraic compact 
complex surface. 
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On C2 - 0 consider the group action (x, y) -> (lx, 2y). The quotient 
H = (C2 - 0) /Z is called a Hopf surface. The subset of C2 - 0 given by 
1 < \x\ 4- \y\ < 2 is compact and maps onto H, so H is compact. Topologically 
HisS1 X S\ 

Now consider a meromorphic function on H. We can pull it back to C2 - 0 
to get a meromorphic function /(je, y) such that f(x, y) = f(2x,2y). By the 
Levi extension theorem ƒ is also meromorphic at (0,0). Therefore we can write 
ƒ as the quotient of two power series, ƒ = g/h. 

Restricting ƒ to the line y = Xx we get 

p(x) = f(x, Xx) = g(x, Xx)/h(x, Xx), 

which is meromorphic in JC provided h(x, Xx) # 0. This is satisfied for all but 
finitely many values of X. We also have p(2x) = p(x). If we look at the 
Laurent expansion of p(x) = E ^ J C ' this implies ai = 2iai, hence p(x) is 
constant. Therefore ƒ is constant along all the lines y = Xx. One can easily 
conclude that ƒ is a rational function of x/y. 

Anyhow we can see that H is covered by the images of the lines y = Xx, 
and every meromorphic function on H is constant along these curves. There­
fore H cannot be algebraic. 

It is worthwhile to note that for n = 1 the analogous construction yields the 
elliptic curve Er with T = ( — l/2iri) log 2. 

5. Maps between algebraic varieties. This chapter deals with various ways of 
describing maps between algebraic varieties. To avoid confusion it is important 
to note that we will consider functions and maps that are not everywhere 
defined. This is in accordance with tradition; no one had any qualms about 
claiming that \/z was a function on C. The term morphism or regular map 
will always refer to a map that is everywhere defined. It will be symbolized by 
a solid arrow -> . A dotted arrow - > will indicate a map that may not be 
defined everywhere. 

5.1. REGULAR FUNCTIONS. Let F c C " b e a closed algebraic subvariety. 
Which should be the basic functions on VI Since we are doing algebraic 
geometry, we should consider the polynomials on Cn. There are two ways to go 
from Cn to K One can consider the restrictions of polynomials, or one can 
consider those functions that are locally restrictions of polynomials. For­
tunately these two notions agree. Such a function is called regular on V. 

5.2. RATIONAL FUNCTIONS. Frequently it is necessary to work with quotients 
of polynomials. These are called rational functions onC". For F c C there 
are again two a priori different notions, but again they agree. The restriction of 
a rational function ƒ from Cn to F is called a rational function on V. For this 
to make sense, we must require that none of the irreducible components of V 
is contained in the polar set of ƒ. We want our functions to be defined most of 
the time. 

A rational function ƒ is called regular at v G V if there are polynomials g 
and h such that ƒ = g/h and h(v) ¥= 0. A rational function is called regular 
on V if it is regular at each point. One can see that a regular rational function 
is a regular function. 
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5.3. EXAMPLES, (i) x/y is a rational function on C2; it is regular at (x, y) iff 
y # 0. 

(ii) Let L c C2 be the line x = y9 and let ƒ = (x/y) | L. Then ƒ is rational 
on L. Moreover since ƒ = 1, it is even regular. 

(ni) Let F = (x2 - y3 = 0) c C2. Let ƒ = (x/y) \ V. f is a rational function, 
regular outside (0,0). One can easily see that if we declare ƒ (0,0) = 0, then ƒ is 
continuous on V. Despite this, x/y is not regular at (0,0). Indeed, assume that 

x/y = a(x,y)/b(x9y)and 6(0,0) # 0. 
Then xb(x, y) — ya(x, y) is zero on V, hence divisible by x2 — y3. b(x, y) has 
a nonzero constant term, hence the coefficient of x in xb(x, y) - ya(x, y) is 
not zero. Therefore it cannot be divisible by x2 — y3. 

It is also worthwile to note that ƒ 2 = x2/y2 = y\V, and therefore it is 
regular. This peculiar behavior comes from the singularity of V at the origin, 
and is the source of many inconveniences. Varieties for which this does not 
occur deserve a name. 

5.4. DEFINITION. Let F c C" be an algebraic variety and v e V. V is said to 
be normal at v e V if every rational function bounded in some neighborhood 
of v is regular at v. V is called normal if it is normal at every point. In 
particular if V is normal at v, then a rational function is regular at v iff it is 
continuous at v. 

Riemann's extension theorem says that C is normal. From this it easily 
follows that smooth points are normal in all dimensions. 

5.5. PROPOSITION. Let C be an algebraic curve. Then C is normal iff C is 
smooth. 

PROOF. Assume that C is normal. Let p: C -> C be the desingularization 
(3.12). Given c e C, let p~l(c) = {cv...,ck}. Let ƒ be a rational function on 
C which has a simple zero at cx and takes nonzero finite values at c2, • •., ck. 
One can easily see that f ° p~l is a rational function on C It is bounded near 
c, and hence regular at c. Thus p~l(c) = {q} and f ° p'1 maps a neighbor­
hood of c e C into a neighborhood of the origin in C. Therefore c G C is a 
smooth point. 

5.6. COROLLARY. Let V be a normal variety. Then dim Sing V < dim F - 2. 

IDEA OF PROOF. We can view an «-dimensional variety F as an (« - 1)-
dimensional family of curves. If dim Sing V = n - 1, then each of these curves 
is singular. In the proof of 5.5 we could make everything depend on n — 1 
parameters and conclude as above. 

5.7. EXAMPLE. Let ƒ: C2 -> C7 be given by (x, y) -> (JC2, xy, y2, x3
9 

x2y,xy2, y3). Let V = f(C2). Then V is smooth outside the origin, but not 
normal, since x ° ƒ _1 is not regular. 

There is one important case, however, when the converse of 5.6 is true. 
Unfortunately, I don't know any simple proof. 

5.8. THEOREM. Let F = ( ƒ = 0) c Cn be a hypersurface. Then F is normal iff 
dim Sing F < dim F - 2. 

There is a very useful extension theorem that holds for normal varieties. 
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5.9. HARTOGS' THEOREM. Let V be a normal variety and let W c V be a 
subvariety such that dim W < dim V — 2. Let f be a regular function on V — W. 
Then f extends to a regular function on V. 

PROOF. Assume for simplicity that W is a single point w. Let V a Cn and let 
B c Cn be a small ball around w. If v e V n B then by repeated hyperplane 
cuts we get an algebraic curve C c V through v that avoids w. Let D = B n C. 

I/I is bounded on the compact set 85 O F by some constant M. f\D is 
holomorphic; thus by the maximum principle 

\f(v)\ < m a x { | / ( z ) | : z <E 8Z)} < M. 

So | ƒ | is bounded near u>, and therefore ƒ is regular at w. 

5.10. DEFINITION. If W c CP" is an arbitrary algebraic variety, then it is 
covered by charts Vt= W C\ Ut. The notions of rational and regular functions 
and of normality can then be defined using this covering. 

5.11. PROPOSITION. Let V be an irreducible projective variety and f a regular 
function on V. Then ƒ is constant. 

PROOF. Only for V smooth. Then F is a compact complex manifold and ƒ is 
holomorphic on V. \f\ achieves its maximum since V is compact, hence by the 
maximum principle ƒ is constant. 

5.12. FIRST DEFINITION OF MAPS. A map from V to some CPn should be 
given by coordinate functions. Pick rational functions f v . . . , fn on V and let 

F:V^CPn, u->(/&):...:f„(u):l) 

be the map. This is the approach used in 3.9. F is certainly defined whenever 
each of the f^s is defined. But F is defined some other places too; to wit, F is 
defined at v iff there is a g, regular at v such that all the fg are regular at v 
and (fig:... :fng:g) is not identically zero at v. Instead of saying that ƒ is 
defined at v we shall say that it is regular at v. 

If h is a rational function on CP" and F(V) is not contained in its polar 
locus, then F*h is a rational function on V. If F is regular at v and h is 
regular at F(v), then F*(h) is regular at v. 

The following results show some nice topological properties of regular maps. 

5.13. THEOREM (DIMENSION FORMULA). Let ƒ: V' -> W be a regular map. 
Then for any w e W, ƒ _1(w) is either empty or 

dim/ _ 1 (w) > d i m F - dimW. 

If w G W is sufficiently general\ then equality holds. 

PROOF. Assume for simplicity that w G W is smooth. If z l 5 . . . , zk are local 
coordinates at w, then / - 1 (w) is defined by /*zx = • • • = f*zk = 0. Thus 
2.27 yields the required inequality. 

If v e V is sufficiently general, then a small neighborhood of v is diffeo-
morphic to the product of a neighborhood of f(v) e W and a neighborhood 
of v in f~l(f(v)). This proves the last claim. 
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With a little bit of work, this gives the following: 

5.14. COROLLARY. Let ƒ: V -> Wbe a regular map. Then w -> dim ƒ ~l(w) is 
upper semicontinuous on W. 

Although theoretically 5.12 is the easiest way to define maps, it is the least 
convenient to work with. 

5.15. SECOND DEFINITION OF MAPS. This is based on a better understanding 
of CPn. A point in CPn can be given by homogeneous coordinates, but these 
are not unique. To make it unique, a point in CP" is given by a line in Cn+l; if 
ƒ: V -> CPn is a map, then this associates to each v e V a Une in Cn + 1 . So the 
map can be most conveniently described by a subset 

LcVX Cn+1 

such that for each u e V, L n ( { u ) X Cw+1) is a line Lv9 and this Une " varies 
algebraically" with v. Conversely, any such subset L defines a map into CPn. 

It is more convenient to consider the dual set-up: instead of Lv c C"+1 we 
look at (C n + 1)* -> L*. In this case L* is an algebraically varying family of 
quotient lines on V, and identifying (CM+1)* = Cn+l gives a map 

q: Vx C"+ 1 ->L*, 
which is linear on each { i ;}xC" + 1 . 

If e e Cn+l then v -» (u, e) -> q(v, e) gives a map from V to L*, denoted 
by qe. It is clearly regular and qe(v) e L*. Such a map is called a section of 
L*. If e09...9en is a basis of C"+1, let q09...,qn be the corresponding 
sections. Since q: { v] X Cn+l -> L* is onto for each v, at least one of the g/s 
is not zero at any u e K 

Conversely if we pick « + 1 sections s 0 , . . . , sn of L* such that at any point 
of V at least one of them is not zero, then we can define s: V X Cn+l -* L* 
by . s ^ E t f ^ ) = EajSjiv). Thus these sections define a map F -» CPn. 

Now we can define in general: let L be an "algebraically varying" family of 
Unes over V and let s0,...9sn be sections of L. Then these define a map 
V —> CPn. This map is certainly defined at v if one of the st(vys is not zero. 

An alternate way to look at this is as follows. The st(vys are elements 
of Lv9 which is a one-dimensional C-vector space. Therefore the sequence 
s0(v)9...9sn(v) & Cn+l is defined only up to a constant factor, hence it 
defines a point in CP". 

5.16. THIRD DEFINITION OF MAPS. This is again a standard way of looking at 
maps: studying their graphs. Let F: V -> W be a map that is defined at every 
point of V. Then its graph I \ J F ) C V X W is closed and is easily seen to be an 
algebraic subvariety of V X W. In general, however, the graph is not closed, 
and it is very useful to study its closure. By 2.22 the closure is an algebraic 
subvariety of V X W. 

Now let T c V X W be a closed subvariety. How can one recognize that T 
is the graph of a map? Let p resp. q be the two projections of V X W onto V 
resp. W. If T is the graph of a map F, then F(u) = q(p~l(v)) whenever F is 
defined. This means that p~\v) is only one point for most v G V. Conversely, 
assume that T is such that p: T -> F is onto and 1:1 at most points. Then it is 
not difficult to see that T is the graph of an algebraic map. 
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5.17. ZARISKI CONNECTEDNESS THEOREM. Let p: T -> V be a proper regular 
map between irreducible algebraic varieties. Assume that p'1: F - » T is a 
rational map (i.e., T is the graph of some map V—> W) and that V is normal. 
Then p~l(v) is connected for every v e F. 

PROOF. For F smooth only. If p~l is regular at u, then p~l(v) is a single 
point; thus we have to look at the set Z c F where p~l is not regular. 2.21 
implies that p~l(V - Z) is dense in T. Let z e Z and let Se c F be a small 
2n — 1 sphere around z (« = dimF). Real dimS^ D Z = real dim Z — 1 < 
2« — 3 and therefore Se n (F - Z) is connected. Since /?_1(y) is the limit of 
p~1(Se n (V - Z)) as e -> 0, p~x(v) must be connected. 

If V is not smooth then the topology of F is less understood and the hard 
part is to prove that Se Pi (F - Z) is connected. 

5.18. COROLLARY. JFtf/i the above notation p~l is regular at v iff p~l(v) is a 
single point. 

PROOF. The necessity is clear. Conversely assume that p~l(v) is a single 
point. Then by 5.14, aimp~l(-) = 0 in a neighborhood of v. Thus by 5.11 p'1 

is single-valued and continuous in a neighborhood of v, hence regular at v. 

5.19. COROLLARY. Let F, W be projective varieties and assume that V is 
normal. Let f: V -> W be a map. Then there is a subset Z a V such that 
dim Z < dimF - 2 and f is regular on V - Z. 

PROOF. Let T c F X W be the closure of the graph. Then f=q° p~l and 
we need to find a Z such that p~l is regular on V — Z. Let Z = {v e F: 
/ ? - 1 (Ü) is not a point}. This is clearly a closed subset; one can even see that it is 
algebraic. E = p~l(Z) is a subvariety of T. 

Since /?_1(i;) is connected, it is either a point or has dimension at least one. 
Therefore dim E > 1 4- dim Z. E is a. proper subvariety of T, hence dim E < 
dim T — 1. This gives the required inequality. 

5.20. REMARK. Let F, W be complex manifolds. The previous three defini­
tions of maps make sense in this case too. Instead of polynomials one has to 
consider power series, and instead of rational functions, meromorphic func­
tions. For algebraic varieties we get two different notions of maps this way, 
one algebraic and one analytic. For projective varieties, however, the two 
notions agree: 

5.21. THEOREM. Let V and W be projective algebraic varieties. Then any 
meromorphic map from V to W is algebraic. In particular, any meromorphic 
function on V is rational. 

PROOF. Let T c F X W be the closure of the graph of a meromorphic map. 
One can see that it is a closed analytic subvariety of F X W c cP ( n + 1 ) ( m + 1 ) _ 1 . 
By Chow's theorem (2.11) it is therefore an algebraic subvariety; thus, as we 
remarked in 5.16, the map is algebraic. 

Meromorphic functions are maps from F to CP1, hence the last claim. 
5.22. REMARK. A fourth, very unusual approach to maps will be given in the 

next chapter. 
The following result shows an unusual and useful feature of algebraic maps. 
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5.23. RIGIDITY THEOREM. Let U,V,W be algebraic varieties (or complex 
manifolds). Assume that V is projective (compact), and that U is connected. Let 
ƒ: U X V -> W be a regular (holomorphic) map. Assume that f({u0} X V) = 
point for some w0 e U. Then f ({u} X F ) = point for every u e U. 

PROOF. Let Z c [ /be the set of those points u e U such that f({u] X F) 
= point. Z is clearly closed, thus Z = U follows once we establish that it is 
also open. Let u e Z and let u' be near u. Since F is compact, f({u'} X F) is 
near f({u} X F) = point, and therefore it is contained in a small neighbor­
hood of that point. Therefore local coordinates on this neighborhood give 
global regular functions on (w'} X V. By 5.11 these are constants, hence 
f({u') X V) is a point. 

One surprising consequence will be given after a definition: 
5.24. DEFINITION. A complex Lie group is a complex manifold with a group 

structure such that the group operations are holomorphic. 

5.25. PROPOSITION. A connected, compact complex Lie group is commutative. 

PROOF. Let G be the group, and let ƒ: G X G -* G be given by f (a, b) = 
b~lab. We have f({e] X G) = {e}, where e is the identity. Hence by 5.23, 
f ({a} X G) = point. Therefore b~lab = e~lae — a, and ab = /ML 

6. Topology of algebraic varieties. In this chapter we discuss some simple but 
powerful topological properties of algebraic varieties. This will provide a 
natural introduction to Mori's program. 

6.1. BASIC TECHNICAL FACT. The underlying topological space of an alge­
braic variety can be triangulated. If X c y is a closed subvariety, then there is 
a triangulation of Y such that X is the union of simplices. Therefore Xk c Y 
has a homology class [X] e H2k(Y, Z). 

6.2. EXAMPLE. Let ƒ be a meromorphic function on Y with zeros Z0 and 
poles Z^ c Y. Pick a path between 0 and oo in CP1; its preimage has 
boundary Z0 — Z^; therefore [Z0] = [Zœ]. 

For instance, if Y = CPn and g is a degree k homogeneous polynomial 
defining a hypersurface G, then take ƒ = g/x^ and obtain that [G] = k[H], 
where H is a hyperplane. 

6.3. FUNDAMENTAL FACT. A complex manifold has a natural orientation. 
PROOF. A complex manifold is locally like Cw, and so we have to show that 

Cw, viewed as a 2«-dimensional real vector space, carries a natural orientation. 
Pick a basis ev...,en in Cn. Then el9...9 en, iel9..., ien is a real basis of Cn 

and hence determines an orientation. What if we start with a different basis? 
Let A 4- iB G GL(«,C) (A, B real matrices) be the matrix of the change of 
basis. Then the real basis is changed by the matrix (iB ^) and we need to show 
that its determinant is positive. 

1ST PROOF. 

1 i\l A B\l\ iYl
 = (A-iB 0 \ 

i 1)\-B A)\i l) I 0 A + iBJ' 
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hence 

de{-B ^)=|detU + ^) | 2 >0. 

2ND PROOF. 

H-B f) 
is a continuous nowhere zero function on GL(«, C), equal to 1 at the identity. 
Since GL(w, C) is connected, it is everywhere positive. 

6.4. COROLLARY. POSITIVITY OF INTERSECTION. Let Y be a complex manifold, 
U> Va Y be subvarieties intersecting transversally. Let At be the components of 
U n V. Then it is known from topology that [U] D [V] = Ee^^J , where et= +1 
depending on the orientations of U, V and Y along At. Since we have everything 
canonically oriented we have'. [U] O [V] = E[^4,]. 

6.5. COROLLARY. Let Y be a projective variety and let Xk c Y be a closed 
subvariety. Then [X] e H2k(X,Q) is never zero. 

PROOF. We embed F c C P " and then it suffices to see that [X] e 
H2k(CPn,Q) is not zero. Let x e X be a general point and let Ln~h be a 
general (n — &)-plane through x. Then X n L is a discrete set of points 
x = xl9 x2, • • •, xm and so 

[X] n[L] = [x] + • • • + [xm] - m[pt] e tf0(CP»,Q) = Q. 

Thus [X] O [L] # 0 and this implies that [X] # 0. 
6.6. REMARKS, (i) The same argument shows that iî Xf c Y are subvarieties, 

then £<!,•[*;]# 0 for a,. > 0. 
(ii) For nonprojective complex manifolds the corollary can fail (see 12.11). 
6.7. DEFINITION. For a smooth projective variety X let NE(X) c #2(X,R) 

be the set of positive linear combinations of homology classes of curves on X. 
This is obviously a subcone of the vector space H2(X, R). By 6.6(i) 0 £ NE(X% 
hence it contains no Unes. This is called the cone of curves of X. It is usually 
easier to work with its closure NE( X) which is called the closed cone of curves. 
(NE(X) is a quite unfortunate but standard notation.) 

It will follow from 7.15 that NE(X) contains no line either. 
6.8. DEFINITION, (i) Let V c Rn be a convex cone and let W c V be a 

subcone. W is said to be extremal if w, v G V, u + v&W=>u,veW. 
Geometrically: V hes on one side of W. 

(ii) A one-dimensional subcone will be called a ray. 
(iii) It is easy to see that if a closed convex cone V contains no lines, then it 

is the convex hull of its extremal rays. V is said to be locally finitely generated 
at v e V if only finitely many extremal rays intersect a small enough neigh­
borhood of v. This notion is interesting only for boundary points. 

Now we are ready to outline a fourth approach to maps between projective 
varieties. Although it is a rather straightforward idea, it appeared first only in 
Hironaka's thesis, and was used successfully first by Mori. 
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6.9. DEFINITION. Let X, Y be projective varieties and ƒ: X -> Y a map. Let 
NE(f) or NE(X/Y) be the subcone of NE(X) generated by those curves 
C a X such that / (C) = point. I will call this the kernel cone of ƒ. Its closure 
is denoted by NE(f). 

6.10. PROPOSITION. (Notation as in 6.9.) (i) For a curve C, f(C) = /ra/wf <=* 
[C] G # £ ( ƒ ) . 

(ii) NE(f) is extremal. 

PROOF, (i) (=>) holds by definition. If [C] e # £ ( ƒ ) , then [C] = EaJCJ 
such that /(Cy) = point. Therefore [/(C)] = £ ^ [ / ( Q ] = 0 e H2(Y9 R). Then 
since by 6.5, f(C) cannot be a curve, it must be a point. 

(ii) If u = Etf/tCJ, Ü = ££,[/),], and w + Ü e NE(f), then as above we 
obtain that Ea,.[/(C,.)] + E *,•[ ƒ(/>,•)] = 0. Hence /(Cf.) and f(Dj) are points; 
thus w, v e NE (f). 

Now we come to the starting point of Mori's program. 
6.11. FUNDAMENTAL TRIVIALITY OF MORI'S PROGRAM. Let X be a projective 

variety and ƒ: X -> y a map onto some normal projective variety. Assume 
that ƒ has only connected fibers. Then ƒ is uniquely determined by its kernel 
cone NE(f). 

PROOF. The recipe to get ƒ is the following: if x9 y e X, then f(x) = f(y) 
iff there is a chain of curves {C,} connecting x and ƒ such that [CJ e NE(f). 

If ƒ(*) = f(y), then such a chain can be found since / - 1(/(jc)) is con­
nected. If such a chain can be found, then /(UC,-) = U/XC,) is a finite set of 
points by 6.10(i). SinceUC, is connected it must be one point; thus f(x) = f(y). 

I want to emphasize the necessity of the projectivity condition on the image 
of ƒ. 6.10(i) and 6.11 are false without this assumption. 

6.12. DEFINITION. Let V c NE(X) be a closed subcone. We say that F can 
be contracted if there is a normal variety Y and a surjective map ƒ: X -> Y 
such that ƒ has connected fibers and V = NE(f). The map ƒ (unique by 6.11) 
will be called the contraction map of V. 

6.13. REMARK. If g: X -> Z is an arbitrary map, then it is intuitively quite 
clear that it can be factored into ƒ: X -» 7, /*: 7 -> Z where ƒ has connected 
fibers, y is normal, and /i has finite fibers. Y is projective if Z is. This is the 
so-called Stein factorization. 

6.14. QUESTIONS. These are of course innumerable. How can one describe 
NE(X)1 Which subcones correspond to maps? How can one read off proper­
ties of ƒ from NE( ƒ )? 

Very little is known in general. In some cases, however, a beautiful answer 
can be given. This will be the heart of Mori's program. 

7. Vector bundles and the canonical bundle. We already considered line 
bundles passingly in 5.15. Because of their importance in describing algebraic 
maps, we shall investigate them in more detail. 

7.1. DEFINITION. The idea of vector bundles is that we have an algebraically 
varying family of vector spaces. Technically the following definition seems 
better: 

Let X be an algebraic variety. A vector bundle over X is an algebraic 
variety V and a regular map p: V -> X with the following property. 
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For any x G l there is an open algebraic subset U containing x and an 
algebraic isomorphism g: U X C" -* p~l(U) such that p ° g(w, e) = u for any 
u e £ƒ, e e C1. Furthermore if gy: [/j. X C" -> P~l(Ut), for / = 1 and 2, are any 
two maps and x e L̂  PI C/2»tnen t n e t w o vector space structures gt\ {x} X C" 
-> /?_1(x) induced on p~l(x) are the same. 

A slightly different way of giving this definition is to consider V to be 
patched together from the pieces UtX Cn with the help of transition functions: 

Su = ft "g;1: (u, n <7y) x c « - (^ n £/,) x c . 
The second condition above is equivalent to the requirement that gt ° gjl is a 
matrix-valued invertible regular function, n is called the rank of the vector 
bundle. 

In an analogous way one can define analytic vector bundles. A variant of 
Chow's theorem yields that any analytic vector bundle on a projective alge­
braic variety is algebraic. 

7.2. DEFINITION. The usual vector space operations can be applied fiberwise 
to vector bundles. Therefore one can define direct sums, tensor products and 
determinant bundles of algebraic vector bundles. 

If p{. Vl; -> X are vector bundles on X, then a vector bundle homomorphism 
between them is a regular map ƒ: Vx -> V2 such that Pi{vx) = p2(/(^i)) for 
vx e Vx and each ƒ: p{l(x) -> P2~l(x) is linear. 

A sequence of vector bundle homomorphisms is called exact if it is exact 
above each JC e X as maps of vector spaces. If 

is an exact sequence, then we can take determinants to get 
detF2 = detFx <8> detF3. 

7.3. DEFINITION. If p: V -> X is an algebraic vector bundle and ƒ: Y -* X is 
a regular map, then we can define a vector bundle ƒ *p: f*V-+ Y as follows. 
If V is given by patches Ul X Cn and transition functions gij9 then ƒ T is 
given by patches f~l(Ut)xCn and transition functions g,-,-0/. If ƒ is an 
inclusion, then ƒ T is called the restriction of V to 7, and is denoted by V17. 

7.4. DEFINITION. Let /?: F -> X be an algebraic vector bundle. A section of 
F is a regular map s: X -> V such that /> ° s = id. These are called global 
sections of K. They form a vector space under pointwise addition, denoted by 
T( X, V). A section defined only on an open subset [ / c l i s called a local 
section. 

A rational section of F is a rational map /: X -> V such that p ° t = id. If 
F is an algebraic vector bundle, then it always has rational sections. To see this 
choose a Ut and an e e Cn and let t(u) = g,(w, e) G K This t is regular on Ui9 

and on L̂  it is given by u •-> gyi o g.? which is a rational function. By a slight 
abuse of terminology I will frequently refer to a rational section as meromor-
phic. 

The following easy consequence of 5.9 will be very useful. 

7.5. PROPOSITION. Let X be a normal variety and Y a X a subvariety such 
that dim Y < dim X - 2. Let V be a vector bundle over X. Then any section s of 
V | X — Y extends to a section s of V. 
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PROOF. If s exists then it is clearly unique. Therefore the extension problem 
is local on X. Let x e [ / c l b e a small neighborhood such that V | U is of 
the form U X Cn. The section s\U — Y now corresponds to n regular func­
tions on U — Y. By 5.9 they all extend to regular functions on U, hence give an 
extension s\U: U -> ( / X C " = V\U. This proves the proposition. 

7.6. EXAMPLES, (i) For every n there is the trivial bundle X X Cn. 
(ii) We already considered the example of CPn in 5.9. Each point corre­

sponds to a line and this gives a line subbundle L c CP" X C"+1. This is 
called 0(-l). Its dual, a quotient of CPW X Cn+\ is called 0(1). Its &th tensor 
power is denoted by 0(k). We shall see in 7.17 that 0(k): k e Z are all the 
line bundles on CP". 

(iii) If ƒ: X -> CP" is a regular map, then ƒ *0(l) is a line bundle on X. As 
we saw in 5.15, this line bundle along with n + 1 sections determines the map 
ƒ. Due to the importance of maps into projective spaces, it will be important to 
find ways of deciding whether a line bundle on X is of the form ƒ *0(l) for 
some ƒ. 

(iv) Let X be an algebraic variety covered by charts X = U1 U • • • U Un and 
let H c X be a closed subvariety such that on each chart Ut there is a regular 
function ƒ• such that HO Ut = (ft = 0). Assume furthermore that ft has a 
simple zero along each component of H n Ut. If X is smooth and dim i / = 
dim X — 1, then these conditions are automatically satisfied (2.28(i)). We will 
construct a line bundle 0(H) on X and a section s: X -^ 0(H) such that 
if = (s = 0). It will be convenient to introduce an extra chart U0 = X — H, 
and pick f0 = 1. 0(H) is given by transition functions 

giJ: UtxC^UjX C; g,y(*,z) = U ^ y * )• 

Since on Ut n L7. both ƒ, and ^ have i / n Ut Pi If- as their zeroes, /^//) is a 
nowhere zero regular function on Ut n L̂ . Thus the gy • define a line bundle 
0(H). To get the section s, over U0 choose s: x *-* (JC, 1). Over Ut this becomes 
s: x •-> g0/(^, 1) = (x, fi(x)), which is regular, and clearly (s = 0) = if. 

If X = CP" and if is a hyperplane then 0 ( # ) = 0(1). 
(v) TANGENT BUNDLE. Let V c Cw be a smooth subvariety of dimension k. 

For each x e F, there is a tangent A>plane to V at JC. If we translate this by the 
vector -x, then it becomes a vector subspace of Cn. This gives us a rank k 
subbundle of V X Cn, called the tangent bundle of V and denoted by Tv. It 
has an intrinsic description as well. The tangent A>plane at JC is the vector 
space of derivations on holomorphic functions near x. If zt is a local coordi­
nate system, then the operators Haid/dzi form this A>plane. Therefore Tv is 
independent of the imbedding. 

It W c CP" is a smooth variety, then it can be covered by affine pieces 
Vt= WD Ui9 and the Tv, patch together in the natural way to give TW9 the 
tangent bundle of W. Its local sections are of the form E/ /(z)3/9z /. 

Its dual is called Ql
w\ its local sections are 1-forms Efffldz;. Of special 

interest is its determinant bundle Q^, = detŒ1^ = AkQl for k = dimW. It is a 
line bundle whose local sections are fc-forms: f(z) dzx A • • • A dzk. Q,1^ is also 
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called the canonical bundle of W, and is frequently denoted by Kw. It will be 
of great importance for us. 

(vi) If V c W are smooth varieties, then we have a natural inclusion 
Tv -> Tw\ V. The quotient is again a vector bundle; at each x <E V this 
quotient is the vector space of directions in the tangent space of W that are 
"perpendicular" to the tangent space of V at x. If V(e) c W is a tubular 
neighborhood of V, then one can think of this quotient as a linearized version 
of V(e). It is called the normal bundle and is denoted by Nv^w. Thus one has 
an exact sequence 

0 - * Tv-> Tw\V->Nvlw->0. 

Taking determinants we get 
Kv= KW\V® dctNvlw. 

Because of their importance in connection with maps, we study global 
sections a bit more. The fundamental result is the following 

7.7. THEOREM. Letp: V -> Xbe a vector bundle over a projective variety. Then 
d i m T C ^ F ) is finite. 

PROOF. The sections are certain maps from X to V. A slight change of 5.21 
shows that every analytic section is algebraic. Therefore it does not matter 
which we consider. It is easier to work with the analytic case. 

Fix some reasonable measure d\i on X and a positive definite Hermitian 
form hx( , ) on each p~l{x) such that these forms vary C°° with x. For 
$,. e T(X9 V) we define 

(sl9s2) = f hx(s1(x)9s2(x))dn. 

This defines an inner product on T( X, V). 
It is known classically that if { f} is an L2 bounded sequence of analytic 

functions on the unit disc, then there is a subsequence that converges on 
compact subsets to an analytic function. One can apply this to a covering of X 
to conclude that T( X, V) becomes a Hubert space whose unit ball is compact. 
This obviously implies that it is finite dimensional. 

7.8. EXAMPLES, (i) Let 0X be the trivial bundle X X C on a connected 
projective variety. Then sections of 0X correspond to regular maps X -> C, 
and therefore, by 5.11, they are constants. Thus T(X, 0X) = C. 

(ii) Let L be a Une bundle on X with a nowhere zero section s: X -> L. We 
can define ƒ: X X C -* L by ƒ(*, z) = zs(x). This shows that L is isomorphic 
to the trivial bundle. 

(ni) One has a natural bilinear map T(X, Vx) ® T(X, V2) -> T(X, Vl ® V2) 
given by (s± ® s2)(x) = s^x) ® s2(x). 

(iv) COROLLARY. Let Xbe a projective variety, L a line bundle on X; L~l its 
dual. If both L and L'1 have nontrivial sections, then L = 6X. 

PROOF. Let s, resp. /, be a nontrivial section of L, resp. L"1. Then s ® / is a 
section of L <8> L~l = 0X. By (i) this is a nonzero constant, and hence ^(JC) is 
never zero. Now (ii) implies the claim. 
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(v) Let L be a line bundle and s a nontrivial section. How can one get other 
sections of L? Assume that t is another section. Then ƒ = t/s is a rational 
function on X. Conversely, if t = ƒ • s, then t is a section of L, but maybe with 
some poles at the poles of ƒ. The zeros of s should cancel out the poles of ƒ. 
This can be used for computations as follows. 

(vi) Computing T(CPM, 0(k)). 
Recall that 0(1) was given as the quotient of CPn X Cn+l such that at 

(x0:... : xn) the quotient map is ( z 0 , . . . , zn) -> £x tz ( e C. (1,0, . . . , 0) gives a 
section s of 0(1) which vanishes for those points with x0 = 0. This is the 
hyperplane at infinity. Any other section is of the form ƒ • s, where ƒ is regular 
o n C " = U0 and has at most a simple pole at infinity. These are exactly the 
linear functions ƒ = E U ^ / J C Q . Hence the sections of 0(1) can be identified 
with linear polynomials EÖ,-*,-. In particular, dim T(CP", 0(1)) = n + 1. 

In 0(k) we choose the basic section s <8> • • • 05 (A: times). Now we are 
looking for regular functions on C = [/0 that have at most fc-fold poles at 
infinity. As above we find that these correspond to degree k homogeneous 
polynomials in JC0, . . . , xn. Thus 

dimr(CP",0(fc)) = (n + k). 

If k < 0, then by (iv) we have no sections. 
(vii) Line bundles on curves. Let C be a curve of genus g and L a line 

bundle over C with a section s. Other sections of L are given by ƒ • s, where ƒ 
is meromorphic on C with poles only at the zeroes of s. The dimension of the 
space of such functions was computed in 3.8 and thus we get 

d i m r ( C , L ) > #(zeroesof s) + 1 - g(C). 

7.9. THE IMPORTANCE OF KX. Let L be a line bundle on a projective variety. 
Let s0,..., sn be a basis of T(X, L). Then this defines a map of X into CP". If 
one picks a different basis s'0,..., s^, then we get a different map. However the 
two differ only by a linear change of coordinates in CPW. Therefore L itself 
determines an essentially unique map into CPn. 

We still have L as an arbitrary choice. Which Une bundle should one pick on 
Xe! The advantage of Kx is that it is "God-given"; it does not represent a new 
choice. Similarly, its tensor powers K%m are distinguished. The choice of m is 
something one can pick once and forever for all varieties. 

Why do we concentrate on Kx and not on Kx
ll We will see (8.15 and 8.17) 

that T(X, Kgm) has very nice functoriality properties whereas T(X, Kx
l) does 

not. 
There is only one remaining problem. K^m might have very few sections, 

maybe only the trivial one. In this case we don't get any interesting map. 
Therefore we shall look into the structure of Kx in detail and try to get 
information about those varieties for which K$m does not give interesting 
maps. 

Maybe the easiest way to extract information from Kgm is by counting the 
number of sections. dimT(X, K$m) is denoted by Pm(X) and is called the 
m-genus of X. Pi(X) is also denoted by pg(X) and is called the geometric 
genus. 
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Next we compute Kx in some cases. 
7.10. EXAMPLES, (i) Kcpn = 0(-n - 1). 
PROOF. Let (x0:... :xn) be coordinates on CPn. On U0 we pick coordinates 

zt = XJ/XQ. Since U0 = Cw, A^ is trivial and the «-form dz1 A • • • Adzn is a 
nowhere zero section. What happens at CP" - U01 We pick, for instance, Un 

with coordinates yj = Xj/xn. Then zy = x, /x0 = yt/y0 for z = 1 , . . . , « - 1 
and z„ = l/y0- Therefore 

i i A - Adzn = d^A ••• A ^ A j - = ( -1 ) "—T7^o A '•• A ^ n - i -

Thus dz1 A " - A dzn is a rational section of ACP« which has an (n + l)-fold 
pole along the hyperplane x0 = 0. Therefore Kcpn ® 0(n + 1) has a section 

(dzx A - - A dzn) ® (^n+1) which is nowhere zero. 

This is therefore the trivial bundle, and hence K^n = &(-n - 1). 
(ii) KCn/L = QC

n/L where Cn/L is as in 4.7. 
PROOF. Let zl9...,zn be coordinates on Cn. Then Jz1 A ••• Adzw is a 

nowhere zero section of KQn. This section is L-invariant, so it gives a nowhere 
zero section of KQn/L. 

(iii) Let X and Y be smooth projective varieties and let p: X X Y -» X, 
g: X X 7 -> 7 be the coordinate projections. Then KXx Y = ^*ATX ® q*KY. 

PROOF. At each point of X X 7, the tangent space decomposes into vertical 
and horizontal tangent vectors. Thus TXxY s p*Tx + ^*Ty. Taking the de­
terminant and dualizing gives our formula. 

In order to get more examples we need the following 

7.11. PROPOSITION. Let V be a vector bundle on a smooth variety X. Let 
s: X -> V be a section and Y c X be its set of zeros. Assume that s(X) 
intersects the zero section transversally. Then NY^X = V \ Y. 

PROOF. Let 7(e) be a small tubular neighborhood of 7 in X. It is intuitively 
clear that there is a retraction map r: 7(e) -> 7. Unfortunately sometimes this 
r cannot be chosen to be analytic. Still, assume that we have an analytic 
retraction. This will then extend to a retraction map R: V \ 7(e) -> V \ 7. 

Now if x e 7(e), then the rule x -* R(s(x)) maps 7(e) onto a small 
neighborhood of the zero section of V\Y. Essentially by definition, NY^X is 
the linearization of 7(e). This gives the required isomorphism. 

In general one can still find r and R that are analytic up to first order along 
7, and this is enough to conclude the proof. 

7.12. COROLLARY. Let H c CP" be a degree k smooth hypersurface. Then 
KH = 0{k- n- \)\H. 

PROOF. H is given by a degree k polynomial which is a section of 0(k). 
Therefore NHlcpn = &(k)\H. By 7.5(vi), KH = Kcpn \H ® NHlCpn. 7.10(i) 
computes Kcpn, and this gives the result. 

7.13. DEFINITION, (i) Let L be a Une bundle with a section s: X -> L. Let 
V(s) c X be the zero set. It is an algebraic variety of codimension one. By 6.1 
this has a homology class [V(s)] e H2n_2(X, Z) (n = dim X). If s' is another 
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section then ƒ = s'/s is a rational function with zero set V(s') and polar set 
V(s). Therefore, by 6.2, [F(Y)] = [^(s)], and we have a well-defined class 
[L]tEH2n_2(X,Z). 

(ii) If L has no regular section, then we take a meromorphic section t with 
zero set Z(t) and polar set P(t) and we define [L] = [Z(t)] - [P(t)]. 

(iii) If X is smooth and projective, then H2n_2 can be naturally identified 
with H2. In general we have only a map from H2 -» H2n_2. One can see that 
[L] can be lifted to H2(X,Z). We shall use it only for the smooth case. The 
resulting class in H2(X,Z) is denoted by cx(L) and is called the first Chern 
class of L. 

From the definition it is clear that c^&x) = 0. From 7.8(iii) we conclude 
that cl(Ll & L2) = c^Lx) + Ci(L2)-

(iv) If F is a vector bundle over X then we define cx(V) = cx(det V). 
(v) If C is a smooth projective curve, then H2(C, Z) s Z. In this case, cx(L) 

can be considered as an integer. It is also called the degree of L and is denoted 
by deg L. 

(vi) With the above definition and using the remark 7.8(vii), we can put 
Riemann's theorem 3.8 in its more customary form: 

RIEMANN - ROCH FOR CURVES. Let L be a line bundle on a smooth projective 
curve C. Then 

d imr (C ,L) ^ degLH- 1 - g 

and equality holds if degL > 2 g — 1. 

(vii) Let I be a variety and C c X be a projective curve. Then [C] e 
H2(X,Z) and we have a bilinear pairing H2(X,Z) <S> H2(X,Z) -> Z to give 
intersection numbers [C] • cx(L) G Z for any line bundle. 

It can be directly obtained as follows. Let g: C -> C be the normalization of 
C. Then g*L is a Une bundle on C. Hence by (v) it has a degree. It is quite 
clear that degg*L = [C] • cx(L). 

(viii) Assume that L is generated by sections (i.e., for every x e X there is a 
section ^ of L such that ^(x) # 0). Let ^ G C be a point and s a section not 
zero at x. Then g*s is a nontrivial section of g*L and degg*L > 0. 

Now let X c CPn and consider 0(1) \ X. From 7.8(vi) we see that ^(0(1)) 
= [hyperplane]. Therefore [C] • cx(®(\) \ X) = [C] • [hyperplane] > 0 as we saw 
in the proof of 6.5. This gives us 

7.14. COROLLARY. Let X be a projective variety and L a line bundle that gives 
an embedding of X into some projective space. Then [C] • q (L) > 0 for every 
curve; i.e., the linear function given by L on NE(X) is positive. 

This comes very close to giving a characterization of such line bundles. The 
converse is the following result, which we cannot prove here. 

7.15. KLEIMAN'S CRITERION. Let L be a line bundle on a projective variety X. 
The following two statements are equivalent. 

(i) L®m gives an embedding into some projective space for all sufficiently 
large m. 

(ii) The linear function given by L on NE(X) — {0} is positive. 
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7.16. DEFINITIONS, (i) A Une bundle L satisfying the above conditions is 
called ample. 

(ii) A line bundle L is called nef if the linear function given by L on NE(X) 
is nonnegative. ("nef comes from the very misleading terminology "numeri­
cally effective".) Equivalently, L is nef if [CJc^L) > 0 for every curve C c X. 
This condition is much easier to check than ampleness because we do not have 
to consider limits of curves. 

Finally we give some further examples of Une bundles. 

7.17. THEOREM. Every line bundle on CPW is isomorphic to 0(m) for some 
m e Z. 

PROOF. We start with CP1 and a line bundle L of degree m. Then 
L' = L ® 0(-m) is of degree 0. Let s be a meromorphic section of L'\ it has 
the same number of zeroes and poles. Thus multiplying s by functions of the 
form (z — a)/(z — b\ we can get rid of all the poles and zeroes and get a 
nowhere vanishing section of L'. Hence, by 7.8(ii), L' = 0 and so L = 0(m). 

Now let L be a Une bundle on CPn and let C c C P " be a Une. Let 
"* = [C]Ci(L). Then taking L' = L <8> 0(-m\ we get [C]cx(L') = 0. Hence by 
the above consideration, L' \ C = 0C. 

If we fix p G CPW, then Unes through p cover CPn. If we fix a 0 # / e L' | p, 
then for each line C containing p there is a unique section sc: C -> L'\C such 
that sc(p) = I. These sections glue together to a nowhere zero section of L'. 
Hence L' = 0CP„ and we are done. 

Now we can easily prove the result promised in 2.30. 

7.18. COROLLARY. AutCP* = PGL(« + 1,C). 

PROOF. Let ƒ: CPn -» CPM be an automorphism. We want to determine 
ƒ *0(1). Every Une bundle on CP" is a tensor power of 0(1); thus the same 
holds for ƒ *0(1). Hence it is either 0(1) or 0(-l). 0(1) has several sections 
and so does ƒ *0(1) and thus necessarily ƒ *0(1) = 0(1). Therefore ƒ gives a 
map ƒ *: T(CPM, 0(1)) -> T(CP", 0(1)). Now T(CPW, 0(1)) is exactly the dual 
of the Cn+1 out of which CP" was made, and so the above ƒ * gives us an 
element of Aut(Cw+1). This induces an automorphism of CPW which is easily 
seen to be ƒ. 

7.19. REMARK. One should not think that in general cx(L) determines L. As 
an example, let C be any curve of genus at least one. Let /?, q G C be different 
points. Then cl(0(p)) = cl(0(q)), but 0(p) £ 0(q). Assume the contrary. 
Then 0(p) ® 0(q)~l = 0 has a nowhere zero section s. On the other hand, 
from the construction (7.6(iv)), it has a section s' with a simple zero at p and a 
simple pole at q. Then s'/s is a function on C with a single simple pole. As in 
3.10 this impUes that C = CP1, a contradiction. 

8. How to understand algebraic varieties. 
8.1. Two APPROACHES. There are two basic approaches to the geometry of 

algebraic varieties. One stems from a very general point of view: one would 
like to have a broad understanding of all algebraic varieties. Therefore, one 
searches for general structure theorems. The other point of view is that special 
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frequently occurring varieties are the most interesting and we should get 
detailed information about them. 

Let me illustrate this difference by an example. Assume that we are given a 
particular three-dimensional algebraic variety X, and we can prove that it is 
isomorphic to a smooth hypersurface of degree five in CP4. This makes an 
adherent of the general point of view perfectly happy. A proponent of the 
second approach would, however, politely point out that he is interested only 
in hypersurfaces anyhow and that he is busy understanding maps from CP1 to 
quintic hypersurfaces in CP4. This latter turns out to be a very interesting and 
subtle question. 

I will discuss solely the general structural approach, a choice dictated by 
personal taste. 

8.2. BASIC STRATEGY. These ideas are not new; they go back to the Italian 
school of the beginning of the century. 

Step one is to define an equivalence relation on all varieties. Two varieties 
will be declared equivalent if they look the same almost everywhere. Then we 
try to understand these equivalence classes by proving that certain simple 
surgery operations allow us to get from one member to another. 

Step two is to find ways of associating a single variety to a given equivalence 
class. This frequently reduces the problem of understanding different equiva­
lence classes to understanding certain individual varieties. 

Step three is then to use the special properties of these individual varieties to 
get an overview of all equivalence classes. 

This approach was developed, and is spectacularly successful, for algebraic 
surfaces: two-dimensional projective varieties. In a quite miraculous manner, 
the complexity of algebraic surfaces comes either from step one, or from step 
three, but not both. More explicitly, one of the following alternatives takes 
place. 

(i) The equivalence class contains a very simple member (like CP2). In this 
case the relationship of surfaces within the class is very complicated. 

(ii) The equivalence class contains only complicated surfaces, but they are 
related to each other in a simple way. 

Considerable advances were made recently concerning three-dimensional 
varieties. Although everything is much more complicated, a similar pattern 
seems to emerge. 

Now we look into the above program in more detail. First we define the 
equivalence relation. 

8.3. DEFINITION, (i) A map ƒ : X—> Y is called birational if there are proper 
closed subsets V a X and Z c Y such that ƒ : X - V -> Y - Z is an isomor­
phism. In this case, ƒ has an inverse ƒ_1: Y—> X which is a rational map, 
regular on Y — Z. 

(ii) Two irreducible projective varieties are said to be birationally equivalent 
or simply birational if there is a birational map between them. This is clearly 
an equivalence relation. 

(iii) Similarly, one can define bimeromorphic maps between complex mani­
folds. 

(iv) Two varieties X and Y are called isomorphic if there are everywhere 
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regular maps ƒ : X -> Y and g: Y -> X such that ƒ ° g = id and g <> ƒ = id. I 
usually will not distinguish between isomorphic varieties. 

8.4. EXAMPLE, (i) Let 7 be a variety and let Z be a closed sub variety. Then 
the inclusion map i: Y — Z -> Y is a birational isomorphism. 

(ii) The map from CP2 -> CP1 X CP1 given by (x:y:z) -> {{x\z\ (y:z)) is 
birational. It is not regular at (0:1:0) and (1:0:0). The line z = 0 is mapped to 
a point ((1:0), (1:0)). 

(ni) In general CP"+ m is birational to CP" X CPm via CP"+ m D Cn+m s 
C " x C " c CP" x CPm. 

(iv) Let ƒ: C -> C2 be given by f(t) = (t\tm\ and let F c C 2 be the 
image, ƒ: C -> F is birational iff («, m) = 1. It is an isomorphism iff « = 1 or 
m = 1. The n = 2, m = 3 case was considered in detail in 5.3(iii). 

(v) Let Q c CP"+ 1 be a smooth hypersurface of degree two. Let q e Q be a 
point and let H c CP"4"1 be a hyperplane not containing q. I define a map 
/?: <2 -> H as follows. Let q =£ q' ^ Q. Connect g and g' with a Une, and let 
p(q') be the intersection point of this line with H. One can easily see that this 
map is birational. 

8.5. FUNDAMENTAL PROBLEM ABOUT BIRATIONAL MAPS. IS there a set of 
"elementary" birational maps such that any birational map can be written as a 
composite of elementary maps? 

This problem is satisfactorily settled in dim 2 but it is very much open in 
dim 3. It is not even clear which maps should be considered elementary. One 
candidate is the following: 

8.6. EXAMPLE: BLOWING UP. This quite simple process starts with a variety 
X and creates another one, X', which is birationally equivalent to X. 

(i) POINT IN CP". The idea is to replace a point of CP" with the set of 
directions through that point, i.e., with a copy of CP" - 1 . With actual equations 
it can be described as follows. Let ()>o: ••• :J«) ^ e coordinates on CPn, 
{z^...:zn_x) those on CP""1. Let B0CPn be the subset of CP" X CP""1 

defined by the equations ytZj = ztyj9 0 < /, j < n - 1. Let p: BQCPn -> CP" 
be the first projection. If x e CP" is the point (0: . . . :0:1), then the equations 
give no conditions on the j / s so /> -1(0:... :0:1) = CP""1. If, say, z0 =£ 0, then 
yi = y0 • zt/z0 and hence (>>0: ...:yn_l) is uniquely determined. Thus p is a 
birational map as we wanted. 

(ii) LINEAR SUBSPACE OF CP". If L c CP" is a linear subspace, then we can 
try to replace L by the set of directions of lines "perpendicular" to L. Working 
as above, let (y) be coordinates on CP", (z) be those on CPk, and let BLCPn be 
the subset of CP" X CPk given by ytZj = zjj for 0 < i, j < k. The first 
projection p: BLCPn -* CP" is again birational; p~l(x) = CP^ if x e L = 
( y0 = . . . = yk = o) and a single point otherwise. 

It is easy to check that BLCPn is smooth. 
(iii) SMOOTH SUBVARIETY, ANALYTIC CASE. Let X be a smooth variety (or 

complex manifold) and let Y c X be a smooth subvariety. We want to define 
BYX. Each point x e Y c X has a small neighborhood in the form of an open 
ball D c C" and Y D D is given by yx = • • • = yk = 0. We define BYn DD 
to be the subset of D X CP^ - 1 given by the equations ytZj = ziyj for 1 < /, j 
< k, where for convenience we pick (zx:... : zk) as coordinates on CP^ - 1 . 
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Again one can see that BYnDD is smooth for all D and they patch together 
to give p: BYX -> X, a bimeromorphic map. One can actually see that BYX is 
projective if X is. 

Blowing-ups go a long way toward simplifying rational maps. This is the 
content of the following basic and very hard theorem of Hironaka: 

8.7. ELIMINATION OF INDETERMINACIES. Let X be a smooth projective variety 
and let ƒ: X ~-> Z be a rational map. Then there is a finite sequence of 
blowing-ups 

Sn'' %n ~* %n-l *"* ' ' * ~* X! ~* X0 = X 

such that f o gn is everywhere regular. 

8.8. REMARK, (i) For dim X = 2 we will prove this in 9.7. 
(ii) In the spirit of 8.5, this means that "elementary maps" could mean 

inverses of blowing-ups and regular birational maps. This is a very useful 
result. However, in dim > 3 regular birational maps can be very complicated. 
Mori's program will provide an approach to their structure. 

There is another general result of Hironaka which further clarifies the 
concept of birational equivalence. This is a generalization of 3.12. 

8.9. RESOLUTION OF SINGULARITIES. Let X be a projective variety. Then there 
is a regular birational map f: Y -» X where Y is smooth and projective. 

Any such Y will be called a resolution of the singularities of X. This result 
indicates that from the point of view of birational geometry, it is sufficient to 
consider smooth varieties. This is certainly true, but unfortunately X and 7 can 
be very different. Therefore this reduction to the smooth case is not very 
useful. 

It is time to concentrate now on the similarities between birationally 
equivalent varieties. To this end, let us now recall 5.19: a rational map between 
smooth projective varieties is regular outside a codimension two set. This has 
several consequences for birationally equivalent varieties. 

8.10. THEOREM. Let f: C ---> C" be a birational map between smooth projective 
curves. Then f is an isomorphism. 

PROOF. Since dimC = 1, the codimension-two exceptional set is empty. Thus 
ƒ is regular and so is ƒ_1. 8.4(ii) shows that the corresponding statement is 
false for surfaces. 

8.11. THEOREM. Let X and X' be birational smooth projective varieties. Then 
the fundamental groups ^(X) and TT-^X') are isomorphic. 

PROOF. Let ƒ: X ~> X' be a birational map, regular outside Z c X. Z has 
complex codimension two, hence real codimension at least four. Therefore, 
7T1(X) = TT^X — Z). ƒ maps X — Z into X', and this gives iTi(X — Z) -> 
7rx{Xf). So we have ƒ*: irx(X) -> irx(Xy It is clear that ( ƒ "1)3|t gives the inverse 
to /* . 

The following results are crucial. 
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8.12. PROPOSITION. Let g: U -* V be a regular map between smooth varieties 
of the same dimension n. Then there is a natural map g*Kv -» Kv, Ifu^U 
then the map between the lines g*Kv\u -» Kv\u is an isomorphism if f g is a local 
diffeomorphism near u. 

PROOF. Let (ut) be local coordinates at u and (vj) be local coordinates at 
v = g(w). Let g*(Vj) = gj(uv...9un). The Une of Kv at v is given by the 
vectors cdvx A • • • Adun (c e C). The usual pull-back map is g*(dvj) = 
dg*(Vj) = Ldgj/dUi • dut\ thus the map g*Kv -> A^ is given by 

cdv1 A • • • A<fon -> cg*dv1 A • • • Ag*dvn = cdet^gy/Bw,) ^ A • • « Adww. 

This map is an isomorphism iff det(9g7/8w,) ¥= 0. By the implicit function 
theorem, the latter is equivalent to g being a local diffeomorphism. 

8.13. COROLLARY. Let E c U be the subset where g is not a local diffeomor­
phism. Then any irreducible component of E has dimension n — 1 unless E = U. 

PROOF. Let u e E. Then near u, E is defined by one equation: det(3gy/3M,-) 
= 0. By 2.27 this implies dim E > n - 1 unless deMfigj/dUj) s 0. 

8.14. COROLLARY. Let C c U be an irreducible compact curve such that 
C <£ E. Then [C^iK^ > [g(C)]c1(A'K). Equality holds iff C n E = 0 . 

PROOF. Assume for simplicity that Kv has a global section <o with zero set 
Z c V. Then g*co is a section of g*^TF with zero set g~l(Z). This gives a 
section of À^ which will vanish in addition along E = UEk. Since multiplici­
ties have to be taken into account this gives 

Ci{Kv) = [g-l{Z)\ + £ **[£*] (ak > 0). 

Now [CJIg-^Z)] = [g(C)][Z] and [C] • Lak[Ek] > 0 with equaUty iffCHE 
= 0 . 

8.15. THEOREM. Let ƒ: X -> Y be a rational map between smooth projective 
varieties of the same dimension n. Assume that f(X) is not contained in any 
proper closed subset of Y. Then f induces an injection 

ƒ*: T(Y9K¥>")->T(x,K®m). 

If f is birational then ƒ * is an isomorphism. Thus Pm(Y) = Pm(X) for every 
m > 1. 

PROOF. Let Z c l be the set where ƒ is not defined. By 5.19 dim Z < 
dim X - 2. Let U = X - Z, V = Y, g = ƒ | U. From 8.12 we get a map 
g*K®m -* K§m and thus maps 

r(y,Af *) -» r(u9g*K?m) -> r(i/, A^*) . 
By 7.5 r(*7, ^<®m) injects into T(X, Kgm) and this gives f "Af f is birational 
then ( ƒ _ 1 )* gives the inverse of ƒ *. 

The previous theorem leads us directly to step two of the main program. 
8.16. DEFINITION. Let I b e a smooth projective variety. Let <j>m: X ~> CP? 

be the map given by T(X, Kgm)\ it is called the m-canonical map. The closure 
of the image is a projective variety called the m-canonical image. It is denoted 
by X[m]. 
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8.17. COROLLARY. If X and X' are smooth projective varieties which are 
birational to each other, then X[m] and X'[m] differ only by a linear automor­
phism of CP?. In particular, they are isomorphic. 

PROOF. If ƒ: X -> X' is birational, then we get an isomorphism 
T(X', K$m) ^ T(X, K®m). If we construct the m-canonical map using "the 

same" bases in these two vector spaces, then we clearly get that X'[m] and 
X[m] are the same subsets of CP?. This proves the corollary. 

In this way, to each smoth projective variety X we associate an infinite 
sequence of new varieties X[l], X[2],..., and each of these depends only on 
the birational equivalence class of X. In general X[n] is not birational to X, so 
we might lose considerable information. 

Experience shows that the X[i] can be very different from each other, but 
there is a "main series" of them. Namely one can show 

8.18. PROPOSITION. If n and m are sufficiently large and divisible, then X[n] 

and X[m] are birational to each other. Their birational equivalence class will be 
called—with slight abuse of language—the litaka variety I(X), and the natural 
map <j>: X -» I(X) the stable canonical map. 

Of course this is not quite what we wanted. We would like to associate one 
variety, and not a birational equivalence class, to our original birational 
equivalence class. This leads to the following 

8.19. FUNDAMENTAL PROBLEM. Let X be a smooth projective variety. Is it 
true that if n and m are sufficiently large and divisible, then X[n] and X[m] 

are actually isomorphic? 
This is very easy for dim X = 1. If X is a surface, then the proof is already 

nontrivial. One of the goals and major achievements of Mori's program is the 
affirmative answer to this problem for three-dimensional varieties. 

8.20. EXAMPLES, (i) By 7.9(i), K^n = 0(-n - 1), and so 

Kgj% = 0(~nm - m). 

Therefore Pm(CPn) = 0 for all m > 1; hence 7(CP") = 0 . 
(ii) By 7.10(ii), Kc«/L = 0, hence the same is true for all tensor powers. 

Since &mY(X, 0) = 1, this gives Pm(Cn/L) = 1. Thus /(Cn /L) = point; 
again not much information is contained in it. 

(in) By 7.10(iii) K$™Y = p*K®m <g> q*K¥>». If s e T(X,K®m) and t e 
T(Y, Kfm) then ^ ^ ^ G r ( l x y , KXXY)- ° n e c a n easilY s e e t h a t s u c h 

sections span the space of all sections. Thus Pm(X X Y) = Pm{X) • Pm(Y) and 
I(XX Y) = I(X) X I(Y). 

(iv) Let H c CP* be a smooth hypersurface of degree k. Then by 7.11 
KH =z ®(k — n - 1)\H. There are three cases to consider. 

(a) k < n + 1. Then we get k - n - 1 < 0, hence Pm(H) = 0 for every m. 
(b) k = n + 1. Then KH = 0H, and thus Pm(H) = 1. 
(c) k > n 4- 1. In this case 0(m(k - n - 1)) has many sections over CP", 

and some of them will not restrict to zero on H. In fact, one can compute that 

P ( zr\ ^ Im(k - n - 1) -h n\ _Im(k - n - 1) + n - k\ 
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(v) COROLLARY. Let H and H' be smooth hypersurfaces of degree k and k' in 
CP". Assume that k > n + 1 and k # k''. Then H and H' are not birationally 
equivalent. 

PROOF. If H and W are birational, then Pm(H) = Pw(#')- We have 
formulas for these in terms of k and k', and one can conclude the proof after 
some playing around. 

(vi) What if both k, k' < n + 1? First of all, by 8.4(v) a smooth quadric 
(k = 2) is birational to a hyperplane (/:' = 1). A more sophisticated example is 
the following. 

(vii) Consider the smooth cubic C c CP 2 n + 1 given by the equation x0.x
2 + 

x\x\ + * • • +*2«+i*o = 0- Let L1? resp. L2, be the linear subspace given by 
equations x0 = x2 = • • • = x2n = 0, resp. xx = x3 = • • • = x2n+l = 0. It is 
clear that Li c C. Now look at the map ƒ: Lx X L2 -> C defined as follows. 
Choose xt e Lt. Then connect xx and x2 with a line in CP2w+1. This Une will 
intersect the cubic in three points; two of these points are xv x2. Let f(xl9 x2) 
be the third point. With some work one can see that ƒ is indeed birational. 
Thus by 8.4(iii) we see that C is birationally equivalent to CP2w. 

(viii) In contrast, a smooth cubic in CP4 is never birational to CP3, but this 
is hard to prove (Clemens-Griffiths). 

8.21. EXAMPLE. Assume that X is a smooth projective variety such that Kx 

is ample. Then, by definition, for all sufficiently large n, X = X[n]; so 
X = I(X) and the answer to the fundamental problem is affirmative. This is 
the case for all smooth hypersurfaces H c CPn of degree at least n + 2. 

The study of the stable canonical map gives a subdivision of all varieties into 
four classes. For convenience we introduce the notion of Kodaira dimension: 
K(X) = d im/(X) . We set K(X) = -oo if I(X) = 0 . 

8.22. BASIC SUBDIVISION, (i) K(X) = -oo; i.e., Pm(X) = 0 for all m. Hyper­
surfaces of low degree are such examples. 

(ii) K(X) = 0; i.e. Pm(X) < 1, with equality for some m. Examples are 
Cn/L and H c CP" of degree n + 1. 

(iii) 0 < K(X) < dim X. Then <{>: X -> I(X) is a very interesting map. By 
some sort of induction on the dimension, we know more about I(X) and 
about the fibers of <f>. Thus we hope to piece together information about lower 
dimensional-varieties to get some results about X itself. 

(iv) K( X) = dim X. These are called varieties of general type. This should be 
considered the "largest" class. In this case, in fact, <j>: X —> I(X) is birational. 
Therefore, if the answer to the fundamental problem is yes, then we have 
completed step two of the basic strategy. 

8.23. Once algebraic varieties are divided into these four classes, the inves­
tigation of individual classes should follow. Some program in this direction was 
outlined for the last two classes, i.e., for K(X) > 0. In the case of the first two 
classes, the stable canonical map offers httle help, and we should turn to other 
methods. I think it is fair to say that at present very httle is known about 
varieties with K(X) = 0; even a conjectural approach to their structure theory 
is lacking. The class K(X) = -oo is, however, intimately tied up with maps 
from CP1 to X. We illustrate this with an example. 
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8.24. EXAMPLE. RATIONAL CURVES ON HYPERSURFACES. Let F c CP" be a 

hypersurface given by an equation h(x0,..., xn) = 0 of degree k. Let b e i f 
be a point; we would like to find a map ƒ: CP1 -> H such that /(0:1) = b. A 
map of CP1 into CPn is given by n + 1 homogeneous polynomials of a certain 
degree, say m. By passing to C instead, the map is given by 

( m m \ 

£ Û 5 V : . . . : 2 > Î 7 ' G C F . 
o o / 

The condition ƒ (CP1) c H can be given by 

( m m \ 

Ifl?/' E « ? q s o . 
0 0 / 

Since deg/z = /c, this can be viewed as a degree m/c polynomial in / whose 
coefficients are polynomials in the aj's. Thus we have altogether mk + 1 
equations for the aj's; each of these coefficients must be zero. How many free 
variables do we have? We want ƒ (0:1) = b. Therefore (a^:... :UQ) = 
(b0:... : bn), so we can as well pick a^ = bt. 

With this choice the degree zero coefficient of h ° ƒ becomes zero, therefore 
we drop that equation. There is one more degree of internal freedom; the 
reparametrization t — ct' will change alj to cjalj. Therefore we can normalize, 
setting a® = 1. This leaves us with mk equations in (n + l)m - 1 variables. 
Therefore we expect that 

(i) If k < n 4- 1, then through every point of H there is a rational curve. 
(ii) If k > n + 1, then there is no rational curve through a general point 

of H. 
Though the above arguments are a bit shaky, the conclusions are indeed 

true. 
Comparing this with 8.20(iii), we get that, for a smooth hypersurface H, 

K(H) = ~oo iff H is covered by rational curves. This leads to a possible 
structural characterization of the class K = -oo: 

8.25. K = -oo CHARACTERIZATION PROBLEM. IS it true that for a smooth 
projective variety X, K(X) = -oo iff X is covered by rational curves? 

Assume that X is covered by rational curves. One can see that most of X is 
covered by a single family, i.e., there is a variety Y (dim Y = dim X - 1) and a 
dominant rational map ƒ : Y X CP1 ---> X By 8.20(iii) Pm(7 X CP1) = 0 and 
so by 8.15, Pm(X) = 0, and thus K(X) = -oo. Also note that one can get from 
8.14 that Kx is not nef. The hard part is the converse. It has been known to be 
true for curves and surfaces since the turn of the century, but a really 
conceptual proof was achieved only through Mori's program. The recent 
solution of this problem for threefolds demonstrates the power of the new 
methods. 

8.26. RATIONAL CURVES. The previous problem is only one of several 
examples that indicate that understanding rational curves lying on a given 
variety V gives a key to understanding X. In general X has several very nice 
properties if it contains no rational curves. The more rational curves X 
contains the more complicated the birational geometry of X. Subsequent 
chapters abound with such examples. This is also one of the guiding principles 
of Mori's program. 
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9. Birational geometry of surfaces. Surfaces provide the only large class of 
examples where step one of the basic strategy (8.2) is well understood. This will 
be discussed in the present chapter. 

9.1. INTERSECTION THEORY. If X is a smooth projective surface, then it is 
oriented by 6.3; thus Poincaré duality identifies H2 and H2. If C, c X is a 
curve, then [CJ e H2(X9 Z) and one can talk about [C{\ • [C2] e H4(X, Z) = Z. 
In particular, the self-intersection [C] • [C] is defined. 

If ƒ: X -» Y is a surjective map between surfaces, then Poincaré duality 
allows us to define ƒ* and ƒ * on either homology or cohomology groups. We 
shall freely use this. 

I also recall the following basic computational tool: level sets of a meromor-
phic function are homologous (6.2). 

9.2. TOPOLOGY OF THE BLOW - UP. Let U = C2 - 0, with coordinates (x, y). 
Consider the inversion map t: (JC, y) -* (x/(xx + yy\ y/(xx + yy)). Clearly 
t2 — id and f fixes the Unes through the origin. The sphere S = (x3c + yy = 1) 
is the fixed point set of t, and f turns (7 inside out, fixing S. 

Now complete C2 to CP2 by adding the line L at infinity. Let £/+c CP2 be 
the subset given by L U {(x, >>) e C21 JCX + yy > 1}. Then CP2 - U+ is the 
open ball (xx + yy < 1). The inversion t extends continuously to L (it is 
mapped to the origin), but it cannot be defined at O e C 2 . Let B be the 
4-manifold obtained by attaching two copies of U+ along the boundary S. 
Because orientations do not match along S, we reverse the orientation of the 
second copy. Let CP2 denote the 4-manifold CP2 with reversed orientation. 
Thus B is the connected sum of CP2 and CP2. 

We can define a map p: B -> CP2 by p = id on the first copy of JJ+ and 
p = t o id on the second copy, p is J.:l outside O e C 2 and the line L of the 
second copy maps to 0 G C2. This L corresponds exactly to the lines through 
the origin; thus B « £0CP2. 

In CP2 we have [L][L] = 1, and so in CP2 this becomes [L][L] = - 1 . 
Since locally any two blow-ups look the same, we get the following in 

general: 
If X is a smooth algebraic surface and x e l , then BXX is diffeomorphic to 

the connected sum of X and CP2. If E c BXX is the preimage of x, then 
[E][E] = - 1 . 

It should be emphasized, however, that CP2 cannot be viewed as a complex 
manifold in any way. Therefore blowing up is not a connected sum among 
complex manifolds. 

9.3. COORDINATES ON THE BLOW - UP. This is easier to work out locally. Let 
D be the unit ball with coordinates (x, y). Then B0D is defined in D X CP1 

by the equation ty - xs = 0, where (t:s) are coordinates on CP1. If s # 0, 
then in D X C we have an equation x = ty/s. Thus we can choose y' = y, 
x' = t/s = x/y as local coordinates. On the / ¥= 0 chart we can take x" = JC, 
y" = s/t = y/x as local coordinates. 

In particular, if p: B0D -> D is the natural map, then 

p*(dx A dy) = y'dx' A dy' = x"dx" A </y". 
Therefore we pick up a simple zero along the curve E = /?-1(0). 
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9.4. ƒ* ON CURVES. Let ƒ: X -> 7 be a regular birational map between 
smooth projective surfaces. Let C c 7 be an algebraic curve. I intend to 
define a curve ƒ *C c X such that [ ƒ *C] = ƒ *[C]. 

/ _ 1 is regular except at finitely many points {yt}. Each f~l(yt) is an 
algebraic sub variety which is connected by 5.17 and is not a point. Thus these 
are unions of irreducible curves, called the exceptional curves of ƒ. Let these be 

Let C' c X be the closure of ƒ (C - {#}). This is called the proper 
transform of C. If C does not pass through any of the j / s , then clearly we 
want / * ( C ) = C'. 

If C is the zero set of a function g, then let Ce be the level set g = e. We 
imagine that Ce moves away from the points yt. Thus ƒ *(Ce) = Ce', which is a 
level set of g o ƒ. Since [Ce'] = [{x | g ° ƒ(*) = 0}], the latter should be ƒ *(C). 
Thus we obtain: 

fiO-C'+ZmjEj, 

where my is the multiplicity of the zeroes of g ° ƒ along Ej. Thus rrij > 0, and 
my==0 iff ƒ ( £ , ) £ C. 

9.5. COROLLARY. In the above situation if E is an exceptional curve, then 
[ £ ] ' [ / * C ] = 0. 

PROOF, ƒ *C was defined to be homologous to Ce', which does not intersect 
any of the exceptional curves; hence [£][C'e] = 0. 

9.6. COROLLARY. Let p: BY -* Y be the blow-up of a point y G 7, and let E 
be the exceptional curve. Then 

Ci(KBY) ^ p*Cl(KY) HE]. 

Therefore [E] • c^K^) = - 1 . 

PROOF. The first statement follows from the computation of 9.3. The last one 
follows from [E][E] = -I, obtained in 9.2. 

Now we come to the main result of this chapter, which shows the fundamen­
tal importance of blow-ups. 

9.7. THEOREM. Let X be a smooth projective surface andf: X —> Z a rational 
map of X to some projective variety Z. Then there is a finite sequence of blow-ups 

g„: Xn -> Xn_1 -* • • • -> Xx -* X0 = X, 

such that f o gn is everywhere regular. 

PROOF. We embed Z into some CP* and let {Ht} be the family of 
hyperplanes. Let Y c X X Z be the closure of the graph of ƒ with projections 
p and q. 

Let {je,} be the points where ƒ is not defined. Then p~l(xt) is a curve in T 
by 5.17, hence ^(/?"1(x/)) is a curve in CPn. 

Let Ct = p(T n q~\Ht)) be the closure of / _ 1 ( Z n #,) . By 6.5 
[ / f J tgO" 1 ^ ) ) ] =£ 0 and thus Ht n qip'Kx;)) is not empty. Therefore C, 
passes through all the x/s. If / ' is sufficiently general, then f(X) CiHtn Ht, 
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consists of discrete points only. Thus the same holds for Ct n Ct>. By 6.4 this 
implies that [Ct] • [Ct] = [C,] • [Q] > 0. 

Now let px\ Xx -> Z0 be the blow-up of one of the x/s, and let £ be the 
exceptional curve. One can define C} using the map f ° px, and from the 
definitions we see that this is exactly the proper transform of Ct. By 9.4 we 
have p*(Ct) = C} + mE and m > 0 since C, passes through the x/s. Thus 

[C(
1][C(

1] = [ ^ ( C , ) ] [ K ( C r ) ] - 2 m [ / , f ( C r ) ] [ £ ] + m 2 [ £ ] [ £ ] . 

On the r.h.s. the first term is the same as [Ct] • [CJ; the second is zero by 9.5; 
and the third is -m2 by 9.2. Thus 

[c}][c}]-[Ct][Ct]-m2<[Ct][CtY 

If ƒ ° ƒ>, is not regular, then similarly one can get pi+1 and C/+1. We saw 
that [C/][C/] is a strictly decreasing sequence of integers that are all nonnega-
tive. Therefore the procedure must stop. This proves the theorem. 

9.8. COROLLARY. With the assumptions of 9.7, assume that ƒ is not regular. 
Then Z contains a rational curve. 

PROOF. Let pn\ Xn -> Xn_1 be the last necessary blow-up with exceptional 
curve E. If f(E) were a point, then ƒ o pnl would be regular too. Therefore 
f(E) is a rational curve in Z. 

9.9. REMARK. By 8.7 the conclusion still holds if X is an arbitrary-dimen­
sional smooth projective variety. This is another example of the general theme 
that rational curves cause the trouble. 

9.10. COROLLARY. Let ƒ: X --•> Z be a birational map between smooth 
projective surfaces. Assume that [C] • cx(Kz) > 0 for every curve C c Z. Then f 
is regular. 

PROOF. Let again pn: Xn -> Xn_x be the last necessary blow-up with 
exceptional curve E. f{E) is not a point; therefore [E]cx(Kx ) > 
[f(E)]Cl(Kz) > 0 by 8.14. On the other hand by 9.6, [E]Cl(KXn) = - 1 , a 
contradiction. Thus ƒ is regular. 

9.11. COROLLARY. A birational equivalence class of smooth projective surfaces 
can contain at most one member whose canonical line bundle is nef. 

8.7 and 9.7 reduce the problem of studying birational maps to the study of 
regular birational maps. If ƒ : X -> Z is a regular birational map, then one can 
apply 8.7 or 9.7 to ƒ _1 and this in turn will give information about ƒ itself. We 
shall see two results of this kind. 

Let B c Z be the set where ƒ _1 is not regular and let E = f~\B) c X. 

9.12. PROPOSITION. With the above notation, E is covered by rational curves. 

PROOF. By 8.7 there is a sequence of blowing-ups gn: Zn -> • • • -> Z0 = Z 
such that f~l°gn is regular. By definition each blowing-up introduces an 
exceptional set which is covered by copies of CP*_ 1 (8.6(iii)) and hence 
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covered by rational curves. The images of these under f~l°gn cover £, hence 
the claim. 

The following result is more important. 

9.13. THEOREM. Let ƒ: X -> Z be a regular birational map between smooth 
projective varieties and let E a X and B c Z be as above. Assume that ƒ is not 
an isomorphism, i.e., E =t 0. Then there exists a rational curve D c E such that 
[D]cx(Kx) < 0. 

PROOF. By 5.19 dim B < dim Z - 2. Pick any z e B and let C0 be a general 
smooth curve through z. If we move C0 in a general direction to get a family of 
curves {Ct}, then we can assume that S = UC, is a smooth surface, C0 Pi B = z 
and C, n B = 0 for / close to 0. 

Since ƒ "1: S -» A" might not be regular at z G C0 c 5, we use 9.7 to get a 
sequence of blowing ups hn\ Sn -» S such that p = f~l° hn: Sn -> X is 
regular. If Z). c £„ are the /*„-exceptional curves, then / ^ ( Q ) = C0' + HmiDi 

(mi > 0) and h~\Ct) = C/ for / # 0, where C/ is the proper transform as in 
9.4. In particular, [C0'] + Em,[Z)J = [C/] (7 # 0). Applying /? gives 

(*) [̂ (CoO] + I^.[^(A)] = [̂ (C/)] (/^0). 
Now let us compute intersection numbers with c^Kx). Since />(C0') C £ and 
p(Ct') (IE = 0 if t # 0, we can use 8.14 to get 

[ / » ( C / ) ] C l ( ^ ) = [ / o / » ( C / ) k ( t f z ) = [C , ]q (^z ) ( ^ 0 ) ; 

[ ^ ( Q ' ) ] c i ( ^ ) > [ / ° / > ( C 0 ' ) k ( * z ) = [Colc^ATz). 

Since { Ct} is a continuous family, this gives 

[p(C$\cl{Kx)>\p{c;)]cl{Kx). 

Using this for the equality (*), we get that 

£m,.[/>(A)k(**)<o. 
Therefore, there is at least one / such that p(Dt) is not a point and 
[piD^iKx) < 0. Since f»p(Dt)=fof-*ohn{Dt) = hn(Dt) = z e B, we 
see that p{Dt) c E. Thus D = Dt is the sought after rational curve. 

9.14. SUMMARY. We are gradually getting a good picture of a birational 
equivalence class of varieties. If ƒ: X' -> X is a regular birational map, then it 
is reasonable to consider X' to be "more complicated'' than X. By blowing up 
smooth subvarieties we can always make a variety more complicated. 8.7 and 
9.7 tell us that this is the way toward arbitrarily complicated varieties. The 
really interesting task would be to find simpler varieties within the birational 
equivalence class. 9.13 tells us that if X' is more complicated than X, then 
there is a curve D c X' such that [D]cA(Kx>) < 0; i.e., Kx> is not nef. At least 
for surfaces the converse is true; if Kx is nef then X is the simplest member of 
its birational equivalence class (9.10). In higher dimension such an X might 
not be the unique smallest member, but at least nothing can be smaller than X. 
From this point of view Mori's program is a search for the smallest varieties in 
a given birational equivalence class. 
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10. Mori's program: smooth case. As we saw in the previous chapters, it is 
easier to handle varieties for which Kx is ample or at least nef. The first main 
part of Mori's program is to pin down a clear geometric reason why Kx fails to 
be nef in any given case. 

10.1. DEFINITION. Let I b e a smooth projective variety. Recall that Kx can 
be viewed as a linear function on NE(X). The intersection 

JfE(xy= ~NÊ(X)n{z G H2(X,R) \zcx(Kx) < 0} 

will be called the negative part of NE(X). A closed subcone V c NE(X) will 
be called negative if V - {0} c NE(X)~. 

By a slight abuse of notation, we shall say that an extremal ray is spanned 
by a curve C if it is spanned by [C] e H2(X, R). 

The following is the first major new result of Mori. 
10.2. FIRST FUNDAMENTAL THEOREM. Let X be a smooth projective variety. 

Then NE( X) ~ is locally finitely generated, and each negative extremal ray is 
spanned by a rational curve C c Xsatisfying 0 > [C] • cx(Kx) > -dim X - 1. 

PROOF. If NE(X)~ is empty, there is nothing to prove. Otherwise, there is a 
curve D c X such that [D] • c^Kx) < 0. I will outline how to get from D 
some rational curve C. The rest then follows by a technical argument. The first 
step in finding C is the following. 

10.3. DEFORMATION LEMMA. Let g: D -> X be the normalization of D. 
Assume that there is an affine smooth curve P and a map G: D X P -> X such 
that _ 

(i) dimG(D X P) = 2; 
(ii) For somep0 e P^G(-,/>0) = g(-); 
(iii) For some d0 e D, G(d0, •) = g(d0); _ 

i.e., we can put g into a nontrivial family of maps G(-, p): D -* X such that the 
image ofd0 is fixed. 

Then X contains a rational curve. 

PROOF. We complete P to a projective curve P^Then G: J) X P -~> X is a 
rational map. Assume first that it is regular. Then G({d0} X P) = jpoint, so by 
the rigidity theorem (5.23) G({d) X P) = point for every J G D . Thus the 
family is trivial, contradiction. 

Therefore G cannot be regular, hence by 9.8 we find a rational curve in X. 
Next we have to concentrate on finding the family of maps G. This leads to 

the general question: if ƒ: U -» F is a map then how can one change ƒ a little 
bit? 

10.4. SMALL DEFORMATIONS. Assume that we are given a family of maps 
ƒ,: U -> V. Then lim(/,(w) - f0(u))/t gives a tangent vector to V at f0(u). If 
we let u e U vary, we get a section of f*Tv. Thus if we have a nontrivial 
family/, then f0*Tv certainly has a nontrivial section. 

In our original situation we look for sections of g*Tx. This is a vector 
bundle of rank = dim l o n a smooth curve. If we imagine it to be a sum of 
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line bundles, then Riemann's theorem gives 

dim r ( 5 , g*Tx) > degg*Tx + (l - g(5))dim X 

-[D]Cl(Tx)+(l-g(D))âimX 

--[D]Cl(Kx)+(l-g(D))<ËmX9 

and this formula holds in general as well (g(D) is the genus of D). 
We have one more condition to account for, namely, we do not want g(d0) 

to vary. This condition will imply that the section gives the zero^vector at d0. 
This imposes rank g*Tx = dimX new conditions; thus if T(Z), g*Tx(-d0)) 
denotes those sections that vanish at d0 we get 

dimT(D,g*Tx(-d0)) > -[D]Cl(Kx)-g(D)âimX. 

An element of T(D, g*Tx(-d0)) can be considered as a linear approxima­
tion to some family of maps G. Conversely, one can hope that for any linear 
approximation there is an actual family with this approximation. This is not 
quite true, but one canjprove that if -[Z)]c1(ATz) - g(Z> )dim X > 0, then there 
is an actual family G: D X P -» X. I again note that in the C°° category such a 
family always exists; the problem is to ensure holomorphy. 

10.5. How TO MAKE -[D^iKx) - g(D)dimX POSITIVE. The first term is 
positive by_assumption, but we cannot compare it with g(D)dim X. We can try 
to change D in some way that will make the first term grow and keep the 
second fixed. 

If g(D) = 0, then it is_already a rational curve; nothing need be done. 
Next assume that g(D) = 1; i.e., D is elliptic. We take the w2-sheeted cover 

n: D -> D given in 3.3(vi) and look at g ° n: D -» X. The image of this is still 
D, but it should be counted with multiplicity n2. Thus the relevant formula 
becomes 

dimT(D9(gonyTx(-d0)) > ~n2[D]Cl(Kx) - dimX. 

If n :» 0, then the r.h.s. becomes positive and we can use the map g ° n to find 
a rational curve. _ 

Now let g{D) > 2. Then by 3 ^ all self-maps of D are 1:1. We can still try 
to look at other covers p: E -* D and study g ° p, but this changes g(D) to 
g(E\ and one can see that these changes will cancel out. This trick will not 
work. We desperately need self-maps of D. 

10.6. LAST HOPE, FINITE FIELDS. Assume now for a moment that we suddenly 
lose C and find ourselves in a finite field F^ = (integers mod/?}. There is no 
problem doing algebra here and introducing F^, F^P" and algebraic sub varie­
ties of F^P". Polynomials over F̂ , do not always have roots in F ,̂_and as we saw 
in the case of R, this leads to trouble. Therefore we introduce ¥p = (all roots 
of polynomials in ¥p[x]} and we should rather work with F^P*. One of its 
remarkable features is _the Frobenius map F(x0:... \xn) = (x$:... :x%). 
(x + y)p = xp + yp in F^ since (x + y)p = Iif)xiyp~i and p divides (f) 
except for i = 0, p. Thus if ƒ = LÖ, t x\$ • • • x^ is a polynomial in 
F,!* , , , . . . , x J , then f(x09..., xn)

p = D Ç . ^ ( 4 ) ' ° • • • (*£)'•• 
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If a e Fp then ap = a. Hence if ƒ is in Fp[x0,..., x„2(i.e., aioJn e F^), 
then / (JC0 , . . . , JCJ^ = ƒ(*£, . . . , xp). Therefore if X c F^P" is an algebraic 
sub variety which is defined by equations in Fp[x0,...,xn] (instead of 
Fp[x0,..., x j ) , then the Frobenius map maps X into itself. 

This is all very nice, but what is this good for? Here it becomes crucial that 
X is not just any complex manifold but a projective variety. We will look at X 
and D mod/?! 

10.7. REDUCTION mod/?. Let X c CPn be a projective embedding, and let 
X be defined by equations ƒ\ = • • • = fk = 0. Assume for simplicity that the 
ft all have rational coefficients. Then one can clear denominators and assume 
that they all have integral coefficients. Now one can reduce everything mod p 
and look at Xp c F/7P

n defined by fx = • • • = fk = 0 (mod p). 
As we saw in 8.24, a rational curve C c X is given by some polynomial map 

C -* CPn, t -> (£a{V:. . . lEûfr') and the image Hes in X iff the polynomials 
fjQla^t1,... jEtffÔ are all identically zero. This leads to a certain system 2 of 
polynomials in the variables a % with coefficients exactly the coefficients of the 
fj's hence integers. Now we use the following principle: 

If 2 is a system of polynomials with integer coefficients and 2 has a 
solution in F^ for every p, then 2 has a solution in C. 

I explain this for linear polynomials. In this case the solvability criterion is 
the vanishing of certain determinants composed of the coefficients. The 
condition for solvability in F^ is the vanishing of the same determinants 
mod p. Clearly an integer is zero iff it is zero mod p for every p, and this 
proves the principle in this case. In general one has to find similar solvability 
criteria for nonlinear systems, a task already completed in the 19th century. 

Thus finding rational curves mod p will eventually give us a rational curve 
on X itself. 

One still has the arduous task of developing the whole of algebraic_geometry 
over ¥p. This jndeed can be done, and using the Frobenius map Dp -> Dp 

instead of n: D -> D as in 10.5, one finds a rational curve on Xp for every p, 
and thus on X. 

10.8. REMARKS, (i) This seems indeed a convoluted way of finding rational 
curves, but this is the only proof so far. Even more remarkably, there is a 
compact complex threefold X that contains a curve D such that [D]cx(Kx) < 0 
but X contains no rational curves. 

(ii) There are two points to be tidied up in 10.7. First of all, what if the ft do 
not have rational coefficients? Let {bj} be all the coefficients of the / / s and 
consider the ring Z[Z?y] c C. If P c Z[bj] is any maximal ideal, then Z[bj]/P is 
a finite field. Thus we can reduce X modulo P, and work as earlier. 

The other point is more delicate. If we want to find a polynomial map 
C -> CPW given by degree m polynomials, then the system of equations 
depends on the choice of m. Thus in order to succeed we not only have to find 
a polynomial map F^ -> Xp for every /?, but we have to find maps that are 
given by polynomials of degree at most m. This somewhat technical step relies 
on the following observation: 

If C c X is a rational curve such that [C]cx(Kx) < -n - 1, then the above 
considerations show that one can deform C keeping two points fixed. As in 
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10.3 we will find a new rational curve C', and one can prove that [Cf]cx(Kx) 
> [C^^Kx). This also explains the last inequality in the statement of the 
theorem. 

(iii) We have some control over the location of the rational curve. A quick 
look at the proofs of 10.3, 9.8, and 9.7 shows that the rational curve will pass 
through d0. This implies the following 

10.9. THEOREM. Let X be a smooth projective variety. Assume that -Kx is 
ample. Then X is covered by rational curves. 

PROOF. Given d0 e X9 pick a curve D through d0. Then [D^^K^ < 0. 
Hence by 10.8(iii) there is a rational curve passing through d0. 

The next major result is the complete description of the contractions 
associated to negative extremal rays for dim X < 3. We start with the two-
dimensional case. 

10.10. SECOND FUNDAMENTAL THEOREM (dim X = 2). Let X be a smooth 
projective surface and C c X a rational curve which generates an extremal ray. 
By 10.2 0 > [C]cx(Kx) > - 3 . Then this ray can be contracted (6.12), and we 
are in one of the following situations. 

(i) [C]cx(Kx) = - 3 . Then X = CP2, CcXisa line, andf: X -» point is the 
contraction map. 

(ii) [C]c1(A'A.) = -2. Then the contraction map is f: X -» E, where E is a 
smooth projective curve and all the fibers are isomorphic to CP1; C is any one of 
them. 

(iii) [CfaiKx) = - 1 . Then X = ByY for some smooth surface Y, ƒ: ByY -> Y 
is the contraction, and C is the exceptional curve off. 

10.11. COROLLARY. Let X be a smooth projective surface. Then there is a 
smooth projective surface Y such that X can be obtained from Y by repeatedly 
blowing up points and Y satisfies exactly one of the following conditions'. 

(i) Y = CP2; 
(ii) Y has a map onto a curve E such that all fibers are isomorphic to CP1; 
(iii) KY is nef. 

PROOF. If Kx is nef, then take Y = X. If not, then contract an extremal ray. 
If we are in the situation (i) or (ii) of 10.10, then again take Y = X. If not, then 
we are in case (iii) and X = BXY for a surface Xv Now continue the 
procedure. We will stop after at most dim H2(X, R) steps. 

The birational equivalences of types (i) and (ii) can be analyzed very easily. 
One gets that CP2 is birational to CP1 X CP1, that in case (ii) Y is birational 
to E X CP1, and that E is unique. Now we can put together 9.12 and 10.11 as 
follows: 

10.12. COROLLARY. Let X be a smooth projective surface. Then either 
(i) X is birationally equivalent to a unique E X CP1 and so X is covered by 

rational curves and Pm(X) = 0 for every m > 1; or _ 
(ii) The birational equivalence class of X contains a unique X such that Kx is 

nef. X can be obtained from X by repeatedly blowing up points. 
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This is the dichotomy that was alluded to in 8.2. 

10.13. COROLLARY. Let X and Y be birationally equivalent smooth projective 
surfaces. Consider the following statements. 

(i) X and Y are homeomorphic. 
(ii) X and Y are diffeomorphic. 
(in) dimH2(X,R) = dimH?(Y,R). 

Then (i) <=» (ii) => (iii) and (iii) => (ii) except when dimH2(X,R) = 2 and both 
X and Y are S2 bundles over a topological surface, in which case there are two 
diffeomorphism classes. 

PROOF. If we are in case 10.12(h), then by 9.2 we know that X is diffeomor­
phic to the connected sum of X and a few copies of CP2, and the same holds 
for Y. This implies the result. 

The case 10.12(i) requires a little bit more work, but it is mostly easy 
topology using 10.11. The reader might put together the proof himself. 

Theorem 10.10 also gives a complete description of regular birational maps 
in dimension two. 

10.14. THEOREM. Let g: X -» Z be a regular birational map between smooth 
projective surfaces. Then g is the composite of blowing-downs. 

PROOF. We saw in 9.13 that there is a curve C c l such that g(C) = point 
and [C]cx(Kx) < 0. One can easily see that this must be one of the extremal 
curves found in 10.2. Now apply 10.10. In cases (i) or (ii), the curve C moves 
in a family {Ct} and so g(Ct) c Z would be homologous to g(C) = point, a 
contradiction. Thus X = ByY and clearly g factors as X -> Y -» Z. Now 
repeat this with Y -> Z to get a factorization of g into blowing-downs. 

10.15. REMARK. I should emphasize that 10.11-10.14 are not new. They were 
known to geometers around the turn of the century. Mori's program, however, 
provided a completely new and unified approach. The three possibilities in 
10.11 used to be considered as three completely separate theorems. It is only 
now that we can view them as three cases of a single result. 

Now consider the three-dimensional case. These results of Mori were not 
even conjectured before. 

10.16. SECOND FUNDAMENTAL THEOREM (dim X = 3). Let X be a smooth 
projective threefold and C c X a rational curve which generates an extremal ray. 
Then this ray can be contracted, and we are in one of the following situations, 
where f \ X -* Z denotes the contraction map. 

(i) Z = pt. Such examples are X = hypersurface in CP4 of degree < 4. There 
are a few other cases, all of them classified by Iskovskih-Fano. All are covered by 
rational curves. 

(ii) Z = smooth curve. Such examples are CP2 X Z and a few others, all 
understood, again covered by rational curves. 

(iii) Z = smooth surface, all the fibers are conies in CP2, again covered by 
rational curves. 

(iv) ƒ is the inverse of a blowing-up of Z of one of the following types: 
(a) Z smooth, X = BEZfor a smooth curve E c Z; 
(b) Z smooth, X = BzZfor some z e Z; 
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(c) Z has one singular point z of the form 

(x2+y2 + z2 + w2 = 0 ) c C 4 

andX= BZZ\ 
(d) Z has one singular point z of the form 

( J C 2 + J ; 2 + Z2 + W3 = 0 ) C C 4 

andX= BZZ; 
(e) Z has one singular point z of the form 

C3/(x,y,z) ~ (-x,-y,-z) 

andX= BZZ. 

10.17. REMARK. The cases do not correspond to the values of [C]cx(Kx) as it 
happened in 10.10. 

10.18. SUMMARY. This accomplishes the first main goal of Mori's program. If 
Kx is not nef, then there is a clear and simple geometric reason for it. This 
reason can be a global one or a local one. In the global case the rational curves 
generating the extremal ray cover X, and one obtains very good structure 
theorems. These are the cases 10.10(i) and (ii) and 10.16(i)-(iii). In the local 
case the rational curves fill out a proper subvariety only, which we can 
contract. For surfaces this gives again a smooth surface which is simpler than 
the one we started with. The procedure can be repeated and gives a very nice 
structure theorem 10.11. 

The threefold case is more complicated since a contraction can lead to 
singularities, and it is not clear how to continue. The way ahead is to 
understand that we have to put up with certain kinds of simple singularities. 
Once the proper class of singularities is found, one should develop an analog of 
the preceding results in this more general setting. This will be done in the next 
chapter. 

11. Mori's program: singular case. As we saw at the end of the previous 
chapter, we are led to formulate some analog of Mori's program for singular 
varieties even if we are interested mainly in the smooth case. For arbitrary 
singularities, however, the set-up does not even make sense. We have to choose 
our class of singularities very carefully. There are two main conditions to be 
imposed. 

11.1. FIRST CONDITION. By definition, the main point of the program is to 
investigate varieties X where Kx is not nef. We cannot hope to do this unless 
Kx exists and we can define a number [CJc^AT^) for curves C c l 

Let 2 c l b e the set of singularities. Then X - 2 is smooth; hence Kx_% 
can be defined in the usual manner. Now it is straightforward to try to define 
Kx as a Une bundle on X such that Kx \ X — 2 = Kx_%. Such a Kx would 
then be unique provided X is normal, which we shall assume always. Once we 
have uniqueness the existence of Kx becomes a local problem around ^ G I 
This can be checked using the following. 
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11.2. LEMMA. Let X be a normal algebraic variety and let S c X be a 
subvariety such that dim S < dim X — 2. Let M be a line bundle on X — S. The 
following are equivalent: 

(i) There is a unique line bundle LonXsuch that L\X — S = M. 
(ii) Every s e S has a neighborhood U c X such that M\U — S O U has a 

nowhere zero section. 

PROOF, (i) => (ii). L is locally trivial in a neighborhood of any s\ in 
particular, it has a nowhere zero section in that neighborhood. 

(ii) => (i). First, I claim that L is unique. Indeed, if Lx and L2 are two 
extensions, then TV = Lx <S> L~2

l is a Hne bundle on X such that N \ X — S = 
M <8> M~l = @x-S' The constant section of &X-s giyes a section of N over 
X — S which extends to a section s of N over Jf by 7.5. By the same argument 
s - 1 is a section of N'1 over X; therefore s is nowhere zero. Hence by 7.8(h), 
N = @x and L1 = L2. 

Once we know that L is unique, it is sufficient to construct it locally. 
M | U — S n U = &u-snu by 7.8(h) and therefore ^^ gives an extension. This 
completes the proof. 

11.3. PROPOSITION. Let X be a hypersurface given by the equation 
/ (x x , ...,xk) = 0. Let L = Sing X and assume that dim 2 < dim X - 2. 77*e« 
AT̂  exists. 

PROOF. By 5.8, X is normal. We shall check condition (ii) of 11.2. Let 
Ul c: X be the subset where df/dxt ¥= 0. As we saw in 2.25, X - 2 = U^. We 
shall define a nowhere zero section of Kx_^ as follows. On L̂  we pick 

*i= ^ M â x " ) dXl A "" A r f x ' - i A ^ + 1 A ' " A ö f x ^ 

This is a nowhere zero section of Kv. From ƒ = 0 we get 29//3xz • dx, = 0 on 
X, and from this we obtain that tt and t- agree on Ut D Uj. Thus they define a 
nowhere zero section of Kx_^\ hence by 11.2 we conclude that Kx exists. 

This indeed takes care of the cases 10.16(iv)(c) and (d), but fails to cover the 
case (e). In fact, in that case Kx does not exist. For that case we need the 
following: 

11.4. PROPOSITION. Let U be an algebraic variety such that Kv exists. Assume 
that a finite group G of order g acts on U and V = U/G. Let S' c U be the set 
of points fixed by at least one nonidentity element of G. Assume that dimS" < 
dim£7 — 2. Then there is a line bundle L on V such that 

L | ( F - S i n g F ) = #®#SingK) 

i.e., Kv might not exist, but K®8 does. 

PROOF. Let p: U-+ V be the quotient map and let S = p(S'). Then 
p: U ~ S' -> F - S i s a local analytic isomorphism and each v ^ V - S has 
exactly g preimages. The line bundle Kv_s exists, and if p(u) = v then the 
natural map p*: Kv -> Ku is an isomorphism between the line of Kv at v and 
the line of Kr/ at u. 
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If L exists, then it is unique. Therefore it is sufficient to prove its existence 
locally. Thus one can assume that Ku has a nowhere zero section ƒ : U -> Ku. 
If v e V — S and p~\v) = {u l9..., wg}, then f(ut) e Ku can be identified 
with an element of Kv via p* as above. Therefore ƒ induces a g-valued 
nowhere zero section of Kv_s, and this in turn yields a single-valued nowhere 
zero section of Kfi]>s. Therefore by 11.2 Kfîj>s extends to a line bundle L over 
V. 

Now let X be a normal projective variety with singular set S. Let L be a 
line bundle on X and M a line bundle o n I - 5 . Assume that L\(X — S) = 
M® * for some fc > 0. If C c X is a curve, then one can formally define 

[C]-c1(M)=±lC]c1(L). 

This is a rational number. In particular, if every x £ X has a neighborhood F 
such that V = £//G as in 11.4, then one can define [C]cx(Kx). This covers the 
remaining case 10.16(iv)(e). 

11.5. SECOND CONDITION. One of the main reasons for our interest in 
plurigenera and ra-canonical maps is their independence of the birational 
model. We would like to keep this nice property for the singular varieties as 
well. The following observation leads to the definition of plurigenera in 
general. 

Let L be a line bundle on X, and let 2 c X be the singular set. If X is 
normal (in particular, dim 2 < dim X — 2), then by 7.5, 

T(X,L) = r(x- 2,L\x- 2). 
Therefore for an arbitrary variety X we can define plurigenera by 

Pm(X) = d i m r ( x - SingX, K^SingX). 

11.6. DEFINITION. Let X be a projective variety, x G X. We say that X G I 

does not affect the plurigenera if the following holds: 
For any birational regular map ƒ : Y -> X with Y smooth and any small 

neighborhood U of s the natural map 

r(/-1(t/),^ /%)) - r(f-l(u-B),Kftu_B)) = T(U-B,K®_™B) 

is an isomorphism for every m > 1. Here B c X is the set where ƒ _ 1 is not 
defined. 

U — B s f~l(U- B)\ thus any section s of Kff™B gives a section s of 
K^V_B). s will extend to a possibly meromorphic section f*s of Kffiyy 
Thus the above definition is equivalent to demanding that f*s be a regular 
section of Kffiuy 

Now we can give the following basic definition, due to Reid. 
11.7. DEFINITION. A singularity is called canonical if K®m exists for some 

m > 1 and the singularity does not affect the plurigenera. 
At first this seems a very complicated and not too geometric definition to 

work with, but canonical singularities turn out to form a very nice class. In 
dimension two this very class of singularities was studied and classified by 
Du Val in the thirties. (Then they were promptly forgotten and reinvented in 
the sixties by people working with singularities of C00 functions.) 
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11.8. THEOREM. The canonical surface singularities are exactly the following: 
(i)x2 + y2 + zk fork> 1. 
( i i )*2 4- zy2 + zkfork> 3. 
(iii) x2 + y3 4- z4 or x2 + zy3 + z3 or x2 + y3 + z5. 

Although for the purpose of birational geometry canonical singularities turn 
out to be the right class to consider, they are too big for Mori's program. 
Indeed in the surface case no singularities were necessary. We can impose 
further conditions on the singularities to arrive at the class we really need. 

11.9. DEFINITION, (i) Notation as in 11.6. We say that x e X is terminal if 
Kfm exists for some m > 0 and the following strengthening of 11.6 holds: for 
any s & T(U — B, K$™B), f*s is a section of Kfîi^ and it vanishes along 
every (dim X — l)-dimensional component of f~l(B). (By 2.27 we cannot 
hope for vanishing along lower-dimensional components.) 8.12 shows that a 
smooth point is terminal. 

(ii) A variety X is said to be Q-factorial if for every irreducible subvariety 
H a X such that dim H = dim X - 1 there is a Une bundle L and a section 
s: X -> L such that H = (s = 0) (as sets, s might have a multiple zero along 
H). This condition always holds if X is smooth (7.6(iii)). See 4.4 for a case 
when it is not satisfied. (The name comes from the fact that this condition is 
closely related to unique factorization in certain rings of regular functions on 
open sets of X) 

This is a very convenient technical condition that will be satisfied in the 
cases that interest us. 

A two-dimensional surface with terminal singularities is necessarily smooth. 
In dimension three we have a complete structure theory due to Reid, Mori, 
Danilov, Morrison and Stevens: 

11.10. THEOREM. Three-dimensional terminal singularities are the following 
(i) smooth points', 
(ii) isolated singularities given by an equation of the form f(x, y,z) + 

tg(x, y, z, t), where f is one of those listed in 11.8; 
(iii) a few of the cyclic quotients of the above (there is a complete list). 

Now we are ready to formulate the analog of the First Fundamental 
Theorem, and a bit of the Second one, for singular varieties. Mori's original 
ideas about finding rational curves do not seem to work in the general case. 
Several new ideas had to be developed. The first result was obtained by 
Kawamata. Further contributions by Benveniste, Kawamata, Kollâr, Reid, and 
Shokurov led finally to the following theorem: 

11.11. FIRST FUNDAMENTAL THEOREM. Let X be a projective variety with 
canonical singularities. Then NE(X)~ is locally finitely generated, and each 
negative extremal subcone can be contracted. 

11.12. REMARK. It is not yet proved that every extremal ray is spanned by a 
rational curve although this is true for dim X = 3. 

The second fundamental theorem of the smooth case gave a complete 
description of the contraction maps. While in general one cannot expect to list 
all possibilities, it is reasonable to hope to get more detailed information than 
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the mere existence of the contraction. Our current knowledge does not deserve 
to be called a theorem. 

11.13. SECOND FUNDAMENTAL PROPOSITION—DEFINITION. Let X be a Q-

factorial projective variety with canonical (resp. terminal) singularities and let 
ƒ : X —> Y be the contraction of a negative extremal ray. Then we are in one of 
the following cases : 

(i) Fano contraction: dim Y < dim X. Then X is covered by rational curves. 
(ii) Divisorial contraction: fis birational and there is a subvariety E c X such 

that dim E — dimX— 1 and dim f(E) < dimF. In this case Y is again 
Q-factorial with canonical (resp. terminal) singularities. 

(iii) Small contraction: f is birational and there is E c X such that dim E < 
dim X — 2 and f: X — E -> Y — f(E) is an isomorphism. In this case Kfm 

never exists. 

PROOF. Assume for simplicity that X is smooth. Let [C] span the contracted 
extremal ray. 

First consider the case when dim Y < dim X. By Sard's theorem then F = 
f~\y) c X is smooth for general y^Y. Clearly NF]X=FX Cd i m y and 
hence by 7.6(ii) KF = Kx \ F. If D c F is any curve then f(D) = point. Hence 
[D] = X[C]. In particular, [D^^Kp) - [D]cx(Kx) = X I C ] ^ * ^ ) < 0; thus 
by 10.9, F is covered by rational curves and so is X. 

Otherwise dim Y = dim X. Since ƒ has connected fibers it is generically 1:1 
so it is birational. Let B c Y be the set where f~l is not defined and let 
E = ƒ ~l(B). Assume first that there is an irreducible H a E such that dim H 
= dim X - 1.1 claim that [C)[H] < 0. 

To see this let us look at a family of curves { Dt} c Y such that Dt n B = 0 
for t # 0 and D0 n B = ƒ e 7. Then /)/ = f~\Dt) is a family of curves for 
/ # 0 and its limit for t — 0 is DQ + F, where DQ is the proper transform of D0 

and f(F) = y. We can arrange that D^nH^ 0. Since i / and /) / are 
disjoint, [Dt'][H] = 0. So [F][H] = -[/>£][#] < 0. Since f(F) = point, [F] = 
X[C] and so [C][#] < 0 as claimed. 

Now if E — H is not empty, then we can pick a curve G a E such that 
f(G) = point and G <£. H. This would give [G][if ] > 0, which is a contradic­
tion since [G] = JU[C] and /x > 0. Thus E = H. 

We will check that Y has canonical singularities. First we prove that Kfm 

exists for some m > 0. If it exists then f*(Kfm) is a line bundle which agrees 
with K%m on X - E and is trivial along each fiber of ƒ. Now consider the Une 
bundle 0(H) given in 7.6(iv). (This is the only point where Q-factoriality is 
used in general.) Since 0(H)\X - H = 0x_H, any line bundle of the form 
Lm k = K®m (8) 0(H)®k is isomorphic to f*(K$m) on X - H. If we pick 
k = [ C ] ^ ^ ) and m = - [ C J c ^ t f ) ) = -[C][#], then [C]Cl{Lmtk) = 0. 
Thus cl(Lmjc) is trivial along each fiber of ƒ. This implies that Kfm exists as 
a topological line bundle. Its existence as a holomorphic line bundle is a little 
more delicate question and we will not discuss it. A similar argument shows 
that Y is Q-factorial. 

In order to check that the singularities of Y do not affect the plurigenera, let 
U be a small neighborhood of some b e B c Y and let s e T(U - B,K®m). 
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ƒ *s is a meromorphic section of T(f~l(U), K®m). Assume that it has a pole 
of order t > 0 along H. Then c^Kf-i^) = [Z] - t[H], where Z is the set of 
zeroes of ƒ *s. By assumption H <£ Z. Pick a curve D c. H such that f(D) = 
point and D <£ Z. Then [D] = X[C]. Hence 

\m[C}Cl{Kr,m) = [ Z ) ] ^ * ^ ) = [Z)][Z] - t[D][H] > 0, 

a contradiction. Thus ƒ *5 will in fact vanish along H. 
Now let /i: X' -> X be a resolution of singularities, ƒ *s is a regular section 

of K^V) and thus T**/*5 is a regular section of K^f-i(U)) since X has 
canonical singularities. This proves that e e l does not affect the plurigenera. 
One can in fact see in this way that b e B C X is terminal. 

The remaining case is when ƒ is birational and dim E < dim X — 2. In this 
case ƒ *s extends automatically across E by 7.5; hence the singularities of Y do 
not affect the plurigenera. Unfortunately, Kfm does not exist. If it did, then 
f*(K$m) and Kgm would give two extensions of K$™E to X. By 11.2 such an 
extension is unique, and hence f*Kfm = Kgm. This is however not the case, 
since [C]cl(K®m)< 0. 

11.14. REMARKS, (i) For surfaces and smooth threefolds only the first two 
cases occur. 

(ii) The easiest example for (iii) is the following: take CP2 and on it the rank 
two vector bundle V = 0(-l) + 0( - l ) . Complete V somehow to a smooth 
projective variety V c X. The line / c CP2 c V c X generates a negative 
extremal ray. The contraction map maps CP2 to a point and is an isomor­
phism outside it. In this example dim X = 4. For smooth fourfolds this is the 
only known example of small contraction. 

(iii) There are many examples of small contractions for singular threefolds, 
but they are all hard to describe (see 12.5). 

11.15. SUMMARY. We achieved the goals set forth at the end of the previous 
chapter. Unfortunately, the results are not sufficient to complete our progam. 
Case 11.13(i) is a satisfactory end; it gives good structural information about 
X. If the case 11.13(h) holds, then 7 can be considered as simpler than X and 
the program can continue. For 11.13(iii), however, the resulting singularity is 
very bad, and a different idea is needed to analyze the situation. This is the 
problem that we investigate next. 

12. Flip and flop. This section gives some examples and a lot of handwaving 
about small contractions in dimension three. As I mentioned, all examples are 
fairly complicated; therefore I will concentrate on a related simpler one. 

12.1. EXAMPLE. Let Q c CP3 be the quadric given by the equation xy - uv 
= 0. As we saw in 4.6, this is isomorphic to CP1 X CP1, and the two families 
of lines are given by (x = Xw, v = Xy) (for X = oo this is u = y = 0) and 
(x = Xv, u = Xy) (for X = oo this is v = y = 0). 

Now let C° be the cone over Q given by the equation (xy - uv = 0) c C4. 
This has one singular point at the origin. We also introduce C c CP4, the 
closure of C°; then Q can be considered as C n H where H is the hyperplane 
at infinity. C has still only one singular point at the origin 0 of C4 and we set 
out to resolve it. We shall do it in three ways. 
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(i) First resolution. We blow up the origin 0 in CP4 and look at the closure 
C12 of C - 0 in B0CP4. Above the origin we get a copy Ë of CP3 in_#0CP4. C 
is the union of Unes connecting thr origin and Q c H. Thus E = E n C12 is 
isomorphic to Q. Now it is easy to see that C12 is smooth. 

(ii) In order to get the two other resolutions, we concentrate on the two 
families of planes on C obtained from the two families of lines. Let 

Pi = (x = Xu, v = Xy), P\ = (x = Xu, u = Xy). 

Let P{ be the closure of P{ - 0 in C12. Since we blew up the origin, clearly 
P^ s BQP{, and the exceptional curves on P{ give the two families of lines on 
E = CP1 X CP1. If we fix i and let X vary, then C12 is covered by the family 
{Pl\} and_ Pl

x and P£ are disjoint if X # /x. Since E C\ P{ can be contracted 
in each P{ to get P{, it is reasonable to assume (and it is true) that this 
contraction can be done in a family to get a qt: C12 -» Ct, where C, is the 
disjoint union of the planes P{. We can picture the situation as shown in 
Figure 3. 

FIGURE 3 

From the construction it is clear_that P{ c Ct intersects Et in one point; 
hence [£J[Px]_= •*•• ^ e t J ^ ^ - i. P{ intersects E in a line that maps onto Et. 
Therefore q^Pi) contains Et and thus the intersection number [E^q^l] is 
not geometrically clear. To get this number, we note that since P{ and Pj are 
disjoint for X =£ JU,, the images q^Pi) and qt(Pj) intersect only along Et. 
Imagine that we move Ei inside qt{PJ) a little bit and then intersect it with 
^ ( i ^ ^ A l l the intersections will be in q^Pi) C\ q^Pj), hence in Et. Therefore 
[E^q^Pl] is the same as the self-intersection of Ei inside q^Pj. This latter is 
B0Pj, so by 9.2 we get that [EJq^i] = - 1 . 
_(iii) It is_quite easy to see that i/4(C12,R) is generated by the classes [E], 

[Pll and [Px
2]. In C12 -> q_the class [E] is mapped to zero. Thus H4(Ct, R) is 

generated by [P{] and [q^i]. PîlPi giyes a n isomorphism of Q - 2^ and 
C2 — 2s2, thus a natural identification of H4(Cl - 2sl5R) and H4(C2 - E2,R). 
Since real dim £• = 2, we also have H4{Ct, R) = /^(C, - Ei9 R), and so we get 
a natural isomorphism /: H4(Cl9R) -> i/4(C2,R). This takes the class [P^] to 
[^2^x1 a n d [#i^x] to [ P^]. Comparing this with our computations, we see that 
for any a e H4(CV R), we have [Ex]a = ~[E2]t(a). 
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This is indeed very interesting. If F c X is a curve in a projective variety, 
then one cannot find an F' such that [F]a = -[Ff]a for any a e H2n_2(X,R) 
since then F U F would be homologous to zero. 

In our example Ex and E2 are on different varieties, but these varieties are 
very close to each other. One can express this by saying that C2 can be 
obtained from Cx by a CP1 surgery: we remove Ex = CP1 from Cl and replace 
it with E2 s CP1, the same curve but attached in a different way. This leads to 
the following: 

12.2. GENERAL SURGERY PROBLEM. Let X be a three-dimensional algebraic 
variety and E c X be a curve. Can one find another algebraic variety X' and a 
curve E' c X' such that X - E and X' — E' are isomorphic, but X and X' 
are not? What freedom do we have in the choice of X'l How can one compare 
[E] e H2(X) and [E') e H2(X'). 

We can start by considering the case when X and X' are smooth, but if we 
want to use this for Mori's program, then we must allow at least terminal 
singularities. 

It is not too hard to see that if both X and X' have terminal (or even 
canonical) singularities, then there are maps f: X -> Z and ƒ ': X' -> Z such 
that ƒ (resp. ƒ ') contracts E (resp. £") to a point and is an isomorphism on 
X — E (resp. X' - E'). Moreover, both E and E' are isomorphic to CP1. 
Sometimes Z will be a nonalgebraic variety (see 12.12) but this can be ignored 
for the moment. An argument similar to the one we made in 12.1 gives 

[E]cx(Kx) = -ji[£']ci(A*')> for some/A > 0. 

12.3. DEFINITION. In the above situation it is worthwhile to distinguish three 
cases. 

(i) [E]cx(Kx) = 0. Then [£/]c1(uC^) = 0 again. The operation that pro­
duces (X\ E') from (Xy E) is called a flop of E c X. This is a symmetric 
operation. 

(ii) [E]cx(Kx) < 0. Then [Ef]cx{Kxf) > 0. The operation that produces 
(X',E') from (X, E) is called the flip of (X, E). This is not a symmetric 
operation. 

(iii) [E]cx(Kx) > 0. Then [£']<a(*V) < °- T h i s i s t h e inverse of the flip, so 
it might be called the inverse flip. 

Given (X, E) the flip or the inverse flip is unique. If X is Q-factorial, then 
the same holds for the flop. 

The reason for this distinction is that these operations have different effects 
on the singularities. We will see that X and its flop X' have essentially the 
same singularities along E and E'. If X' is the flip of X then the singularities 
of X' along E' are simpler than the singularities of X along E. Correspond­
ingly the inverse flip creates more complicated singularities. 

The basic existence result about flops is due to Reid: 

12.4. THEOREM. Let X be an algebraic threefold with terminal singularities. 
Let CP1 = E c X be a curve. Assume that [E]cx(Kx) = 0 and that E can be 
contracted by a map h: X -+ Z. Then a flop (X\ E') exists. 
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PROOF. The following proof is due to Mori. First we prove that Z has 
terminal singularities. K%m is trivial along E so as in the proof of 11.13 we see 
that K§m exists. Again as in 11.13 we see that Z has terminal singularities. 
Now we use the structure theorem 11.10. Assume for simplicity that Z is of 
type (i) or (ii). Case (iii) requires more care because of the group action. 

The exceptional set of h: X - Sing X -> Z is a curve, hence by 8.13, Z is 
not smooth. Thus Z is defined by an equation f(x9 y9 z) + tg(x9 y, z, t) and 
f(x9 y9 z) contains the term x2. Using the four-variable version of 2.12 and the 
quadratic formula, we can choose new coordinates x\ y', z', t' such that Z is 
given by an equation 

x'2 + F(y\z\t') = 0. 

T: (x',y',z'9t') -> (-*', y', z', t') gives a map T: Z -> Z; let U c Z be a 
r-invariant neighborhood of the origin. Since ƒ _1(£7) - E = f/ - 0, we have a 
map 71: f~l(U) — E -> f~l(U) - £. One can see that this map will «0/ extend 
to a regular map from f~l(U) to ƒ -1(£/). 

X is the union of / _ 1 ( l / ) and X - E attached along f~\U) - E. Let X' 
be the union of f~l(U) and X - E attached along f~l(U) - E in such a way 
that w e f~\U) is identified with r(w) & X - E. The natural map * -> X' is 
not regular along E since J7 is not. 

In 12.1 C = Z and its equation jcy — wu = 0 has to be rewritten as x'2 - j ' 2 

— uv = 0, where JC' = (x + y)/29 y' = (JC - )>)/2. 
12.5. EXAMPLE OF FLIP. Using 12.1 one can get the simplest example of flip 

as follows. On C° = (xy — uv = 0) we define a Z2-action by (JC, y9 w, t;) -> 
(x, -_y, w, -i;). One can easily see that this defines a Z2-action on C12, Q and 
c2. 

The family of planes P^ has two members invariant under Z2. One is P^, 
fixed pointwise; the other is P0

2 where the action is -id. Using this, one can see 
that on Cx the fixed points are exactly the points of qiP^\ on C2 the fixed 
points are E2 O P0

2 and the points of P£. 
If M is a smooth threefold with a Z2-action, then the singularities of M / Z 2 

can come only from the fixed points. Locally at a fixed point, the action is like 
C3 / (a linear action). There are three nontrivial cases: 

(i) (x, y, z) --> (JC, y, -z). The fixed point set is two-dimensional and C 3 /Z 2 

= C3 via (x, y9 z) -> (x, y9 z
2). 

(ii) (x9y9z)-* (x9-y9-z). The fixed point set is a line and C 3 /Z 2 is 
isomorphic to (u2u3 - u\ = 0) c C4 via (JC, y9 z) -> (JC, y2

9 z2, yz). 
(iii) (x, ƒ, z) -> (-x, -ƒ, -z). The fixed point is isolated and C 3 /Z 2 has an 

isolated singularity that we encountered in 10.16(iv)(e). 
Applying this to Q/Z 2 , we see that C1 /Z2 is smooth and one can compute 

that Ex c C x /Z 2 has +1 intersection with the canonical bundle. C2/Z2 picks 
up an isolated singularity at the image of E2 D P0

2. Here ^c2 /z2 ^ o e s n o t exis t^ 
and one can compute that [E2/Z2]c1(KC2/Zi2) = -1 /2 . E2/Z2 generates a 
negative extremal ray in C2 /Z2 and the natural map C2/Z2 -> C/Z 2 is a 
small contraction. Q / Z 2 -> C/Z 2 is the flip. 

As we noted, C2 /Z2 is singular but Cx/Z2 is smooth. So the flip really 
improved the singularities. 
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In order to use flips in the completion of Mori's program we need the 
following 

12.6. PROPOSITION. Let X be a threefold with canonical singularities and ƒ: 
X -> Y be a small contraction. Then there are curves Et c X such that Et = CP1, 
[E^c^Kx) < 0, f(Et) = point and f is an isomorphism on X — \JEt. 

Reid suggested flipping these curves Et and at each step introducing a curve 
E; with [Eflc^Kx,) > 0. Unfortunately the flip of E2 might affect E[ and it is 
not clear how to flip all the E/s at once. This vexing problem was overcome by 
Shokurov, who proved that any sequence of flips must terminate after finitely 
many steps. 

12.7. DEFINITION. The resulting ƒ': X' -> Y is called the flip of the 
contraction map ƒ. 

The existence of the flips turns out to be a very difficult problem. Important 
special cases were settled by Tsunoda, Shokurov, Mori, and Kawamata; finally 
the general case was treated by Mori, who proved: 

12.8. THIRD FUNDAMENTAL THEOREM. Let X be a projective variety with 
terminal (or canonical) singularities and let ƒ: X -> Y be a small contraction. 
Then ƒ can be flipped. 

Mori's method is very computational, but it gives a good geometric descrip­
tion of small contractions. 

This completes Mori's program, at least in dimension three. Its two main 
consequences are the three-dimensional analogs of 10.11 and 10.14. We 
postpone the former to the next chapter. 

12.9. THEOREM. Let g: X -> Z be a regular birational map between smooth 
projective three f olds. Then g is the composite of divisorial contractions and flips. 

This can be deduced from 13.1 the same way as 10.14 was deduced from 
10.11. 

Note that although g is regular, we might need some flips, which are 
nonregular. Examples show that in general g cannot be written as a composite 
of divisorial contractions. 

12.10. REMARK. It is possible that in the above situation g can be written as 
the composite of divisorial contractions and flops. Since flops are much easier 
to understand than flips, this would be a stronger result. 

Next we discuss an interesting problem which I have been deliberately 
avoiding so far. It is the unpleasant fact that flips frequently lead to nonalge-
braic varieties. Again it is easier to give an example of flops. 

12.11. EXAMPLE. This will be based on the example given in 12.1, whose 
notation will be used. 

Let L = 0CP4(1) | C be a line bundle. Let s: C -> L®2 be a general section. 
We take a "square root" out of s: this will be the set of points V c. L such that 
v <g) v G s(C). Let g: V -> C be the natural projection. If x e C, and 
s(x) =£ 0, then g~x(x) consists of two points; if s(x) = 0, then g~l(x) consists 
of one point. I may assume that the set of zeroes of s in C is a smooth 
subvariety which does not contain O G C . Then V will be smooth outside 
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g_1(0). I would like to find resolutions of V. Let {01?02} = g-1(0). Near 0, g is 
an analytic isomorphism. Thus at 0, I can mimic either of the resolutions Cx 

and C2 of C. Let ptj: Vtj --> V be the resolution I get by mimicking Ct at 0X 

and Cj at 02. Obviously there are natural maps gt: Vu -> C/? but no such maps 
for Vip if i # ƒ Finally let pj}(Qk) = £ƒ, where / = / if it = 1, / = j if k = 2. 

Let us study F n and the two exceptional curves £ | and E*. By a theorem of 
Lefschetz, H4(Vn,R) is generated by [Pn(P{)] and [^n(^i^x)]- From our 
construction it is clear that [E\] and [El] have the same intersection numbers 
with these classes in H4, and therefore we conclude that [El] = [E*]. 

In F12 the exceptional curves are instead El and E2; one can obtain the 
latter as a flop of E\. Therefore \E\\ = -[£2

2] e #2<T12,R). Hence [J^1 U £2
2] 

= 0 G i/2(F12,R). By 6.6 this means that F12 is a nonprojective complex 
manifold, and the same holds for V21. On the other hand, both Vn and F22 are 
projective. Thus if one wants to flop E% and get a projective variety, then one 
has to flop El simultaneously, and then we get V22 which is projective. 

12.12. EXAMPLE. The map pu: Vn -> V has another interesting property. 
This contracts the two disjoint curves E[. At least analytically one can contract 
them one at a time, and obtain a factorization tt: Vn -> Vt^> V, where 
Vn -> Vi contracts the curve E{ for j i= i. Since 

[tlEl] = h[E\] = h[El] = [tlEl] = [0] = 0 e H2(V,R), 

this V1 is again not projective. However, it is glued together from two algebraic 
pieces Vx — El and V1 — 02; then it is a so-called abstract algebraic variety 
containing a curve homologous to zero. This cannot happen for smooth 
abstract algebraic varieties. 

12.13. These examples show that unless we are willing to flop or flip several 
curves simultaneously we have to put up with nonprojective varieties. It is not 
completely clear to me which is better. This again points to the problem of 
finding an analog of Mori's program for nonprojective varieties. Not much is 
known about it. 

13. Finer structure theory. Mori's program should be viewed as the begin­
ning of a structure theory of algebraic varieties. In each birational equivalence 
class it finds some especially nice members. From this point of view the 
following is the main result of Mori. 

13.1. THEOREM ABOUT CONVENIENT MODELS. Let X' be a projective variety of 
dimension at most three. Then X' is birationally equivalent to an X which is 
Q-factorial, projective, has terminal singularities only, and is such that one of the 
following holds: 

(i) X admits a Fano contraction ƒ : X -» Y, or 
(ii) Kx is nef. 

This X is not unique, hut f or a given X' only one of these possibilities can occur. 

PROOF. We construct a sequence of varieties Xv X2,... as follows. Let 
Xx = X'. Assume that Xx,..., Xt are already constructed. If Kx is nef, then 
we take X = Xi and we are done. Otherwise, there is a contraction g: Xt-* Z. 
If this is a Fano contraction then we take X = Xt, Y = Z and again we are 
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done. If g is a divisorial contraction, then we take Xi+1 = Z. If g is a small 
contraction, then we flip g to get g': X( -> Z and we take Xi+1 = X(. 

Each of the X/s is Q-factorial, projective, has terminal singularities and is 
birationally equivalent to X. If Xi -» Xi+1 is a divisorial contraction, then one 
can see that dim H4(Xi+l, R) = dim H4(Xi9 R) - 1. If Xt -> Jf/+1 is a flip, then 
dim# 4(Jr / + 1 ,R) = d i m # 4 ( ^ , R ) . By the result of Shokurov (see 12.6), any 
sequence of flips is finite; thus our procedure most stop with some Xn. Thus 
either Xn admits a Fano contraction or Kx is nef. 

If Xn admits a Fano contraction, then Xn is covered by rational curves 
(11.13(i)) and so is X. If Kx is nef, then Xn and X cannot be covered by 
rational curves (8.25). Thus we can tell in advance whether we end up in the 
Fano contraction case or not. 

Now the next task is to develop a structure theory for varieties admitting a 
Fano contraction and for varieties with Kx nef. For surfaces a very satisfac­
tory theory was developed by the old Italian school, and perfected subse­
quently by several geometers. 

We already gave a complete description of the Fano contraction case in 
10.10. Therefore we turn to the case Kx nef. Note that X is unique in its 
birational class by 9.11. A short summary of the results is the following: 

13.2. STRUCTURE OF SURFACES WITH KX NEF. Let X be a smooth projective 
surface with Kx nef. Then the stable canonical map is regular, and so the 
Iitaka variety is defined up to isomorphism. We have the following cases: 

(i) K(X) = 0, I(X) = point. There is a complete hst of such varieties. They 
are C 2 /L , degree-four surfaces in CP3, and some closely related examples. 

(ii) K(X) = 1, <j>: X -> I(X) is a map onto a curve. All but finitely many of 
the fibers are smooth elliptic curves. The possibilities for other fibers are all 
known. X can be completely described in terms of I( X) and some additional 
structure on I(X). 

(iii) K(X) = 2. <J>: X -> I(X) is birational; I(X) has only canonical singu­
larities. There is a plurigenus formula 

Pm{X) = ( ^ L z i i + ^jCl(Kx)-Cl(Kx) + ±e(X) for m > 2, 

where e(X) is the topological Euler characteristic. There are further results, 
the deepest one being cx(Kx) • cY(Kx) < 3e(X). 

13.3. COROLLARY. For a smooth projective surface the following are equiva­
lent: 

(i) X is covered by rational curves', 
(ii) X is birational to E X CP1 for some curve E\ 
(iii) Pm(X) = 0 for every m\ 
(iv)P12(X) = 0. 

PROOF. We already noted in 8.25 that (i) ==> (iii). If Pm(X) = 0 for every m, 
then by 13.2 X cannot be birational to a surface with K nef. Thus it is 
birational to a surface having a Fano contraction, hence (ii). (iv) needs a more 
detailed analysis of the cases in 13.2. 
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For threefolds, of course, much less is known. There is no complete 
description of the Fano contractions although, as we already noted in 11.13(f), 
in this case X is covered by rational curves (Miyaoka-Mori). 

In the case when Kx is nef, X need not be unique. If X contains a curve E 
that can be flopped to get X"y then Kx» is again nef. This situation was first 
studied by Kulikov in a special case and later in increasing generality by 
several other mathematicians (Friedman, Kawamata, Kollâr, Mori, D. Morri­
son, Persson, Pinkham, Reid, Shepherd-Barron, Tsunoda). Now we have the 
following: 

13.4. THEOREM. Let X and X' be Q-factorial projective threefolds with 
terminal singularities. Assume that Kx and Kx, are nef. Let ƒ: X -> X' be a 
birational map. Let E c X be the set where f is not defined. Then 

(i) E is a union of finitely many rational curves E = \jEi and [£'/]c1( Kx) = 0 
for every i. 

(ii) At least one of the Et
9s can be flopped. 

(iii) ƒ can be written as the composite of finitely many flops. 

For the case when Kx is nef, the fundamental result is the following 
theorem of Miyaoka: 

13.5. THEOREM. Let X be a threefold with terminal {or canonical) singulari­
ties. Assume that Kx is nef. Then K(X) > 0; i.e., Pm(X) > 0 for some m > 0. 

This yields the following analog of 13.3. 

13.6. CHARACTERIZATION OF K = -oo. Let X be a smooth projective threefold. 
The following are equivalent. 

(i) X is covered by rational curves; 
(ii) X is birational to a threefold admitting a Fano contraction; 
(iii) Pm(X) = 0 for every m > 1. 

For the classes K > 0 there is more information. Let I be a projective 
threefold with terminal singularities and Kx nef. We treat cases according to 
K(X). 

13.7. K(X) = 0. There is a complete structure theory if H^X^R) * 0. 
Essentially nothing is known if H^X, R) = 0. 

13.8. If K( X) > 1, then the methods developed to prove 11.11 give that the 
stable canonical map is regular, and the Iitaka variety is defined up to 
isomorphism (Kawamata). Case by case information is as follows. 

13.9. K(X) = 1. <f>: X -* I(X), I(X) is a smooth curve. The smooth fibers 
of 4> are surfaces from (i) of 13.2. Singular fibers are not fully understood. 

13.10. K(X) = 2. <£: X -> I(X). I(X) is a possibly singular surface; the 
possible singularities are more or less understood. Smooth fibers are elliptic 
curves; the singular ones are not fully understood. 

13.11. K(X) = 3. <£: X -> I(X) is birational and I(X) has canonical singu­
larities. There is a plurigenus formula developed by Reid and his students. It is 
the sum of a cubic polynomial and of a periodic function, and the geometric 
meaning of the various terms is well understood. 
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13.12. EPILOGUE. Before the appearance of the works of Mori, it was 
generally assumed that algebraic threefolds are in a state of considerable 
disorder and there is no hope of developing a theory analogous to that of 
algebraic surfaces. M. Noether said once that algebraic curves were created by 
God, algebraic surfaces by the Devil. This left little room for algebraic 
threefolds. I hope that I have succeeded in convincing the reader that there is a 
very deep and meaningful theory of algebraic threefolds which parallels the 
theory of algebraic surfaces. It is the hope of everyone working in this field 
that the results proved so far are only the beginning of a detailed structure 
theory. 
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