# EXERCISES FOR 'HIGHER DIMENSIONAL GEOMETRY' 

CHENYANG XU

## 1. Ampleness criterion

Question 1.1. Read the materials in [KM98, 1.41-1.46].
Question 1.2. Let $S$ be the blow up of a point $p \in \mathbb{P}^{2}$.
(1) Compute the generators of $N E(S)$.
(2) Compute the shape of $\operatorname{Nef}(S)$ under the identification of $N_{1}(S)=N^{1}(S)$.

Question 1.3. Let $X$ be the blow up of a point $p \in \mathbb{P}^{3}$.
(1) Compute the generators of $N E(X)$.
(2) Compute the shape of $\operatorname{Nef}(X)$ under suitable natural basis.

Question 1.4. Prove Nakai-Moishezon criterion for proper scheme of finite type over $k$.

Hint: Chow Lemma.

## 2. Vanishing Theorems

We assume $\operatorname{Char}(k)=0$.
Question 2.1. Let $X$ be a surface such that $K_{X} \cong \mathcal{O}_{X}$ e.g., $X$ is K3-surface or Abelian surface. $L$ is a big and nef line bundle on $X$. Prove $h^{0}(X, L) \geq 2$.

Question 2.2 (Grauert-Riemenschneider vanishing theorem). Let $f: Y \rightarrow X$ be a birational morphism between projective varieties such that $Y$ is smooth and $X$ is normal. Then $R^{i} f_{*}\left(\omega_{Y}\right)=0$.
Question 2.3. Let $X$ be a projective variety with Gorenstein singularities. Assume $X$ has a crepant resolution, i.e. there is a resolution $f: Y \rightarrow X$ such that $f^{*}\left(\omega_{X}\right)=$ $\omega_{Y}$. Then prove that for a big and nef line bundle $L$ on $X, H^{i}\left(X, \omega_{X} \otimes L\right)=0$.

Question 2.4 (Examples of round cones). Exercise 32 in [Kol08].

## 3. Singularities in MMP

Question 3.1. Prove the surface singularities $x y=z^{n+1}$ of type $A_{n}$ is canonical.
Question 3.2. Let $(X, \Delta)$ be a pair such that $X$ is normal variety and $K_{X}+\Delta$ is $\mathbb{Q}$-Cartier. Let $f: Y \rightarrow X$ is a finite dominant morphism from a normal variety. Define $\Delta_{Y}$ by

$$
f^{*}\left(K_{X}+\Delta\right)=K_{Y}+\Delta_{Y}
$$

Then $a(E, X, \Delta) \geq-1$ (resp. $>-1$ ) for any divisor $E$ if and only if a $\left(E_{Y}, Y, \Delta_{Y}\right) \geq$ -1 (resp. $>-1$ ) for any divisor $E_{Y}$.

Question 3.3. Let $(X, \Delta)$ be a klt pair, then show the set

$$
\{E \mid a(E, X, \Delta)<0\}
$$

is a finite set.
Question 3.4 (Cone singularities). Exercise 70 in [Kol08].
Question 3.5. Let $(X, \Delta)$ be a n-dimensional pair such that $X$ is normal variety and $K_{X}+\Delta$ is $\mathbb{Q}$-Cartier. Fix a point $x$ on $X$, we define $\operatorname{mld}_{x}(X, \Delta)$ to be

$$
\min \left\{a(X, \Delta, E)+1 \mid \operatorname{Center}_{X}(E)=x\right\}
$$

1. Prove if $x \in X$ is smooth, then $\operatorname{mld}_{x}(X)=n$.
$2^{*}$. Prove that for any $\Delta \geq 0$ and $x \in X, \operatorname{mld}_{x}(X, \Delta) \leq n$ and the equality holds if and only if $X$ is smooth at $x$ and $\operatorname{Supp}(\Delta)$ does not contain $x$.

Remark: Part 2 is open except in lower dimension. In fact, for a fixed dimension $n$, it's not even know that $\operatorname{mld}_{x}(X, \Delta)$ is bounded from above by a number which only depends on $n$.

## 4. MMP FOR Smooth surfaces

Question 4.1. Let $f: X \rightarrow Y$ be a birational morphism from a projective smooth surface to a normal surfae. Let $p \in X$ and $f^{-1}(p)=\sum_{i=1}^{m} E_{i}$, then prove the matrix $\left(g_{i j}\right)_{1 \leq i \leq m}$ whose entries $g_{i j}=E_{i} \cdot E_{j}$ is negative definite.
Question 4.2. (1) Let $f: X \rightarrow Y$ be a projective birational morphism from a smooth rational surface to a normal surface. Assume $f(E)$ is a point for a curve $E$ on $Y$, assume $K_{X} \cdot E<0$, then prove $E$ is a $(-1)$-curve.
(2) Use this to prove that given a normal surface singularity $y \in Y$, among all its resolutions, there is a unique minimal resolution $f: X \rightarrow Y$ such that $K_{X} \cdot E \geq 0$, for any $E$ with $f(E)=y$.

Question 4.3. Prove Theorem 3 in [Kol08].
Question 4.4. Exercise 19 in [Kol08].

## 5. Main theorems: Nonvanishing theorem, base point free theorem, RATIONALITY THEOREM, CONE THEOREM

Question 5.1. Exercise 38-46 in [Kol08].
The following facts have been used a few times in our argument. It has a central importance in higher dimensional geometry.

Question 5.2. Let $(X, \Delta)$ be a lct pair and $M \neq 0$ be a Cartier divisor.
(1) if $M$ is a general member in a base point free linear system $|L|$, then for any $c<1,(X, \Delta+c M)$ is klt.
(2) Define the $\log$ canonical threshold of $(X, \Delta)$ with respect to $M$ to be

$$
\operatorname{lct}(X, \Delta ; M)=\max \left\{t \mid K_{X}+\Delta+t M \text { is log canonical }\right\}
$$

Show $\operatorname{lct}(X, \Delta ; M) \in(0, \infty)$.
(3) Assume a linear system $|L|$ has base locus $B$. Let $M_{1}, \ldots, . M_{m}$ be $m$ general divisors in $|L|$. Let $c=\operatorname{lct}\left(X, \Delta ; \sum_{i=1}^{m} M_{i}\right)$. Show that for $m \gg 0$, the divisor $E$ such that

$$
a\left(E, X, \Delta+c \sum_{i=1}^{m} M_{i}\right)=-1
$$

has its center contained in $B$. (Such center is called a log canonical center).

Question 5.3 (Tie-and-break). Let $(X, \Delta)$ be a klt pair, $M$ a big divisor. Let $c=\operatorname{lct}(X, \Delta ; M)$. Prove that for any $\epsilon>0$, we can always find a $\mathbb{Q}$-divisor $M_{1}$ such that $M_{1} \sim_{\mathbb{Q}} c_{1} M$ with $\left|c-c_{1}\right|<\epsilon$ and $\left(X, \Delta+c_{1} M_{1}\right)$ is log canonical and has precisely one divisor $E$ such that $a\left(E, X, \Delta+c_{1} M_{1}\right)=-1$.

Question 5.4. Read [KM98, Section 3.6].

## 6. KSBA Theory

Question 6.1. Show that if $X$ and $Y$ are birational, and both of them have canonical singularities, then

$$
H^{0}\left(X, m K_{X}\right) \cong H^{0}\left(Y, m K_{Y}\right)
$$

Question 6.2 (Kollár-Shokurov Connectedness Theorem). Let ( $X, D$ ) be a log pair, i.e., $X$ is normal, $D$ is an effective $\mathbb{Q}$-divisor. Assume $K_{X}+D$ is $\mathbb{Q}$-Cartier. Let $f: Y \rightarrow(X, D)$ be a log resolution and write

$$
f^{*}\left(K_{X}+D\right)+\sum_{i, a_{i}>-1} a_{i} E_{i}+\sum_{j, b_{j} \leq-1} b_{j} F_{j}=K_{Y},
$$

where $E_{i}$ and $F_{j}$ does not have common components. Then prove that $\operatorname{Supp} F=$ $\sum_{j} F_{j}$ is connected in a neighborhood of any fiber of $f$.

## 7. Variation of Hodge Structure

Question 7.1 (Local Torelli of CY). Let $X$ be a smooth n-dimensional projective variety with $\omega_{X} \cong \mathcal{O}_{X}$. Show that the period map for the deformation space of $X$ is locally an immersion.

Hint: Using Serre duality to interpret the Kodaira-Spencer map.

## 8. Degeneration of Hodge Structure

Question 8.1. Let $f_{3}$ be a general homogenous degree three polynomial with three variables. Consider the family $\mathcal{X} \subset \mathbb{P}(x, y, z) \times \Delta$ with $t$ the coordinate of $\Delta$, where

$$
\mathcal{X}:=\left(t f_{3}(x, y, z)+\left(x^{2} z+(y+z) y^{2}\right)=0\right) .
$$

Over $\Delta \backslash\{0\}$, it is a smooth family. Compute the limiting mixed Hodge structure over $t=0$.

Question 8.2. Let $f: X \rightarrow C$ be a projective morphism, smooth over $C^{0}=C \backslash$ $\{0\}$. Assume $\left(X, X_{0}=f^{-1}(0)\right)$ is simple normal crossing. Let $W(M)$. be the monodromy weight filtration. Compute the weight 0 part

$$
G r_{0}^{W(M)} H^{k}\left(X_{0}, \Omega_{X}^{\bullet}\left(\log X_{0}\right) \otimes \mathcal{O}_{X_{0}}\right)
$$

## References

[KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original.
[Kol08] János Kollár, Exercises in the birational geometry of algebraic varieties, arXiv:0809.2549 (2008).

Beijing International Center of Mathematics Research, 5 Yiheyuan Road, Haidian District, Beijing 100871, China

E-mail address: cyxu@math.pku.edu.cn

