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Introduction

In the aftermath of the financial crisis, regulators launched in a major
banking reform e↵ort aimed at securing the financial system by raising
collateralisation and capital requirements, as if the costs of capital
and of funding for collateral were irrelevant.

The quantification by banks of market incompleteness based on
various XVA metrics, in particular KVA (capital valuation adjustment)
and MVA (margin valuation adjustment), is emerging as the
unintended consequence of the banking reform.
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The presence of the KVA and the MVA breaks several of the
conclusions of Modigliani-Miller theory.

The purpose of this work is to explain and amend the banking XVA
metrics in the light of a capital structure model acknowledging the
impossibility for a bank to replicate jump-to-default related
cash-flows.
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Counterparty Risk,

with its funding and capital implications, is at the origin of all XVAs:

CVA Credit valuation adjustment

The value you lose due to the defaultability of your
counterparties

DVA Debit valuation adjustment

The value your counterparties lose due to your own
defaultability
The symmetric companion of the CVA
The value you gain due to your own defaultability?
(2011 DVA debate)
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FVA Funding valuation adjustment

Cost of funding variation and initial margin: MVA
merged with FVA in these slides to spare one “VA”
But what about the Modigliani-Miller theorem??
(2013 FVA debate )

DVA2 Funding windfall benefit at own default

KVA Cost of capital

The price for the bank of having to reserve capital at
risk (ongoing KVA debate )
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Contra-assets and Contra-liabilities

CA: Contra-assets, entail the valuation of all cash-flows related to the
credit risk of either the counterparties or the bank and occurring
before the default of the bank itself, i.e. having an impact on
shareholder value.

CVA, FVA, ...

CL: Contra-liabilities, entail the valuation of all the cash-flows received by
the bank during the resolution process starting at its default time ,
i.e. only having an impact on bank creditors, by modifying the
recovery rate of the bank, but not on shareholders.

DVA, FDA, ...
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CVA�DVA+FVA�DVA2 [+KVA]: The XVA debates

FVA and DVA2 cash flows NPV-match each other

! CVA-DVA yields the fair, symmetrical adjustment between two
counterparties of equal bargaining power

But “Contra-liabilities” DVA and DVA2 are only a benefit to the
creditors of the bank, whereas only the interest of shareholders
matters in bank managerial decisions

! DVA and DVA2 should be ignored in entry prices

! CVA+FVA
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Funds Transfer Price

Moreover, counterparty default losses cannot be replicated and a bank
must reserve shareholder capital to cope with residual risk

Shareholders that put capital at risk deserve a remuneration at a
hurdle rate, which corresponds to the KVA

! FTP=CVA+FVA+KVA

10 / 149



Connection with the Modigliani and Miller (1958) Theorem

The Modigliani-Miller theorem includes two key assumptions.
One is that, as a consequence of trading, total wealth is conserved.
The second assumption is that markets are complete.

In our setup we keep the wealth conservation hypothesis but we lift
the completeness.

Hence the conclusion of the theorem, according to which the fair
valuation of counterparty risk to the bank as a whole should not
depend on its funding policy, is preserved.
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However, due to the incompleteness of counterparty risk, derivatives
trigger wealths transfers from bank shareholders to creditors

The interests of bank shareholders and creditors are not aligned with
each other

Which, in the case of a market maker such as a bank, can only be
compensated by add-on to entry prices
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More precisely, quoting Villamil (2008):

In fact what is currently understood as the Modigliani-Miller
Proposition comprises four distinct results from a series of papers
(1958, 1961, 1963). The first proposition establishes that under
certain conditions, a firms debt-equity ratio does not a↵ect its
market value. The second proposition establishes that a firms
leverage has no e↵ect on its weighted average cost of capital
(i.e., the cost of equity capital is a linear function of the
debt-equity ratio). The third proposition establishes that firm
market value is independent of its dividend policy.
The fourth proposition establishes that equity-holders are indi↵erent

about the firms financial policy.

The proof of the fourth proposition is based on the ability of
shareholders to redeem all debt of the bank in order to prevent wealth
transfers to creditors.
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However:

Redeeming the debt means hedging its own default, which is not
possible for a bank.

Banks are special firms in that they are intrinsically leveraged and
cannot be transformed into a pure equity entity.
This is also related to an argument of scale.

Banks liabilities are overwhelming with respect to all other wealth
numbers.
It has been estimated that if all European banks were to be required to
have capital equal to a third of liabilities, the total capitalization of
banks would be greater than the total capitalization of the entire equity
market as we know it today.

Hence:

Shareholders cannot redeem all debt of the bank.

The assumption of the fourth proposition of the Modigliani-Miller

theorem does not apply to a bank.
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Quoting the conclusion of Modigliani and Miller (1958)

“These and other drastic simplifications have been
necessary in order
to come to grips with the problem at all. Having served their

purpose they can now be relaxed in the direction of greater realism

and relevance, a task in which we hope others interested in
this area will wish to share.”

And Miller (1988) in The Modigliani-Miller Proposition after Thirty
Years

“Showing what doesn’t matter can also show, by implication,

what does. ”
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In this section we present the main ideas of our XVA approach in an
elementary static one-year setup, with r set equal to 0.

Assume that at time 0 a bank, with equity E = w
0

corresponding to
its initial wealth, enters a derivative position (or portfolio) with a
client.

Let P = EP denote the mark-to-market of the deal ignoring
counterparty risk and assuming risk-free funding.
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We assume that the bank and its client are both default prone with
zero recovery.

We denote by J and J
1

the survival indicators of the bank and its
client at time 1

Both being assumed alive at time 0
With default probability of the bank Q(J = 0) = �
And no joint default for simplicity, i.e Q(J = J

1

= 0) = 0.
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XVA Cost of Capital Pricing Approach

In order to focus on counterparty risk and XVAs, we assume that the
market risk of the bank is perfectly hedged by means of perfectly
collateralized back-to-back trades

The back-to-back hedged derivative portfolio reduces to its
counterparty risk related cash flows

At the bottom of this work lies the fact that a bank cannot replicate
jump-to-default exposures

Cost of capital pricing approach in incomplete counterparty risk
markets
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Standing risk-neutral valuation measure Q
Derivative entry prices in our sense include, on top of the valuation of
the corresponding cash-flows, a KVA risk premium

Risk margin (RM) in a Solvency II terminology
Computed assuming P = Q, as little of relevance can be said about the
historical probability measure for XVA computations entailing
projections over decades
The discrepancy between P and Q is left to model risk

Cost of capital pricing approach applied to the counterparty risk
embedded into the derivative portfolio of a bank
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Cash Flows

The counterparty risk related cash flows a↵ecting the bank before its
default are its counterparty default losses and funding expenditures,
respectively denoted by C� and F�.

The bank wants to charge to its client an add-on, or obtain from its
client a rebate, denoted by CA, accounting for its expected
counterparty default losses and funding expenditures.

Accounting for the to-be-determined add-on CA, in order to enter the
position, the bank needs to borrow (P � CA)+ unsecured or invest
(P � CA)� risk-free, depending on the sign of (P � CA), in order to
pay (P � CA) to its client.
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At time 1:
If alive (i.e. J = 1), then the bank closes the position while receiving P
if its client is alive (i.e. J

1

= 1) or pays P� if its client is in default
(i.e. J

1

= 0).
Note J

1

P � (1� J
1

)P� = P � (1� J
1

)P+. Hence the counterparty
default loss of the bank appears as the random variable

C� = (1� J
1

)P+. (1)

In addition, the bank reimburses its funding debt (P � CA)+ or
receives back the amount (P � CA)� it had lent at time 0.
If in default (i.e. J = 0), then the bank receives back P+ on the
derivative as well as the amount (P � CA)� it had lent at time 0.
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We assume that unsecured borrowing is fairly priced as � ⇥ the
amount borrowed by the bank, so that the funding expenditures of
the bank amount to

F� = �(P � CA)+,

deterministically in this one-period setup.

We assume further that a fully collateralized back-to-back market
hedge is set up by the bank in the form of a deal with a third party,
with no entrance cost and a payo↵ to the bank �(P � P) at time 1,
irrespective of the default status of the bank and the third party at
time 1.
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Collecting cash flows, the wealth of the bank at time 1 is

w
1

= E� F� + (1� J)
�P+ + (P � CA)�

�

+J
�
J
1

P � (1� J
1

)P� � (P � CA)+ + (P � CA)�
�� (P � P)

=
�
E� (C� + F� � CA)

�
+ (1� J)(P� + (P � CA)+), (2)

as easily checked for each of the three possible values of the pair (J, J
1

)
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The result of the bank over the year is

w
1

� w
0

= w
1

� E = �(C� + F� � CA) + (1� J)(P� + (P � CA)+). (3)

However, the cash flow (1� J)(P� + (P � CA)+) is only received by
the bank if it is in default at time 1, so that it only benefits bank
creditors.

Hence, the profit-and-loss of bank shareholders reduces to
�(C� + F� � CA), i.e. the trading loss-and-profit of the bank, which
we denote by L, appears as

L = C� + F� � CA. (4)
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Remark 1

The derivation (2) allows for negative equity, which is interpreted as
recapitalization.

In a variant of the model excluding recapitalization, where the default
of the bank would be modeled in a structural fashion as E� L < 0
and negative equity is excluded, we would get instead of (2)

w
1

= (E� L)+ + 1{E<L}(P� + (P � CA)+). (5)

In our approach we consider a model with recapitalization for reasons
explained later.
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Funds Transfer Price

In order to account for expected counterparty default losses and
funding expenditures, the bank charges to its client the add-on

CA = EC�
|{z}
CVA

+EF�
|{z}
FVA

. (6)

Note that, since

FVA = EF� = F� = �(P � CA)+

(all deterministically in a one-period setup), (6) is in fact an equation
for CA.
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Equivalently, we have the following semi-linear equation for
FVA = CA� CVA :

FVA = �(P � CVA� FVA)+,

which has the unique solution

FVA =
�

1 + �
(P � CVA)+. (7)

Substituting this and (1) into (6), we obtain

CA = E[(1� J
1

)P+]| {z }
CVA

+
�

1 + �
(P � CVA)+

| {z }
FVA

.
(8)
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Note that the realized recovery is (1� J)(P� + (P � CA)+) because
of the trade that occurred, but this was not anticipated and not
reflected in the price of borrowing when the bank issued its funding
debt.

As the funding debt was fairly valued ignoring this, the value
FDA = E[(1� J)(P � CA)+] of the default funding cash flow
(1� J)(P � CA)+ equals the cost FVA = �(P � CA)+ of funding
the position.

But the FVA and the FDA do not impact the same economic agent,
namely the FVA hits bank shareholders whereas the FDA benefits
creditors.

Hence, the net e↵ect of funding is not nil to shareholders, but reduces
to an FVA cost.
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In view of (4) and (6), observe that charging to the client a CA
add-on corresponding to expected counterparty default losses and
funding expenditures is equivalent to setting the add-on CA such
that, in expectation, the trading loss-and-profit of bank shareholders
is zero (EL = 0), as it would also be the case without the deal.

However, without the deal, the loss-and-profit of bank shareholders
would be zero not only in expectation, but deterministically.
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Hence, to compensate shareholders for the risk on their equity
triggered by the deal, under our cost of capital approach, the bank
charges to its client an additional amount (risk margin)

KVA = hE, (9)

where h is some hurdle rate, e.g. 10%.

Moreover, since E can be interpreted as capital at risk earmarked to
absorb the losses (C�+F�) of the bank above CA, it is natural to size
E by some risk measure of the bank shareholders loss-and-profit L.

The all-inclusive XVA add-on to the entry price for the deal, which we
call funds transfer price (FTP), is

FTP = CA|{z}
Expected costs

+ KVA| {z }
Risk premium

.
(10)
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Monetizing the Contra-Liabilities?

Let us now assume, for the sake of the argument, that the bank would
be able to hedge its own jump-to-default risk through a further deal,
whereby the bank would deliver a payment (1� J)(P� + (P �CA)+)
at time 1 in exchange of an upfront fee fairly valued as

CL = E[(1� J)P�]| {z }
DVA

+E[(1� J)(P � CA)+]| {z }
FDA=�(P�CA)

+

=FVA

,
(11)

DVA and FDA stand for debt valuation adjustment and funding debt
adjustment.
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Let CR denote the modified CA charge to be passed to the client
when the hedge is assumed.

Accouting for the hedging gain
Hcl = CL� (1� J)(P� + (P � CA)+), the wealth of the bank at
time 1 now appears as (cf. (2))

ew
1

= (E� (C� + F� � CR)) + (1� J)(P� + (P � CA)+) +Hcl

= E� (C� + F� � CR) + CL. (12)

By comparison with (2), the CL originating cash flow
(1� J)(P� + (P � CA)+) is hedged out and monetized as an
amount CL received by the bank at time 0.

The trading loss-and-profit of bank shareholders now appears as

eL = w
0

� ew
1

= E� ew
1

= C� + F� � CR� CL. (13)
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The amount CR making eL centered is

CR = E(C� + F�)� CL

= (CVA+ FVA)� (DVA+ FDA) = CVA�DVA,
(14)

because FVA=FDA (cf. (11)).

Hence, if the bank was able to hedge its own jump-to-default risk, in
order to satisfy its shareholders in expectation, it would be enough for
the bank to charge to its client an add-on CR = CVA�DVA.

34 / 149



The amount CR = CVA�DVA also coincides with the fair valuation
of counterparty risk when market completeness and no trading
restrictions are assumed (cf. Du�e and Huang (1996)).

However, under our approach, in the present setup, the bank would
still charge to its client a KVA add-on heE as risk compensation for
the non flat loss-and-profit eL triggered by the deal (unless eL can be
hedged out as well).

But eE would be sized by some risk measure of eL, instead of L for E in
(9).
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Wealth Transfer Interpretation

As mentioned before, a bank cannot hedge its own jump-to-default
risk in practice. But the above findings are important from an
interpretive point of view.

We see from (6) and (11) that CA can be viewed as the sum between
CL and the fair valuation CR = CVA�DVA of counterparty risk.

In view of the above, CL can be interpreted as an add-on that the
bank needs to source from the client, on top of the fair valuation of
counterparty risk, in order to compensate the loss of value to
shareholders due to the inability of the bank to hedge its own
jump-to-default risk.

In other words, due to this market incompleteness (or trading
restriction), the deal triggers a wealth transfer from bank shareholders
to creditors equal to CL, which then needs be sourced by the bank
from its client in order to put shareholders back at value equilibrium
in expected terms.
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Funds Transfer Price Decomposition

In conclusion, in a one-period setup, the FTP can be represented as

FTP = CVA+ FVA| {z }
Expected costs CA

+ KVA| {z }
Risk premium

= CVA�DVA| {z }
Fair valuation CR

+ DVA+ FDA| {z }
Wealth transfer CL

+ KVA| {z }
Risk premium

,
(15)

where CA is given by (8) and where the random variable L used to
size the equity E in the KVA formula (9) is the bank shareholders
loss-and-profit L as per (4).
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Need
of a multi-period model, which involves rebalancing between various
banking accounts, for dealing with incremental portfolios,
to put the so-called contra-assets and contra-liabilities of the bank in a
balance sheet perspective, for identifying the structural connection
between the di↵erent XVA metrics.

! We introduce a capital structure model of a bank that shows the
di↵erent bank accounts involved.
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Balance Sheet of a Bank

Reserve capital (RC)

Shareholder capital at risk (SCR)

Risk Margin (RM)

yr1

Uninvested capital

ASSETS AND CONTRA-LIABILITIES

CONTRA-ASSETS AND LIABILITIES

yr39 yr40

Core equity tier I capital (CET1)

Default-free value of 
financial receivables

Default-free value of
financial payables

Contra-liabilities (CL)

yr1 yr39 yr40

Contra-assets (CA)

Accounting equity (AE)
(UC)

Economic capital (EC)

CVA

Collateral posted by the
clean desks

Collateral received by the
clean desks

FVA

DVA

FDA

FVA desk
(Treasury)CA desks

Clean desks

KVA desk
(management)

CVA desk

(P+) (P+)

(P�) (P�)

CVACL

FVACL

Return
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A Bank With Three Floors

The “CA desk” of the bank sells the contra-assets to the clients of
the bank and is exposed to the corresponding payo↵s

Counterparty default losses and risky funding expenditures of the bank
The CA desk may also setup a CA hedge, i.e. a (partial) hedge of these
payo↵s.

After the contracts have thus been cleaned of their counterparty risk
and (other than risk-free) funding implications by the CA desk, the
other trading desks of the bank, which we call clean desks (or
“bottom floor”) of the bank, are left with the the management of the
market risk of the contracts in their respective business lines, ignoring
counterparty risk.

The top (third) floor is the management in charge of the KVA
payments, i.e. of the dividend distribution policy of the bank.
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In fact, we deal with two portfolios, the client portfolio between the
clients of the bank and the CA desk and the cleaned portfolio
between the CA desk and the clean desks.

The corresponding (cumulative streams of) contractually promised
cash flows are the same, denoted by P. But, as intuitively clear and
detailed in the sequel, counterparty risk only really impacts the client
portfolio.
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CA desk cash flows graph: contractually promised P , risky funding

F , and hedging H cash flows

CA desk

Clients

Clean desks

Financial markets

Bank creditors

F
P

P
H

C
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Run-o↵ Assumption

In what follows the derivative portfolio of the bank is assumed held on
a run-o↵ basis until its final maturity T .

Accounting for the bank default time ⌧ , the time horizon of the model
is then ⌧̄ = ⌧ ^ T .

The (realistic) case of incremental portfolios will be considered in a
second stage.
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Continuous Reset Assumption

Losses-and-earnings realization times are typically quarter ends for
bank profits, released as dividends, vs recapitalization managerial
decision times for losses. However, there is no way to “calibrate”
losses-and-earnings realization times in a pricing or risk model.

In our model, we assume that losses-and-earnings are marked to
model and realized in real time.
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Bank Default Model

Instead of viewing losses as money flowing away from the balance
sheet, we view them as money flowing into it as refill ,
i.e. replenishment of the di↵erent bank accounts at their theoretical
target level,
until the point of default where the payers cease willing to do so .

When this happens is modeled as a totally unpredictable time ⌧

calibrated to the bank CDS spread , which we view as the most
reliable and informative credit data regarding anticipations of markets
participants about future recapitalization, government intervention
and other bank failure resolution policies.
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Comparison with the Merton model

In a Merton mindset, the default of the bank in our setup could be
modeled as the first time when CET1 becomes negative.

Merton (1974)’s purpose was to develop an option-theoretic view on
equity and corporate debt. For this of course a structural model of
the default time of a firm is required.

In the case of a bank, given recapitalisation and managerial resolution
schemes, it is more realistic to model the default as a totally
unpredictable (liquidity or operational) event at some exogenous time
⌧, calibrated to the bank CDS spread.

Du�e (2010)’s analysis of major bank defaults during the crisis

The purpose of our capital structure model of the bank is not to
model the default of the bank as the point of negative equity, which
would be unrealistic...

... But to put in a balance sheet perspective the contra-assets and
contra-liabilities of the bank, items which are not present in the
Merton model.
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Accouting and Dividend Policies of the Bank

Continuous reset implies that:

The RC account is continuously reset to its theoretical target CA
level by the CA desk

Much like with futures, the position of the CA desk is reset to zero at all times,

but it generates gains (�dLcat ) .

The RM account is continuously reset by the management of the
bank to its theoretical target KVA level.

(�dKVAt) amounts continuously flow from the RM account to the
shareholder dividend stream

! Balance conditions

RC = CA = CVA+ FVA , RM = KVA. (16)
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Invariance Valuation Setup

We denote by J = 1
[0,⌧) the survival indicator process of the bank.

Assumption 1

Clean desks price and hedge ignoring the default of the bank, using
some reference filtration F such that ⌧ is not an F stopping time.

The OIS rate (publically available risk-free interest rate) process r ,
hence the corresponding discount factor �, as well as the contractually
promised cumulative cash flow stream P, are assumed to be
F = (Ft)t�0

adapted.

But the bank is defaultable, hence the full model information used by
the CA desk, as well as by the management of the bank in charge of
the KVA payments, is a larger filtration G = (Gt)t�0

such that ⌧ is a
G stopping time, endowed with a (G,Q) intensity �J�.

Any G stopping time ⌘ admits an F stopping time ⌘0 such that
⌘ ^ ⌧ = ⌘0 ^ ⌧ ; any G semimartingale Y admits a unique F
semimartingale Y 0, called the reduction of Y , that coincides with Y
before ⌧ .
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For any left-limited process Y , we denote by �⌧Y = Y⌧ � Y⌧� the
jump of Y at ⌧ and by Y ⌧� = JY + (1� J)Y⌧� the process Y
stopped before time ⌧, so that

dYt = dY ⌧�
t + (��⌧Y ) dJt , 0  t  ⌧̄ . (17)

50 / 149



Definition 1

By trading loss Lcl of the clean desks, we mean the negative of their
wealth process Wcl as it results from their trading by an application
of a self-financing assumption, defined with respect to the reference
filtration F.
By trading loss Lca of the CA desk, we mean the negative of its
wealth process Wca as it results from its trading by an application of
a self-financing assumption with respect to the filtration G, stopped
before ⌧ for alignment with shareholder interest. That is,

Lca = �(Wca)�. (18)

By trading loss L of the bank as a whole, we mean

L = �(Wcl +Wca)� = (Lcl)� + Lca. (19)
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Consistency of valuation across the perspectives of the di↵erent desks of
the bank is granted by the following:

Assumption 2

Clean and CA traders use not only di↵erent filtrations F and G, but
also di↵erent pricing measures P on FT and Q on GT , equivalent on
FT and such that (F,P) martingales stopped before ⌧ are (G,Q)
martingales.

Conversely, the reductions of (G,Q) martingales stopped before ⌧ are
(F,P) martingales.

The process Lcl is an (F,P) martingale on [0,T ]. The process Lca is a
(G,Q) martingale stopped before ⌧ .
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In other words ⌧ is an invariance time as per Crépey and Song
(2017a).

The most standard situation is a basic immersion setup where (F,Q)
local martingales are (G,Q) local martingales without jump at ⌧ , in
which case ⌧ is an invariance time with P = Q.

We also cover the case of a default-free bank as a (simpler but
unrealistic) situation where ⌧ = +1 holds Q a.s. and
(F,P) = (G,Q).

Conditional expectation with respect to (Gt ,Q) (respectively (Ft ,P))
is denoted by Et (respectively E0

t), or simply E (respectively E0) if
t = 0.
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As an immediate consequence of (19) and Assumption 2:

Corollary 1

The trading loss L of the bank as a whole is a (G,Q) martingale without
jump at time ⌧ and its reduction L0 is an (F,P) martingale.
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Given Y representing a process of cumulative cash flows or trading or
hedging losses, respectively an XVA process, we denote by eY the
corresponding process of cumulative OIS discounted cash flows or trading
or hedging losses, respectively the corresponding OIS discounted XVA
process.

Example 1

eL =
R ·
0

�tdLt , ]CVA = �CVA.

Corollary 2

In the case of a cumulative cash flow or loss process Y , the process Y is a
martingale if and only if eY is a martingale.
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Lemma 1

Shareholder cumulative discounted dividends are given by

�eL� ]KVA
�
. (20)

We emphasize that, in our model, negative dividends are possible. They
are interpreted as recapitalisation (or equity dilution).

56 / 149



All our XVA processes will be sought for in a suitable Hilbert space S
2

of square integrable G adapted processes containing the null process,
defined until time ⌧̄ (note that (G,Q) valuation is never needed
beyond that point).

We denote by S�
2

the corresponding subspace of processes Y without
jump at ⌧ and such that YT = 0 on {T < ⌧}.
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Clean Vs. Risky Valuation

Definition 2

Given an F adapted cumulative cash flow stream D, the OIS
discounted (F,P) value process of D is the (F,P) conditional
expectation process of the future OIS discounted cash flows in D.

By mark-to-market or clean valuation P of the (client or cleaned)
portfolio, we mean the (F,P) value process of the contractually
promised cash flow stream P.
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Proposition 1

Clean valuation is additive over contracts, i.e. the mark-to-market of
a portfolio of contracts is the sum of the mark-to-markets of the
individual contracts.

Clean valuation is also intrinsic to the contracts themselves. In
particular, it is independent of the involved parties and of their
collateralization, funding and hedging policies.

Proof. The promised cash flows of a portfolio simply consist in the
disjoint union of the promised cash flows of the contracts. Hence the result
follows by linearity of the cash flow (F,P) valuation rule of Definition 2.
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Definition 3

By value of the cleaned portfolio (process used by the CA and clean desks
for marking to the model the cleaned portfolio between them), we just
mean the clean valuation P of the portfolio.

Definition 4

Given a G adapted cumulative cash flow stream D, the OIS discounted
(G,Q) (or risky) value process of D is the (G,Q) conditional expectation
process of the future OIS discounted cash flows in D.
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Assumption 3

The funding costs of the CA desk are of the form

(�OIS accrual of the RC account) + F , (21)

for some (G,Q) martingale F starting from 0, interpreted as the risky
funding costs of the CA desk.
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The first term in (21) is the funding benefit to which funding would
boil down if risk-free funding was available to the bank.

The rationale underlying Assumption 3 is that funding is implemented
in practice as the stochastic integral of predictable hedging ratios
against funding assets.

Under the cash flow (G,Q) valuation rule of Definition 4, the value
process of each of these assets is a martingale modulo risk-free
accrual.

Therefore the funding costs of the bank accumulate into a (G,Q)
martingale F , coming on top of a risk-free accrual (actual benefit,
i.e. negative cost) of the RC cash account of the CA desk.
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Example 2

Let

dBt = rtBtdt

dDt = (rt + �t)Dtdt + (1� R)Dt�dJt = rtDtdt + Dt�
�
�tdt + (1� R)dJt

�(22)

represent the risk-free OIS deposit asset and a risky bond issued by
the bank for its investing and unsecured borrowing purposes.

The risk-neutral martingale condition that applies to (�D) under our
standing valuation framework implies that � = (1� R)�, hence

�tdt + (1� R) dJt = (1� R)dµt ,

where dµt = �dt + dJt is the (G,Q) compensated jump-to-default
martingale of the bank
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Example 3 (Cont’d)

We assume all re-hypothecable collateral and we denote by Q the
amount of collateral posted by the CA desk to the clean desks net of
the amount received by the CA desk from the clients.

The funding policy of the CA desk is represented by a splitting of the
amount CAt on the RC account of the bank as

CAt = Qt|{z}
Collateral remunerated OIS

+ (CAt � Qt)
+

| {z }
Cash in excess invested at the risk-free rate as ⌫tBt

� (CAt � Qt)
�

| {z }
Cash needed unsecurely funded as ⌘tDt

=
�
Qt + (CAt � Qt)

+

�
| {z }

Invested at the risk-free rate as ⌫tBt

� (CAt � Qt)
�

| {z }
Unsecurely funded as ⌘tDt

.

(23)
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Example 3 (Cont’d)

A standard continuous-time self-financing equation expressing the
conservation of cash flows at the level of the bank as a whole yields

d (⌫tBt � ⌘tDt) = ⌫tdBt � ⌘t�dDt

= ⌫trtBtdt � ⌘t(rt + �t)Dtdt � (1� R)⌘⌧�D⌧�dJt

= rtCAtdt � (1� R)⌘t�Dt�dµt , 0  t  ⌧̄

(24)

A left-limit in time is required in ⌘ because D jumps at time ⌧, so that
the process ⌘, which is defined implicitly through CA� in (23), is not
predictable.

Equivalently viewed in terms of costs, i.e. flipping signs in the above,
we obtain

� d (⌫tBt � ⌘tDt) = �rtCAtdt + dFt (25)

where dFt = (1� R)(Qt� � CAt�)+dµt .
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Regarding now hedging losses:

Assumption 4

The hedging loss H of the CA desk, including the cost of setting the
hedge, is a (G,Q) martingale starting from 0.
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The rationale here is that hedging gains or losses arise in practice as
the stochastic integral of predictable hedging ratios against wealth
processes of individual hedging assets.

Note that we are considering wealth processes inclusive of the
associated funding costs here, which corresponds to the most
common situation of hedges that are either swapped or traded
through a repo market, without upfront payment.

Under the cash flow (G,Q) valuation rule of Definition 4, each
hedging asset is valued as risk-free discounted expectation of its
future cash flows.

Hence the wealth processes related to long positions in any of the
hedging assets are (G,Q) martingales, as are stochastic integrals
against them.
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As explained before:

Assumption 5

The bank cannot hedge its own jump-to-default exposure, hence H•=0.

Example 3

Assuming the CA hedge implemented through a repo market on a
Black-Scholes stock S with volatility �, then, supposing no dividends and
no repo basis on S :

dHt = dH�
t = �⇣t

�
dS � rStdt

�
= �⇣t�StdWt , dH•

t = 0, (26)

where W is the (G,Q) Brownian motion driving S and ⇣ is the hedging
ratio used in S .

The instantaneous cost of funding the hedge is (�⇣trStdt), which is
included in (26).
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Remark 2

The valuation impact of a theoretical (but impractical) hedge by the bank
of its contra-liabilities will be considered separately in Proposition 2(ii).

As immediate consequences of Assumptions 3 through 5:

Corollary 3

The processes F and H = H� are (G,Q) martingales with zero risky value.
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Contra-assets and Contra-liabilities

Definition 5

We call CA (contra-asset value process), CVA (credit valuation
adjustment), and FVA (funding valuation adjustment), the solutions
to the following fixed-point problems, assumed well-posed in S�

2

: For
t  ⌧̄ ,

gCAt = Et
� eC�

⌧̄ + eF�
⌧̄ � eC�

t � eF�
t + 1{⌧<T} fRC

�
⌧

�

= Et
� eC�

⌧̄ + eF�
⌧̄ � eC�

t � eF�
t + 1{⌧<T}gCA

�
⌧

�
,

(27)

by (16), and

]CVAt = Et
� eC�

⌧̄ � eC�
t + 1{⌧<T}]CVA

�
⌧

�
(28)

]FVAt = Et
� eF�

⌧̄ � eF�
t + 1{⌧<T}]FVA

�
⌧

�
. (29)
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Definition 5 (Cont’d)

We define the contra-liabilities value process CL by

CL = DVA+ FDA+ CVACL + FVACL, (30)

where:
The DVA (debt valuation adjustment) is the (G,Q) value of C•,
The FDA (funding debt adjustment) is the (G,Q) value of F•, and
CVACL and FVACL are the (G,Q) values of terminal cash flows
1{⌧<T}CVA

�
⌧ and 1{⌧<T}FVA

�
⌧ at time ⌧̄ .

We call fair valuation of counterparty risk, denoted by CR, the (G,Q)
value of C.
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Lemma 2

We have

CA = CVA+ FVA (31)

and

CR = CA� CL, (32)

which is also the (G,Q) value of (C + F +H).
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Regarding the FVA

The industry terminology tends to distinguish an FVA, in the
technical sense of the cost of funding cash collateral for variation
margin, from an MVA, defined as the cost of funding segregated
collateral posted as initial margin (see Albanese et al. (2017)).

The academic literature, as in this paper, tends to merge the two in
an overall FVA meant in the broad sense of the cost of funding the
derivative trading strategy of the bank.
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Regarding the contra-liabilities

The DVA is the value that the bank clients lose due to the possible
default of the bank in the future.

The FDA is the value of the amount of its funding debt that the bank
fails to reimburse if it defaults.

CVACL and FVACL are contra-liability components of the CVA and
the FVA, valuing the residual amounts 1{⌧<T}CVA

�
⌧ and

1{⌧<T}FVA
�
⌧ , summing up to 1{⌧<T}CA

�
⌧ = 1{⌧<T}RC

�
⌧ (cf. (16)),

which are transferred from the RC account to bank creditors at time
⌧ .
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Wealth Transfer Analysis

Lemma 3

Denoting by ⇧ the value of the client portfolio (process used by the CA
desk for marking to the model the client portfolio), defining VA = P � ⇧,
the trading loss processes Lca of the CA desk and L of the bank as a whole
satisfy

eLca = fVA
�
+ eC� + eF� + eH

eL = fVA
�
+ eC� + eF� + eH+ (eLcl)�.

(33)
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Proposition 2

(i) Assuming VA in S�
2

, we have VA = CA, hence

eLca = gCA+ eC� + eF� + eH
eL = gCA+ eC� + eF� + eH+ (eLcl)�.

(34)

(ii) If, in opposition to our assumptions so far, the bank could hedge its
own jump-to-default risk, i.e. assuming that the bank could and would
additionally sell on the financial markets a contract paying CL⌧ at time ⌧
(e.g. through repurchasing of its own bond as contemplated in Burgard
and Kjaer (2011a, 2011b)), assuming further VA in S�

2

and CL in S
2

,
then, before ⌧ , we would have

VA = CA� CL = CR. (35)
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Corollary 4

CL is interpreted as the wealth transfer triggered by the deals from
shareholders to creditors, due to the inability of the bank to hedge its own
jump-to-default exposure.
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Since a bank cannot hedge its own jump-to-default, Proposition 2
pleads in favor of an XVA add-on defined by CA = CVA + FVA.

However, not only a bank cannot hedge its own jump-to-default: It
cannot replicate its counterparty default losses either.

An XVA add-on defined by CA = CVA + FVA ensures that the
trading loss L of the bank is zero in expectation.

But the impossibility of replicating counterparty default losses implies
that the trading of the bank generates a non-vanishing loss-and-profit
process L.

Then the regulator comes and requires that capital be set at risk by
the shareholders, which therefore require a risk premium.
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Valuation is risk-neutral with respect to the stochastic bases (F,P) or
(G,Q).

Economic capital and KVA assess risk and its cost, which refer to the
historical probability measure.

In our setup, the duality of perspective of the clean vs. CA desks, on
pricing as reflected by Assumptions 1–2, also applies to risk
measurement.

Capital calculations are always made “on a going concern”,
i.e. assuming that the bank is alive, and therefore with respect to the
reference filtration F.
Instead, cost of capital calculations are made by the management of
the bank in a model including the default of the bank.
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However, in the context of XVA computations entailing projections
over decades, the main source of information is market prices of liquid
instruments, which allow the bank to calibrate the pricing measure,
and there is little of relevance that can be said about the historical
probability measure.

Hence, in our model:

Assumption 6

The estimates bP and bQ of the historical probability measure respectively
used in economic capital and cost of capital computations coincide with
the pricing measures P and Q.

Any discrepancy between P and bP or Q and bQ is left to model risk,
meant to be included in an AVA (additional valuation adjustment) in
an FRTB terminology, which is left for future research.
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Economic Capital

The economic capital (EC) of the bank is its resource devoted to
cope with losses beyond their expected levels that are already taken
care of by reserve capital (RC).

Basel II Pillar II defines economic capital as the 99% value-at-risk of
the negative of the variation over a one-year period of core equity tier
I capital (CET1), the regulatory metric that represents the wealth of
the shareholders within the bank.

Recently, the FRTB required a shift from 99% value-at-risk to 97.5%
expected shortfall.

In our setup, capital depletions correspond to the trading loss process
L.
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Accordingly, also accounting for discounting (and recalling that L0 is
the F reduction of L):

Definition 6

Our reference definition for the (discounted) economic capital of the bank
at time t is the (Ft ,P) conditional 97.5% expected shortfall of

(eL0t+1

� eL0t), which we denote by fES
0
t(L).

Solvency II introduces a further modification of economic capital,
which is required to be in excess of the risk margin (RM), i.e. of the
KVA (cf. (16)). This modification is considered later.
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For the purpose of economic capital and cost of capital computations,
the trading loss process L of the bank can be considered as an
exogenous process ((G,Q) martingale without jump at ⌧ , by Lemma
1).

Accordingly we just write fES
0
t for fES

0
t(L), and ES0t for ES

0
t(L), the

undiscounted version of fES
0
t(L).

Lemma 4

ES0 is nonnegative.
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KVA as a Risk Premium

Counterparty default losses, as also funding payments, are
materialities for default if not paid, hence true liabilities to
shareholders.

In contrast, KVA payments are at the discretion of the bank
management and released to bank shareholders themselves.

Accordingly:

Assumption 7

The risk margin is loss-absorbing, hence part of economic capital.
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Corollary 5

Shareholder capital at risk (SCR) is the di↵erence between the economic
capital (EC) of the bank and its risk margin (RM), i.e.

SCR = EC� RM. (36)

Assumption 8

An exogenous and constant hurdle rate h prevails, in the sense that bank
shareholders are constantly maintained by the KVA payments on an
“e�cient frontier” such that, at any time t

“Shareholder instantaneous average returnt = h ⇥ SCRt .” (37)
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In practice the level of compensation required by shareholders on their
capital at risk is driven by market considerations. Typically, investors
in banks expect a hurdle rate h of about 10% to 12%.

In this paper we assume a constant h for simplicity.

An endogenous and stochastic hurdle rate would arise in a model of
competitive equilibrium, where di↵erent banks compete for clients.

As opposed to our setup where only one bank is considered.
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In view of Lemma 1 and Corollary 5, where RM = KVA holds at all
times by (16), and since eL is a (G,Q) martingale by Lemma 1, the
informal statement (37) is formulated in mathematical terms by the
requirement that

(�]KVA) has a (G,Q) drift given as

the time-integrated process h (fEC� ]KVA),
(38)

assumed to define a unique KVA process in S�
2

This includes that the KVA process is defined until ⌧̄ and without jump
at ⌧ .
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However, the KVA equation (38) is only preliminary if EC there is
just meant as ES0, which would then be forgetful of a consistency
condition SCR � 0.

This is fixed in the next section by pushing EC above ES0 until the
constraint is satisfied.
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The KVA Constrained Optimization Problem

Assume that, for any tentative economic capital process C in a
suitable Hilbert space L

2

of square integrable processes containing S
2

and the process ES0, the equation (cf. (38))

(�eK ) has a (G,Q) drift given as the time-integrated process h(eC � eK )(39)

defines a unique process K = K (C ) in S�
2

.

Definition 7

The set of admissible economic capital processes is defined as

C = {C 2 L
2

;C � max
�
K (C ),ES0

�}, (40)

where (b) C � ES0 is the risk acceptability condition and (a) C � K (C ) is
the self-consistency condition.
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The KVA Constrained Optimization Problem

In view of (39) and (40), the natural guess for the smallest and
cheapest admissible economic capital process is

EC = max(ES0,KVA), (41)

for a process KVA in S�
2

such that

(�]KVA) has a (G,Q) drift given as the

time-integrated process h
�
max(fES

0
, ]KVA)� ]KVA

�
.

(42)

! The discounted KVA is a (G,Q) supermartingale.

Remark 3

In the case of perfect clean and CA hedges where the process L (hence L0)
is constant, then ES vanishes and KVA = 0 obviously solves (42) in S�

2

.
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Incremental XVA Approach

Given the actual (incremental) derivative porfolio of a bank, the
above can be applied to the version of the portfolio that would be
run-o↵ by the bank from time 0 onward until its final maturity T .

The ensuing XVA numbers are interpreted as the amounts
CA = CVA + FVA to maintain on the reserve capital (RC) account
and KVA to maintain on the risk margin (RM) account, which would
allow the bank to go into run-o↵ in line with shareholder interest.
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Such a “soft landing option” is key from a regulator point of view, as
it guarantees that the bank should not be tempted to go into
snowball or Ponzi kind of schemes where always more trades are
entered for the sole purpose of funding previously entered ones.

Ponzi scheme in the last financial crisis (source: O�ce of the

Comptroller of the Currency, Q3 2015 Quarterly Bank Trading

Revenue Report).
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Moreover, since we rely on a dynamic analysis, this possibility, for a
bank respecting the balance conditions (16), of going run-o↵ in line
with shareholder interest, is granted not only from time 0 onward, but
from any future time onward, as long as there are no new deals in the
portfolio.
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A new trade has two impacts: it triggers a wealth transfer from
shareholders to bondholders and alters the risk profile of the portfolio.

This is reflected by a jump “�·” of the balance sheet, from the one
related to the endowment (pre-trade portfolio) right before the time t
the new deal is considered, to the one related to the portfolio
including the new deal at time t (both portfolios being assumed held
on a run-o↵ basis).
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Hence the balance conditions (16) and the associated soft landing
option of the bank are impaired, unless the missing RC and RM
amounts are sourced from the client of the deal in order to restore
them.

! �RC = �CA,�RM = �KVA.
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! The all-inclusive XVA add-on to the entry price for a new deal, called
fund transfer pricing (FTP), is

FTP = �CA+�KVA = �CVA+�FVA+�KVA (43)

Obviously, the endowment has a key impact on the FTP of a new
trade. For instance, it can happen that a new deal is risk-reducing with
respect to the pre-existing portfolio, in which case FTP < 0.
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The preservation of the balance conditions in between and throughout
deals yields a sustainable strategy for profits retention, which is
already the key principle behind Solvency II.

From this “soft landing” perspective it is natural to perform the XVA
computations under the following assumption, in line with a run-o↵
procedure where market risk is first hedged out, but we conservatively
assume no XVA hedge, and the portfolio is then let to amortize until
its final maturity T :

Assumption 9

We assume a perfect clean hedge by the clean traders, i.e. Lcl constant

can be taken as zero as it is only the fluctuations of the loss processes
that matter

and no CA hedge, i.e. H = 0.
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As it then immediately follows from Lemma 3 and Proposition 2(i):

Corollary 6

We have

eL = eLca = gCA+ eC� + eF�. (44)

Hence the process L that is used as input to capital and KVA computations
(cf. Definition 6 and (42), where ES0 = ES0(L)) is the output of the CA
computations, making the XVA problem as a whole self-contained.
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Spaces

Assuming that the pre-intensity � of ⌧ is F predictable (without loss of
generality by reduction), we denote by:

S
2

, the space of càdlàg G adapted processes Y over [0, ⌧̄ ] such that,
denoting Y ⇤

t = sups2[0,t] |Ys |:

E
h
Y 2

0

+

Z T

0

e
R s
0

�udu1{s<⌧}d(Y
⇤
s )

2

i
< 1; (45)

S�
2

, the subspace of the processes Y in S
2

such that Y is without
jump at ⌧ on {⌧ < T} and YT = 0 on {T < ⌧};
S•
2

, the subspace of the processes Y in S
2

such that Y⌧̄ = 0;

L
2

, the space of G progressively measurable processes X over [0,T ]
such that

E
⇥ Z T

0

e
R s
0

�udu1{s<⌧}X
2

s ds
⇤
< +1; (46)
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S 0
2

, the space of càdlàg F adapted processes Y 0 over [0,T ] such that

E0
h

sup
t2[0,T ]

(Y 0
t )

2

i
< 1 (47)

and Y 0
T = 0;

L0
2

, the space of F progressively measurable processes X 0 over [0,T ]
such that

E0⇥
Z T

0

(X 0
t)

2dt
⇤
< +1. (48)
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KVA in the Case of a Default-Free Bank

Note that the primary reason for the KVA to exist is the default of
the bank clients, as opposed to the default of the bank itself

which on the other hand is the key of the contra-liabilities related
wealth transfer issue.

In this part we suppose the bank default free, i.e.

⌧ = +1 , (F,P) = (G,Q) and � = 0.

This is then extended to the case of a defaultable bank in the next part.
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At that stage in this part we use the “·0” notation, not in the sense of
reduction (as F = G), but simply in order to distinguish the equations
in this part, where F = G, from the ones in the next part, where
F 6= G

The data of this subsection will then be interpreted a posteriori as the
reductions of the corresponding data in the next subsection.
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Given C 0 � ES0 representing a putative economic capital process for the
bank, consider the following BSDEs (cf. (39) and (42) when ⌧ = +1):

K 0
t = E0

t

Z T

t

�
hC 0

s � (rs + h)K 0
s

�
ds , t 2 [0,T ], (49)

KVA0
t = E0

t

Z T

t

�
hmax(ES0s ,KVA0

s)� (rs + h)KVA0
s

�
ds , t 2 [0,T ](50)

to be solved for respective processes K 0 and KVA0.

Lemma 5

Assuming that r is bounded from below and that r , C 0, and ES0 are in L0
2

,
then the BSDEs (49) and (50) are well posed in S 0

2

, where well-posedness
includes existence, uniqueness and comparison. We have, for t 2 [0,T ],

KVA0
t = hE0

t

Z T

t
e�

R s
t (ru+h)du max(ES0s ,KVA0

s)ds. (51)

Proof. By application of monotonic coe�cient BSDE results (see
e.g. Kruse and Popier (2016, Sect. 4)).
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Proposition 3

Assuming that r is bounded from below and that r and ES0 are in L0
2

, we
have:
(i) EC0 = min C0,KVA0 = minC 02C0 K 0(C 0);
(ii) The process KVA0 is nonnegative and it is nondecreasing in h.

Proof. By applications of BSDE comparison theorem (see e.g. Kruse and
Popier (2016, Proposition 4).
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KVA in the Case of a Defaultable Bank

In the case of a defaultable bank, “·0” now denoting reduction, then, by
the results of Crépey and Song (2017b):

For any C 2 L
2

, we have C 0 2 L0
2

and the (G,Q) BSDE (39) in S�
2

is
equivalent to the (F,P) BSDE (49) in S 0

2

through the correspondence
K = (K 0)⌧� on [0, ⌧̄ ];

Assuming ES0 in L0
2

, the (G,Q) KVA BSDE (42) in S�
2

is equivalent
to the (F,P) KVA0 BSDE (50) in S 0

2

through the correspondence
KVA = (KVA0)⌧� on [0, ⌧̄ ].
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Hence, by application of Lemma 5 and Proposition 3 through the above
correspondences:

Lemma 6

Assuming that r is bounded from below and that r , C 0, and ES0 are in L0
2

,
then the (G,Q) linear BSDEs (39) for K = K (C ) and the (G,Q) KVA
BSDE (42) are well posed in S

2

, where well-posedness includes existence,
uniqueness and comparison.

Theorem 1

Assuming that r is bounded from below and that r and ES0 are in L0
2

:
(i) EC = min C,KVA = minC2C K (C );
(ii) The process KVA is nonnegative and it is nondecreasing in h.
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Contra-assets and Contra-liabilities

The counterparty exposure and funding cumulative cash flow streams
Y = C and F (recall Assumption 9 set H = 0) are given as G finite
variation processes.

C � and F� can be assumed to be F finite variation processes, without
loss of generality by reduction.

Regarding the funding cash flows, we assume more specifically:

dF�
t = ft(FVAt)dt until ⌧, (52)

for some predictable coe�cient (random function) f .
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A structure (52) for F is a slight departure from our abstract setup,
where, for simplicity of presentation in a first stage, F was introduced
as an exogenous process.

But, as already found in the one-period setup, the dependence of F
on the FVA is only semi-linear (i.e. f in (52) is Lipschitz or
monotonous) in practice.

Provided the corresponding FVA fixed-point problem is well-posed,
one can readily check, by revisiting all the above, that such
dependence does not a↵ect any of the qualitative conclusions in the
above.
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Theorem 2

For C and F thus specialized, the CVA and FVA equations (28) and (29)
in S�

2

are equivalent to the following equations in S 0
2

:

CVA0
t = E0

t

Z T

t
��1

t �sdC�
s , t 2 [0, T̄ ], (53)

FVA0
t = E0

t

Z T

t
��1

t �s fs(FVA
0
s)ds , t 2 [0, T̄ ], (54)

equivalent through the following correspondence:

CVA = (CVA0)⌧� and FVA = (FVA0)⌧� on [0, ⌧̄ ]. (55)

Proof. By application of the results of Crépey and Song (2017b), the
(G,Q) CVA equation (28) in S�

2

is equivalent through the first identity in
(55) to the (F,P) CVA0 formula (53) in S 0

2

. Likewise, for F� as per (52),
the (G,Q) FVA equation (29) in S�

2

is equivalent through (55) to the
(F,P) FVA0 BSDE (54) in S 0

2

.
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Example 4

In the setup of Example 2, we have, for 0  t  ⌧̄ :

dF�
t = �t(Qt � CAt)

+dt

dF•
t = (1� R)(Qt� � CAt�)

+(�dJt).
(56)

Hence F� is of the form (52) for ft(y) = �t(Qt � CVAt � y)+. and

dLcat = dCAt � rtCAtdt + dC�
t + �t(Qt � CAt)

+dt. (57)
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Example 4 (Cont’d)

Assume further that the bank portfolio involves a single client with
default time denoted by ⌧

1

, that Q(⌧
1

= ⌧) = 0, that the liquidation
of a defaulted party is instantaneous and that no derivative cash flows
are due at the exact times ⌧ and ⌧

1

.

Let J and J1, respectively R and R
1

, denote the survival indicator
processes and the recovery rates of the bank and its client.
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Example 4 (Cont’d)

Then Q is of the form J1Q1, where Q1 is the di↵erence between the
mark-to-market P of the variation margin provided by the CA desk to
the clean desks and the mark-to-market, denoted by �, of the
variation margin provided to the CA desk by the client.

Moreover, for 0  t  ⌧̄ ,

dC�
t = (1� R

1

)(Q1

⌧
1

)+(�dJ1t )

dC•
t = 1{⌧⌧

1

}(1� R)(Q1

⌧ )
�(�dJt).

(58)

115 / 149



Proposition 4

In the setup of Example 4, assuming that r is bounded from below and
that the processes r , �, and �(J1Q1 � CVA0)+ are in L0

2

, and that CVA0

in (60) is in S 0
2

, then the CVA and FVA equations (28) and (29) are
well-posed in S�

2

and we have, for 0  t  ⌧̄ :

CVAt = (CVA0)⌧�t and FVAt = (FVA0)⌧�t , where for 0  t  T :(59)

CVA0
t = E0

t

⇥
1{t<⌧

1

<T}�
�1

t �⌧
1

(1� R
1

)(Q1

⌧
1

)+
⇤
; (60)

FVA0
t = E0

t

Z T

t
��1

t �s�s(J
1

s Q
1

s � CVA0
s � FVA0

s)
+ds. (61)
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Proposition 4 (Cont’d)

CLt = Et
⇥
1{⌧⌧

1

^T}�
�1

t �⌧
1

(1� R)(Q1

⌧ )
�⇤

| {z }
FTDDVAt

(62)

+Et
⇥
�⌧/�t1{⌧<T}(J

1

⌧�Q
1

⌧� � CA⌧�)
+

⇤
| {z }

FDAt

(63)

+Et
⇥
��1

t �⌧1{⌧<T}CVA
0
⌧�

⇤
| {z }

CVACL
t

+Et
⇥
��1

t �⌧1{⌧<T}FVA
0
⌧�

⇤
| {z }

FVACL
t

; (64)

CRt = Et
⇥
1{t<⌧

1

⌧^T}�
�1

t �⌧
1

(1� R
1

)(Q1

⌧
1

)+
⇤

| {z }
FTDCVAt

(65)

�Et
⇥
1{t<⌧⌧

1

^T}�⌧
1

/�t(1� R)(Q1

⌧ )
�⇤

| {z }
FTDDVAt

dLt = dCAt � rtCAtdt + (1� R
1

)(Q1

⌧
1

)+(�dJ1t ) + �t(J
1

t Q
1

t � CAt)
+dt.(66)
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Proof. Under the assumptions of the proposition, the (F,P) FVA0 BSDE
(54) is a monotonous coe�cient BSDE well-posed in S 0

2

, based on the
results of Kruse and Popier (2016, Sect. 4).
In view of Theorem 2, this proves the CVA and FVA related statements,
whereas the CL and CR formulas (64) and (65) readily follow from (30),
(56) and (58) for CL and Definition 5 and (58) for CR.
The dynamics (66) for L are obtained by plugging into (57) the first line in
(58).
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Proposition 4 is easily extended to bilateral trade portfolios with
several counterparties.

cf. Albanese, Caenazzo, and Crépey (2017) and (73)-(74) below
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Proposition 4 is derived in a pure valuation perspective.

In most other former XVA references in the literature, XVA equations
are based on hedging arguments.

Most previous XVA works were not considering KVA yet.
Under our approach, the KVA is the risk premium for the market
incompleteness related to contra-assets.
Hence, for consistency, our KVA treatment requires a pure valuation
(as opposed to hedging) view on contra-assets
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The formula (65) for the valuation of counterparty risk is derived in
Du�e and Huang (1996) in the limit case of a perfect market
(complete counterparty risk market without trading restrictions).

Formula (65) is symmetrical, i.e. consistent with the law of one price,
in the sense that (FTDCVA� FTDDVA) corresponds to the
negative of the analogous quantity considered from the point of view
of the counterparty.

It only involves the first-to-default CVAs and DVAs, where the default
losses are only considered until the first occurrence of a default of the
bank or its counterparty in the deal.

This is consistent with the fact that later cash flows will, as first
emphasised in Du�e and Huang (1996), Bielecki and Rutkowski (2002)
and Brigo and Capponi (2008), not be paid in principle.
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Proposition 4 extends the validity of the formula (65) for the
valuation (CR) of counterparty risk from the point of view of the
bank of the whole in our incomplete market setup.

Since the presence of collateral has a direct reducing impact on
FTDCVA/DVA, this formula may give the impression that
collateralization achieves a reduction in counterparty risk at no cost
to either the bank or the clients.

However, in the present incomplete market setup, the value CR from
the point of view of the bank as a whole ignores the misalignement of
interest between the shareholders and the creditors of a bank.
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Proposition 4 gives explicit decompositions of the respective cost of
counterparty risk to shareholders (CA) and of the wealth transfer
(CL) triggered from the shareholders to the creditors by the
impossibility for the bank to hedge its own jump-to-default exposure.

Due to the latter and to the impossibility for the bank to replicate
counterparty default losses, these contra-liabilities (CL) as well as the
cost of capital (KVA) are material to shareholders and need to be
reflected in entry prices on top of the fair valuation (CR) of
counterparty risk.
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Only the fluctuations of L matter in economic capital calculations,
hence the (unknown) value of L

0

is immaterial in all XVA
computations.
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Even though our setup includes the default of the bank itself, which is
the essence of the contra-liabilities related wealth transfer issue, we
end up with unilateral CVA, FVA and KVA formulas such as (60),
(61) and (50) pricing the related cash flows until the end of times T
(as opposed to ⌧̄ = ⌧ ^ T ).

And these equations only involve the original discount factor �, without
any credit spread.

This is indeed what follows from a careful analysis of the wealth
transfers involved.

However this also makes the ensuing XVAs more expensive than the
bilateral XVAs that appear in most of the related literature.
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A unilateral CVA is actually required for being in line with the
regulatory requirement that reserve capital should not diminish as an
e↵ect of the sole deterioration of the bank credit spread.

But a bilateral FVA already satisfies the regulatory monotonicity
requirement

Essentially, as, when the bank credit spread deteriorates, the shortest
duration of a bilateral FVA is compensated by the higher funding
spread.

And the KVA is not concerned by this requirement.
Actually, a unilateral KVA might arguably be unjustified, with regard to
the fact that bank insolvency means depletion of the whole economic
capital of the bank, which includes the risk margin. Hence the notion
of transfer of the residual risk margin to creditors at bank default
would be pointless.
However, the default of a bank does not mean insolvency, but illiquidity
mainly.
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From Unilateral to Bilateral KVA

Assuming all the risk margin already gone at time ⌧̄ through some
additional model feature, such as an operational loss that would occur at ⌧
and trigger instantaneous depletion of economic capital, would result in
the following modified KVA equation in S•

2

:

(�]KVA
�
) has a (G,Q) drift given as the

time-integrated process h
�
max(fES

0
, ]KVA)� ]KVA

�
,

(67)

i.e.

KVAt = hEt

Z ⌧̄

t
e�

R s
t (ru+h)du max(ES0s ,KVAs)ds, t 2 [0, ⌧̄ ], (68)

or, in an an equivalent (F,P) formulation, KVA = (KVA0)⌧ on [0, ⌧̄ ],
where (compare with (51), noting in particular the “+�u” in the discount
factor in (69))

KVA0
t = hE0

t

Z T

t
e�

R s
t (ru+h+�u)du max(ES0s ,KVA0

s)ds, t 2 [0,T ]. (69)
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From Unilateral to Bilateral FVA

A bilateral FVA, which already satisfies the regulatory monotonicity
requirement on the related reserve capital, might be advocated as
follows.

Assume for the sake of the argument that the portfolio of the
defaulted bank with clients is unwounded with risk-free
counterparties, called novators.

The residual amount of CVA reserve capital is required by the
novators to deal with the residual counteparty risk on the deals.

But the residual amount of FVA reserve capital is useless to the
novators.

In view of this one could decide that, upon bank default, the residual
FVA capital reserve flows back into equity capital and not to creditors.

129 / 149



For formalizing this mathematically, one needs to disentangle the CA
desk into a CVA desk and an FVA desk, each endowed with their own
reserve capital account (and hedge).

This would result in an FVA equation stated in S•
2

as

]FVAt = Et
� eF�

⌧̄ � eF�
t

�
, t  ⌧̄ , (70)

instead of the FVA equation (29) in S�
2

.

That is (compare with (54))

FVAt = Et

Z ⌧̄

t
��1

t �s fs(FVAs)ds, t 2 [0, ⌧̄ ], (71)

or, equivalently, FVA = (FVA0)⌧ on [0, ⌧̄ ], where

FVA0
t = E0

t

Z T

t
e�

R s
t (ru+�u)dufs(FVA

0
s)ds, t 2 [0,T ]. (72)

Note again the blended discount factor in (72), as opposed to the
risk-free discount factor � in (54).
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Using Economic Capital as Variation Margin

Next we account for the additional FVA reduction provided by the
possibility for a bank to post economic capital, on top of reserve
capital already included in the above, as variation margin.

Note that, in principle, uninvested capital (UC) could be used for VM
as well, but since UC is not known and could as well be zero in the
future, capital is conservatively taken here as (RC+EC).

Accounting for the use of EC as VM, the VM funding needs are
reduced from (Q � CA)+ to (Q � EC(L)� CA)+.
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As a consequence, instead of an exogenous CA value process feeding the
dynamics (66) for L, one obtains the following FBSDE system of a forward
SDE for L coupled with a backward SDE for the CA value process
(assuming n counterparties with survival indicator processes J i , hence
Q =

P
J iQ i ):

L
0

= z and, for t 2 (0, ⌧̄ ],

dLt = dCAt +
X

i

(1� Ri )(Q
i
⌧i )

+(�dJ it)

+
⇣
�t
�X

i

J itQ
i
t � ECt(L)� CAt

�
+ � rtCAt

⌘
dt,

(73)

where

CAt = Et

X

t<⌧i<T

��1

t �⌧i (1� Ri )(Q
i
⌧i )

+

| {z }
CVAt

+ Et

Z ⌧̄

t
��1

t �s�s

⇣X

i

J isQ
i
s � ECs(L)� CAs

⌘
+

ds

| {z }
FVAt

, 0  t  ⌧̄ .
(74)
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Unless � = 0, nonstandard coupling between L and CA through the
term ECt(L), which entails the conditional law of the one-year-ahead
increments of L.

Crépey, Élie, and Sabbagh (2017) show that:
This FBSDE for L and CA can be decoupled into an anticipated BSDE
(ABSDE) for the underlying FVA process;
The previous results are still valid provided one replaces (Q � CA)+ by
(Q � EC(L)� CA)+ everywhere.
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Our XVA approach can be implemented by means of nested Monte
Carlo simulations for approximating the loss process L required as
input data in the KVA computations. Contra-assets (and
contra-liabilities if wished) are computed at the same time.

Practical trade-o↵: unilateral CVA vs. bilateral FVA and KVA.
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Since one of our goals in the numerics is to emphasize the impact on
the FVA of the funding sources provided by reserve capital and
economic capital, we consider the FBSDE (73)–(74) which accounts
for the use of EC (on top of RC) as VM.

Let

FVA(0)

t = Et

Z ⌧̄

t
��1

t �s�s(
X

i

J isQ
i
s)

+ds,

which corresponds to the FVA accounting only for the
re-hypothecation of the variation margin received on hedges, but
ignores the FVA deductions reflecting the possible use of reserve and
economical capital as VM.
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Picard iteration

L(0) = z , FVA(0) as above, CA(0) = CVA+ FVA(0) and, for k � 1,

L
(k)
0

= z and, for t 2 (0, ⌧̄ ],

dL
(k)
t = dCA(k�1)

t � rtCA
(k�1)

t dt +
X

i

(1� Ri )(Q
i
⌧i )

+(�dJ it)

+ �t

⇣X

i

J itQ
i
t �max

�
ESt(L

(k�1)),KVA(k�1)

t

�� CA(k�1)

t

⌘
+

dt,

CA(k)
t = CVAt + FVA(k)

t where FVA(k)
t =

Et

Z ⌧̄

t
��1

t �s�s
�X

i

J isQ
i
s �max

�
ESs(L

(k)),KVA(k�1)

s
�� CA(k�1)

s
�
+

ds

KVA(k)
t = hEt

Z ⌧̄

t
e�

R s
t (ru+h)du max

�
ESs(L

(k)),KVA(k�1)

s
�
ds.

(75)
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Numerically, one iterates (75) as many times as is required to reach a
fixed point within a preset accuracy.

In the case studies we considered, one iteration (k = 1) was found
su�cient.

A second iteration did not bring significant change as
In (73)-(74) the FVA feeds into economic capital only through FVA
volatility and the economic capital feeds into FVA through a capital
term which is typically not FVA dominated
In (68), in most cases we have that EC = ES. The inequality only
stops holding when the hurdle rate h is very high and the term
structure of EC starts very low and has a sharp peak in a few years,
which is quite unusual for a portfolio held on a run-o↵ basis, as
considered in XVA computations, which tends to amortize in time.
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However, going even once through (75) necessitates the conditional
risk measure simulation of ECt(L). On realistically large portfolios,
some approximation is required for the sake of tractability.

The simulated paths of L(1) are used for inferring a deterministic term
structure

ES(1)(t) ⇡ ESt(L
(1)) (76)

of economic capital, obtained by projecting in time instead of
conditioning with respect to Gt in ES.
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We present two XVA case studies on fixed-income and
foreign-exchange portfolios. Toward this end we use the market and
credit portfolio models of Albanese, Bellaj, Gimonet, and Pietronero
(2011) calibrated to the relevant market data.

We use nested simulation with primary scenarios and secondary
scenarios generated under the risk neutral measure calibrated to
derivative data using broker datasets for derivative market data.

All the computations are run using a 4-socket server for Monte Carlo
simulations, Nvidia GPUs for algebraic calculations and Global
Valuation Esther as simulation software. Using this super-computer
and GPU technology the whole calculation takes a few minutes for
building the models, followed by a nested simulation time in the order
of about an hour for processing a billion scenarios on a real-life bank
portfolio.
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Toy Portfolio

We first consider a portfolio of ten USD currency fixed-income swaps on
the date of 11 January 2016 (without initial margins, i.e. for IM = 0).

Toy portfolio of swaps (the

nominal of each swap is $10

4

)

Mat. Receiver Rate Payer Rate i
10y Par 6M LIBOR 3M 3
10y LIBOR 3M Par 6M 2
5y Par 6M LIBOR 3M 2
5y LIBOR 3M Par 6M 3

30y Par 6M LIBOR 3M 2
30y LIBOR 3M Par 6M 1
2y Par 6M LIBOR 3M 1
2y LIBOR 3M Par 6M 4

15y Par 6M LIBOR 3M 1
15y LIBOR 3M Par 6M 4

Credit curves of the bank and

its four conterparties
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Introducing financial contracts one after the other in one or the reverse
order in a portfolio at time 0 results in the same aggregated incremental
FTP amounts for the bank, equal to the “time 0 portfolio FTP”, but in
di↵erent FTPs for each given contract and counterparty.

Toy portfolio. Left: XVA values and standard relative errors (SE).

Right: Respective impacts when Swaps 5 and 9 are added last in the

portfolio.

$Value SE

UCVA
0

471.23 0.46%

FVA(0)

0

73.87 1.06%
FVA

0

3.87 4.3%
KVA

0

668.83 N/A

FTDCVA
0

372.22 0.46%
FTDDVA

0

335.94 0.51%

Swap 5 Swap 9

�UCVA
0

155.46 -27.17

�FVA(0)

0

-85.28 -8.81
�FVA

0

-80.13 -5.80
�KVA

0

127.54 -52.85

�FTDCVA
0

98.49 -23.83
�FTDDVA

0

122.91 -80.13
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Representative Portfolio

We now consider a representative portfolio with about 2,000
counterparties, 100,000 fixed income trades including swaps, swaptions,
FX options, inflation swaps and CDS trades (IM = 0).

XVA $Value

UCVA
0

242 M

FVA(0)

0

126 M
FVA

0

62 M
KVA

0

275 M

FTDCVA 194 M
FTDDVA 166 M
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Left: FVA blended funding curve computed from the ground up based

on capital projections.

Right: Term structure of economic capital compared with the term

structure of KVA.

Return to FVA Return to KVA Return to SCR
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