
Exercises

In this preliminary version of exercises, there are some changes of notation. The indicator process
11{τ≤t} is denoted A or H, its dual (resp. predictable) projection is Ao (resp. Ap), its dual optional
(resp. predictable projection is oA (resp. pA). The filtration of A (resp. H) is A (resp. H). The
numbering may be different from the one in the notes.

1.1 Chapter 1

Exercise 1.1.1 Starting from a non continuous on right filtration F0, define the smallest right-
continuous filtration F which contains F0.

Exercise 1.1.2 Prove that, for A ∈ Fτ , τA is a stopping time.

Exercise 1.1.3 Show that for an F-stopping time τ , one has τ ∈ Fτ− and Fτ− ⊂ Fτ . Find an
example where Fτ− ̸= Fτ .

Exercise 1.1.4 Check that if F ⊂ G and τ is an F-stopping time, (resp. an F-predictable stopping
time) it is a G-stopping time, (resp. G-predictable stopping time). Give an example where τ is a
G-stopping time but not an F-stopping time. Give an example where τ is a G-predictable stopping
time, and an F-stopping time, but not a predictable F-stopping time.

Exercise 1.1.5 Let B be a Brownian motion. Prove that exp(λBt − λ2

2 t) belongs to (C0).

Exercise 1.1.6 Prove that a positive local martingale is a super-martingale.

Exercise 1.1.7 Let B be a Brownian motion. Prove that Wt :=
∫ t

0
(sgnBs)dBs defines an FB and

an FW -Brownian motion.
Prove that βt := Bt −

∫ t

0
Bs

s ds defines a Brownian motion (in its own filtration) which is not a
Brownian motion in FB .

Exercise 1.1.8 Let N be a Poisson process. Prove that for any θ ∈ [0, 1],

Nt = θ(Nt − λt) + (1− θ)Nt + θλt = µt + (1− θ)Nt + θλt

where µ is a martingale. For which θ is the finite variation process (1 − θ)Nt + θλt a predictable
process ?

Exercise 1.1.9 Let τ be a random time. Prove that τ is a H-stopping time, where H is the natural
filtration of Ht = 11{τ≤t}, and that τ is a G stopping time, where G = F ∨H, for any filtration F.

Exercise 1.1.10 Prove that, if M is a K-martingale and F ⊂ K, then M̂ defined as M̂t = E(Mt|Ft)
is an F-martingale.
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Exercise 1.1.11 Prove that, if K = F ∨ F̃ where F̃ is independent of F, then any F-martingale
remains a K-martingale.

Exercise 1.1.12 Let M a càdlàg martingale. Prove that its predictable projection is Mt−.

Exercise 1.1.13 LetX be a measurable process (not necessarily F-adapted) such that E(
∫ t

0
|Xs|ds) <

∞ and define Yt =
∫ t

0
Xsds. Prove that Mt :=

o,FYt −
∫ t

0
o,FXsds is an F-martingale. In particular,

for any (bounded) process a (not necessarily F-adapted)

E(
∫ t

0

audu|Ft)−
∫ t

0

E(au|Fu)du

is an F-martingale.

Exercise 1.1.14 Prove that if X is bounded and Y predictable, then p(Y X) = Y pX

Exercise 1.1.15 Prove that the K-dual predictable projection of
∫ t

0
f(B

(ν)
s )ds where Kt = σ(|B(ν)

s |, s ≤
t) and B(ν)

t = Bt + νt for a Brownian motion B, is
∫ t

0
E(f(B(ν)

s )|Ks)ds and that

E(f(B(ν)
s )|Ks) =

f(B
(ν)
s )eνB

(ν)
s + f(−B(ν)

s )e−νB(ν)
s

2 cosh(νB
(ν)
s )

.

Exercise 1.1.16 Prove that, if (αs, s ≥ 0) is an increasing F-predictable process and X a positive
measurable process, then (∫ ·

0

Xsdαs

)p

t

=

∫ t

0

pXsdαs

Exercise 1.1.17 Prove that if X and Y are continuous, ⟨X,Y ⟩ = [X,Y ].
Prove that if M is the compensated martingale of a Poisson process with intensity λ, [M ] = N and
⟨M⟩t = λt.

Exercise 1.1.18 Give an example of random time τ where Ap and Ao are different.

Exercise 1.1.19 Let B be a Brownian motion, F its natural filtration and B∗
t = sups≤tBs. Prove

that, for t < 1,
E(f(B∗

1)|Ft) = F (1− t, Bt, B
∗
t )

with

F (s, a, b) =

√
2

πs

(
f(b)

∫ b−a

0

e−u2/(2s)du+

∫ ∞

b

f(u) exp

(
− (u− a)2

2s

)
du

)
.

Exercise 1.1.20 Let φ be a C1 function, B a Brownian motion and B∗
t = sups≤tBs. Prove that

the process
φ(B∗

t )− (B∗
t −Bt)φ

′(B∗
t )

is a local martingale.

Exercise 1.1.21 A Useful Lemma: Doob’s Maximal Identity.
Let X be a positive continuous martingale such that X0 = x and limt→∞Xt = 0. Prove that

P(sup
t≥0

Xt > a) =
(x
a

)
∧ 1 (1.1.1)

and supt≥0Xt
law
=

x

U
where U is a random variable with a uniform law on [0, 1].
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Exercise 1.1.22 Show that if Xn, n ≥ 1 is an integrable sequence of random variables, viewed
as a discrete time process, adapted to some filtration F, then, there exists a martingale M and a
predictable process A such that Xn =Mn +An.

SOLUTIONS

Exercise 1.1.1: Given the non right-continuous filtration F0 = (F0
t )t≥0, we define the smallest

right-continuous filtration F containing F0 as follows: for any t ≥ 0

Ft :=
∩
ϵ>0

F0
t+ϵ.

Indeed, it is by definition right continuous and it satisfies Ft ⊇ F0
t for any t.

Exercise 1.1.3: The stopping time τ is a jump of the predictable process 11{τ<t}, hence belongs to
Fτ−. If τ is the first jump of a compound Poisson process Xt =

∑Nt

n=1 Yn, the r.v. Y1 belongs to
FX

τ but not to FX
τ−

Exercise 1.1.4: The first time τ where a Poisson process X jumps is not FX predictable, but it is
predictable in FX initially enlarged with τ .

Exercise 1.1.7: The process W is a continuous FB-martingale with predictable bracket t. The
process β is a Gaussian process with mean zero and E(βtβs) = t ∧ s. Note that β is NOT an
FB-Brownian motion. The filtration Fβ is strictly smaller than FB . See [9] for details.

Exercise 1.1.8: It is known that(Mt := Nt − λt)t is an FN martingale, where FN is the natural
filtration ofN . The decomposition stated in the exercise is obvious. From µt = (1−θ)Mt, the process
µ is a martingale. The decomposition N = µt + Ct where Ct = (1− θ)Nt + θλt is a decomposition
of N as a martingale part and a bounded variation part, but since N is not predictable, C is not
predictable (TYhe non predictability of N this can be proved by contradiction, see e.g. Exercise
8.2.2.3 in [jyc:3m] or Liptser-Shiryaev II, Section 18.4).

Exercise 1.1.9: By definition of natural filtration, for every t ≥ 0, Ht is adapted to Ht, where
(Ht)t = H, so that {τ ≤ t} ∈ Ht and τ is an H-stopping time.
If Gt := Ft ∨Ht, ∀t ≥ 0, then {τ ≤ t} ∈ Gt and τ is also a G-stopping time, for any filtration F.

Exercise 1.1.10: It follows immediately by using the properties of conditional expectation: for
s ≤ t and given that Fs ⊆ Gt, we have

E[Mt|Fs] = E{E[Mt|Gs]|Fs} = E[Ms|Fs] =Ms,

if M is F-adapted.

Analogously, we have, for s ≤ t,

E[M̂t|Fs] = E[E[Mt|Ft]|Fs] = E[Mt|Fs] = E[Ms|Fs] = M̂s.

Exercise 1.1.11: We prove that for s ≤ t, E[Xt11G] = E[Xs11A], where X is an F-martingale and
G ∈ Gs of the form G = G1G2, where G1 ∈ Fs and G2 ∈ F̃s. We then have, from the assumed
independence

E[Xt11G] = E[11G2E[Xt11G1 |F̃s]] = E[11G2E[Xt11G1 ]]

= E[11G211G1E[Xt|Fs]] = E[11GXs].

We conclude applying the Monotone Class Theorem (MCT).

For the second part of the exercise, we recall that the Martingale Representation Theorem, in
the case of Brownian filtration, states that any (P,F)-martingale M can be written as

Mt =M0 +

∫ t

0

ξsdWs,



4 M. Jeanblanc

for some F−predictable process ξ (such that the above stochastic integral is well defined). From
Girsanov’s Theorem, furthermore, we know that if the Radon-Nikodým density of Q with respect
to P, in the filtration F, is Z, satisfying Z0 = 1 and dZt = ZtηtdWt (η F−adapted), then

W ∗
t :=Wt −

∫ t

0

ηsds, t ≥ 0,

is a (Q,F)-martingale. Because of the independence of F and F̃ under Q, from the first part of the
exercise it follows that W ∗ is a (Q,G)-martingale, too. To conclude, we apply once more Girsanov
theorem to pass, from measure Q to measure P in the filtration G and we immediately obtain the
(P,G) semi-martingale decomposition of M .

Exercise 1.1.12: By definition, we are looking for the predictable process (p)M that satisfies

E(Mτ11τ<∞|Fτ−) =
(p)Mτ11τ<∞,

for any F−predictable stopping time. A known result (see e.g. Dellacherie-Meyer, Vol. II, Ch. VI,
Th. 32) states that given a càdlàg local martingale and a predictable stopping time τ we have

E(Mτ11τ<∞|Fτ−) =Mτ−11τ<∞, a.s.

and this gives us the desired result.

Exercise 1.1.13: Let us compute the conditional expectation E(Mt|Fs), for s ≤ t, where (Mt)t :=(
E(
∫ t

0
audu|Ft)−

∫ t

0
E(au|Fu)du

)
t
.

E(Mt|Fs) = E
(
E(
∫ t

0

audu|Ft)−
∫ t

0

E(au|Fu)du|Fs

)
= E(

∫ t

0

audu|Fs)− E
(∫ s

0

E(au|Fu)du+

∫ t

s

E(au|Fu)du|Fs

)
= E(

∫ s

0

audu|Fs) + E(
∫ t

s

audu|Fs)−
∫ s

0

E(au|Fu)du− E
(∫ t

s

E(au|Fu)du|Fs

)
= Ms + E(

∫ t

s

audu|Fs)−
∫ t

s

E(au|Fs)du =Ms.

Other proof: We consider s ≤ t and we compute the following conditional expectation

E
(

oYt −
∫ t

0

oXudu
∣∣Fs

)
def
= E

(
o

(∫ t

0

Xudu

)
−
∫ t

0

oXudu
∣∣Fs

)
= E

(
E
(∫ t

0

Xudu|Ft

)
−
∫ t

0

E (Xu|Fu) du
∣∣Fs

)
,

where we have used Theorem VI.7.10 in Rogers-Williams (1994), that states that if X is a bounded
right-continuous process, then Z is indistinguishable from oX if and only if Z is an adapted right-
continuous process such that Zt = E[Xt|Ft]. We then find (notice that by setting the problem we
have implicitly assumed that the above optional projections exist)

E
(

oYt −
∫ t

0

oXudu
∣∣Fs

)
= E

(∫ s

0

Xudu|Fs

)
−
∫ s

0

E (Xu|Fu) du

+E
(
E
(∫ t

s

Xudu|Ft

)
−
∫ t

s

E (Xu|Fu) du
∣∣Fs

)
=o Ys −

∫ s

0

oXudu+ E
(∫ t

s

Xudu|Fs

)
−
∫ t

s

E (Xu|Fs) du

=o Ys −
∫ s

0

oXudu.
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Exercise 1.1.14: By definition, given a predictable stopping time τ , we look for a process (p)(Y X)
such that

E(YτXτ11{τ<∞}|Fτ−) =
(p)(Y X)11{τ<∞}.

By looking carefully at the definition of the σ−algebra Fτ−, it is clear that, for a predictable stopping
time τ , the random variable Yτ11{τ<∞} is Fτ−−measurable and we have

E(YτXτ11{τ<∞}|Fτ−) =
(p)(Xτ )Yτ11{τ<∞},

the conclusion follows.

Exercise 1.1.15: By using the results provided in the Example at page 10 of the notes, we have,
applying Girsanov’s theorem to pass from Bs to Bs + νs, for any s,

E(f(Bs + νs)|F |B|
s ) =

E(f(Bs)e
νBs− ν2s

2 |F |B|
s )

E(eνBs− ν2s
2 |F |B|

s )
=
f(|Bs|)eν|Bs| + f(−|Bs|)e−ν|Bs|

2 cosh(ν|Bs|)
= ?

Once proven that the above projection exists, we know that
(∫ t

0
f(B

(ν)
s )ds

)(p)
=
∫ t

0
(p)f(B

(ν)
s )ds

and as predictable projection of the integrand we take the continuous process E(f(B(ν)
s )|G(ν)

s ).

Exercise 1.1.16: We set At :=
∫ t

0
Xsdαs, so that dAt = Xtdαt, t ≥ 0 and, given a positive

F-predictable process Y , we consider the following stochastic integral, looking for the integrable
increasing F-predictable process Ap such that

E
(∫ ∞

0

YsdAs

)
= E

(∫ ∞

0

YsdA
p
s

)
.

By hypothesis, (αs, s ≥ 0) is an increasing predictable process and we have to consider the predictable
projection of X and

E
(∫ ∞

0

YsdAs

)
= E

(∫ ∞

0

YsXsdαs

)
= E

(∫ ∞

0

Ys
pXsdαs

)
.

Exercise 1.1.17: If X and Y are continuous, then ∆[X,Y ]t = ∆Xt∆Yt = 0 and the covariation
process is continuous and equal to < X,Y >.

Let us recall a general result: if X is a stochastic process with independent, stationary increments
(in French, “P.A.I.S.”), satisfying E[|Xt|] <∞, ∀t and E[|X2

t |] <∞, ∀t, then

Mt := Xt − E(Xt)

and
M2

t − E(X2
t )

are FX−martingales, where FX denotes the natural filtration associated to X.

In particular, in the case of a Poisson process N with deterministic constant intensity λ, Mt :=
Nt − λt and M2

t − λt are FN martingales. From the definition of predictable quadratic variation
process of M we then find that ⟨M⟩t = λt (the deterministic process (λt)t is predictable). We then
find (∆N)

2
= ∆N and M2

t −Nt =M2
t − λt+Mt is a martingale.

Exercise 1.1.18: Let τ be the first jump time of a Poisson process and M the martingale
Mt = Nt − λt . Then Zt = 11t<τ = 1− 11τ≤t = 1− A

(p)
t whereas the Doob-Meyer decomposition of

Z is Zt =Mt∧τ − λ(t ∧ τ)

Exercise 1.1.19: First of all we prove that effectively sups≤1Bs = sups≤tBs ∨ (M̂1−t + Bt) =

Mt ∨ (M̂1−t +Bt), by recalling that, given a Brownian motion B, the process (Bt+s −Bs)t =: (B̂t)t
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denotes another Brownian motion. Then, exploiting the independence property of the increments
of a Brownian motion and the measurability of Mt and Bt with respect to Ft, we have

E(f(M1)|Ft) = E
(
f(Mt ∨ (M̂1−t +Bt))|Ft

)
= E

(
f(b ∨ (M̂1−t + a))

)
|a=Bt,b=Mt

.

The result is an immediate consequence of the fact that the random variable M̂1−t has same law of
|B̂1−t|.
Exercise 1.1.20: As a first step we assume that φ is C2. Then, from integration by parts and
using the fact that B∗ is increasing

(B∗
t −Bt)φ

′(B∗
t ) =

∫ t

0

φ′(B∗
s ) d(B

∗
s −Bs) +

∫ t

0

(B∗
s −Bs)φ

′′(B∗
s )dB

∗
s .

Now, we note that
∫ t

0
(B∗

s − Bs)φ
′′(B∗

s )dB
∗
s = 0, since dB∗ is carried by {s : B∗

s = Bs}, and that∫ t

0
φ′(B∗

s )dB
∗
s = φ(B∗

t )−φ(0). The result follows. The general case is obtained using the Monotone
Class Theorem.

Exercise 1.1.21: (i) Let us consider the case x < a and introduce Ta := inf{t ≥ 0 : Mt ≥ a}. By
applying Doob’s optional sampling Theorem to the martingale M and to the finite stopping time
Ta ∧ t, we find

x = E(MTa∧t) = aP(Ta ≤ t) + E(Mt11{Ta>t})

= aP
(

sup
0≤s≤t

Ms ≥ a

)
+ E

(
Mt11{Ta>t}

)
. (1.1.2)

By letting t go to infinity, recalling that, by hypothesis, limt→∞Mt = 0 and thanks to the dominated
convergence theorem, we finally find

P( sup
0≤s≤+∞

Ms ≥ a) = P(sup
t
Mt ≥ a) =

x

a
.

In the case when x ≤ a, evidently P(Ta ≤ t) = 1 and the result follows. Furthermore, P( x
U ≥ a) =

P(U ≤ x
a ) =

(
x
a

)
∧ 1.

(ii) We consider Equation (1.1.2) in the case when x = 1, namely

1 = E(MTa∧t) = aP
(

sup
0≤s≤t

Ms ≥ a

)
+ E

(
Mt11{Ta>t}

)
and we let t go to infinity, obtaining

1 = aP
(
sup
t
Mt ≥ a

)
+ E

(
M∞11{Ta>+∞}

)
.

If we know that supMt
law
= x

U = 1
U , choosing a > 1 we have

1 = a
1

a
+ E

(
M∞11{Ta>+∞}

)
,

meaning that E
(
M∞11{Ta>+∞}

)
= 0. Now, P(Ta > +∞) = P(suptMt < a) = 1 −

(
1
a ∧ 1

)
= 1 − 1

a
and for a → +∞ we have P(Ta > +∞) → 1 and it follows that E(M∞) = 0 and, being M positive,
M∞ = 0 a.s.

Exercise 1.1.13: Let ϑ a bounded stopping time. Then,

E(Mϑ) = E
∫

11s<θ(Xs − oXs)ds =

∫
E(11s<θXs − o(11s<θXs))ds = 0
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1.2 Chapter 2

In this section, τ is a random time admitting the cumulative distribution function equal to F which
is supposed to satisfy F (t) < 1 and to be continuous, Γ = − ln(1 − F ), and G is the filtration F
progressively enlarged with τ .

Exercise 1.2.1 Assume that Y is H∞-measurable, so that Y = h(τ) for some Borel measurable
function h : R+ → R . Prove that

E(Y |Ht) = 11{τ≤t}h(τ) +
1

1− F (t)
11{t<τ}

∫ ∞

t

h(u) dF (u). (1.2.1)

Prove that

E(Y |Ht) = 11{τ≤t}h(τ) + 11{t<τ}

∫ ∞

t

h(u)eΓ(t)−Γ(u) dΓ(u) .

Find a predictable process φ so that dYt = φtdMt.

Exercise 1.2.2 a) Prove that the process Lt : = 11{τ>t} exp(Γ(t)) is an H-martingale and

Lt = 1−
∫
]0,t]

Lu−dMu (1.2.2)

In particular, for t < T ,
E(11{τ>T}|Ht) = 11{τ>t} exp(−Γ(t)) .

b) Let dQ|Ht
= LtdP|Ht

. Prove that Q(τ ≤ t) = 0.

Exercise 1.2.3 a) Let h : R+ → R be a (bounded) Borel measurable function. Prove that the
process

Yt := exp
(
11{τ≤t}h(τ)

)
−
∫ t∧τ

0

(eh(u) − 1) dΓ(u) (1.2.3)

is an H-martingale. Find a predictable process φ such that

dYt = φtdMt

Exercise 1.2.4 (i) Let h : R+ → R be a (bounded) Borel measurable function. Prove that the
process

Yt := exp
(
11{τ≤t}h(τ)

)
−
∫ t∧τ

0

(eh(u) − 1) dΓ(u)

is an A-martingale. Find an A-predictable process φ such that dYt = φtdMt.
(ii) Let h : R+ → R be a non-negative Borel measurable function such that the random variable
h(τ) is integrable. Prove that the process

Yt := (1 + 11{τ≤t}h(τ)) exp
(
−
∫ t∧τ

0

h(u) dΓ(u)
)
.

is an A-martingale. Find an A-predictable process φ such that dYt = φtdMt . Give a condition on h
so that Y is positive. In that case, find an A-predictable process ψ such that dYt = Yt−ψtdMt.

Exercise 1.2.5 Let B be a Brownian motion and τ = inf{t : Bt = a}. Find the compensator of τ
in the progressive enlargement of FB- with τ and the A-compensator of τ , where A is the natural
filtration of the process A.
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Exercise 1.2.6 In this exercise, F is only continuous on right, and F (t−) is the left limit of F at
point t. Prove that the process (Mt, t ≥ 0) defined as

Mt = Ht −
∫ τ∧t

0

dF (s)

1− F (s−)
= Ht −

∫ t

0

(1−Hs)
dF (s)

1− F (s−)

is an H-martingale.

Exercise 1.2.7 Prove that τ is independent of F∞ if and only if λ is a deterministic function.

Exercise 1.2.8 Assume that

dSt = St((r − δ)dt+ σdBt), S0 = 1

where B is a Brownian motion and let τ = inf{t : St ≤ α}, with α < 1. Define K = (Kt, t ≥ 0) as
the filtration generated by the observations of S at given times t1, . . . , tn with tn ≤ t < tn+1, that
is, Ht = σ(Ss, s ≤ tn) for tn ≤ t < tn+1. Compute the K-intensity rate of τ .

Exercise 1.2.9 Prove that, in a Cox model, τ is independent of F∞ if and only if λ is a deterministic
function. Prove that A is, in general, not immersed in G. Prove that, if λ is deterministic, A is
immersed in G.

Exercise 1.2.10 Write the risk-neutral dynamics of the price of the recovery for a general interest
rate r.

SOLUTIONS

Exercise 1.2.4: (i) Noting that

exp
(
11{τ≤t}h(τ)

)
= 11{τ≤t}(e

h(τ) − 1) + 1 =

∫ t

0

(eh(s) − 1)dAs + 1

the martingale property is obtained from Proposition 2.1.5. It follows that dYt = (eh(t) − 1)dMt.
(ii) In a first step, we establish that

Yt = exp
(
−
∫ t∧τ

0

h(u) dΓ(u)
)
= +

∫
]0,t]

h(u) exp
(
−
∫ t∧τ

0

h(s) dΓ(s)
)
dAu.

Using Itô’s formula, we obtain

dYt = exp
(
−
∫ t

0

(1−Au)h(u) dΓ(u)
)(
h(t) dAt − (1−At)h(t) dΓ(t)

)
= h(t) exp

(
−
∫ t

0

(1−Au)h(u) dΓ(u)
)
dMt.

This shows that M̂h is a local H-martingale. If h > 1 is is a positive local martingale. It can be
checked directly that E(Yt) = 1. Hence the process Y is indeed an A-martingale.

Exercise 1.2.5: The FB-compensator of τ is the predictable process 11{τ≤t}, the A-compensator of
τ is

∫ t∧τ

0
f(s)

P(τ>s)ds where f is the density of τ .

Exercise 1.2.8: It suffices to compute

Zt = P(τ > t|Kt) = 11{τ>tn}Φ(t− tn, α− Stn)

where Φ(t, z) = P(infs≤t Ss > z) and tn ≤ t < tn+1, and then apply Itô’s formula to find the
Doob-Meyer decomposition of Z. See [3] for details.

Exercise 1.2.9 If τ is independent of F∞, then P(τ > t|Ft) = P(τ > t) = e−Λt is deterministic.
Conversely, if Λ is deterministic, P(τ > t|F∞) is deterministic, hence the independence.
In general the A-martingale At −

∫ t∧τ

0
f(s)

P(τ>s)ds is not a G martingale. In a Cox process, if λ is
deterministic, the independence of τ and F∞ implies that A is immersed in G.
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1.3 Chapter 3

Exercise 1.3.1 Prove that H is, in general, not immersed in G. Prove that, if λ is deterministic,
H is immersed in G.

Exercise 1.3.2 Assume that F is immersed in G and that W is an F-Brownian motion. Prove that
W is a G-Brownian motion without using the bracket.

Exercise 1.3.3 Prove that, if F is immersed in K, then, for any t, Ft = Kt ∩ F∞.

Exercise 1.3.4 Show that, if τ ∈ F∞, immersion holds between F and F∨H where H is generated
by Ht = 11τ≤t if and only if τ is an F-stopping time.

Exercise 1.3.5 Prove that, if F is immersed in G under P and if Q is a probability equivalent to
P, then, any (Q,F)-semi-martingale is a (Q,G)-semi-martingale. Let

Q|Gt = LtP|Gt ; Q|Ft = ℓtP|Ft .

and X be a (Q,F) martingale. Assuming that F is a Brownian filtration and that L is continuous,
prove that

Xt +

∫ t

0

(
1

ℓs
d⟨X, ℓ⟩s −

1

Ls
d⟨X,L⟩s

)
is a (G,Q) martingale.
In a general case, prove that

Xt +

∫ t

0

Ls−

Ls

(
1

ℓs−
d[X, ℓ]s −

1

Ls−
d[X,L]s

)
is a (G,Q) martingale. See Jeulin and Yor [5].

Exercise 1.3.6 Let F ⊂ K and P be a probability measure. Let L be a positive (F,P)-martingale
with L0 = 1 and define

Q|Kt = LtP|Kt ; Q|Ft = ℓtP|Ft .

Prove that F ↪→ K under Q if and only if:

∀T, ∀X ≥ 0, X ∈ FT , ∀t < T,
EP(XLT |Kt)

Lt
=

EP(XℓT |Ft)

ℓt

Exercise 1.3.7 Assume that F is immersed in F̃ and τ is an F̃ stopping time. Prove that any F is
immersed in G.

Exercise 1.3.8 Assume that F (L)
t = Ft ∨ σ(L) where L is a random variable. Find under which

conditions on L, immersion property holds.

Exercise 1.3.9 Construct an example where some F-martingales are G-martingales, but not all F
martingales are G-martingales.

Exercise 1.3.10 Assume that F ⊂ G̃ where (H) holds for F and G̃.
a) Let τ be a G̃-stopping time. Prove that (H) holds for F and Fτ = F ∨H where Ht = σ(τ ∧ t).
b) Let G be such that F ⊂ G ⊂ G̃. Prove that F be immersed in G.

Exercise 1.3.11 Assume that F (τ)
t = Ft ∨ σ(τ) where τ is a positive random variable, and Gt =

Ft ∨Ht where Ht = σ(τ ∧ t). Find under which conditions on τ the filtration G is immersed in F(τ).
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Exercise 1.3.12 Prove that in a Cox model, immersion holds.

Exercise 1.3.13 Prove that if H and F are immersed in G, and if any F martingale is continuous,
then τ and F∞ are independent.

Exercise 1.3.14 Assume that immersion property holds and let, for every u, yt(u) be an F-
martingale. Prove that, for t > s,

11τ≤sE(yt(τ)|Gs) = 11τ≤sys(τ)

Exercise 1.3.15 Prove that G is immersed in F ∨ σ(τ) if and only if τ is constant.

Exercise 1.3.16 (A different proof of Norros’ result) Suppose that

P(τ ≤ t|F∞) = 1− e−Γt

where Γ is an arbitrary continuous strictly increasing F-adapted process. Prove, using the inverse
of Γ that the random variable Γτ is independent of F∞, with exponential law of parameter 1.

Exercise 1.3.17 Let F ↪→ K and a be a K-adapted process. Prove that E(
∫ t

0
asds|Ft) =

∫ t

0
E(as|Fs)ds.

Exercise 1.3.18 Show that, if τ ∈ F∞, immersion holds between F and the progressive enlargement
of F with τ if and only if τ is an F-stopping time.

Exercise 1.3.19 Let τi, i = 1, 2 be two random times such that P(τ1 = τ2) = 0 and Ai the filtration,
associated to τi. Prove that Ai, i = 1, 2 are immersed in A := A1 ∨ A2 if and only if τi, i = 1, 2 are
independent.

Exercise 1.3.20 Let F be the Brownian filtration generated by B and Xt =
∫ t

0
11{Bs>0}dBs. Prove

that the process X is an F-martingale, however, FX is not immersed in F.

Exercise 1.3.21 Let G be a Brownian filtration generated by B and F the filtration generated by
βt =

∫ t

0
sgn(Bs)dBs. Prove that F ↪→ G and β enjoys PRP as well in F and in G.

SOLUTIONS

Exercise 1.3.4 Immersion is equivalent to P(τ > t|Ft) = P(τ > t|F=∞) and the last quantity is
11τ>t.

Exercise 1.3.2: By definition (see e.g. [4], Definition 1.4.1.1) a continuous process X is said to
be a Brownian motion, if, between the others, one of the following equivalent properties is satis-
fied: either the processes (Xt)t≥0 and (X2

t − t)t≥0 are FX−local martingales, or, for any λ ∈ R,(
exp(λXt − λ2

2 t)
)
t≥0

is an FX−local martingale.

Since immersion property holds between F and G, the result is immediate.

Exercise ??: Because of property (H2) in Proposition 2.1.1, given A ∈ Kt ∩ F∞, we have 11A =
E(11A|F∞) = E(11A|Ft), meaning that A ∈ Ft. Conversely, if B ∈ Ft, it also holds B ∈ Kt and
B ∈ F∞ and we have equality between Ft and Kt ∩ F∞.

Exercise 1.3.5: Any (F,Q) martingale is an (F,P) semimartingale (Girsanov), hence a (G,P)
semimartingale (immersion) and a (G,Q) semimartingale (Girsanov).
We reproduce the proof of Jeulin & Yor [5, Theorem 3].

In a first step we assume that F-martingales are continuous. Given an (F,Q)−martingale X and
using that ( dP

dQ )|Ft
= 1

ℓt
, we know, thanks to Girsanov’s theorem, that

X̃t := Xt −
∫ t

0

ℓsd⟨X,
1

ℓ
⟩s, t ≥ 0,
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is an (F,P)-(local) martingale, hence, by immersion, a (G,P)-(local) martingale. We then apply
once more Girsanov’s theorem to pass from P to Q under G by means of L, so that we obtain the
following (G,Q)-(local) martingale, for any t,

X̄t := X̃t −
∫ t

0

1

Ls
d⟨X̃, L⟩s = Xt −

∫ t

0

ℓsd⟨X,
1

ℓ
⟩s −

∫ t

0

1

Ls
d⟨X,L⟩s.

In the general case,

X̃t := Xt −
∫ t

0

ℓsd[X,
1

ℓ
]s, t ≥ 0,

is a (F,P)-(local) martingale, that remains a (G,P)-(local) martingale, hence

X̄t := X̃t −
∫ t

0

1

Ls
d[X̃, L]s

is a (G,Q) local martingale. One has

X̄t = Xt −
∫ t

0

ℓsd[X,
1

ℓ
]s −

∫ t

0

1

Ls
d[X,L]s +

∫ t

0

ℓs
Ls
d[[X,

1

ℓ
], L]s

= Xt −
∫ t

0

ℓs(
∆Ls

Ls
− 1)d[X,

1

ℓ
]s −

∫ t

0

1

Ls
d[X,L]s

= Xt +

∫ t

0

ℓs(
∆Ls

Ls
− 1)d[X,

1

ℓ
]s −

∫ t

0

1

Ls
d[X,L]s

= Xt −
∫ t

0

ℓsLs−

Ls
d[X,

1

ℓ
]s −

∫ t

0

1

Ls
d[X,L]s

The result follows from ℓsd[X,
1
ℓ ]s = − 1

ℓs−
d[X, ℓ]s.

Exercise 1.3.6: Note that, for X ∈ FT ,

EQ(X|Gt) =
1

Lt
EP(XLT |Gt) , EQ(X|Ft) =

1

ℓt
EP(XℓT |Gt)

and that, from MCT, the hypothesis (H) holds under Q if and only if, ∀T, ∀X ∈ FT , ∀t ≤ T , one
has

EQ(X|Gt) = EQ(X|Ft) .

Exercise 1.3.8: First of all let us notice that if ζ is independent of F∞, then immersion holds
between F and Fσ(ζ). We will show that independence is not only a sufficient, but also a necessary
condition for immersion property to hold. We will exploit property (ii) in Proposition ??, namely
the fact that the hypothesis (H) is equivalent, for any t ≥ 0, to the conditional independence of
Fσ(ζ)

t and F∞ given Ft. Let us, then, consider an Fσ(ζ)
t -measurable random variable of the form

Fth(ζ), with Ft an Ft-measurable and an F∞-measurable random variable F∞. Immersion property
is equivalent, then, to

E(Fth(ζ)F∞|Ft)
(H)
= E(Fth(ζ)|Ft)E(F∞|Ft),

for any t ≥ 0.
In particular, taking a constant random variable Ft and t = 0 we find

E(h(ζ)F∞) = E(h(ζ))E(F∞)

and we find that immersion property is equivalent to the independence of random variables of the
form h(ζ) and F∞. As usual, an application of the Monotone Class Theorem allows us to conclude
the proof.
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Exercise 1.3.9 To construct an example it suffices to recall Example 1.1.7, namely we define
Gt := F∞, ∀ t ≥ 0. In this particular case, only constant F−martingales remain G−martingales.

Exercise 1.3.11: Immersion holds if and only if

E(h(τ)|Gt) = E(h(τ)|G∞)

Since G∞ = F∞ ∨ σ(τ), and τ being positive, G0 is the trivial sigma-algebra, this condition reduces
to E(h(τ)|Gt) = h(τ). In particular E(h(τ)) = h(τ), hence τ is constant.

Exercise 1.3.13 For h a bounded Borel function and X a bounded F∞-measurable martingale, the
two processes E(h(τ)|At) and E(X|Ft) are G-martingales. The continuity hypothesis implies that
they are orthogonal. Then

E(h(τ)X) = E(h(τ))E(X) .

Note that the assumption (C) can be replaced by assumption (A).

Exercise 1.3.19: Let Mf
t = E(f(τ1)|A1

t ) and Mg
t = E(g(τ2)|A2

t ). From immersion property, these
processes are A-martingales. The pure jump martingale Mf (resp. Mg) has a single jump at time
τ1 (resp. at τ2) hence, they are orthogonal, and

E(f(τ1)g(τ2)) = E(Mf
∞M

g
∞) =Mf

0M
g
0 = E(Mf

∞)EMg
∞) = E(f(τ1))E(g(τ2))

Exercise 1.3.20: There are FM martingales which are discontinuous, hence FM is not immersed
in F [8, ex 4.25, page 216]. Example of such a discontinuous martingale: let Ta = inf{t : Bt = a}
and σ := inf{t > T−1, Bt = 0}. Then, σ is a totally inaccessible FM -stopping times, which admits a
continuous compensator. The compensated FM -martingale is discontinuous. See [2, Proposition 9].

1.4 Chapter 4

Exercise 1.4.1 a) Prove that the Riemann integral
∫ t∧1

0
B1−Bs

1−s ds is absolutely convergent.
b) Prove that, for 0 ≤ s < t ≤ 1, E(Bt −Bs|B1 −Bs) =

t−s
1−s (B1 −Bs)

Exercise 1.4.2 Using the notation of Proposition 4.1.2, prove that B1 and β are independent.
Check that the projection of β on FB is equal to B.

Exercise 1.4.3 Consider the SDE{
dXt = − Xt

1− t
dt+ dWt ; 0 ≤ t < 1

X0 = 0

1. Prove that

Xt = (1− t)

∫ t

0

dWs

1− s
; 0 ≤ t < 1 .

2. Prove that (Xt, t ≥ 0) is a Gaussian process. Compute its expectation and its covariance.

3. Prove that limt→1Xt = 0.

Exercise 1.4.4 (See Jeulin and Yor [6]) Let Xt =
∫ t

0
φsdBs where φ is predictable such that∫ t

0
φ2
sds <∞. Prove that the following assertions are equivalent

1. X is an F(B1)-semimartingale with decomposition

Xt =

∫ t

0

φsdβs +

∫ t∧1

0

B1 −Bs

t− s
φsds
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2.
∫ 1

0
|φs| |B1−Bs|

1−s ds <∞

3.
∫ 1

0
|φs|√
1−s

ds <∞

Exercise 1.4.5 Prove that, for any enlargement of filtration the compensated martingaleM remains
a semi-martingale.

Exercise 1.4.6 Prove that any FN -martingale is a G∗-semimartingale.

Exercise 1.4.7 Prove that

ηt = Nt −
∫ t∧T

0

NT −Ns

T − s
ds− (t− T )+,

Prove that

⟨η⟩t =
∫ t∧T

0

NT −Ns

T − s
ds+ (t− T )+ .

Therefore, (ηt, t ≤ T ) is a compensated G∗-Poisson process, time-changed by
∫ t

0
NT−Ns

T−s ds, i.e.,
ηt = M̃(

∫ t

0
NT−Ns

T−s ds) where (M̃(t), t ≥ 0) is a compensated Poisson process.

Exercise 1.4.8 A process X fulfills the harness property if

E
(
Xt −Xs

t− s

∣∣∣Fs0], [T

)
=
XT −Xs0

T − s0

for s0 ≤ s < t ≤ T where Fs0], [T = σ(Xu, u ≤ s0, u ≥ T ). Prove that a process with the harness
property satisfies

E
(
Xt

∣∣∣Fs], [T

)
=
T − t

T − s
Xs +

t− s

T − s
XT ,

and conversely. Prove that, if X satisfies the harness property, then, for any fixed T ,

MT
t = Xt −

∫ t

0

du
XT −Xu

T − u
, t < T

is an Ft], [T -martingale and conversely. See [3M] for more comments.

Exercise 1.4.9 Assume that F is a Brownian filtration. Then, check directly that E(
∫ t

0
d⟨p·(L),X⟩s

ps− (L) |Ft)

is an F-martingale.

Exercise 1.4.10 Prove that if there exists a probability Q∗ equivalent to P such that, under Q∗,
the r.v. L is independent of F∞, then every (P,F)-semi-martingale X is also an (P,F(L))-semi-
martingale. See the last Chapter

Exercise 1.4.11 Prove that, if τ is an F stopping time, G = F.

Exercise 1.4.12 Prove that
{τ > t} ⊂ {Zt > 0} (1.4.1)

(where the inclusion is up to a negligible set).

Exercise 1.4.13 Let τ be an honest time. Prove that

E(f(τ)|Ft) = f(τ)(1− Zt) + E(
∫ ∞

t

f(s)dAp
s |Ft)
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Exercise 1.4.14 Prove that G∗
t := {A ∈ F∞ : A = (Ãt∩{τ ≤ t})∪ (Ât∩{τ > t}) for some Ât, Ãt ∈

Ft} defines indeed a filtration (i.e., the increasing property holds).

Exercise 1.4.15 Prove that any F-stopping time is honest

Exercise 1.4.16 Prove that, under (CA)

E(
∫ t∧τ

0

d⟨M,µ⟩s
Zs−

−
∫ τ∨t

τ

d⟨M,µ⟩s
1− Zs−

|Ft)

is an F-local martingale, without using the semimartingale decomposition.

Exercise 1.4.17 Let B be a Brownian motion and

T (ν)
a = inf{t : Bt + νt = a}
G(ν)

a = sup{t : Bt + νt = a}

Prove that
(T (ν)

a , G(ν)
a )

law
=

(
1

G
(a)
ν

,
1

T
(a)
ν

)
Give the law of the pair (T

(ν)
a , G

(ν)
a ).

Exercise 1.4.18 Let X be a transient diffusion, such that

Px(T0 <∞) = 0, x > 0

Px( lim
t→∞

Xt = ∞) = 1, x > 0

and note s the scale function satisfying s(0+) = −∞, s(∞) = 0. Prove that for all x, t > 0,

Px(Gy ∈ dt) =
−1

2s(y)
p
(m)
t (x, y)dt

where p(m) is the density transition w.r.t. the speed measure m.

Exercise 1.4.19 Prove that, if Z = N/N∗ is the multiplicative decomposition of Z, then L = 1
N .

SOLUTIONS

Exercise 1.4.2: : The Fσ(B1)-Brownian motion β is independent of Fσ(B1)
0 .

Exercise ??: The optimal terminal wealth for F-predictable portfolio is of the formX∗
T = (U ′)−1(νLT )

for some LT Radon-Nikodym density of an e.m.m.. Convexity inequality proves that E(U(XG
T ) −

U(X∗
T )) ≤ E((XG

T −X∗
T )νLT ) = E(XG

T νLT ) − νx and the conclusion follows, since, L being also a
G e.m.m. one has E(XG

T νLT ) ≤ x.

1.5 Chapter 5

Exercise 1.5.1 Solve the optimization problem in F and Fσ(B1) for power utility function.

Exercise 1.5.2 Assume that F is a Brownian filtration. Then, check directly that

E

(∫ t

0

1

pζs−
d⟨pu, X⟩s|u=ζ |Ft

)
is an F-martingale.
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Exercise 1.5.3 Prove that if there exists a probability Q∗ equivalent to P such that, under Q∗, the
r.v. ζ is independent of F∞, then every (F,P)-semimartingale X is also an (Fσ(ζ),P)-semimartingale.

Exercise 1.5.4 Find the Fσ(ζ)-semimartingale decomposition of F-martingales when F is a Brown-
ian filtration and ζ = 11{a≤BT≤b}. Discuss arbitrages opportunities.

Exercise 1.5.5 Let τ be an honest time. Prove that

E(h(τ)|Ft) = h(τ)(1− Zt) + E(
∫ ∞

t

h(s)dAp
s |Ft).

Exercise 1.5.6 Prove that

G∗
t := {A ∈ F∞ : A = (Ãt ∩ {τ ≤ t}) ∪ (Ât ∩ {τ > t}) for some Ât, Ãt ∈ Ft}

defines indeed a filtration (i.e., the increasing property holds).

Exercise 1.5.7 Assume F is a Brownian filtration and τ an honest time. Let X be a positive F
martingale. Prove that, if Z is continuous and Z = N/N∗ is its multiplicative decomposition, then
XτL is a G-local martingale for L = 1

Nτ .

Exercise 1.5.8 Let τ and τ∗ be two honest times. Show that τ ∨ τ∗ is an honest time.

Exercise 1.5.9 Compute the projection of the martingale L (defined earlier as Lt =
1
pτ
t
, t ≥ 0) on

G.

Exercise 1.5.10 If τ is a pseudo-stopping time and Z is continuous, prove that Zτ has a uniform
law.

SOLUTIONS

Exercise 1.5.2: Note that the result is obvious from the decomposition theorem: indeed taking
expectation w.r.t. Ft of the two sides of

X̃t = Xt −
∫ t

0

1

pζs−
d⟨pu, X⟩s|u=ζ

leads to

E(X̃t|Ft) = Xt − E(
∫ t

0

1

pζs−
d⟨pu, X⟩s|u=ζ |Ft),

and E(X̃t|Ft) is an F-martingale.

Our aim is to check it directly. Writing dput = put σt(u)dBt and dXt = xtdBt, we note that
P(ζ ∈ R|Fs) =

∫
R p

u
sη(du) = 1 implies that∫

R
pusη(du) =

∫
R
pu0η(du) +

∫ t

0

dBs

∫
R
σs(u)p

u
sη(du)

= 1 +

∫ t

0

dBs

∫
R
σs(u)p

u
sη(du)

hence
∫
R σs(u)p

u
sη(du) = 0. The process E(

∫ t

0
1

pζ

s−
d⟨pu, X⟩s|u=ζ |Ft) is equal to a martingale plus∫ t

0
E(σs(ζ)xs|Fs)ds =

∫ t

0
ds xs

∫
R σs(u)p

u
sη(du) = 0.
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Exercise 1.5.7: By Itô’s formula and the fact that one can write dN = φdX

1

N τ
= 1− 1

(N τ )
2 ·N τ +

1

(N τ )
3 · ⟨N⟩τ = 1− φ

(N τ )
2 ·X τ +

φ

(N τ )
3 · ⟨X τ , N⟩

= 1− φ

(N τ )
2 · X̂ τ ,

where X̂ is a G-martingale. This shows that 1/N τ is a positive continuous G-local martingale
satisfying 1/N τ

0 = 1 . Let X be an F-martingale. Using integration by parts

X τ

N τ
= X0 +

1

N τ
·X τ +X τ · 1

N τ
+
⟨
X τ ,

1

N τ

⟩
= X0 +

1

N τ
· X̂ τ +X τ · 1

N τ
.

Exercise 1.5.9: An application of the key Lemma yields to the corresponding Radon-Nikodym
density on G:

dP∗
|Gt

= ℓt dP|Gt
,

with

ℓt := E(Lt|Gt) = 11t<τ
1

Gt

∫ ∞

t

ν(du) + 11τ≤t
1

pt(τ)

= 11t<τ
G(t)

Gt
+ 11τ≤t

1

pt(τ)
.

1.6 Chapter 6

1.7 Chapter 7

Exercise 1.7.1 Prove that if X is a (square-integrable) F-martingale, XL is a G -martingale, where
L = (1H)/Z.

Exercise 1.7.2 We consider, as in the paper of Biagini et al. [1] a mortality bond, a financial
instrument with payoff Y =

∫ τ∧T

0
Zsds, where Zs = P(τ > s|Fs) where F is a continuous filtration.

We assume that Z is continuous, admits a Doob-Meyer decomposition as Z = µ − A and does not
vanish.

1. Compute, in the case r = 0, the price Yt of the mortality bond. It will be convenient to
introduce Nt = E(

∫ T

0
Z2
sds|Ft). Is the process N a (P,F) martingale? a (P,G)-martingale?

2. Determine the processes α, β and γ so that

dYt = αtdMt + βt(dNt −
1

Zt
d⟨N,Z⟩t) + γt(dZt −

1

Zt
d⟨Z⟩t)

3. Determine the price D(t, T ) of a defaultable zero-coupon bond with maturity T , i.e., a financial
asset with terminal payoff 11T<τ . Give the dynamics of this price.

4. We now assume that F is a Brownian filtration, and that a risky asset with dynamics

dSt = St(bdt+ σdWt)

is traded. Explain how one can hedge the mortality bond.

for a more exhaustive study.
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Exercise 1.7.3 Prove that, if τ is an F stopping time, G = F.

Exercise 1.7.4 Prove that
{τ > t} ⊂ {Zt > 0} (1.7.1)

(where the inclusion is up to a negligible set).

Exercise 1.7.5 Prove that if X is a (square-integrable) F-martingale, XL is a G -martingale, where
L is defined in Proposition ??.

Exercise 1.7.6 We consider, as in the paper of Biagini et al. [1] a mortality bond, a financial
instrument with payoff Y =

∫ τ∧T

0
Zsds, where Zs = P(τ > s|Fs) where F is a continuous filtration.

We assume that Z is continuous, admits a Doob-Meyer decomposition as Z = µ − A and does not
vanish.

1. Compute, in the case r = 0, the price Yt of the mortality bond. It will be convenient to
introduce Nt = E(

∫ T

0
Z2
sds|Ft). Is the process N a (P,F) martingale? a (P,G)-martingale?

2. Determine the processes α, β and γ so that

dYt = αtdMt + βt(dNt −
1

Zt
d⟨N,Z⟩t) + γt(dZt −

1

Zt
d⟨Z⟩t)

3. Determine the price D(t, T ) of a defaultable zero-coupon bond with maturity T , i.e., a financial
asset with terminal payoff 11T<τ . Give the dynamics of this price.

4. We now assume that F is a Brownian filtration, and that a risky asset with dynamics

dSt = St(bdt+ σdWt)

is traded. Explain how one can hedge the mortality bond.

Exercise 1.7.7 Let τ be an honest time. Prove that

E(f(τ)|Ft) = f(τ)(1− Zt) + E(
∫ ∞

t

f(s)dAp
s |Ft)

Exercise 1.7.8 Prove that G∗
t := {A ∈ F∞ : A = (Ãt∩{τ ≤ t}) ∪ (Ât∩{τ > t}) for some Ât, Ãt ∈

Ft} defines indeed a filtration (i.e., the increasing property holds).

Exercise 1.7.9 Prove that any F-stopping time is honest

Exercise 1.7.10 Prove that, under (CA)

E(
∫ t∧τ

0

d⟨M,µ⟩s
Zs−

−
∫ τ∨t

τ

d⟨M,µ⟩s
1− Zs−

|Ft)

is an F-local martingale, without using the semimartingale decomposition.

Exercise 1.7.11 Let X be a drifted Brownian motion with positive drift ν and Λν
y its last passage

time at level y. Prove that

Px(Λ
(ν)
y ∈ dt) =

ν√
2πt

exp

(
− 1

2t
(x− y + νt)2

)
dt ,

and

Px(Λ
(ν)
y = 0) =

{
1− e−2ν(x−y), for x > y
0 for x < y .
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Prove, using time inversion that, for x = 0,

Λ(ν)
y

law
=

1

T
(y)
ν

where
T (b)
a = inf{t : Bt + bt = a}

See Madan et al. [7].

Exercise 1.7.12 The aim of this exercise is to compute, for t < T < 1 , the quantity E(h(WT )11{T<g1}|Gt),
which is the price of the claim h(ST ) with barrier condition 11{T<g1}.
Prove that

E(h(WT )11{T<g1}|Ft) = E(h(WT )|Ft)− E
(
h(WT )Φ

( |WT |√
1− T

) ∣∣∣Ft

)
,

where

Φ(x) =

√
2

π

∫ x

0

exp

(
−u

2

2

)
du .

Define k(w) = h(w)Φ(|w|/
√
1− T ). Prove that E

(
k(WT )

∣∣∣Ft

)
= k̃(t,Wt), where

k̃(t, a) = E
(
k(WT−t + a)

)
=

1√
2π(T − t)

∫
R
h(u)Φ

( |u|√
1− T

)
exp

(
− (u− a)2

2(T − t)

)
du.

Exercise 1.7.13 Let M be a positive martingale, such that M0 = 1 and limt→∞Mt = 0. Let
a ∈ [0, 1[ and define Ga = sup{t : Mt = a}. Prove that

P(Ga ≤ t|Ft) =

(
1− Mt

a

)+

Assume that, for every t > 0, the law of the r.v. Mt admits a density (mt(x), x ≥ 0), and (t, x) →
mt(x) may be chosen continuous on (0,∞)2 and that d⟨M⟩t = σ2

t dt, and there exists a jointly
continuous function (t, x) → θt(x) = E(σ2

t |Mt = x) on (0,∞)2. Prove that

P(Ga ∈ dt) = (1− M0

a
)δ0(dt) + 11{t>0}

1

2a
θt(a)mt(a)dt

Exercise 1.7.14 Let B be a Brownian motion and

T (ν)
a = inf{t : Bt + νt = a}
G(ν)

a = sup{t : Bt + νt = a}

Prove that
(T (ν)

a , G(ν)
a )

law
=

(
1

G
(a)
ν

,
1

T
(a)
ν

)
Give the law of the pair (T

(ν)
a , G

(ν)
a ).

Exercise 1.7.15 Let X be a transient diffusion, such that

Px(T0 <∞) = 0, x > 0

Px( lim
t→∞

Xt = ∞) = 1, x > 0

and note s the scale function satisfying s(0+) = −∞, s(∞) = 0. Prove that for all x, t > 0,

Px(Gy ∈ dt) =
−1

2s(y)
p
(m)
t (x, y)dt

where p(m) is the density transition w.r.t. the speed measure m.
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Exercise 1.8.1 Prove that (Yt(τ), t ≥ 0) is a (P,F(τ))-martingale if and only if Yt(x)pt(x) is a
family of F-martingales.

Exercise 1.8.2 Let F be a Brownian filtration. Prove that, if X is a square integrable (P,F(τ))-
martingale, then, there exists a function h and a process ψ such that

Xt = h(τ) +

∫ t

0

ψs(τ)dBs

Exercise 1.8.3 Give a direct check of Proposition ?? in a Brownian filtration

Exercise 1.8.4 Prove that the change of probability measure generated by the two processes

zt = (LF
t )

−1, zt(θ) =
pθ(θ)

pt(θ)

provides a model where the immersion property holds true, and where the intensity processes does
not change

Exercise 1.8.5 Check that

E(
∫ t∧τ

0

d⟨X,G⟩s
Gs−

−
∫ t

t∧τ

d⟨X, p(θ)⟩s
ps−(θ)

∣∣∣∣
θ=τ

|Ft)

is an F-martingale.
Check that that

E(
∫ t

0

d⟨X, p(θ)⟩s
ps−(θ)

∣∣∣∣
θ=τ

|Gt)

is a G martingale.

Exercise 1.8.6 Let λ be a positive F-adapted process and Λt =
∫ t

0
λsds and Θ be a strictly positive

random variable such that there exists a family γt(u) which satisfies P(Θ > θ|Ft) =
∫∞
θ
γt(u)du.

Let τ = inf{t > 0 : Λt ≥ Θ}.Prove that the density of τ is given by

pt(θ) = λθγt(Λθ) if t ≥ θ and pt(θ) = E[λθγθ(Λθ)|Ft] if t < θ.

Conversely, if we are given a density p, prove that it is possible to construct a threshold Θ such that
τ has p as density.
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