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The problem of enlargement of filtration is the following.

Let X be an F-martingale and G a filtration larger than F (that is such that Ft ⊂ Gt for any t).

In finance, its means that one of the agent (the G one) has more information than the other (the F
one).

What can be said about X in the filtration G? This is important when one would like to define

stochastic integrals of the form
∫
ϑsdXs when ϑ is G -adapted (e.g. if an investor has access to

some information not contained in the prices). If X is a price process (an F-semimartingale), which

is not a G-semimartingale, the informed agent has obviously arbitrage opportunities due to the

fundamental theorem of asset pricing.

A semimartingale is a process of the form X = M +A where M is a martingale and A a bounded

variation process.
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Examples and counter examples:

• Let Gt = F∞ and F0 trivial. Then, only constant F-martingales are G-semimartingales.

• Let F be the natural filtration of a Brownian motion and Gt = Ft+ϵ,∀t. Then, the F-BM is not a

G-semimartingale.

• Let Gt = Ft ∨ F̃t with F̃∞ independent of F∞ under a probability Q, equivalent to P. Then all

(P,F)-martingales are (P,G)-semimartingales

• Initial enlargement : Let ζ be a random variable and Gt = Ft ∨ σ(ζ).

Example: Let S be a price process F-adapted and Gt = Ft ∨ σ(ST ). Obviously there are

arbitrages.

• Progressive enlargement : Let τ a random time, i.e., a non negative random variable. Then,

Gt = Ft ∨ σ(τ ∧ t) is the smallest filtration which contains F and makes τ a stopping time.
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1 DRIFT INFORMATION FOR AN ENLARGEMENT IN A BROWNIAN SETTING

1 Drift information for an Enlargement in a Brownian setting

We assume in this part that

• F is the filtration generated by a Brownian motion W and G is a filtration larger than F

• there exists an integrable G-adapted process µG such that dWt = dWG
t + µG

t dt where WG is

a G-BM,

• In the financial market, a risky asset with price S (an F-adapted positive process) and a riskless

asset S0 ≡ 1 are traded. This market is supposed to be arbitrage free. More precisely, we assume

that S is a (P,F) (local) martingale, dSt = StσtdWt.
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Let X be the wealth process associated with an F (resp. G) -predictable strategy π̂: dXt = π̂tdSt.

Our goal is to solve sup(E(lnXT ), π̂ ∈ F) and sup(E(lnXT ), π̂ ∈ G).

• For π̂ ∈ F, restricting attention to positive wealth processes,

dXt = π̂tStσtdWt = πtXtdWt

and

Xt = x exp

(∫ t

0

πsdWs −
1

2

∫ t

0

π2
sds

)
.

Then, assuming some regularity on the set of strategies

E(lnXT ) = lnx+ E(
∫ T

0

πsdWs −
1

2

∫ T

0

π2
sds) = lnx− 1

2

∫ T

0

E(π2
s)ds .

The optimal strategy is π = 0 and E(lnX∗
T ) = lnx.

F = FW ⊂ G, dWt = dWG
t + µG

t dt 5
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• For π̂ ∈ G
dXt = πtXtdWt = πtXt(dW

G
t + µG

t dt)

so that

Xt = x exp

(∫ t

0

πsdW
G
s − 1

2

∫ t

0

π2
sds+

∫ t

0

πsµ
G
s ds

)
Therefore

E(lnXT ) = lnx+ E

(
−1

2

∫ T

0

π2
sds+

∫ T

0

πsµ
G
s ds

)
and the optimal strategy is π∗ = µ and

sup
G

E(lnXT ) = lnx+
1

2

∫ T

0

E((µG
s )

2)ds

Finally

sup
π∈F

E(lnXT ) = lnx ≤ sup
π∈G

E(lnXT ) = lnx+ E

(
1

2

∫ T

0

(µG
s )

2ds

)

F = FW ⊂ G, dWt = dWG
t + µG

t dt 6
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which leads to a finite utility if

E

(∫ T

0

(µG
s )

2ds

)
< ∞ .

F = FW ⊂ G, dWt = dWG
t + µG

t dt 7
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2 Immersion Hypothesis

2.1 Definition

The filtration F is said to be immersed in G if any F-martingale is a G-martingale. This is also

referred to as the (H) hypothesis in the literature.

Proposition 2.1. Immersion holds for (F,G) is equivalent to any of the following properties:

(i) ∀ t ≥ 0, the σ-fields F∞ and Gt are conditionally independent given Ft, i.e.,

∀ t ≥ 0, ∀Gt ∈ L2(Gt), ∀F ∈ L2(F∞),E(Gt F |Ft) = E(Gt|Ft)E(F |Ft).

(ii) ∀ t ≥ 0, ∀Gt ∈ L1(Gt), E(Gt|F∞) = E(Gt|Ft).

(iii) ∀ t ≥ 0, ∀F ∈ L1(F∞), E(F |Gt) = E(F |Ft).

Furthermore, if immersion holds for (F,G), then Gt ∩ F∞ = Ft.

F = FW ⊂ G, dWt = dWG
t + µG

t dt 8



2.1 Definition 2 IMMERSION HYPOTHESIS

PROOF: First we prove that immersion implies (i).

Let F ∈ L2(F∞) and assume that immersion holds for (F,G). This implies that the F-martingale

Xt = E(F |Ft) is a G-martingale with terminal value X∞ = F , hence

Xt = E(F |Ft) = E(F |Gt).

It follows that for any t and any Gt ∈ L2(Gt):

E(FGt|Ft) = E(GtE(F |Gt)|Ft) = E(GtE(F |Ft)|Ft) = E(Gt|Ft)E(F |Ft)

which is exactly (i).

F = FW ⊂ G, dWt = dWG
t + µG

t dt 9



2.1 Definition 2 IMMERSION HYPOTHESIS

• To prove (i)⇒ (ii), let F ∈ L2(F∞) and Gt ∈ L2(Gt).

Under (i),

E(FE(Gt|Ft)) = E(E(F |Ft)E(Gt|Ft))
(i)
= E(E(FGt|Ft)) = E(FGt)

which implies E(Gt|F∞) = E(Gt|Ft) that is (ii).

• Next, we give a proof of (ii) ⇒ (iii).

Let F ∈ L2(F∞) and Gt ∈ L2(Gt).

If (ii) holds, then, for F ∈ L2(F∞),

E(GtE(F |Ft)) = E(FE(Gt|Ft))
(ii)
= E(FE(Gt|F∞)) = E(FGt),

which implies E(F |Gt) = E(F |Ft), that is (iii). Finally, obviously (iii) implies (H).

F = FW ⊂ G, dWt = dWG
t + µG

t dt 10
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2.1 Definition 2 IMMERSION HYPOTHESIS

The proof of Gt ∩ F∞ = Ft is now simple.

We have only to check that Gt ∩ F∞ ⊂ Ft.

For A ∈ Gt ∩ F∞, we have 11A = E(11A|F∞) = E(11A|Ft) which implies that A ∈ Ft. △

F = FW ⊂ G, dWt = dWG
t + µG

t dt 13
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2.2 Change of probability

In general, immersion is not stable by change of probability. Nevertheless, it is true under specific

conditions.

Proposition 2.2. Assume that the filtration F is immersed in G under P, and let Q be equivalent to

P, with Q|Gt = LtP|Gt where L is assumed to be F-adapted. Then, F is immersed in G under Q.

PROOF: Let N be an (F,Q)-martingale, then (NtLt, t ≥ 0) is a (F,P)-martingale, and since F is

immersed in G under P, (NtLt, t ≥ 0) is a (G,P)-martingale which implies that N is a

(G,Q)-martingale, L being as well a (G,P)-martingale. △

F = FW ⊂ G, dWt = dWG
t + µG

t dt 14
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2.3 Example: reduced form in Credit Risk

Let (Ω,G,P) be a probability space endowed with a filtration F. A nonnegative F-adapted process

λ is given. We assume that there exists, on the space (Ω,G,P), a random variable Θ, independent

of F∞, with an exponential law: P(Θ ≥ t) = e−t. We define the default time τ as the first time

when the increasing process Λt =
∫ t

0
λs ds is above the random level Θ, i.e.,

τ = inf {t ≥ 0 : Λt ≥ Θ}.

In particular, using the increasing property of Λ, one gets {τ > s} = {Λs < Θ}. We assume that

Λt < ∞, ∀t, Λ∞ = ∞, hence τ is a real-valued r.v. We define Ht = 11{τ≤t} and

Ht = σ(Hs : s ≤ t). We introduce the smallest right-continuous filtration G which contains F
and turns τ in a stopping time G = F ∨H.

F = FW ⊂ G, dWt = dWG
t + µG

t dt 15
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Lemma 2.3. The conditional distribution function of τ given the σ-field Ft is for t ≥ s

P(τ > s|Ft) = exp
(
− Λs

)
. (2.1)

PROOF: The proof follows from the equality {τ > s} = {Λs < Θ}. From the independence

assumption and the Ft-measurability of Λs for s ≤ t, we obtain

P(τ > s|Ft) = P
(
Λs < Θ

∣∣∣Ft

)
= exp

(
− Λs

)
.

In particular, we have

P(τ ≤ t|Ft) = P(τ ≤ t|F∞), (2.2)

and, for t ≥ s, P(τ > s|Ft) = P(τ > s|Fs). Let us notice that the process Ft = P(τ ≤ t|Ft)

is here an increasing process, as the right-hand side of (2.4) is. △

F = FW ⊂ G, dWt = dWG
t + µG

t dt 16
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Lemma 2.4. The conditional distribution function of τ given the σ-field Ft is for t ≥ s

P(τ > s|Ft) = exp
(
− Λs

)
. (2.3)

PROOF: The proof follows from the equality {τ > s} = {Λs < Θ}. From the independence

assumption and the Ft-measurability of Λs for s ≤ t, we obtain

P(τ > s|Ft) = P
(
Λs < Θ

∣∣∣Ft

)
= exp

(
− Λs

)
.

In particular, we have

P(τ ≤ t|Ft) = P(τ ≤ t|F∞), (2.4)

and, for t ≥ s, P(τ > s|Ft) = P(τ > s|Fs). Let us notice that the process Ft = P(τ ≤ t|Ft)

is here an increasing process, as the right-hand side of (2.4) is. △

F = FW ⊂ G, dWt = dWG
t + µG

t dt 17
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Immersion holds in that example: Indeed any F martingale is an F ∨ σ(Θ) martingale. Being

G-adapted, it is also a G martingale.

We have used the fact that, if F ⊂ K and if an F-adapted process X is a K-martingale, then X is

an F-martingale.

F = FW ⊂ G, dWt = dWG
t + µG

t dt 18
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Proposition 2.5. Let Y ∈ FT . Then

E(Y 11τ>T |Gt) = 11t<τe
ΛtE(Y e−ΛT |Ft)

PROOF: From definition of G, for any Yt ∈ Gt, there exists yt ∈ Ft such that

Yt11t<τ = yt11t<τ

Then,

E(Y 11τ>T |Gt) = 11t<τYt = 11t<τyt

Taking Ft conditional expectations, this implies that

E(Y 11τ>T |Ft) = e−Λtyt

therefore

E(Y e−ΛT |Ft) = e−Λtyt .

F = FW ⊂ G, dWt = dWG
t + µG

t dt 19
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Proposition 2.6. Let Y ∈ FT . Then

E(Y 11τ>T |Gt) = 11t<τe
ΛtE(Y e−ΛT |Ft)

PROOF: From definition of G, for any Yt ∈ Gt, there exists yt ∈ Ft such that

Yt11t<τ = yt11t<τ

Then,

E(Y 11τ>T |Gt) = 11t<τYt = 11t<τyt

Taking Ft conditional expectations, this implies that

E(Y 11τ>T |Ft) = e−Λtyt

therefore

E(Y e−ΛT |Ft) = e−Λtyt .

F = FW ⊂ G, dWt = dWG
t + µG

t dt 20
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Proposition 2.7. The process Lt = eΛt(1−Ht) is a G martingale. The process M

Mt = Ht − Λt∧τ

is a G-martingale.

PROOF:

E(Lt|Gs) = 11s<τe
ΛsE(Lt|Fs)

= 11s<τ
1

Zs
E(eΛte−Λt |Fs) = Ls

Then, from dLt = eΛt(−dHt + (1−Ht)λtdt) we obtain dMt = −e−ΛtdLt. △

F = FW ⊂ G, dWt = dWG
t + µG

t dt 21
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Proposition 2.8. The process Lt = eΛt(1−Ht) is a-G martingale. The process M

Mt = Ht − Λt∧τ

is a G-martingale.

PROOF:

E(Lt|Gs) = 11s<τe
ΛsE(Lt|Fs)

= 11s<τe
ΛsE(eΛte−Λt |Fs) = Ls

Then, from dLt = eΛt(−dHt + (1−Ht)λtdt) we obtain dMt = −eΛtdLt. △

F = FW ⊂ G, dWt = dWG
t + µG

t dt 22
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If F is immersed in G, then for any utility function U defined on R+,

max
π∈AF

E(U(Xπ,x
T )) = max

π∈AG
E(U(Xπ,x

T )).

PROOF: The solution of the optimisation problem in F is known to be X∗
T = (U ′)−1(λL∗

T ) where

L is the Radon Nikodym density optimal solution of the dual problem and λ is a parameter such that

E(L∗
TX

∗
T ) = x. Being an F-martingale, L∗ is a G-martingale by immersion property, and is a

Radon-Nikodym density in G, hence for any strategy π ∈ AG, the process XπL∗ is a

G-supermartingale (if one restrict attention to strategies such that the wealth is non negative) with

initial value x. By concavity of the utility function

E(U(Xπ
T )− U(X∗

T )) ≤ E((Xπ
T −X∗

T )U
′(X∗

T )) = λE((Xπ
T −X∗

T )L
∗
T )) ≤ 0

which proves that X∗
T is optimal for AG-strategies. △

F = FW ⊂ G, dWt = dWG
t + µG

t dt 23
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2.4 Pseudo-stopping times

The property that Z is a decreasing process does not imply that immersion holds.

An F-pseudo-stopping time is a random time such that E(Mτ ) = E(M0) for any bounded

F-martingale M . In a Brownian filtration, random times with a decreasing continuous Azéma

supermartingale (i.e., P(τ > t|Ft)) are pseudo-stopping times. They enjoy the property that any

F-martingale stopped at τ is a G-martingale.

F = FW ⊂ G, dWt = dWG
t + µG

t dt 24
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An Example:

Let S be defined through dSt = σStdWt, where W is a Brownian motion and σ a constant. Let

τ = sup {t ≤ 1 : S1 − 2St = 0}, that is the last time before 1 at which the price is equal to half

of its terminal value at time 1.

Note that

{τ ≤ t} = { inf
t≤s≤1

2Ss ≥ S1} = { inf
t≤s≤1

2
Ss

St
≥ S1

St
}

Since Ss

St
, s ≥ t and S1

St
are independent from Ft,

P( inf
t≤s≤1

2
Ss

St
≥ S1

St
|Ft) = P( inf

t≤s≤1
2Ss−t ≥ S1−t) = Φ(1− t)

where Φ(u) = P(infs≤u 2Ss ≥ Su). It follows that the supermartingale Z is a deterministic

decreasing function, hence, τ is a pseudo-stopping time and S is a G-martingale up to time τ and

there are no arbitrages up to τ .

There are obviously classical arbitrages after τ , since S1 is known at time τ .

F = FW ⊂ G, dWt = dWG
t + µG

t dt 25
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3 Initial Enlargement

We study initial enlargement of a filtration F with a real valued random variable ζ , where the enlarged

filtration is

Fσ(ζ)
t = ∩ϵ>0 {Ft+ϵ ∨ σ(ζ)} .

We work in a rather general framework and we study (H′) hypothesis between F and Fσ(ζ), i.e.,

conditions such that F-martingales are Fσ(ζ)-semimartingales. Note that, under (H′) hypothesis,

every F-semimartingale (Xt)t≤T is also an Fσ(ζ)-semimartingale.

F = FW ⊂ G, dWt = dWG
t + µG

t dt 26



3.1 Jacod’s equivalence criterion 3 INITIAL ENLARGEMENT

3.1 Jacod’s equivalence criterion

Let Pt(ω, du) be the conditional law of ζ given Ft; i.e.,

E(h(ζ)|Ft) =

∫
R
h(x)Pt(·, dx)

We say that ζ satisfies Jacod’s equivalence criterion if for each t ≥ 0,

Pt(ω, du) ∼ η(du)

where η is the law of ζ .

There exists a family of positive martingales p(x) such that

P(ζ > u|Ft) =

∫ ∞

u

pt(x)η(dx)

Here, the main difficulty is to prove that one an find a "regular" version of p, in order to take care

about negligeable sets and to be able to define the process p(ζ).

F = FW ⊂ G, dWt = dWG
t + µG

t dt 27
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Lemma 3.1. The process L defined as Lt =
1

pt(ζ)
, t ≥ 0 is a (P,F(σ(ζ))-martingale. Let P∗ be

the probability measure defined on Fσ(ζ) as

dP∗
|Fσ(ζ)

t
= Lt dP|Fσ(ζ)

t
.

Under P∗, the random variable ζ is independent of Ft for any t ≥ 0 and, moreover

P∗
|Ft

= P|Ft
for any t ≥ 0, P∗

|σ(ζ) = P|σ(ζ).

PROOF: From the definition of p, setting Lx
t := 1

pt(x)
, one has, for any (bounded) Borel function h

and any Fs-measurable (bounded) random variable Ks

E(Lth(ζ)Ks) = E(Ks

∫
R
Lx
t h(x)pt(x)η(dx)) = E(Ks

∫
R
h(x)η(dx))

=

∫
R
h(x)η(dx)E(Ks) = E(Ks)E(h(ζ)) .

The particular case t = s leads to E(Lsh(ζ)Ks) = E(h(ζ))E(Ks), hence

E(Lsh(ζ)Ks) = E(Lth(ζ)Ks), and it follows that L is a martingale.

F = FW ⊂ G, dWt = dWG
t + µG

t dt 28
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Lemma 3.2. The process L defined as Lt =
1

pt(ζ)
, t ≥ 0 is a (P,F(σ(ζ))-martingale. Let P∗ be

the probability measure defined on Fσ(ζ) as

dP∗
|Fσ(ζ)

t
= Lt dP|Fσ(ζ)

t
.

Under P∗, the random variable ζ is independent of Ft for any t ≥ 0 and, moreover

P∗
|Ft

= P|Ft
for any t ≥ 0, P∗

|σ(ζ) = P|σ(ζ).

PROOF: From the definition of p, setting Lx
t := 1

pt(x)
, one has, for any (bounded) Borel function h

and any Fs-measurable (bounded) random variable Ks

E(Lth(ζ)Ks) = E(Ks

∫
R
Lx
t h(x)pt(x)η(dx)) = E(Ks

∫
R
h(x)η(dx))

=

∫
R
h(x)η(dx)E(Ks) = E(Ks)E(h(ζ)) .

The particular case t = s leads to E(Lsh(ζ)Ks) = E(h(ζ))E(Ks), hence

E(Lsh(ζ)Ks) = E(Lth(ζ)Ks), and it follows that L is a martingale.

F = FW ⊂ G, dWt = dWG
t + µG

t dt 29
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Note that, since p0(x) = 1, one has E(1/pt(ζ)|Fσ(ζ)
0 ) = 1/p0(ζ) = 1.

Now, we prove the required independence. From the above,

E∗(h(ζ)Ks) = E(Lsh(ζ)Ks) = E(h(ζ))E(Ks)

where E∗ is the expectation under P∗. For h = 1 (resp. Ks = 1), one obtains E∗(Ks) = E(Ks)

(resp. E∗(h(ζ)) = E(h(ζ))) and the assertion is proved. △

F = FW ⊂ G, dWt = dWG
t + µG

t dt 30
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It is now obvious that, under positive density hypothesis, NFLVR holds in the enlarged filtration

F ∨ σ(τ). Indeed, the (F,P) martingale S is an (F,P∗) martingale, and - using the independence

property - an (Fσ(τ),P∗) martingale.

F = FW ⊂ G, dWt = dWG
t + µG

t dt 31
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Optimisation Under the equivalence hypothesis on can reduce the study of optimal

Fσ(ζ)-predictable portfolio using results on F-predictable optimal portfolio. Indeed, for

dXt = πt(ζ)dSt, one has

E(U(XT (ζ))) = E∗(pT (ζ)U(XT (ζ))) =

∫
E∗(pT (u)U(XT (u)))η(du)

and the problem can be solved finding an optimal F-portfolio of the problem E∗(pT (u)U(XT (u))).

See Hillairet and Jiao for examples.

F = FW ⊂ G, dWt = dWG
t + µG

t dt 32
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Fσ(ζ)-semimartingale decomposition of F martingales

Proposition 3.3. Any (P,F)-local martingale X is a (P,Fσ(ζ))-semimartingale with canonical

decomposition

Xt = X
(ζ)
t +

∫ t

0

d⟨X, p.(ζ)⟩s
ps−(ζ)

,

where X(ζ) is a (P,Fσ(ζ))-local martingale.

PROOF: If X is a (P,F)-martingale, it is a (P∗,F(ζ))-martingale, too (Indeed, since P and P∗ are

equal on F, X is a (P∗,F) martingale, hence, using the fact that ζ is P∗ independent of F, it is a

(P∗,F(ζ)) martingale). Noting that dP = pt(ζ)dP∗ on F (ζ)
t , Girsanov’s theorem tells us that the

process X(ζ), defined by

X
(ζ)
t = Xt −

∫ t

0

d⟨X, p.(ζ)⟩s
ps−(ζ)

is a (P,F(ζ))-martingale. △

F = FW ⊂ G, dWt = dWG
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t dt 33



3.1 Jacod’s equivalence criterion 3 INITIAL ENLARGEMENT

Proposition 3.4. Any (P,F)-local martingale X is a (P,Fσ(ζ))-semimartingale with canonical

decomposition

Xt = X
(ζ)
t +

∫ t

0

d⟨X, p.(ζ)⟩s
ps−(ζ)

,

where X(ζ) is a (P,Fσ(ζ))-local martingale.

PROOF: If X is a (P,F)-martingale, it is a (P∗,Fσ(ζ))-martingale, too (Indeed, since P and P∗ are

equal on F, X is a (P∗,F) martingale, hence, using the fact that ζ is P∗ independent of F, it is a

(P∗,Fσ(ζ)) martingale). Noting that dP = pt(ζ)dP∗ on Fσ(ζ)
t , Girsanov’s theorem tells us that

the process X(ζ), defined by

X
(ζ)
t = Xt −

∫ t

0

d⟨X, p.(ζ)⟩s
ps−(ζ)

is a (P,Fσ(ζ))-martingale. △

F = FW ⊂ G, dWt = dWG
t + µG
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Example Enlargement with ζ :=
∫∞
0

f(s)dBs

Let ζ :=
∫∞
0

f(s)dBs where f is a deterministic function such that
∫∞
0

f2(s)ds < ∞ and∫∞
t

f2(s) ̸= 0. It is easy to compute pt (x), since conditionally on Ft, ζ is Gaussian, with mean

mt =
∫ t

0
f (s) dBs, and variance σ2(t) =

∫∞
t

f2 (s) ds. Therefore,

P(ζ ≤ x|Ft) = Φ(
x−mt

σ(t)
), where Φ is the cumulative distribution function of a standard

Gaussian law, and the absolute continuity requirement is satisfied with:

pt(x)ν(dx) =
1

σ(t)
φ(

x−mt

σ(t)
)dx,

where φ is the density of a standard Gaussian law, and ν the law of ζ (a centered Gaussian law with

variance σ2(0)). Note that, from Itô’s calculus,

dpt(x) = pt(x)
x−mt

σ2(t)
dmt ,

hence, d⟨p(x), B⟩x=ζ = pt(ζ)
1

σ2(t) (ζ −mt)f(t)dt.

F = FW ⊂ G, dWt = dWG
t + µG
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Then B is an Fσ(ζ)-semimartingale with canonical decomposition:

Bt = B̃t +

∫ t

0

ds
f(s)

σ2(s)

(∫ ∞

s

f (u) dBu

)
.

F = FW ⊂ G, dWt = dWG
t + µG

t dt 36



3.1 Jacod’s equivalence criterion 3 INITIAL ENLARGEMENT

Many results extend to the weaker hypothesis

We say that ζ satisfies Jacod’s equivalence criterion if for each t ≥ 0,

Pt(ω, du) << η(du)

F = FW ⊂ G, dWt = dWG
t + µG

t dt 37
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3.2 Bridge

Some situations require another criteria: for example the Brownian Bridge

Let B be a Brownian motion. The conditional law of ζ := B1 is not equivalent (not even absolutely

continuous) to the law of B1.

Proposition 3.5. Let Fσ(B1)
t = ∩ϵ>0Ft+ϵ ∨ σ(B1). The process

βt := Bt −
∫ t∧1

0

B1 −Bs

1− s
ds

is an Fσ(B1)-martingale, and an Fσ(B1) Brownian motion. In other words,

Bt = βt +

∫ t∧1

0

B1 −Bs

1− s
ds

is the decomposition of B as an Fσ(B1)-semi-martingale.

F = FW ⊂ G, dWt = dWG
t + µG
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PROOF: One has Ft ∨ σ(B1) = Ft ∨ σ(B1 −Bt). Then, since Fs is independent of

(Bs+h −Bs, h ≥ 0), one has, for s < t:

E(Bt −Bs|Fσ(B1)
s ) = E(Bt −Bs|B1 −Bs) =

t− s

1− s
(B1 −Bs) .

For s < t < 1,

E(
∫ t

s

B1 −Bu

1− u
du|Fσ(B1)

s ) =

∫ t

s

1

1− u
E(B1 −Bu|B1 −Bs) du

=

∫ t

s

1

1− u
(B1 −Bs − E(Bu −Bs|B1 −Bs)) du

=

∫ t

s

1

1− u

(
B1 −Bs −

u− s

1− s
(B1 −Bs)

)
du

=
1

1− s
(B1 −Bs)

∫ t

s

du =
t− s

1− s
(B1 −Bs)

It follows that E(βt − βs|Fσ(B1)
s ) = 0 hence, β is an Fσ(B1)-martingale (and an

Fσ(B1)-Brownian motion). △

F = FW ⊂ G, dWt = dWG
t + µG

t dt 39
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Note that there is a "trap" to avoid. One can think that any F-martingale, being a stochastic integral

w.r.t. the Brownian motion will be a Fσ(B1)-semimartingale.

This is not the case.

Take
∫ ·
0
θsdBs be a martingale. One needs a condition on θ to insure that

∫ t∧1

0
θs

B1−Bs

1−s ds is well

defined.

F = FW ⊂ G, dWt = dWG
t + µG

t dt 40
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Insider trading

Let

dSt = St(µdt+ σdBt)

where µ and σ are constants, be the price of a risky asset. Assume that the riskless asset has an

constant interest rate r. We denote by θ = µ−r
σ the risk premium.

The wealth of an agent holding π0
t shares of the savings account and π1

t shares of the underlying

risky process is Xt = π0
t e

rt + π1
tSt. The self financing condition is that

dXt = π0
t de

rt + π1
t dSt = rXtdt+ π1

t (dSt − rStdt)

With the change of notation πt = π1
tSt/Xt (so that the wealth remains non negative) one has

dXt = rXtdt+ πtσXt(dBt + θdt), X0 = x

Here π1 is the number of shares of the risky asset, and π the proportion of wealth invested in the

risky asset. It follows that

ln(Xπ,x
T ) = lnx+

∫ T

0

(r − 1

2
π2
sσ

2 + θπsσ)ds+

∫ T

0

σπsdBs

F = FW ⊂ G, dWt = dWG
t + µG
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Then, assuming that the local martingale represented by the stochastic integral is in fact a martingale,

E(ln(Xπ,x
T )) = lnx+

∫ T

0

E
(
r − 1

2
π2
sσ

2 + θπsσ

)
ds

The portfolio which maximizes E(ln(Xπ,x
T )) is πs =

θ
σ and

supE(ln(Xπ,x
T )) = lnx+ T

(
r +

1

2
θ2
)

We now enlarge the filtration with S1 (or equivalently, with B1). In the enlarged filtration, setting, for

t < 1, αt =
B1−Bt

1−t , the dynamics of S are

dSt = St((µ+ σαt)dt+ σdβt) ,

where β is defined in Proposition 3.5 and the dynamics of the wealth are

dXt = rXtdt+ πtσXt(dβt + θ̃tdt), X0 = x

with θ̃t =
µ−r
σ + αt =

µ−r
σ − B1−Bt

1−t . Assuming again that the stochastic integral which appears

is a martingale, the portfolio which maximizes E(ln(Xπ,x
T )) is πs =

θ̃s
σ .

F = FW ⊂ G, dWt = dWG
t + µG
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Then, for T < 1,

ln(Xπ,x,∗
T ) = lnx+

∫ T

0

(r +
1

2
θ̃2s)ds+

∫ T

0

ϑ̃sdβs

E(ln(Xπ,x,∗
T )) = lnx+

∫ T

0

(r +
1

2
(θ2 + E(α2

s) + 2θE(αs))ds

= lnx+ (r +
1

2
θ2)T +

1

2

∫ T

0

E(α2
s)ds

where we have used the fact that E(αt) = 0. Let

V F(x) = maxE(ln(Xπ,x
T )) ; π is F adapted

V G(x) = maxE(ln(Xπ,x
T )) ; π is G adapted

Then V G(x) = V F(x) + 1
2E
∫ T

0
α2
sds = V F(x)− 1

2 ln(1− T ).

F = FW ⊂ G, dWt = dWG
t + µG

t dt 43
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If T = 1, the value function is infinite: there is an arbitrage opportunity and there does not exist an

e.m.m. such that the discounted price process (e−rtSt, t ≤ 1) is a G-martingale. However, for any

ϵ ∈ ]0, 1], there exists a uniformly integrable G-martingale L defined as

dLt =
µ− r + σαt

σ
Ltdβt, t ≤ 1− ϵ, L0 = 1 ,

such that, setting dQ|Gt = LtdP|Gt , the process (e−rtSt, t ≤ 1− ϵ) is a (Q,G)-martingale.

The same computations can be done if µ and σ are F-adapted.

F = FW ⊂ G, dWt = dWG
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3.3 Poisson bridge

Let N be a Poisson process with constant intensity 1, FN
t = σ(Ns, s ≤ t) its natural filtration. The

process Mt = Nt − t is a martingale. Let Fσ(NT )
t = σ(Ns, s ≤ t;NT ) be the natural filtration of

N enlarged with the terminal value NT of the process N .

Proposition 3.6. The process

ηt = Mt −
∫ t∧T

0

MT −Ms

T − s
ds,

is an Fσ(NT )-martingale, or

ηt = Nt −
∫ t

0

NT −Ns

T − s
ds = Nt − Λt

is an Fσ(NT )-martingale.

F = FW ⊂ G, dWt = dWG
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For 0 < s < t < T ,

E(Nt −Ns|Fσ(NT )
t = E(Nt −Ns|NT −Ns) =

t− s

T − s
(NT −Ns)

where the last equality follows from the fact that, if X and Y are independent with Poisson laws with

parameters µ and ν respectively, then

P(X = k|X + Y = n) =
n!

k!(n− k)!
αk(1− α)n−k

where α = µ
µ+ν . Hence,

E
(∫ t

s

du
NT −Nu

T − u
|Fσ(NT )

s

)
=

∫ t

s

du

T − u

(
NT −Ns − E(Nu −Ns|Fσ(NT )

s )
)

=

∫ t

s

du

T − u

(
NT −Ns −

u− s

T − s
(NT −Ns)

)
=

∫ t

s

du

T − s
(NT −Ns) =

t− s

T − s
(NT −Ns) .

F = FW ⊂ G, dWt = dWG
t + µG
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Therefore,

Fσ(NT )
s ) =

t− s

T − s
(NT −Ns)−

t− s

T − s
(NT −Ns) = 0

and the result follows.

F = FW ⊂ G, dWt = dWG
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Optimisation We suppose that the interest rate is null and that the risky asset has dynamics

dSt = St− (µdt+ σdWt + ϕdMt)

Let (Xt, t ≥ 0) be the wealth of an un-informed agent whose portfolio is described by (πt). Then

dXt = πtXt−(µdt+ σdWt + ϕdMt) (3.1)

Then,

Xt = x exp

(∫ t

0

πs(µ− ϕλ)ds+

∫ t

0

σπsdWs +
1

2

∫ t

0

σ2π2
sds+

∫ t

0

ln(1 + πsϕ)dNs

)
Then

E[ln(XT )] = ln(x) +

∫ T

0

E(µπs −
1

2
σ2π2

s + λ(ln(1 + ϕπs)− ϕπs)ds .

Our aim is to solve

V (x) = sup
π

E (ln(Xx,π
T ))

The maximum attainable wealth for the uninformed agent is obtained using the constant strategy π̃

F = FW ⊂ G, dWt = dWG
t + µG
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for which

π̃µ+ λ[ln(1 + π̃ϕ)− π̃ϕ]− 1

2
π̃2σ2 = sup

π
[πµ+ λ[ln(1 + πϕ)− πϕ]− 1

2
π2σ2] .

Hence

π̃ =
1

2σ2ϕ

(
µϕ− ϕ2λ− σ2 ±

√
(µϕ− ϕ2λ− σ2)2 + 4σ2ϕµ

)
.

The quantity under the square root is (µϕ− ϕ2λ+ σ2)2 + 4σ2ϕ2λ and is non-negative.

The sign to be used depends on the sign of quantities related to the parameters. The optimal π̃ is the

only one such that 1 + ϕπ̃ > 0.

F = FW ⊂ G, dWt = dWG
t + µG
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We assume now that the informed agent knows NT from time 0. Therefore, his wealth evolves

according to the dynamics

dX∗
t = πtX

∗
t−[(µ+ ϕ(γt − λ)]dt+ σdWt + ϕdM∗

t ]

where γt =
NT−Nt

T−t . The optimal portfolio π∗ is now such that

µ− λϕ+ ϕγs[
1

1+π∗ϕ ]− π∗σ2 = 0 and is given by

π∗
s =

1

2σ2ϕ

(
µϕ− ϕ2λ− σ2 ±

√
(µϕ− ϕ2λ+ σ2)2 + 4σ2ϕ2γs

)
,

F = FW ⊂ G, dWt = dWG
t + µG
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