
BIMRC Summer School on Mathematical Finance

Beijing,7/9 June 2017

Monique Jeanblanc, LaMME, Université d’Évry-Val-D’Essonne

Part III: Enlargement of filtration in continuous time. Progressive Enlargement.

1



Let τ be a finite random time, i.e., a finite non-negative random variable constructed on a filtered

probability space (Ω,G,F,P), and denote by G the right-continuous filtration

Gt := ∩ϵ>0 {Ft+ϵ ∨ σ(τ ∧ (t+ ϵ))} .

We write G = H ∨ F where H is the natural filtration of the process Ht = 11{τ≤t}. Note that τ is

an H-stopping time, hence a G-stopping time. We assume in a first part that

(C) all F martingales are continuous

(A) τ avoids F stopping times, i.e., for any F-stopping time ϑ, one has P(τ = ϑ) = 0.

(all the results admit extension, with serious technical difficulties)
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an H-stopping time, hence a G-stopping time. We assume in a first part that
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(all the results admit extension, with serious technical difficulties)

The Integration by parts formula states that

d(XY ) = X−dY + Y−dX + d[X,Y ]
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Let τ be a finite random time, i.e., a finite non-negative random variable constructed on a filtered

probability space (Ω,G,F,P), and denote by G the right-continuous filtration

Gt := ∩ϵ>0 {Ft+ϵ ∨ σ(τ ∧ (t+ ϵ))} .

We write G = H ∨ F where H is the natural filtration of the process Ht = 11{τ≤t}. Note that τ is

an H-stopping time, hence a G-stopping time. We assume in a first part that

(C) all F martingales are continuous

(A) τ avoids F stopping times, i.e., for any F-stopping time ϑ, one has P(τ = ϑ) = 0.

(all the results admit extension, with serious technical difficulties)

The Integration by parts formula states that

d(XY ) = X−dY + Y−dX + d[X,Y ]

For Ht = 11{τ≤t}, one has
∫ t
0
θsdHs = 11{τ≤t}θτ .
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1 AZÉMA SUPERMARTINGALE

1 Azéma supermartingale

We introduce the Azéma supermartingale

Zt = P(τ > t|Ft)

which (under (CA)) is a continuous process which admits a Doob-Meyer decomposition

Zt = µt −At ,

where µ is a martingale and A a predictable (in fact continuous) increasing process. The process Z

is obviously valued in [0, 1].
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2 KEY LEMMA

2 Key lemma

Lemma 2.1. Key lemma 1: Let X ∈ FT be an integrable r.v. Then, for any t ≤ T ,

E(X11{τ<T}|Gt) = 11{t<τ}
E(XZT |Ft)

Zt

PROOF: On the set {t < τ}, any Gt measurable random variable is equal to an Ft-measurable

random variable, therefore

E(X11{τ<T}|Gt) = 11{t<τ}yt

where yt is Ft-measurable. Taking conditional expectation w.r.t. Ft, we get yt =
E(Yt11{t<τ}|Ft)

P(t<τ |Ft)
.

Note that P(t < τ |Ft) does not vanish on the set {t < τ}. Indeed, let C = {P(t < τ |Ft) > 0}.

Then

P(Cc ∩ {t < τ}) = E(11CcP(t < τ |Ft)) = 0

△
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2 KEY LEMMA

Key lemma 1: Let X ∈ FT be an integrable r.v. Then, for any t ≤ T ,

E(X11{τ<T}|Gt) = 11{t<τ}
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Zt

PROOF: On the set {t < τ}, any Gt measurable random variable is equal to an Ft-measurable

random variable, therefore

E(X11{τ<T}|Gt) = 11{t<τ}yt

where yt is Ft-measurable. Taking conditional expectation w.r.t. Ft, we get
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E(X11{T<τ}|Ft)
P(t < τ |Ft)
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E(XZT |Ft)

Zt
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Note that P(t < τ |Ft) does not vanish on the set {t < τ}. Indeed, let A = {P(t < τ |Ft) > 0}.

Then

P(Ac ∩ {t < τ}) = E(11AcP(t < τ |Ft)) = 0

△
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2 KEY LEMMA

Lemma 2.2. Key lemma 2. Let h be an F-predictable process. Then, for t < T ,

E(hτ11τ<T |Gt) = hτ11{τ≤t} − 11{τ>t}
1

Zt
E(
∫ T

t

hudZu|Ft)

PROOF: In a first step, the result is established for processes h of the form ht = 11]u,v](t)Ku where

Ku ∈ Fu. In that case, for t < u < v < T , applying the key lemma

E(hτ11τ<T |Gt) = E(Ku11{u<τ≤v}|Gt) = 11{t<τ}
1

Zt
E(Ku11{u<τ≤v}|Ft)

It remains to note that

E(Ku11{u<τ≤v}|Ft) = E(Ku11{τ≤v}|Ft)− E(Ku11{τ≤u}|Ft)
= E(Ku(1− Zv)|Ft)− E(Ku(1− Zu)|Ft)

= −E(KuZv|Ft) + E(KuZu|Ft) = −E(
∫ T

t

hrdZr|Ft)

The other cases are done in the same way. The result follows by approximation. △
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2 KEY LEMMA

Key lemma 2. Let h be an F-predictable process. Then, for t < T ,

E(hτ11τ<T |Gt) = hτ11{τ≤t} − 11{τ>t}
1
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3 A FUNDAMENTAL MARTINGALE

3 A Fundamental Martingale

Proposition 3.1. The process Mt = Ht −
∫ t∧τ
0

dAs

Zs
is a G-martingale.

PROOF: In a first step, we prove that, for s < t

E(Ht|Gs) = Hs + 11{s<τ}′
1

Zs
E(At −As|Fs)

Indeed,

E(Ht|Gs) = 1− P(t < τ |Gs) = 1− 11{s<τ}
1

Zs
E(Zt|Fs) = 1− 11{s<τ}

1

Zs
E(µt −At|Fs)

= 1− 11{s<τ}
1

Zs
(µs −As − E(At −As|Fs))

= 1− 11{s<τ}
1

Zs
(Zs − E(At −As|Fs))

= 11{τ≤s} + 11{s<τ}
1

Zs
E(At −As|Fs) .

10



3 A FUNDAMENTAL MARTINGALE

The process Mt = Ht −
∫ t∧τ
0

dAs

Zs
is a G-martingale.

PROOF: In a first step, we prove that, for s < t

E(Ht|Gs) = Hs + 11{s<τ}
1

Zs
E(At −As|Fs)

Indeed,

E(Ht|Gs) = 1− P(t < τ |Gs) = 1− 11{s<τ}
1

Zs
E(Zt|Fs) = 1− 11{s<τ}

1

Zs
E(µt −At|Fs)

= 1− 11{s<τ}
1

Zs
(µs −As − E(At −As|Fs))

= 1− 11{s<τ}
1

Zs
(Zs − E(At −As|Fs))

= 11{τ≤s} + 11{s<τ}
1

Zs
E(At −As|Fs) .

11



3 A FUNDAMENTAL MARTINGALE

In a second step, we prove that, setting, for any v, Kv =
∫ v
0
(1−Hs)

dAs

Zs
,

E(Kt∧τ |Gs) = Ks∧τ + 11{s<τ}
1

Zs
E(At −As|Fs)

Indeed, from the key formula, for fixed t and hu = Kt∧u

E(Kt∧τ |Gs) = Kt∧τ11{τ≤s} + 11{s<τ}
1

Zs
E
(
−
∫ ∞

s

Kt∧udZu|Fs
)

= Kτ11{τ≤s} + 11{s<τ}
1

Zs
E
(
−
∫ t

s

KudZu +

∫ ∞

t

KtdZu|Fs
)

= Ks∧τ11{τ≤s} + 11{s<τ}
1

Gs
E
(
−
∫ t

s

KudZu +KtZt|Fs
)

We now use IP formula, using the fact that K has finite variation and is continuous

d(KtZt)) = KtdZt + ZtdKt = KtdZt + dAt

hence

−
∫ t

s

KudZu +KtZt = −KtZt +KsZs +At −As +KtZt = KsZs +At −As .
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3 A FUNDAMENTAL MARTINGALE

It follows that

E(Kt∧τ |Gs) = Ks∧τ11{τ≤s} + 11{s<τ}
1

Zs
E (KsZs +At −As|Fs)

= Ks∧τ + 11{s<τ}
1

Zs
E (At −As|Fs) .

Assuming that A is absolutely continuous w.r.t. the Lebesgue measure and denoting by a its

derivative, we have proved the existence of a F-adapted process λ, called the intensity rate such that

the process

Ht −
∫ t∧τ

0

λudu = Ht −
∫ t

0

(1−Hu)λudu

is a G-martingale. More precisely, λs =
as
Zs

. △
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4 MARTINGALES

4 Martingales

(i) If Z > 0, the process Lt = (1−Ht)/Zt is a G -martingale.

(ii) If X is an F-martingale, XL is a G-martingale.

(iii) If the process Z is decreasing and continuous, the process Mt = Ht − Γ(t ∧ τ) is a G
-martingale where Γ = − lnZ .
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4 MARTINGALES

PROOF: (i) From the key lemma, for t > s

E(Lt|Gs) = E(11{τ>t}
1

Zt
|Gs) = 11{τ>s}

1

Zs
E(11{τ>t}

1

Zt
|Fs)

= 11{τ>s}
1

Zs
E(

1

Zt
Zt|Fs) = 11{τ>s}

1

Zs
= Ls

(ii) From the key lemma,

E(LtXt|Gs) = E(11{τ>t}LtXt|Gs)

= 11{τ>s}
1

Zs
E(11{τ>t}

1

Zt
Xt|Fs)

= 11{τ>s}
1

Zs
E(E(11{τ>t}|Ft)

1

Zt
Xt|Fs) = LsE(Xt|Fs) = LsXs.

(iii) From integration by parts formula (H is a finite variation process, and Γ an increasing

continuous process):

dLt = (1−Ht)e
ΓtdΓt − eΓtdHt
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4 MARTINGALES

and the process Mt = Ht − Γ(t ∧ τ) can be written

Mt ≡
∫
]0,t]

dHu −
∫
]0,t]

(1−Hu)dΓu = −
∫
]0,t]

e−ΓudLu

and is a G-local martingale since L is G-martingale. (It can be noted that, if Γ is not increasing, the

differential of eΓ is more complicated.) △
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5 CREDIT RISK

5 Credit Risk

One starts with a given filtration F and a random time (i.e., a positive finite random variable) which

represents the default time.

In the first models (Merton, Black and Cox ), the default time is the first time when an observable

continuous process is hitting a fixed bankruptcy level. Then, the default time is predictable, and this is

not fully compatible with financial data.

A stopping time τ is predictable if there exists an increasing sequence (τn) of stopping times such

that almost surely

limn τn = τ ,

τn < τ for every n on the set {τ > 0}.
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5 CREDIT RISK

The second type of model (Duffie, Lando, Schönbucher) is the case where the default arrives "by

surprise" as the first jump time of a Poisson process. In the basic model (or Cox model) one defines

the default time as the first time where a continuous increasing process hits a random non observable

barrier. More precisely, a non negative process λ and a random variable Θ (with exponential law to

simplify the computation) independent of λ being given, the default time is defined as

τ = inf{t : Λt :=

∫ t

0

λsds ≥ Θ}

If λ is an F-adapted process and Θ independent of F, the random time τ is not an F-stopping time,

and it is convenient to enlarge the filtration, considering the smallest filtration containing F and

making τ a stopping time, or the smallest filtration containing F and making the process

Ht = 11{τ≤t} measurable.

18



5 CREDIT RISK

For an inhomogeneous Poisson process with deterministic intensity (λ(s), s ≥ 0) stopped at its first

jump time T1 =: τ , the compensated martingale

Mt = Nt∧τ −
∫ t∧τ

0

λ(s)ds

is a useful tool.

In the basic example of default time, one can prove that

11{τ≤t} −
∫ t∧τ

0

λsds

is a martingale in the enlarged filtration. The random time τ is a totally inaccessible G-stopping time

and avoids F-stopping times. This model became popular under the name intensity based model

or the reduced form model.

An F-stopping time τ is F-totally inaccessible if, for any F-predictable stopping time ϑ,

P(τ = ϑ <∞) = 0 . A stopping time τ is F- accessible if there exists a sequence Tn of

F-predictable stopping times such that
∑

P(τ = Tn) = 1.
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5 CREDIT RISK

Importance on continuity of Λ. Example: if

τ = inf{t : Nt ≥ Θ}

where N is a Poisson process with jumps time (Tn), independent of Θ, the random time τ is such

that
∑
n P(τ = Tn) = 1

11τ≤t −
∫ t∧τ

0

λ(1− e−1) ds

is a G-martingale, τ is a G stopping time totally inaccessible.
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5.1 Dynamics of Prices in a Default Setting in a Cox Model 5 CREDIT RISK

5.1 Dynamics of Prices in a Default Setting in a Cox Model

Here, we are working in a Cox model under the probability measure Q, i.e.,

τ = inf{t : Λt :=
∫ t
0
λsds ≥ Θ} where Θ is independent of F under Q. The probability

measure Q is the pricing measure, i.e., such that (discounted) prices are Q-martingales. Our goal is

to give the dynamics of prices of some important contingent claims. We recall that we are working

under the assumption that all F-martingales are continuous.
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5.2 Defaultable Zero-Coupon Bond 5 CREDIT RISK

5.2 Defaultable Zero-Coupon Bond

A defaultable zero-coupon bond of maturity T pays one monetary unit at time T , if the default has not

occurred before T . Let Bt(T ) be the price at time t of a default-free bond paying 1 at maturity T

given by

Bt(T ) = E

[
exp

(
−
∫ T

t

rs ds

) ∣∣∣Ft] .
The price Dt(T ) of a defaultable zero-coupon bond with maturity T is

Dt(T ) = E

[
11{T<τ} exp

(
−
∫ T

t

rs ds

) ∣∣∣Gt]

= 11{τ>t}E

[
exp

(
−
∫ T

t

[rs + λs] ds

) ∣∣∣Ft] = mΛ
t Υte

∫
0
trsds

where mΛ
t = E(e−

∫ T
0

(rs+λs)ds|Ft) and Υt = 11{t<τ}e
Λt . Then, if r = 0,

dDt(T ) = mΛ
t dΥt+Υt−dm

Λ
t = −mΛ

t Υt−dMt+Υt−dm
Λ
t = −Dt−(T )dMt +Υt−dm

Λ
t .
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5.2 Defaultable Zero-Coupon Bond 5 CREDIT RISK

In the particular case where λ and r are deterministic, mΛ
t = e−

∫ T
0

(λ(s)+r(s))ds and dmΛ
t = 0.

Hence

dDt(T ) = rtDt(T )dt−Dt−(T )dMt .
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5.3 Recovery with Payment at Maturity 5 CREDIT RISK

5.3 Recovery with Payment at Maturity

We assume here that r = 0. We consider a contract which pays Kτ at date T , if τ ≤ T and no

payment in the case τ > T , where K is a given F-predictable process. The price at time t of this

contract is

St := E(Kτ11{τ<T}|Gt) = Kτ11{τ≤t} + 11{t<τ}E(Kτ11{t<τ<T}|Gt)

= Kτ11{τ≤t} + 11{t<τ}e
ΛtE(

∫ T

t

Kue
−Λuλudu|Ft)

=

∫ t

0

KudHu +Υt

(
−
∫ t

0

Kue
−Λuλudu+mK

t

)
where mK

t := E(
∫ T
0
Kue

−Λuλudu|Ft).
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5.3 Recovery with Payment at Maturity 5 CREDIT RISK

From dΥt = −Υt−dMt and

d(ΥmK)t = Υt−dm
K
t +mK

t−dΥt + d[mK ,Υ]t = Υt−dm
K
t +mK

t−dΥt

we deduce that

dSt = Kt(dHt − λt(1−Ht)dt)− St−dMt +Υtdm
K
t = (Kt − St−)dMt +Υtdm

K
t .

Note that, since mK is continuous, its covariation process with Υ is null and that one can write

Υtdm
K
t instead of Υt−dm

K
t . Note also that, from the definition, the process S is a G-martingale.

This can be checked looking at the dynamics, since mK is an F, hence a G, martingale.
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5.4 Recovery with Payment at Default Time 5 CREDIT RISK

5.4 Recovery with Payment at Default Time

Let K be a given F-predictable process. The payment Kτ is done at time τ . Then, in the case

r = 0, the price of this payment is

St = 11{t<τ}E(Kτ11{t<τ<T}|Gt)= 11{t<τ}e
ΛtE

[∫ T

t

Kuλue
−Λudu

∣∣∣Ft] .
The dynamics of S is

dSt = −St−dMt+Υt(dm
K
t −Kte

−Λtλtdt) = −St−dMt + (1−Ht)(e
ΛtdmK

t −Ktλtdt)

and the process St +Kτ11{τ<t} = St +
∫ t
0
KsdHs = E(Kτ |Gt) is a G-martingale, as well as

the process St +
∫ t∧τ
0

Ksλsds. The quantity Ktλt which appears in the dynamics of S can be

interpreted as a dividend Kt paid at rate λt (or with probability

λtdt = P(t < τ < t+ dt|Ft)/P(t < τ |Ft)).
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5.5 Pricing and Hedging a Defaultable Call 5 CREDIT RISK

5.5 Pricing and Hedging a Defaultable Call

We assume that the interest rate is null, that a risky asset with risk-neutral dynamics

dYt = YtσdBt ,

where B is a Brownian motion and σ is a constant, is traded as well as a defaultable zero-coupon of

maturity T with price Dt(T ). The reference filtration is that of the Brownian motion B. The price of a

defaultable call with payoff 11{T<τ}(YT −K)+ is

Ct = E(11{T<τ}(YT −K)+|Gt) = 11{t<τ}e
ΛtE(e−ΛT (YT −K)+|Ft) = Υtm

Y
t

with mY
t = E(e−ΛT (YT −K)+|Ft). Hence

dCt = Υtdm
Y
t −mY

t Υt−dMt .
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5.5 Pricing and Hedging a Defaultable Call 5 CREDIT RISK

In the particular case where λ is deterministic,

mY
t = e−ΛTE((YT −K)+|Ft) = e−ΛTCYt

where CY is the price of a call in the Black and Scholes model, and satisfies CYt = CY (t, Yt) and

dCYt = ∆tdYt where ∆tis the Delta-hedge (∆t = ∂yC
Y (t, Yt)), hence

Ct = Υte
−ΛTCYt = Dt(T )C

Y
t .

From Ct = Dt(T )C
Y
t , we deduce

dCt = e−ΛT (ΥtdC
Y
t + CYt dΥt) = e−ΛT (Υt∆tdYt − CYt ΥtdMt)

= e−ΛT (Υt∆tdYt − CYt ΥtdMt) .

Therefore, using the fact that dDt(T ) = mtdMt = −e−ΛTΥtdMt, we get

dCt = e−ΛTΥt∆tdYt − CYt dDt(T ) = e−ΛTΥt∆tdYt +
Ct

Dt(T )
dDt(T )

hence, an hedging strategy consists of holding Ct

Dt(T ) DZCs, and the sum of the amount of wealth

invested in the savings account and the one invested in risky asset is null.
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5.5 Pricing and Hedging a Defaultable Call 5 CREDIT RISK

For a general intensity rate (λs, s ≥ 0), one obtains

dCt =
Ct−
Dt(T )

dDt(T ) + Υt
mY
t

mt
dmt +Υtdm

Y
t =

Ct−
Dt(T )

dDt(T )) + ϑtdYt.

An hedging strategy consists of holding Ct−
Dt(T ) DZCs.
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5.6 Toy model 5 CREDIT RISK

5.6 Toy model

One default Let τ be a random time with cumulative distribution function F (t) = P(τ ≤ t) and

G(t) = P(τ > t).

Then, the process Mt = Ht −
∫ t∧τ
0

dF (s)
G(s) is an H-martingale.
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5.6 Toy model 5 CREDIT RISK

Two defaults

We present here a toy model with two random times τ1 and τ2, to underline the role of the filtration

and the form of the compensator.

We denote by H1 the natural filtration of the process (H1
t := 11{τ1≤t}), by H2 the natural filtration

of the process (H2
t := 11{τ2≤t}) and by G the filtration G := H1 ∨H2.

We denote by G(t, s) = P(τ1 > t, τ2 > s) the survival probability of the pair (τ1, τ2) assumed to

be strictly positive and continuously differentiable in both variables. Note that G(t, 0) = P(τ1 > t)

is the survival probability of τ1. Here, we assume that G(t, 0) = e−λt, with λ > 0.
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5.6 Toy model 5 CREDIT RISK

Proposition 5.1. The compensator of τ1 can be computed in two filtrations:

M1
t := H1

t − λ(t ∧ τ1) = H1
t −

∫ t

0

(1−H1
s )λds, is an (H1,P)-martingale,

M2
t := H1

t −
∫ t

0

(1−H1
s )λ

2
sds, is a (G,P)-martingale

where

λ2t = 11{t≤τ2}
−∂1G(t, t)
G(t, t)

+ 11{τ2≤t}
∂12G(t, τ2)

−∂1G(t, τ2)
.
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5.6 Toy model 5 CREDIT RISK

PROOF: The fact that λ2(1−H1) is the G-intensity rate of τ1 is obtained computing the

Doob-Meyer decomposition of the supermartingale Z1
t := P(τ1 > t|H2

t ), obtained as follows.

Z1
t = H2

t P(τ1 > t|τ2) + (1−H2
t )

P(τ1 > t, τ2 > t)

P(τ2 > t)
= H2

t h(t, τ2) + (1−H2
t )ψ(t)

where

h(t, v) =
∂2G(t, v)

∂2G(0, v)
; ψ(t) = G(t, t)/G(0, t).

Using the integration by parts formula, one gets

dZ1
t =

( ∂2G(t, t)
∂2G(0, t)

− G(t, t)

G(0, t)

)
dH2

t +
(
H2
t ∂1h(t, τ2) + (1−H2

t )ψ
′(t)
)
dt

and the result follows. △
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5.7 Recent models 5 CREDIT RISK

5.7 Recent models

The basic model was standard till recently. However many authors note that the fact that τ is totally

inaccessible is not realistic.

Coculescu (2009) presents a model where τ = ϑ ∧ ξ, where ξ is constructed as in the basic

example and the graph of ϑ in included in the union of graphs of F-stopping times, and assumes that

immersion hypothesis between F and G (i.e. F-martingales are G-martingales).

Jiao and Li (2015) present a case where τ = ϑ ∧ ξ where ξ is constructed as in the basic example,

and the graph of ϑ in included in the union of graphs of F-predictable stopping times. In their model,

immersion property between F and G is established.
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5.7 Recent models 5 CREDIT RISK

Gehmlich and Schmidt (2015) are interested in the predictable process Λ such that At − Λt∧τ is a

G-martingale. They assume that

Λt =

∫ t∧τ

0

λsds+
∑
i

11Ui<t∧τΓi

where Si are G stopping times, Ui > Si and Γi, Ui are GSi measurable (in particular, Ui are

predictable G stopping times). This leads to a random time τ which can coincide with Ui. Note that,

to construct τ (or to prove that such a τ exists) one needs to enlarge the filtration.
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6 DECOMPOSITION

6 Decomposition

A random time τ is called

(a) a thick random time if [[τ ]] ∩ [[T ]] = ∅ for any F-stopping time T , i.e., if it avoids all finite

F-stopping times.

(b) a thin random time if its graph [[τ ]] is contained in a thin set, i.e., if there exists a sequence of

F-stopping times (Tn)
∞
n=1 with disjoint graphs such that [[τ ]] ⊂

∪
n[[Tn]]. We say that such a

sequence (Tn)n exhausts the thin random time τ or that (Tn)n is an exhausting sequence of the

thin random time τ .
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6 DECOMPOSITION

If τ is a thin random time,and (Tn)n is an exhausting sequence for τ ,

τ = ∞11C0 +
∑
n

Tn11Cn

where

C0 = {τ = ∞} and Cn = {τ = Tn <∞} for n ≥ 1.
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6 DECOMPOSITION

Any random time τ admits a unique decomposition τ = τ1 ∧ τ2, where τ1 is a thick time, τ2 is

a thin time and τ1 ∨ τ2 = ∞.

For that purpose, the efficient tool is the optional dual projection of H , denoted Ho

It is enough to take τ1 and τ2 of the following form

τ1 = τ{∆Ho
τ=0} and τ2 = τ{∆Ho

τ>0},

The F-dual optional projection of H is the increasing F-optional process Ho such that for any

F-optional bounded process X ,

E(Xτ ) = E(
∫ ∞

0

XsdHs) = E(
∫ ∞

0

XsdH
o
s )
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6 DECOMPOSITION

Let τ be a random time and (τ1, τ2) its decomposition. Then, the hypothesis (H′) is satisfied for

(F,Fτ ) if and only if the hypothesis (H′) is satisfied for (F,Fτ1).
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7 RESTRICTION OF INFORMATION

7 Restriction of information

Let Z be the F-Azéma supermartinngale of τ . Computing the F̃ compensator of τ , for F̃ ⊂ F is now

easy.

Let Zt = µt −At be the F-Doob-Meyer decomposition of Z and assume that At =
∫ t
0
asds.

The process Â defined as Ât := E(At|F̂t) is an F̂-submartingale and its F̂-Doob-Meyer

decomposition is denoted

Ât = n̂t + α̂t .

where n̂ is the F̂-martingale part and α̂t =
∫ t
0
E(as|F̂s)ds. Hence, setting µ̂t = E(µt|F̂t), the

F̂-super-martingale Ẑ admits a F̂-Doob-Meyer decomposition as

Ẑt = µ̂t − n̂t − α̂t

where µ̂− n̂ is its F̂-martingale part. It follows that

Ht −
∫ t∧τ

0

dα̂s

Ẑs
ds = Ht −

∫ t∧τ

0

E(as|F̂s)
Ẑs

ds, t ≥ 0

is a Ĝ-martingale and that the F̂-intensity of τ is equal to E(as|F̂s)/Ẑs.
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8 BEFORE τ , UNDER (CA)

8 Before τ , under (CA)

Proposition 8.1. Under (CA), every F-martingale X stopped at time τ is a G-semi-martingale

with canonical decomposition

Xτ
t = XG

t +

∫ t∧τ

0

d⟨X,µ⟩s
Zs

where XG is a G-local martingale.
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8 BEFORE τ , UNDER (CA)

PROOF: Let Ys be a Gs-measurable random variable. There exists an Fs-measurable random

variable ys such that Ys11{s<τ} = ys11{s<τ}, hence, if X is an F-martingale, for s < t,

E(Ys(Xt∧τ −Xs∧τ )) = E(Ys11{s<τ}(Xt∧τ −Xs∧τ ))

= E
(
ys(11{s<τ≤t}(Xτ −Xs) + 11{t<τ}(Xt −Xs))

)
From the key lemma

E
(
ys11{s<τ≤t}Xτ

)
= −E

(
ys

∫ t

s

XudZu

)
.

From integration by parts formula (taking into account the continuity of Z and X)∫ t

s

XudZu = −XsZs + ZtXt −
∫ t

s

ZudXu − ⟨X,Z⟩t + ⟨X,Z⟩s

We have also

E
(
ys11{s<τ≤t}Xs

)
= E (ysXs(Zs − Zt))

E
(
ys11{t<τ}(Xt −Xs)

)
= E (ysZt(Xt −Xs))
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8 BEFORE τ , UNDER (CA)

E(Ys(Xt∧τ −Xs∧τ )) = E
(
ys(11{s<τ≤t}(Xτ −Xs) + 11{t<τ}(Xt −Xs))

)
= −E

(
ys(−XsZs + ZtXt−

∫ t

s

ZudXu − ⟨X,Z⟩t + ⟨X,Z⟩s)
)

−E (ysXs(Zs − Zt)) + E (ysZt(Xt −Xs))

from the martingale property of X , the blue term has zero expectation, and after simplifications

E(Ys(Xt∧τ −Xs∧τ )) = E (ys(⟨X,Z⟩t − ⟨X,Z⟩s))

From the Doob-Meyer decomposition of Z

E(Ys(Xt∧τ −Xs∧τ )) = E(ys(⟨X,µ⟩t − ⟨X,µ⟩s))

= E
(
ys

∫ t

s

d⟨X,µ⟩u
Zu

Zu

)
= E

(
ys

∫ t

s

d⟨X,µ⟩u
Zu

E(11{u<τ}|Fu)
)

= E
(
ys

∫ t

s

d⟨X,µ⟩u
Zu

11{u<τ}

)
= E

(
ys

∫ t∧τ

s∧τ

d⟨X,µ⟩u
Zu

)
.

The result follows. △
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9 ARBITRAGES

9 Arbitrages

Let S be a price process in a model with zero interest rate.

The fundamental theorem of asset pricing states that

• No free lunch with vanishing risk (NFLVR ) holds if there exists a positive martingale L such that

SL is a local martingale.

• No upper bounded profit with bounded risk (NUPBR) or No arbitrages of the first kind (NA1) holds if

there exists a positive local martingale L called a deflator such that SL is a local martingale.
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9 ARBITRAGES

If S is continuous and satisfies NA1(F), then Sτ satisfies NA1(G).

Proof: There is no loss of generality in assuming that S is a continuous F-local martingale. We recall

that Z = µ−A and that (C) holds.

Let µ̂ be the G-martingale associated to µ given by

µ̂t := µt∧τ −
∫ t∧τ

0

Z−1
s d⟨µ, µ⟩s

Then, L := E(
∫ ·∧τ
0

Z−1
s dµ̂s) and SτL are G-local martingales (Use integration by parts), hence

L is a local martingale deflator.

We recall that E(Y ) is the solution of dX = XdY .
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10 BEFORE τ , GENERAL CASE

10 Before τ , general case

We define the right-continuous with left limits F-supermartingale

Zt := P
(
τ > t

∣∣ Ft) .
One can write

Z = m−Ho

where m is an F-martingale and Ho is the F-dual optional projection (an increasing process) of

H = 11[[τ,∞[[. Note that this is NOT the Doob-Meyer decomposition.
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10 BEFORE τ , GENERAL CASE

Recall the following definition: Let (At, t ≥ 0) be an integrable increasing process (not necessarily

F-adapted). There exists a unique integrable F-optional increasing process (Aot , t ≥ 0), called the

dual optional projection of A such that

E

(∫
[0,∞[

YsdAs

)
= E

(∫
[0,∞[

YsdA
o
s

)
for any positive F-optional process Y .
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10 BEFORE τ , GENERAL CASE

Example: Let τ = inf{t : Nt ≥ Θ} where N is a Poisson process with intensity λ, and Θ an

exponential random variable independent of FN . The decreasing process Z = e−N admits a

Doob-Meyer decomposition Zt = µt −Apt which can be computed using standard (Stieljes)

integration leading to

dµt = −e−Nt−γdMt

dApt = e−Nt−γλdt

where γ = 1− 1
e > 0.

The optional decomposition of Z is Zt = mt − (1− e−Nt) where m = 1.
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10 BEFORE τ , GENERAL CASE

Note that m is non-negative: indeed mt = E(Ao∞|Ft).

Naive remark: if mτ ≥ 1 with P(mτ > 1) > 0, and if m is the value of a portfolio, then, there

exists a classical arbitrage.
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10 BEFORE τ , GENERAL CASE

Let R̃ := R{Z̃R=0<ZR−}, where R is the first time when Z vanishes and Z̃t = P(τ ≥ t|Ft =.

Theorem 10.1. Let F be a quasi-left continuous filtration. The following conditions are equivalent.

(i) The F-stopping time R̃ is infinite (R̃ = ∞).

(ii) For any F-local martingale X , the process Xτ admits a G-local martingale deflator (hence,

satisfies NUPBR(G)).

A filtration F is quasi-left continuous if for each F-predictable stopping time T , FT = FT−.
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11 AFTER τ HONEST TIMES

11 After τ Honest times

There exists an interesting class of random times τ such that F-martingales are G-semi-martingales,

called honest times, introduced by Meyer and studied by Barlow and Jeulin among others.

Definition 11.1. A random time τ is honest if τ is equal to an Ft-measurable random variable on

τ < t.

Examples 11.2. (i) Let B a Brownian motion and set τ = g1 where gt = sup{s < t : Bs = 0}.

Then, for t < 1, g1 = gt on {g1 < t}, and gt is Ft-measurable, hence g1 is honest.

(ii) Let X be an adapted continuous process and X∗ = supXs, X
∗
t = sups≤tXs. The random

time

τ = sup{s : Xs = X∗}

is honest. Indeed, on the set {τ < t}, one has τ = sup{s : Xs = X∗
t }.

(iii) An F-stopping time is honest: indeed τ = τ ∧ t on τ < t.
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11 AFTER τ HONEST TIMES

Let Y be a G predictable process. There exists y and ỹ, two F predictable processes such that

Yt = yt11t≤τ + ỹt11τ<t
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11.1 Decomposition 11 AFTER τ HONEST TIMES

11.1 Decomposition

Proposition 11.3. Let τ be honest. We assume (CA). Then, any F- martingale X is a G
semi-martingale with decomposition

Xt = X̃t +

∫ t∧τ

0

d⟨X,µ⟩s
Zs

−
∫ τ∨t

τ

d⟨X,µ⟩s
1− Zs

,

where X̃ is a G-local martingale.

PROOF: Let X be an F-martingale and Ks ∈ Gs. We define a G-predictable process Y as

Yu = 11Ks11]s,t](u). For s < t, one has, using the decomposition of G-predictable processes:

E(11Ks
(Xt −Xs)) = E

(∫ ∞

0

YudXu

)
= E

(∫ τ

0

yudXu

)
+ E

(∫ ∞

τ

ỹudXu

)
.
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11.1 Decomposition 11 AFTER τ HONEST TIMES

Proposition 11.4. Let τ be honest. We assume (CA). Then, any F- martingale X is a G
semi-martingale with decomposition

Xt = X̃t +

∫ t∧τ

0

d⟨X,µ⟩s
Zs

−
∫ τ∨t

τ

d⟨X,µ⟩s
1− Zs

,

where X̃ is a G-local martingale.

PROOF: Let X be an F-martingale and Ks ∈ Gs. We define a G-predictable process Y as

Yu = 11Ks11]s,t](u). For s < t, one has, using the decomposition of G-predictable processes:

E(11Ks(Xt −Xs)) = E
(∫ ∞

0

YudXu

)
= E

(∫ τ

0

yudXu

)
+ E

(∫ ∞

τ

ỹudXu

)
.
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11.1 Decomposition 11 AFTER τ HONEST TIMES

Noting that
∫ t
0
ỹudXu is a martingale yields E

(∫∞
0
ỹudXu

)
= 0, hence

E(11Ks(Xt −Xs)) = E
(∫ τ

0

(yu − ỹu)dXu

)
= E

(∫ ∞

0

dAv

∫ v

0

(yu − ỹu)dXu

)
.

By integration by parts, setting Nt =
∫ t
0
(yu − ỹu)dXu, we get

E(11Ks(Xt −Xs)) = E(N∞A
p
∞) = E(N∞µ∞) = E

(∫ ∞

0

(yu − ỹu)d⟨X,µ⟩u
)
.
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11.1 Decomposition 11 AFTER τ HONEST TIMES

Now, it remains to note that

E
(∫ ∞

0

Yu

(
d⟨X,µ⟩u
Zu−

11{u≤τ} −
d⟨X,µ⟩u
1− Zu−

11{u>τ}

))
= E

(∫ ∞

0

(
yu
d⟨X,µ⟩u
Zu−

11{u≤τ} − ỹu
d⟨X,µ⟩u
1− Zu−

11{u>τ}

))
= E

(∫ ∞

0

(yud⟨X,µ⟩u − ỹud⟨X,µ⟩u)
)

= E
(∫ ∞

0

(yu − ỹu) d⟨X,µ⟩u
)

to conclude. �
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11.2 Multiplicative decomposition 11 AFTER τ HONEST TIMES

11.2 Multiplicative decomposition

Assume that Z does not vanish. Under (CA), it can be proved that

Zt =
Nt
N∗
t

where N is a local (continuous) martingale and N∗
t = sup{Ns, s ≤ t} and that

τ = sup{t : Nt = N∗
t }. Il follows that Zτ = 1.
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11.3 Arbitrages 11 AFTER τ HONEST TIMES

11.3 Arbitrages

Assume that dSt = StσtdWt and that τ avoids stopping times. Then, there are arbitrages on the

interval [0, τ ] and on the time interval [τ,∞[

From the multiplicative decomposition of Z , Z = N/N∗ and Zτ = 1, we obtain Nτ ≥ 1 = N0.

N − 1 being the value of a portfolio with null initial value, we obtain an arbitrage.

This result does not extend to the case with jumps.
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11.3 Arbitrages 11 AFTER τ HONEST TIMES

Other arbitrages can be detected using the additive decomposition Zt = µt −At which leads to

µτ ≥ 1 = µ0. It is proved in Jeulin that

τ is honest if and only if Z̃τ = 1

where Z̃t = P(τ ≥ t|Ft). Under (CA), Z = Z̃ .

Let τ be a finite honest time and assume that the market (S0, S) is complete. Then, if τ is not

an F-stopping time, there are classical arbitrages before and after τ .
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11.3 Arbitrages 11 AFTER τ HONEST TIMES

Other arbitrages can be detected using the additive decomposition Zt = µt −At which leads to

µτ ≥ 1 = µ0.It is proved in Jeulin that

τ is honest if and only if Z̃τ = 1

where Z̃t = P(τ ≥ t|Ft). Under (CA), Z = Z̃ .

Let τ be a finite honest time and assume that the market (S0, S) is complete. Then, if τ is not

an F-stopping time, there are classical arbitrages before and after τ .

This result extends to the case with jumps.
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11.3 Arbitrages 11 AFTER τ HONEST TIMES

Before τ

From µ = Z +A and Zτ = 1, we deduce that µτ ≥ 1.

Since τ is not a stopping time, P(Aτ > 0) > 0.

The market being complete, the martingale m is the value of a self financing portfolio, with initial

value 1, and µτ = 1 +
∫ τ
0
φsdSs for an F-predictable φ. Since µt ≥ 0, the strategy φ is

admissible.
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11.3 Arbitrages 11 AFTER τ HONEST TIMES

After τ : Here, t > τ

Using µ = Z +A, one obtains that µt − µτ = Zt − 1.

Consider the (finite) G-stopping time

ν := inf{t > τ : Zt ≤
1

2
}.

Then,

µν − µτ = Zν − 1 ≤ −1

2
≤ 0,

and

P(µν − µτ < 0) > 0.

Hence −
∫ t∧ν
τ

φsdSs = µt∧τ − µt∧ν is the value of a self-financing strategy with initial value 0

and terminal value µτ − µν ≥ 0 satisfying P(µτ − µν > 0) > 0.

From µ = Z +A and the fact that At = At∧τ , one obtains that µt − µτ = Zt − Zτ ≥ −2,

hence the strategy is admissible.
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11.3 Arbitrages 11 AFTER τ HONEST TIMES

The completeness of the F market seems to be an essential hypothesis to have classical arbitrages:

Let W 1,W 2 be a standard 2-dimensional Brownian motion and

dSt = Stf(W
2
t )dW

1
t

Under regularity assumptions FS = F1 ∨ F2. Let τ be an F2 honest time (hence an FS honest

time). Since W 1 is an F1 ∨ σ(τ ∧ ·) martingale, there are no arbitrages in the enlarged filtration.
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11.4 Examples in a Brownian filtration 11 AFTER τ HONEST TIMES

11.4 Examples in a Brownian filtration

In this section, we assume that

St = exp(σWt −
1

2
σ2t), σ > 0 .

• Consider the following finite random time

g := sup{t : St = a},

where 0 < a < 1.

Then Zt = 1− (1− St

a )
+, and

dZt = 11{St<a}
1

a
dSt −

1

2a
dℓat

Therefore,

φ :=
1

a
11{S<a}
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11.4 Examples in a Brownian filtration 11 AFTER τ HONEST TIMES

Wt = WG
t +

∫ t∧g

0

d⟨W,m⟩s
Zs

−
∫ t

t∧g

d⟨W,m⟩s
1− Zs

= WG
t +

∫ t∧g

0

σ11{Ss<a}ds−
∫ t

t∧g
11{Ss<a}

σSs
a− Ss

ds

= WG
t +

∫ t∧g

0

σ11{Ss<a}ds−
∫ t

t∧g

σSs
a− Ss

ds
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11.4 Examples in a Brownian filtration 11 AFTER τ HONEST TIMES

• Let, S∗
t = sup{Ss, s ≤ t} and

τ = sup{t : St = S∗
∞} = sup{t : St = S∗

t }

Then, Zt =
St

S∗
t

and dmt =
1
S∗
t
dSt, therefore φt =

1
S∗
t

.

Wt = WG
t +

∫ t∧τ

0

d⟨W,m⟩s
Zs

−
∫ t

t∧τ

d⟨W,m⟩s
1− Zs

= WG
t +

∫ t∧τ

0

σds−
∫ t

t∧τ

σSs
S∗
s − Ss

ds
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11.5 Example in a Poissonnian filtration 11 AFTER τ HONEST TIMES

11.5 Example in a Poissonnian filtration

Let dSt = St−ψdMt, S0 = 1 with ψ > 0, where M is the compensated martingale of a Poisson

process, i.e., St = e− ln(1+ψ)Yt where Yt :=
λψ

ln(1 + ψ)
t−Nt. Let τ be given by

τ := sup{t : St ≥ b} = sup{t : Yt ≤ a}.

where 0 < b < 1. Then, the process

φ :=
Ψ(Y− − a− 1)11{Y−≥a+1} −Ψ(Y− − a)11{Y−≥a} + 11{Y−<a+1} − 11{Y−<a}

ψS−
,

where

Ψ(x) = P(T x <∞), with T x = inf{t : x+ Yt < 0}

is an arbitrage opportunity.
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11.5 Example in a Poissonnian filtration 11 AFTER τ HONEST TIMES

Proof On the one hand

Zt = P(τ > t|Ft) = Ψ(Yt − a)11{Yt≥a} + 11{Yt<a} = 1 + 11{Yt≥a} (Ψ(Yt − a)− 1) .

On the other hand, setting θ =
µ

λ
− 1, one shows that the dual optional projection Ao of the

process 11[τ,∞) equals

Ao =
θ

1 + θ

∑
n

11[ϑn,∞),

where ϑn is the sequence of F-stopping times defined by ϑ1 = inf{t > 0 : Yt = a} and

ϑn = inf{t > ϑn−1 : Yt = a}.
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11.5 Example in a Poissonnian filtration 11 AFTER τ HONEST TIMES

For any optional increasing process

E(Kτ ) = E(
∑

11τ=ϑnKϑn) = E(
∑

E(11τ=ϑn |Fϑn)Kϑn)

and E(11τ=ϑn |Fϑn) = P(T 0 = ∞) = 1−Ψ(0) = 1− 1
1+θ .
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11.6 NA1 after τ 11 AFTER τ HONEST TIMES

11.6 NA1 after τ

Let τ be honest.

Assume that Zτ < 1 and F is quasi-left-continuous. Then the following assertions are equivalent.

(a) The set {Z̃ = 1 > Z−} is evanescent.

(b) For every (bounded) X satisfying NA1(F), X −Xτ satisfies NA1(G).
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12 UNDER EQUIVALENCE JACOD’S HYPOTHESIS

12 Under equivalence Jacod’s Hypothesis

Under equivalence Jacod’s hypothesis, (H′) hypothesis holds for F and G: any F martingale, being

a G adapted Fσ(τ)-semimartingale is a G-semimartingale.

12.1 Canonical Decomposition in G

Proposition 12.1. Under (CA), any (P,F)-local martingale X is a (P,G) semi-martingale with

canonical decomposition

Xt = XG
t +

∫ t∧τ

0

d⟨X,Z⟩s
Zs−

+

∫ t

t∧τ

d⟨X, p.(τ)⟩s
ps−(τ)

,

where XG is a (P,G)-local martingale.
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12.2 Predictable Representation Property 12 UNDER EQUIVALENCE JACOD’S HYPOTHESIS

12.2 Predictable Representation Property

If F is a Brownian filtration, and (A) holds, every X ∈ Mloc(P,G) can be represented as

Xt = X0 +

∫ t

0

ΦsdW
G
s +

∫ t

0

ΨsdMs,

where WG is the martingale part in the G-canonical decomposition of W , M is the

(P,G)-compensated martingale associated with H and Φ, Ψ are G-predictable.
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12.3 Characterization of (P,G martingales in terms of (P,F)-martingales12 UNDER EQUIVALENCE JACOD’S HYPOTHESIS

12.3 Characterization of (P,G martingales in terms of (P,F)-martingales

Proposition 12.2. A G-adapted process Yt := ỹt11t<τ + ŷt(τ)11τ≤t, t ≥ 0, is a

(P,G)-martingale if and only if the following two conditions are satisfied

(i) for ν-a.e u,
(
ŷt(u)pt(u), t ≥ u

)
is a (P,F)-martingale;

(ii) the process y = (yt, t ≥ 0), given by

yt := E(Yt|Ft) = ỹtGt +

∫ t

0

ŷt(u)pt(u)ν(du) ,

is a (P,F)-martingale.

PROOF: Assume, w.l.g., that Yt = E(Y (τ)
t |Gt) for some (P,F(τ))-martingale Y (τ). Then

Y
(τ)
t = yt(τ), where for ν-almost every u ≥ 0 the process

(
yt(u)pt(u), t ≥ 0

)
is a

(P,F)-martingale. One then has

11τ≤tŷt(τ) = 11τ≤tYt = 11τ≤tE(Y (τ)
t |Gt) = E(11τ≤tY (τ)

t |Gt) = 11τ≤tyt(τ) ,

which implies, that for ν-almost every u ≤ t, the identity yt(u) = ŷt(u) holds P-almost surely. So,

(i) is proved.
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12.3 Characterization of (P,G martingales in terms of (P,F)-martingales12 UNDER EQUIVALENCE JACOD’S HYPOTHESIS

Moreover, Y being a (P,G)-martingale, its projection on the smaller filtration F, namely the process

y in (ii) is a (P,F)-martingale.

Conversely, assuming (i) and (ii), we verify that E(Yt|Gs) = Ys for s ≤ t. We start by noting that

E(Yt|Gs) = 11s<τ
1

Gs
E(Yt11s<τ |Fs) + 11τ≤sE(Yt11τ≤s|Gs) . (12.1)

We then compute the two conditional expectations the right-hand side:

E(Yt11s<τ |Fs) = E(Yt|Fs)− E(Yt11τ≤s|Fs)

= E(yt|Fs)− E
(
E(ŷt(τ)11τ≤s|Ft)|Fs

)
= ys − E

( ∫ s

0

ŷt(u)pt(u)ν(du)|Fs
)

= ỹsGs +

∫ s

0

ŷs(u)ps(u)ν(du)−
∫ s

0

ŷs(u)ps(u)ν(du) = ỹsGs ,

where we used Fubini’s theorem and the condition (i) to obtain the next-to-last identity.
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Also

E(Yt11τ≤s|Gs) = E(ŷt(τ)11τ≤s|Gs) = 11τ≤s
1

ps(τ)
E
(
ŷt(u)pt(u)|Fs

)
|u=τ

= 11τ≤s
1

ps(τ)
ŷs(τ)ps(τ) = 11τ≤sŷs(τ)

where the next-to-last identity holds in view of the condition (ii). △
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