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The general problem of enlargement of filtration is the following one : let X be an F-martingale and

G a filtration larger that F. Find conditions such that X is a G semimartingale and then, give the G
semimartingale decomposition of the process X , i.e. write X as the sum of a G martingale and a

predictable bounded variation process.

Some results are known from the 70’s in continuous time, however, in that setting the proofs are not

trivial, and one needs to assume specific hypotheses to give a positive answer. Furthermore, many

cases are still not solved.

This is important in finance to exclude arbitrages (for example while studying insider trading) and to

study the impact of new information when solving an optimization problem on consumption/ terminal

wealth.

Some results are known from the 70’s in continuous time, however, in that setting the proofs are not

trivial, and one needs to assume specific hypotheses to give a positive answer. Furthermore, many

cases are still not solved.



Many references and books are available in continuous time (Jeulin, Jacod, Mansuy and Yor, Yor,

Protter)

Recent theses with applications to finance: Amendinger, Ankirchner, Aksamit, Deng, Kreher, Falafala.

See also papers by these authors and by Acciaio et al., Coculescu et al., Herdegen and Hermann,

Kchia and Protter (all in continuous time).

Many results in a discrete time setting can be found in Deng’s thesis and the related paper Tahir

Choulli and Jun Deng : Non-arbitrage for Informational Discrete Time Market Models.



This presentation, where we study enlargement of filtration in discrete time is based on work in

progress with Ankirchner, Blanchet-Scaillet and part of the thesis of Romo-Romero.

Our goal is to compute more explicitly the semimartingale decomposition, and to show, with

elementary computation, that we recover the classical general formula established in the literature in

continuous time.

The interest is mainly from a pedagogical point of view. We shall also present some results in a credit

risk framework.



We are working in a discrete time setting: X = (Xn, n ≥ 0) is a process and H = (Hn, n ≥ 0)

is a filtration, i.e., a family of σ-algebra such that Hn ⊂ Hn+1 ⊂ G. We note

∆Xn := Xn −Xn−1, n ≥ 1 the increment of X at time n and we set ∆X0 = X0.

A process X is H-adapted if, for any n ≥ 1, the random variable Xn is Hn-measurable.

A process X is H-predictable if, for any n ≥ 1, the random variable Xn is Hn−1-measurable and

X0 is a constant.

A process X is integrable if E(|Xn|) <∞ (resp. E(X2
n) <∞) for all n ≥ 0.

The process X− is defined as the process equal to Xn−1 at time n and to 0 for n = 0, this process

is predictable.



A random variable ζ is said to be positive if ζ > 0 a.s., a process X is positive if the r.v. Xn is

positive for any n ≥ 0 and a process A is increasing (resp. decreasing) if An ≥ An−1 (resp.

An ≤ An−1) a.s. , for all n ≥ 1.

An integrable H-adapted process X is an H-martingale (resp. an H-supermartingale) if

E(Xn|Hn−1) = Xn−1, or equivalently E(∆Xn|Hn−1) = 0 (resp. E(Xn|Hn−1) ≤ Xn−1).



Basic Facts

Basic Facts

Set of martingales

(a) The set of processes of the form (ψ0 +
∑n
k=1

(
ψk − E(ψk|Hk−1)

)
, n ≥ 0) where ψ is an

H-adapted integrable process is equal to the set of all H-martingales (here,
∑0
k=1 � = 0)

(b) The set of processes of the form (ψ0

∏n
k=1

ψk

E(ψk|Hk−1)
, n ≥ 0) where ψ is a positive

integrable H-adapted process is the set of all positive H-martingales (here,
∏0
k=1 � = 1).



Basic Facts

Basic Facts

Doob’s decomposition: Any discrete time process is a semimartingale in any filtration for which it is

adapted: X =MF + V F where MF is an F-martingale and V F is F-predictable, V F
0 = 0 and

∆V F
n := V F

n − V F
n−1 = E(Xn −Xn−1|Fn−1) = E(∆Xn|Fn−1) .

Proof: Setting V F as above, it remains to check that MF is a martingale. Note that

∆MF
n :=MF

n −MF
n−1 = Xn − E(Xn|Fn−1) .

If X is an F-martingale, and G any filtration such that F ⊂ G, it is a G-semimartingale with

decomposition X =MG + V G where MG is a G-martingale and V G is G-predictable, and

∆V G
n := V G

n − V G
n−1 = E(Xn −Xn−1|Gn−1) = E(∆Xn|Gn−1)
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Basic Facts

Predictable bracket of two martingales

If X and Y are two F-martingales, there exists an F-predictable process K such that

XY −K is a martingale and

∆Kn = E(Yn∆Xn|Fn−1) = E(∆Yn∆Xn|Fn−1)

We denote ⟨X,Y ⟩n := Kn.

Indeed, from Doob’s decomposition the predictable part of the semimartingale XY is

∆Kn = E(XnYn −Xn−1Yn−1|Fn−1.



Basic Facts

Predictable bracket of two martingales

If X and Y are two F martingales, there exists an F predictable process K such that

XY −K is a martingale and

∆Kn = E(Yn∆Xn|Fn−1) = E(∆Yn∆Xn|Fn−1)

We denote ⟨X,Y ⟩n := Kn. Indeed, from Doob’s decomposition , XY is an F-semimartingale

with predictable part ∆Kn = E(XnYn −Xn−1Yn−1|Fn−1).

The covariation process of two processes [X,Y ] is defined by ∆[X,Y ]n = ∆Yn∆Xn.



Basic Facts

Predictable bracket of two semi martingales

The predictable bracket of two semimartingales X,Y is defined as the dual predictable projection of

the covariation process ⟨X,Y ⟩ = [X,Y ]p.

For discrete time semimartingales, [X,Y ]n =
∑n
k=1 ∆Xk∆Yk, and [X,Y ]p is the only

predictable (bounded variation) process such that [X,Y ]− [X,Y ]p is a martingale, i.e. [X,Y ]p is

the predictable part of [X,Y ].

From Doob’s decomposition

(∆[X,Y ]p)n = E([X,Y ]n − [X,Y ]n−1|Fn−1) = E(∆Xn∆Yn|Fn−1)

Then,

∆⟨X,Y ⟩Fn = E(∆Xn∆Yn|Fn−1) .



Basic Facts

Stochastic integral

The stochastic integral of a process Y w.r.t. a process X is the process Y �X defined as

(Y �X)n :=
n∑
k=1

Yk∆Xk, n ≥ 0.

For two processes X and Y

XY = X0Y0 +X− � Y + Y− �X + [X,Y ] = X0Y0 +X− � Y + Y �X .

This equality is based on

∆(XY )n = Xn−1∆Yn + Yn−1∆Xn +∆Xn∆Yn = Xn−1∆Yn + Yn∆Xn.



Basic Facts

If X is a square integrable H-martingale and H an H-predictable square integrable process,

then the process H �X is an H-martingale.

Proof: For H predictable,

E(Hn∆Xn|Hn−1) = HnE(∆Xn|Hn−1) = E(∆MH
n ∆Xn|Hn−1) = 0

and the result is obvious.

If X and Y are two square integrable H-martingales then XY − [X,Y ] is an H-martingale.

Proof: This is a direct consequence of integration by parts formula and the fact that X− and Y− are

predictable.



Basic Facts

Two square integrable martingales X and Y are said to be orthogonal if their product is a

martingale, i.e. if E(∆(XY )n|Hn−1) = 0.

This condition is equivalent to any of the following assertions

(a) E(∆Yn∆Xn|Hn−1) = 0

(b) E(Yn∆Xn|Hn−1) = 0

(c) [X,Y ] is a martingale

(d) ⟨X,Y ⟩ = 0.

Proof: From integration by parts formula, the orthogonality is equivalent to [X,Y ] is a martingale,

which is equivalent to the two other conditions, due to ∆(XY )n = Xn−1∆Yn + Yn∆Xn, and

the fact that X− � Y and Y− �X are martingales.



Basic Facts

Enlargement of filtrations

There are, in continuous time, mainly two kinds of enlargement

Initial enlargement, where L is a random variable and

Gt := Ft ∨ σ(L) .

Progressive enlargement, where τ is a positive random variable and

Gt := Ft ∨ σ(t ∧ τ) .



Initial Enlargement

Initial Enlargement

Initial enlargement: an example (Bridge)

Let Xn =
∑n
k=1 Yk, where (Yk, k ≥ 1) are i.i.d. centered, be a martingale (an FX -martingale)

and let Gn := FX
n ∨ σ(XN ), for n ≤ N .

We need to compute ∆An = E(∆Xn|Fn−1 ∨ σ(XN )). Using the fact that (Yk, k ≤ N) are

i.i.d, we have that for any j ≥ n

(Yj , X1, · · · , Xn−1, XN )
loi
=(Yn, X1, · · · , Xn−1, XN )

hence

E(Yn|Fn−1 ∨ σ(XN )) = E(Yj |Fn−1 ∨ σ(XN ))

=
1

N − (n− 1)
E(Yn + · · ·+ Yj + · · ·+ YN |Fn−1 ∨ σ(XN ))

=
1

N − (n− 1)
E(XN −Xn−1|Fn−1 ∨ σ(XN ))

=
XN −Xn−1

N − (n− 1)



Initial Enlargement

Hence,

Xn −
n∑
k=1

XN −Xk−1

N − (k − 1)

is a G-martingale.

In continuous time: Brownian bridge. For G = F ∨ σ(B1),

Bt = BG
t +

∫ t

0

B1 −Bs
1− s

ds, t ≤ 1
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Initial Enlargement

Initial enlargement: another example

Let X be a martingale, L be a r.v. taking values in Z and pn(j) = P(L = j|FX
n ). Define

Gn = FX
n ∨ σ(L).

Then ∆V G
n = E(∆Xn|Fn ∨ σ(L)) and

∆V G
n 11{L=j} = 11{L=j}

E(∆Xn11{L=j}|Fn−1)

P(L = j|Fn−1)

= 11{L=j}
E(pn(j)∆Xn|Fn)

pn−1(j)
= 11{L=j}

E(∆⟨X, p(j)⟩n|Fn−1)

pn−1(j)
.

On the set {L = j}, one has pn(j) ̸= 0,∀n ≥ 0. Indeed,

E(11{pn(j)=0}11{L=j}) = E(11{pn(j)=0}E(11{L=j}|Fn)) = E(11{pn(j)=0}pn(j)) = 0 .



Initial Enlargement

Initial enlargement: another example
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Initial Enlargement

Xn = XG
n +

n∑
k=1

E(∆⟨X, p(j)⟩n|Fn−1)|j=L
pn−1(L)

In continuous time, under Jacod’s hypothesis P(L ∈ du|Ft) = pt(u)P(L ∈ du)

Xt = XG
t +

∫ t

0

d⟨X, p(u)⟩s|u=L
ps−(L)



Initial Enlargement

Arbitrages

Two simplifications in discrete time are that any non negative local martingale is a martingale and that

all kind of arbitrages are equivalent.

If p(k) > 0 for any k, then, there exists a G-martingale η such that, for any F martingale S,

Sη is a Fσ(L)-local martingale.

Proof: Set η = 1/p(L). For an F-martingale X , if p(k) > 0, the one has

E(
Xn

pn(L)
|Fn−1 ∨ σ(L)) =

∞∑
k=−∞

11L=k
E(11{L=k} Xn

pn(k)
|Fn−1)

E(11{L=k}|Fn−1)

=
∞∑

k=−∞

11{L=k}
E(Xn|Fn−1)

pn−1(k)
=

Xn−1

pn−1(L)
.



Initial Enlargement

A necessary and sufficient condition can be found in Choulli-Deng :

For any Z-valued random variable L, the following are equivalent.

(a) The set {pn(k) = 0 < pkn−1} is negligible, for all k and n.

(b) For any F-adapted integrable process X satisfying NA(F), X satisfies NA(Fσ().



Progressive Enlargement

Progressive Enlargement

We assume here that τ is a random variable valued in N ∪ {+∞}, and introduce

Gn := Fn ∨ σ(τ ∧ n).

If Yn ∈ Gn, then there exists yn ∈ Fn such that Yn11{n<τ} = yn11{n<τ}. Any G-predictable

process can be written as

Vn = V bn11{n≤τ} + V an (τ)11{τ<n}

where, V b is F predictable and for any u, V a(u) is F-predictable.

We introduce two supermartingales

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)

and the Doob-Meyer decomposition of Z̃ = M̃ − Ã where M is an F-martingale and Ã an

F-predictable increasing process.



Progressive Enlargement

We shall use the trivial equalities Z̃n = P(τ > n− 1|Fn), Zn = P(τ ≥ n+ 1|Fn) .

On the set {n ≤ τ}, Z̃n and Zn−1 are (strictly) positive.

The proof follows from simple arguments

E(11{n≤τ}11{Zn−1=0}) = E(P(n ≤ τ |Fn−1)11{Zn−1=0})

= E(P(n− 1 < τ |Fn−1)11{Zn−1=0}) = E(Zn−111{Zn−1=0}) = 0

On the set {n > τ}, Z̃n and Zn−1 are strictly smaller than 1.

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)
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Progressive Enlargement

For any random time τ , if Y is integrable

E(Y |Gn)11{n<τ} = 11{n<τ}
E(Y 11{n<τ}|Fn)

Zn

Indeed, on {n < τ}, any Gn measurable random variable Yn is equal to an Fn measurable random

variable so that, for Yn11{n<τ} = 11{n<τ}yn which leads to

E(Yn11{n<τ}|Fn) = E(11{n<τ}|Fn))yn

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)
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Progressive Enlargement

For Yn ∈ Fn

E(Yn11{τ≥n}|Gn−1) = 11{τ≥n}
1

Zn−1
E(YnZ̃n|Fn−1)

E(
Yn

Z̃n
11{τ≥n}|Gn−1) = 11{τ≥n}

1

Zn−1
E(Yn11{Z̃n>0}|Fn−1) .

Only the second equality requires a proof

E(
Yn

Z̃n
11{τ≥n}|Gn−1) = 11{τ≥n}

1

Zn−1
E(Yn

1

Z̃n
11{τ≥n}|Fn−1)

=
1

Zn−1
E(Yn

1

Z̃n
11{τ≥n}11Z̃n > 0|Fn−1) = 11{τ≥n}

1

Zn−1
E(Yn11{Z̃n>0}|Fn−1) .

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Progressive Enlargement
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Arbitrages

Arbitrages

If Z > 0, there are no arbitrages before τ .

We prove that if S is an F martingale, then, there exists a positive G-martingale such that SτL is a

local martingale.

The process

Ln =
n∏
k=1

(1 + ∆Nk) = Ln−1(1 + ∆Nn)

where ∆Nk = 11τ≥k(
Zk−1

Z̃k
− 1), is a positive G-martingale.

Proof : Indeed,

E(1 + ∆Nn|Gn−1) = 1 + E(11τ≥n(
Zn−1

Z̃n
− 1)|Gn−1)

= 1 + 11τ>n−1
1

Zn−1
E(11τ≥n(

Zn−1

Z̃n
− 1)|Fn−1)

= 1 + 11τ>n−1
1

Zn−1
(E(Z̃n

Zn−1

Z̃n
|Fn−1)− Zn−1) = 1

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Arbitrages

The process SτL is a (G,P) martingale.

Indeed

E(S(n+1)∧τ (1 + 11τ≥n+1(
Zn

Z̃n+1

− 1))|Gn)

= E(Sn+111τ≥n+1(1 +
Zn

Z̃n+1

− 1)|Gn) + E(Sτ11τ<n+1|Gn)

= E(Sn+111τ≥n+1
Zn

Z̃n+1

|Gn) + Sτ11τ<n+1

= 11τ>n
1

Zn
E(Sn+1Z̃n+1

Zn

Z̃n+1

|Fn) + Sτ11τ≤n = Sn∧τ

A necessary and sufficient condition can be found in Choulli-Deng : for any S satisfying NA(F), S

satisfies NA(G) is equivalent to {Z̃n = 0} = {Zn−1 = 0}

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Arbitrages

Immersion in progressive enlargement

F is immersed in G iff any F martingale is a G-martingale, or equivalently if

Zn = P(τ > n|F∞) = P(τ > n|Fk) for any k ≥ n.

This is the case in the Cox Model.

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Arbitrages

F is immersed in G if and only if Z̃ is predictable and Z̃n = P(τ ≥ n|F∞).

Assume that F is immersed in G. Then,

Z̃n = P(τ ≥ n|Fn) =: P(τ > n− 1|Fn) = P(τ > n− 1|Fn−1) = P(τ > n− 1|F∞)

= P(τ ≥ n|F∞)

where the third and the next to last equality follow from immersion assumption. The third equality

establishes the predictability of Z̃ . Note that one has Z̃n = Zn−1.

Assume now that Z̃ is predictable and Z̃n = P(τ ≥ n|F∞). Then, Z̃n = P(τ ≥ n|Fn−1) and

P(τ > n|Fn) = P(τ ≥ n+ 1|Fn) = Z̃n+1

= P(τ > n|F∞)

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)
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Arbitrages

Semi martingale decomposition, Before τ

Any F-martingale X stopped at τ is a G-semimartingale with decomposition

Xτ = XG +

·∧τ∑
k=0

1

Zk−1
∆⟨M̃,X⟩k

where Z̃ = M̃ − Ã.

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Arbitrages

Proof: The G-predictable part of the G-semimartingale X is V G with

∆V G
n = E(Xn −Xn−1|Gn−1). We apply previous results on the set n− 1 < τ ,

11{τ>n−1}(V
G
n − V G

n−1) = 11{τ>n−1}E(Xn −Xn−1|Gn−1)

= 11{τ>n−1}
1

Zn−1
E(11{τ>n−1}(Xn −Xn−1)|Fn−1)

= 11{τ>n−1}
1

Zn−1
E(E(11{τ>n−1}|Fn)(Xn −Xn−1)|Fn−1)

= 11{τ>n−1}
1

Zn−1
E(E(11{τ≥n}|Fn)(Xn −Xn−1)|Fn−1)

= 11{τ>n−1}
1

Zn−1
E(Z̃n(Xn −Xn−1)|Fn−1) .

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Arbitrages

Using now the Doob-Meyer decomposition of Z̃ , and the martingale property of X , we obtain

E(Z̃n(Xn −Xn−1)|Fn−1) = E((M̃n − Ãn)(Xn −Xn−1)|Fn−1)

= E(M̃n(Xn −Xn−1)|Fn−1) = ∆⟨M̃,X⟩n

and finally

11{τ>n−1}(V
G
n − V G

n−1) = 11{τ>n−1}
1

Zn−1
∆⟨M̃,X⟩n .

In continuous time

Xτ = XG +

∫ ·∧τ

0

1

Zs−
d⟨X, M̃⟩

where M̃ = Z̃ −A0
−, and A0 is the dual optional projection of 11τ≤t.

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Arbitrages

Using now the Doob-Meyer decomposition of Z̃ , and the martingale property of X , we obtain

E(Z̃n(Xn −Xn−1)|Fn−1) = E((M̃n − Ãn)(Xn −Xn−1)|Fn−1)

= E(M̃n(Xn −Xn−1)|Fn−1) = ∆⟨M̃,X⟩n

and finally

11{τ>n−1}(A
G
n −AG

n−1) = 11{τ>n−1}
1

Zn−1
∆⟨M̃,X⟩n .

In continuous time

Xτ = XG +

∫ ·∧τ

0

1

Zs−
d⟨X, M̃⟩s

where M̃ = Z̃ −A0
−, with A0 being the F-dual optional projection of 11τ≤t and

Z̃t = P(τ ≥ t|Ft).

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Arbitrages

After τ , Honest times

We now consider the case where τ is honest (and valued in N). We recall the definition and some of

the main properties.

A random time is honest, if, for any n ∈ N, there exists an Fn-measurable random variable τ(n)

such that

11{τ≤n}τ = 11{τ≤n}τ(n)

or equivalently if there exists τ̂(n) such that

11{τ<n}τ = 11{τ<n}τ̂(n)

It follows that any G-predictable process V can be written as Vn = V bn11{n≤τ} + V an 11{τ<n}
where V a, V b are F-predictable processes.

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Arbitrages

If τ is honest, Zn = Z̃n on the set n > τ . Furthermore, τ is honest if and only if Z̃τ = 1

For any n,

P(τ = n|Fn)11{n>τ} = P(τ = n|Fn)11{n>τ ;n>τ(n)} = E(11{τ=n}11{n>τ(n)}|Fn)11{n>τ}
= E(11{τ=n}11{n>τ(n)}11{n>τ}|Fn)11{n>τ} = 0

It follows that Zn11{τ<n} = Z̃n11{τ<n}.

Furthermore,

Z̃n11{τ=n} = 11{τ=n}P(τ ≥ n|Fn) = 11{τ=n}11{τ(n)=n}P(τ ≥ n|Fn)

= 11{τ=n}E(11{τ(n)=n}11{τ≥n}|Fn) = 11{τ=n}

which implies Z̃τ = 1.

Let ℓ(n) = sup{k ≤ n : Z̃k = 1}. Then, on τ ≤ n one has τ = ℓ(n).

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Arbitrages

Decomposition in the enlarged filtration.

Let X be an F-martingale. Then,

X = X̂ +
·∧τ∑
k=0

1

Zk−1
∆⟨M̃,X⟩k −

·∑
k=τ

1

1− Zk−1
∆⟨M̃,X⟩k

where X̂ is a G-martingale.

One has

11τ≤n(V
G
n+1 − V G

n ) = E(11τ≤n(Xn+1 −Xn)|Gn) .

We now take the conditional expectation w.r.t. Fn. From the property of honest times, there exists

V F, an F-predictable process, such that V G
n 11τ≤n = V F

n 11τ≤n. Taking into account that V F is

predictable, one has

E(11τ≤n|Fn)(V G
n+1 − V G

n ) = E(11τ≤n(Xn+1 −Xn)|Fn)
= E(E(11τ≤n|Fn+1)(Xn+1 −Xn)|Fn)

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Arbitrages

E(11τ≤n|Fn)(V F
n+1 − V F

n ) = E(E(11τ≤n|Fn+1)(Xn+1 −Xn)|Fn)

Now, using the fact that

E(11τ≤n|Fn) = 1− E(11τ>n|Fn) = 1− Zn

E(11τ≤n|Fn+1) = 1− E(11τ>n|Fn+1) = 1− E(11τ≥n+1|Fn+1) = 1− Z̃n+1

and that X is an F-martingale, we obtain

(1− Zn)(V
G
n+1 − V G

n ) = −E(Z̃n+1(Xn+1 −Xn)|Fn) = −∆⟨M̃,X⟩n .

It seems important to note that the Doob-Meyer decomposition of Z is not needed.

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Arbitrages

Brackets in F and G.

Let X and Y be F adapted processes (hence, semi martingales)

∆⟨X,Y ⟩Gn11n≤τ = 11n≤τ
1

Zn−1
E(Z̃n∆Xn∆Yn|Fn−1)

Let τ be an honest time. Then

∆⟨X,Y ⟩Gn11τ<n = 11τ<n
1

1− Zn−1
E((1− Z̃n)∆Xn∆Yn|Fn−1)

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Arbitrages

Enlargement with a process

For n ≥ 0 let Un(dy) be a regular conditional distribution of the random vector

Ŷn−1 = (Y0, . . . , Yn−1) with respect to Fn. Moreover, for n ≥ 1 let Vn(dy) be a regular

conditional distribution of Ŷn−1 with respect to Fn−1.

Assume that Un(dy) is absolutely continuous wrt Vn(dy) for all n ≥ 1 and dn(y) :=
Un(dy)
Vn(dy)

.

Then, the information drift of X wrt to (Gn) is given by

An =

n∑
k=1

∆⟨X, d(z)⟩⟩k
∣∣
z=(Y0,...,Yk−1)

.

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Credit Risk

Credit Risk

Let Zn = P(τ > n|Fn) and Zn =Mn −An its F-supermartingale decomposition. Let

Hn = 11{τ≤n}.

The process Hn − Λn∧τ is a G-martingale, where ∆Λn = − ∆An

Zn−1
.

Assume now that τ = inf{n : Γn ≥ Θ} where Γ is increasing. Then Zn = e−Γn . If Γ is

predictable, Zn = 1−An = 1− e−Γn , and ∆Λn = ∆An

Zn−1
= 1− e−∆Γn .

If Γ is not predictable,

∆Λn = 1− E(e−∆Γn |Fn−1)

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Credit Risk

Credit Risk

Let Zn = P(τ > n|Fn) and Zn =Mn −An its F-supermartingale decomposition. Let

Hn = 11{τ≤n}.

The process Hn − Λn∧τ is a G-martingale, where ∆Λn = − ∆An

Zn−1
.

Assume now that τ = inf{n : Γn ≥ Θ} where Γ is increasing. Then Zn = e−Γn .

If Γ is predictable, Zn = 1−An = 1− e−Γn , and ∆Λn = ∆An

Zn−1
= 1− e−∆Γn

If Γ is not predictable,

∆Λn = e−Γn−1
1− E(e−∆Γn |Fn−1)

Zn−1

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Credit Risk

Credit Risk

Let Zn = P(τ > n|Fn) and Zn =Mn −An its F-supermartingale decomposition. Let

Hn = 11{τ≤n}.

The process Hn − Λn∧τ is a G-martingale, where ∆Λn = − ∆An

Zn−1
.

Assume now that τ = inf{n : Γn ≥ Θ} where Γ is increasing. Then Zn = e−Γn .

If Γ is predictable, Zn = 1−An = 1− e−Γn , and ∆Λn = ∆An

Zn−1
= 1− e−∆Γn

If Γ is not predictable,

∆Λn = e−Γn−1
1− E(e−∆Γn |Fn−1)

Zn−1

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)



Credit Risk

Credit Risk

Let Zn = P(τ > n|Fn) and Zn =Mn −An its F-supermartingale decomposition. Let

Hn = 11{τ≤n}.

The process Hn − Λn∧τ is a G-martingale, where ∆Λn = − ∆An

Zn−1
.

Case of Cox Model: τ = inf{n : Γn ≥ Θ} where Γ is increasing. Then Zn = e−Γn .

If Γ is predictable, Zn = 1−An = 1− e−Γn , and ∆Λn = ∆An

Zn−1
= 1− e−∆Γn

If Γ is not predictable,

∆Λn = 1− E(e−∆Γn |Fn−1)

Zn = P(τ > n|Fn), Z̃n = P(τ ≥ n|Fn)


