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Introduction

In these notes, we present classical results on enlargement of filtration, in a discrete time framework.
In such a setting, any F-martingale is a semimartingale for any filtration G larger than F, and one
can think that there are not so many things to do. From our point of view, one interest of our paper
is that the proofs of the semimartingale decomposition formula are simple, and give a pedagogical
support to understand the general formulae obtained in the literature in continuous time. It can
be noted that many results are established in continuous time under the hypothesis that all F-
martingales are continuous or, in the progressive enlargement case, that the random time avoids the
F-stopping times and the extension to the general case is difficult. In discrete time, one can not
make any of such assumptions, since martingales are discontinuous and random times valued in the
set of integers do not avoid F-stopping times.
Many books are devoted to discrete time in Finance, among them Shreve [18], Shiryaev [19], and
lecture notes are available on line Privault [15], Spreij [21].

In the first section, we recall some well know facts. Section 2 is devoted to the case of initial
enlargement. Section 3 presents the case of progressive enlargement with a random time τ . We
give a "model-free" definition of arbitrages in the context of enlargement of filtration, we study
some examples in initial enlargement and give, in a progressive enlargement setting, necessary and
sufficient conditions to avoid arbitrages before τ . We present the particular case of honest times
(which are the standard example in continuous time) and we give conditions to obtain immersion
property. We also give also various characterizations of pseudo-stopping times. In Section 4, we
consider enlargement with a process, and in Section 5, we study credit risk.

1.1 Some well known Results and Definitions

In these notes, we are working in a discrete time setting: X = (Xn, n ≥ 0) is a process on a
probability space (Ω,G,P), and H = (Hn, n ≥ 0) is a filtration, i.e., a family of σ-algebra such that
Hn ⊂ Hn+1 ⊂ G. We note ∆Xn := Xn − Xn−1, n ≥ 1 the increment of X at time n and we set
∆X0 = X0. An inequality (or equality) between two random variables is always P a.s.
We recall, for the ease of the reader some basic definitions.
A process X is H-adapted if, for any n ≥ 1, the random variable Xn is Hn-measurable.
A process X is H-predictable if, for any n ≥ 1, the random variable Xn is Hn−1-measurable and
X0 is a constant.
A process X is integrable (resp. square integrable) if E(|Xn|) < ∞ (resp. E(X2

n) < ∞) for all
n ≥ 0.
The process X− is defined as the process equal to Xn−1 at time n and to 0 for n = 0, this process
is predictable.
A random variable ζ is said to be positive if ζ > 0 a.s., a process X is positive if the r.v. Xn

is positive for any n ≥ 0 and a process A is increasing (resp. decreasing) if An ≥ An−1 (resp.
An ≤ An−1) a.s. , for all n ≥ 1. For two r.v. ζ and ξ, we write ζ < ξ for ξ− ζ > 0, a.s. (resp. ζ ≤ ξ
for ξ − ζ ≥ 0); for two processes X,Y we write X < Y for Xn < Yn, for any n ≥ 0.
For a probability measure P, we note Pn (or PH

n in case of ambiguity) the restriction of P to Hn.
We recall that, if ζ > 0, and G a sigma-algebra, then E(ζ|G) > 0. Indeed, for A = {E(ζ|G) = 0},
one has E(ζ1A) = 0.
The tower property states that, if F and G are sigma-algebra, with F ⊂ G, then

E(E(ζ|G)|F) = E(E(ζ|F)|G) = E(ζ|F) .

For a process X, we denote X∞− = limn→∞Xn , if the limit exists.
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1.1.1 H-martingales

An integrable H-adapted processX is an H-martingale (resp. an H-supermartingale) if E(Xn|Hn−1) = Xn−1,
or equivalently E(∆Xn|Hn−1) = 0 (resp. E(Xn|Hn−1) ≤ Xn−1).

We give some obvious results on the form of H-martingales.

Proposition 1.1.1 (a) The set of processes of the form (ψ0 +
∑n
k=1

(
ψk − E(ψk|Hk−1)

)
, n ≥ 0)

where ψ is an H-adapted integrable process is equal to the set of all H-martingales (here,
∑0
k=1 � = 0)

(b) The set of processes of the form (ψ0

∏n
k=1

ψk

E(ψk|Hk−1)
, n ≥ 0) where ψ is a positive integrable H-

adapted process is the set of all positive H-martingales (here,
∏0
k=1 � = 1).

Proof. (a) Let X be a process such that Xn = ψ0 +
∑n
k=1

(
ψk −E(ψk|Hk−1)

)
, n ≥ 0 where ψ is an

H-adapted integrable process. Then, X is integrable, as a difference of integrable processes, and

E(Xn −Xn−1|Hn−1) = E(ψn − E(ψn|Hn−1)|Hn−1) = 0 .

Therefore X is an H-martingale.
Let X be an H-martingale. Then, Xn = ∆X0 +

∑n
k=1 ∆Xk − E(∆Xk|Hk−1) with ∆X0 = X0 and∑0

k=1 � = 0. For ψ = ∆X, we obtain the result.
(b) Let Xn = ψ0

∏n
k=1

ψk

E(ψk|Hk−1)
, n ≥ 0. Then,

E(Xn|Hn−1) = Xn−1 E(
ψn

E(ψn|Hn−1)
|Hn−1) = Xn−1 .

If X is a positive martingale, setting ψk = Xk leads to the result. �

Lemma 1.1.2 A predictable martingale X is constant.

Proof. Indeed, E(Xn|Fn−1) = Xn and E(Xn|Fn−1) = Xn−1 lead to Xn = X0, for any n. �

1.1.2 Doob’s Decomposition and Applications

Doob’s decomposition

Lemma 1.1.3 Any integrable H-adapted process X is a special H-semimartingale1 with (unique)
decomposition X = MX,H + V X,H where MX,H is an H-martingale and V X,H is an H-predictable
process with V X,H0 = 0. Furthermore,

∆V X,Hn = E(∆Xn|Hn−1), ∀n ≥ 1 .

The process MX,H is called the martingale part of X and V X,H the predictable part of X.

Proof. In the proof, V := V X,H and M :=MX,H. Setting V0 = 0 and, for n ≥ 1

Vn − Vn−1 = E(Xn −Xn−1|Hn−1),

we construct an H-predictable process. This leads to

∆Mn = ∆Xn −∆Vn = Xn − E(Xn|Hn−1), ∀n ≥ 1 .

Setting M0 = X0, the process M is an H-martingale from Proposition 1.1.1. �

In what follows, we shall also denote V X (resp. V H) the H-predictable part of X if there are no
ambiguity on the choice of the filtration (resp. on the choice of the process).
As an immediate corollary, we obtain the Doob decomposition of supermartingales:

1A special semimartingale is an adapted process X such that X = M + V where M is a martingale and V a
predictable process.
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Corollary 1.1.4 If X is an H-adapted supermartingale, it admits a unique decomposition

X =MX −AX

where MX is an H-martingale and AX is an increasing H-predictable process with AX0 = 0 .

Proof. The supermartingale property of X implies that ∆V X ≤ 0. It remains to set AX = −V X .
�

Of course, a process of the form M −A where M is a martingale and A an increasing process is
a supermartingale.

Predictable brackets

Proposition 1.1.5 If X and Y are square integrable H-martingales, there exists a unique H-
predictable process V X,Y such that V X,Y0 = 0 and XY − V X,Y is an H-martingale. Furthermore

∆V X,Yn = E(Yn∆Xn|Hn−1) = E(∆Yn∆Xn|Hn−1) , n ≥ 1.

The process ⟨X,Y ⟩ := V X,Y is called the predictable bracket of the two martingales X and Y .

Proof. Indeed, from Lemma 1.1.3, and using the martingale property of X and Y , we have, for
n ≥ 1:

∆V X,Yn = V X,Yn − V X,Yn−1 = E(XnYn −Xn−1Yn−1|Hn−1)

= E(Yn∆Xn|Hn−1) + E(Xn−1∆Yn|Hn−1) = E(Yn∆Xn|Hn−1)

= E(∆Yn∆Xn|Hn−1) .

We have used that, from the martingale property of Y ,

E(Xn−1∆Yn|Hn−1) = Xn−1E(∆Yn|Hn−1) = 0 .

�

The predictable bracket of two semimartingales X,Y is defined in continuous time as the dual
predictable projection of the covariation process, that is ⟨X,Y ⟩ := [X,Y ]p. For discrete time semi-
martingales, we adopt the same definition. The covariation process is

[X,Y ]0 = 0 , [X,Y ]n :=
n∑
k=1

∆Xk∆Yk, n ≥ 1,

and [X,Y ]p is the unique predictable (bounded variation) process null at time 0, such that [X,Y ]−
[X,Y ]p is a martingale, i.e., [X,Y ]p is the predictable part of the semimartingale [X,Y ].

Lemma 1.1.6 Let X,Y be two H-adapted processes (hence, semimartingales) square integrable.
Then, the predictable bracket of the semimartingales X,Y , i.e., the predictable part of the semi-
martingale [X,Y ] is the process defined as

⟨X,Y ⟩0 = 0 , ∆⟨X,Y ⟩n = E(∆Xn∆Yn|Hn−1) , n ≥ 1 .

Proof. From Doob’s decomposition (Lemma 1.1.3), for n ≥ 1,

(∆[X,Y ]p)n = E([X,Y ]n − [X,Y ]n−1|Hn−1) = E(∆Xn∆Yn|Hn−1) .

�

Note that the predictable bracket depends on the filtration, which is not the case for continuous
semimartingales in a continuous time setting.
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Stochastic integral of adapted processes and martingale property

Definition 1.1.7 The stochastic integral of a process Y w.r.t. a process X is the process Y �X
defined as (Y �X)n :=

∑n
k=1 Yk∆Xk, n ≥ 0. In the case where X = (X1, · · · , Xd) is a d-dimensional

process, for a d-dimensional process Y , one defines (Y �X)n :=
∑n
k=1

∑d
j=1 Y

j
k∆X

j
k, n ≥ 1.

Proposition 1.1.8 Integration by parts formula. For two processes X and Y

XY = X0Y0 +X− � Y + Y− �X + [X,Y ] = X0Y0 +X− � Y + Y �X .

Proof. This equality is based on

∆(XY )n = Xn−1∆Yn + Yn−1∆Xn +∆Xn∆Yn = Xn−1∆Yn + Yn∆Xn.

�

Lemma 1.1.9 If X is a square integrable H-martingale and H an H-predictable square integrable
process, then the process H �X is an H-martingale.

Proof. For H predictable,

E(Hn∆Xn|Hn−1) = HnE(∆Xn|Hn−1) = E(∆MH
n ∆Xn|Hn−1) = 0

and the result is obvious. �

Lemma 1.1.10 If X and Y are two square integrable H-martingales then XY − [X,Y ] is an H-
martingale. In particular, X2 − [X] is an H-martingale for a square-integrable H-martingale X.

Proof. This is a direct consequence of integration by parts formula and the fact that X− and Y−
are predictable. �

Definition 1.1.11 Two square integrable martingales X and Y are said to be orthogonal if their
product is a martingale, i.e. if E(∆(XY )n|Hn−1) = 0. This condition is equivalent to any of the
following assertions
(a) E(∆Yn∆Xn|Hn−1) = 0
(b) E(Yn∆Xn|Hn−1) = 0
(c) [X,Y ] is a martingale
(d) ⟨X,Y ⟩ = 0.

Proof. [of the various equivalence conditions] From integration by parts formula, the orthogonality
is equivalent to [X,Y ] is a martingale, which is equivalent to the two other conditions, due to
∆(XY )n = Xn−1∆Yn + Yn∆Xn, and the fact that X− � Y and Y− �X are martingales. �

Lemma 1.1.12 If X is a square integrable H-martingale and H an H-adapted square integrable
process with H-martingale part orthogonal to X, then the process H �X is an H-martingale.

Proof. Let H =MH + V H . Since

E(Hn∆Xn|Hn−1) = E(MH
n ∆Xn|Hn−1) + V Hn E(∆Xn|Hn−1) = E(∆MH

n ∆Xn|Hn−1) = 0

the result is obvious. If H is predictable, MH = 0, therefore H �X is an H-martingale. �

We now give the isometry formula, similar to the one in continuous time.

Proposition 1.1.13 If X is a martingale and XY square integrable, and if Y �X is a martingale,
then E(((Y �X)n)

2) =
∑n
k=1 E(Y 2

k (∆Xk)
2) .
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Proof. Since Y �X is a martingale, E
(
∆((Y �X)2)k

∣∣Hk−1

)
= E

(
(∆(Y �X)k)

2
∣∣Hk−1

)
. Then, using

∆(Y �X)k = Yk∆Xk and taking expectations, we get

E
(
∆((Y �X)2)k

)
= E

(
Y 2
k (∆Xk)

2
)
.

Finally, taking the sum for k from 0 to n, we obtain

E
(
(Y �X)2n

)
= E

( n∑
k=1

Y 2
k (∆Xk)

2
)
, ∀n ≥ 0 .

�

1.1.3 Projections

In this section, H is a filtration, and X is a process, not assumed to be H adapted. For future use, we
mimic two definitions important in continuous time. In particular, we introduce optional projections,
even if in discrete time, optional means adapted. We keep the continuous time denomination to make
easier the comparison between both results for readers aware about continuous time.

Definition 1.1.14 The H-optional projection of an integrable process X is the H-adapted process
oX defined as oXn = E(Xn|Hn). The H-predictable projection of a process X is the H-predictable
process pX defined as pXn = E(Xn|Hn−1).

Definition 1.1.15 The H-dual optional projection of an increasing process X is the increasing
adapted process Xo defined as ∆Xo

n = E(∆Xn|Hn) for n ≥ 1 and Xo
0 = E(X0|H0).

The H-dual predictable projection of an increasing process X is the increasing predictable process Xp

defined as ∆Xp
n = E(∆Xn|Hn−1) for n ≥ 1 and Xp

0 = 0. If X is an H-adapted process, Xp = V
where V is the predictable part of the semimartingale X.

The dual H-optional projection of X, satisfies

E
(
(Y �X)∞−

)
= E

(
(Y �Xo)∞−

)
(1.1)

for any non negative bounded H-adapted process Y . The dual H-predictable projection ofX, satisfies

E
(
(Y �X)∞−

)
= E

(
(Y �Xp)∞−

)
(1.2)

for any non negative bounded H-predictable process Y .
Using that any process X can be written as X = X↑+X↓ where X↑ (resp. X↓ ) is increasing (resp.
decreasing), one can also define dual projections for any process X as (X↑)p − (X↓)p. Indeed, X↑

and X↓ can be constructed as follows.

X↑
n =

n∑
k=1

(Xk −Xk−1)
+, X↓

n =

n∑
k=1

(Xk −Xk−1)
F−

are increasing and since
(Xk −Xk−1)

+ − (Xk −Xk−1)
− = ∆Xk ,

the result is proved.

Exercise 1.1.16 Prove that for a pair of processes (X,Y ), the following duality formulae hold

E((X � Y p)∞−) = E((pX � Y )∞−)

E((X � Y p)∞−) = E((pX � Y )∞−) .
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Proposition 1.1.17 The processes oX −Xo and oX −Xp are martingales

Proof. Using the tower property

E(∆(oX −Xo)n|Hn−1) = E
(
E(Xn|Hn)− E(Xn|Hn−1)− E(Xn −Xn−1|Hn)|Hn−1

)
= E

(
− E(Xn|Hn−1) + E(Xn−1|Hn)|Hn−1

)
= 0 .

The proof that oX −Xp is a martingale is left to the reader. �

1.1.4 Multiplicative decomposition

Theorem 1.1.18 Let X be an H-adapted integrable positive process, then X can be represented in
a unique form as

X = KXNX ,

where KX is an H-predictable process with KX
0 = 1 and NX is an H-martingale. More precisely,

NX
0 = X0, NX

n = X0

n∏
k=1

Xk

E(Xk|Hk−1)
, ∀n ≥ 1 ,

KX
0 = 1, KX

n =

n∏
k=1

E(Xk|Hk−1)

Xk−1
, ∀n ≥ 1.

Proof. For each n ≥ 1 fixed, the positive random variable NX
n , is integrable since by recurrence

E[NX
n ] = E

[
NX
n−1E

(
Xn

E(Xn|Hn−1)

∣∣Hn−1

)]
= E

(
NX
n−1

)
= X0, and from Proposition 1.1.1, NX is a

martingale.

In the other hand, the process KX , defined by

KX
n =

Xn

X0

∏n
k=1

Xk

E(Xk|Hk−1)

=
n∏
k=1

E(Xk|Hk−1)

Xk−1

is an H-predictable process. �

Remark 1.1.19 In terms of Doob’s decomposition X =MX + V X , one has

KX
n =

MX
n−1 + V Xn
Xn−1

KX
n−1 = X0

n∏
k=1

MX
k−1 + V Xk
Xk−1

, NX
n = Xn/K

X
n , n ≥ 1 .

Corollary 1.1.20 Any positive H-supermartingale Y admits a unique multiplicative predictable de-
composition Y = NYDY where NY is an H-martingale and DY an H-predictable decreasing process
with DY

0 = 1. Conversely, any process of the form Y = XD where X is an H-martingale and D an
H-predictable decreasing process is a supermartingale.

Proof. The process D = KY is indeed decreasing if Y is a supermartingale. �

Cas où X s’annule?

1.1.5 Stochastic Exponential Process

Given a process X, we define the stochastic exponential of X denoted by E(X) as the solution of
the following equation in differences:{

∆E(X)n = E(X)n−1∆Xn , ∀n ≥ 1 ,
E(X)0 = 1 .

(1.3)
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Proposition 1.1.21 The solution of (1.3), is given by

E(X)n := Πnk=1(∆Xk + 1) , ∀n ≥ 1 . (1.4)

If X is a martingale, E(X) is a martingale. If ∆Xn > −1, for all n ≥ 0, then E(X) is positive.

Proof. The equality is obtained by recurrence. The martingale property is easily checked from (1.3).
�

Proposition 1.1.22 If Y is a positive process with Y0 = 1, there exists a unique process X such
that Y = E(X).

Proof. Set ∆Xn = ∆Yn

Yn−1
. �

We now give the obvious relation between stochastic exponential and exponential

Proposition 1.1.23 If X is a process such that ∆X > −1 then E(X)n = eUn where U0 = 0 and
∆Un = log(1 + ∆Xn).

Proof. Note that eUn = eUn−1(1 + ∆Xn). �

Lemma 1.1.24 Let ψ and γ be predictable and M and N be two processes. Then

E(ψ �M)E(γ �N) = E(ψ �M + γ �N + ψγ � [M,N ]) .

Proof. By definition, the two sides are equal to 1 at time 0. For n ≥ 1, the left-hand side Kn :=
E(ψ �M)nE(γ � N)n satisfies Kn = Kn−1(1 + ψn∆Mn)(1 + γn∆Nn). The right-hand side Jn :=
E(ψ � M + γ � N + ψγ � [M,N ])n satisfies Jn = Jn−1(1 + ψn∆Mn + γn∆Nn + ψnγn∆Mn∆Nn).
Assuming by recurrence that Kn−1 = Jn−1, the result follows. �

This result is known in continuous time as Yor’s equality.

1.1.6 Stopping Times and Local Martingales

Random and Stopping times

A random time is a random variable valued in N∪{+∞}, it is an H-stopping time if {τ ≤ n} ∈ Hn,
for any n ≥ 0. A random time τ is an H-predictable time if {τ = 0} ∈ H0 and {τ ≤ n} ∈ Hn−1, for
any n ≥ 0. A predictable time is, obviously, a stopping time. If τ is an H-stopping time, we define
the two σ-algebra of events before τ and strictly before τ

Hτ = {F ∈ H∞ : F ∩ {τ ≤ n} ∈ Hn, ∀n}
Hτ− = σ{F ∩ {n < τ} forF ∈ Hn}.

Obviously Hτ− ⊂ Hτ . In discrete time, this inclusion can be strict. If τ is a random time, the
stopped process Xτ is defined as Xτ

n = Xτ∧n.

Lemma 1.1.25 If A ∈ H∞, then A ∩ {τ = +∞} is Hτ−-measurable.

Proof. For n fixed and B ∈ Hn, one has B ∩ {τ = +∞} ∈ Hτ− as {τ = +∞} = ∩m≥n{τ > m}. It
follows that, if A ∈ H∞, ∀n, (A ∩ {τ ≤ n}) ∩ {τ = +∞} ∈ Hτ−. Then

A ∩ {τ = +∞} = ∪(A ∩ {τ ≤ n}) ∩ {τ = +∞} ∈ Hτ−
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If τ is a random time,

Hτ = {Xτ : X is an adapted process}
Hτ− = {Xτ : X is a predictable process}.

Note that, for τ ≡ n, one has Hn = Hτ and Hn−1 = Hτ−. The restriction of a random time to a
given set F ∈ H∞ is defined as

τF (ω) :=

{
τ(ω) ω ∈ F

∞ ω /∈ F .
(1.5)

In particular 0A = 0 on A and ∞ elsewhere.

Proposition 1.1.26 (a)If X is predictable, Xτ1τ<∞ is Hτ− measurable for any stopping time τ .
(b) The process X is predictable iff Xτ1τ<∞ is Hτ− measurable for any predictable stopping time τ .
(c) If X is adapted Xτ1τ<∞ is Hτ -measurable.
(d) A random variable ζ in H∞ is Hτ−-measurable if and only if there exists a predictable process
X such that Xτ = ζ on {τ < +∞}.

Proof. a) As the predictable process are generated by the process X = 1[[0A]], A ∈ H0 and for
X = 1]S,T ], where S, T are two stopping times valued in N, it is sufficient to prove it for these
processes. reference
If X = 1[[0A]], then Xτ1{τ<+∞} = 1A∩{τ=0} and the result is obvious. In the second case,

Xτ1{τ<+∞} = (1{S<τ} − 1{T<τ})1{τ<+∞} .

As 1{S<τ}1{τ<+∞} =
∑
n 1{S=n}1{n<τ}1{τ<+∞}, then 1{S<τ}−1{T<τ})1{τ<+∞} is Hτ−-measurable.

b) For the sufficient condition, we can choose τ ≡ n for a fixed n, τ is predictable and Xτ1{τ<+∞} =
Xn ∈ Hn−1. Then X is predictable.
d) Let ζ in H∞. We suppose that there exists a predictable process X such that Xτ = ζ on
{τ < +∞}. Then ζ = ζ1{τ=+∞}+Xτ1{τ<+∞}. The random variable ζ1{τ=+∞} is Hτ−-measurable.
The result follows from Lemma 1.1.25 and the first assertion. Conversely, it is sufficient to prove
the assertion, if ζ = 1B with B ∈ H0 or if ζ = 1B∩{n<τ} with B ∈ Hn. In this case, we can choose
X = 10A in the first case and X = 10A in the second.

Lemma 1.1.27 One has Hτ− ⊂ Hτ . In general the inclusion is strict.

Proof. Take Xn =
∑n
i=0 Yi where Yi are i.i.d. random variables, non constant and F the natural

filtration of X. Let τ = inf{n : Xn ≥ a} and ζ = Xτ1ζ<∞ is Fτ measurable, but is not Fτ−
measurable. �

Exercise 1.1.28 Prove that, for any H-stopping time T valued in N, and any process X,

E(XT1{T<∞}) = E( oXT1{T<∞})

and that for any predictable stopping time S,

E(XS1{S<∞}) = E( pXS1{S<∞}) .

Local martingales

We collect classical results on local martingales (see [21, 19]).
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Definition 1.1.29 The process X is a local martingale if it is adapted and if there exists an in-
creasing sequence (τk, k ≥ 1) of H-stopping times such that P(lim τk = ∞) = 1 and for any k, the
stopped process Xτk is a martingale.

We denote by Mloc the set of local martingales.

We borrow from [17] an example of a process which is a local martingale but not a martingale.

Let Y be a random variable which is integrable but not square integrable and U a random
variable taking the value 1 and the value −1 with probability 1/2, independent of Y . We define
F0 = σ(Y ) and Fn = σ(Y, U) for all n ≥ 1. Let us consider M0 = Y and Mn = Y + UY 2 if n ≥ 1.
Then M is a local martingale which is not a martingale. Indeed M1 is not integrable.
Let τk be the F-stopping time τk = min{n, |Mn| ≥ k}, τk goes to infinity a.s when k goes to infinity
(as usual the minimum of an empty set if +∞). We show that Mτk is a martingale.
Let k fixed, by definition, M0 = Y is integrable, hence Mτk

0 =M0 is integrable and

E(|Mτk
1 |) = E(|Mτk

1 |1{τk=0}) + E(|Mτk
1 |1{τk>0})

= E(|M0|1{τk=0}) + E(|M1|1{τk>0}) ≤ E(|M0|) + k + k2

since M1 = M0 + U(M0)
2 and M0 < k on τk > 0 . Then Mτk

n is integrable for all n. Moreover, to
prove the martingale property, we just have to check it for n = 1

E(Mτk
1 |F0) = E(Mτk

0 1{τk=0}|F0) + E(Mτk
1 1{τk>0}|F0)

= M01{τk=0} + 1{τk>0}(M0 +M2
0E(U)) =M0 =Mτk

0

where we used the fact that {τk = 0} ∈ F0 and {τk > 0} ∈ F0 and that E(U |F0) = E(U) = 0.

Generalized martingales

Let F and G be two σ-algebra with F ⊂ G. If ζ is a positive G-measurable random variable, one
can define E(ζ|F) even if ζ is not integrable. Indeed, there exists an F-measurable random variable
ζ̂ (which can take +∞ value) such that E(ζ1F ) = E(ζ̂1F ) for all F ∈ F . We write ζ̂ = E(ζ|F).

Definition 1.1.30 The process X is a generalized martingale (G.M.) if it is adapted and if E(|Xn+1| |Hn) <
∞ for any n and E(Xn+1|Hn) = Xn where E(Xn+1|Hn) = E(X+

n+1|Hn)− E(X−
n+1|Hn).

One can define optional projection in case of generalized expectation under the weaker hypothesis
E(|Xn||Hn) <∞.

We denote by GM the set of generalized martingales.

Proposition 1.1.31 A G.M. X is a local martingale
Let X be a local martingale such that E(X−

n ) < ∞ for all n, or that E(X+
n ) < ∞ for all n, then X

is a martingale. In particular, if X is an integrable local martingale, it is a martingale.

Proposition 1.1.32 A real valued process X is a local martingale iff the following two assertions
are hold true.
(i) X0 ∈ L1(Ω,F0;P)
(ii) E(|Xn+1||Fn] < ∞ a.s. and E[Xn+1|Fn] = Xn for all n in the sense of generalized conditional
expectations.
If X is a nonnegative local martingale with E(X0) <∞, then it is a true martingale.

In particular, if X is a local martingale and E(X) is non negative, E(X) is a martingale.
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Proposition 1.1.33 If H is a predictable process and M a local martingale, then H �M is a local
martingale.

Definition 1.1.34 Two local martingales X and Y are orthogonal if XY is a local martingale.

1.1.7 Change of probability

Let P and Q be two probability measures defined on H∞. The probability measure Q is locally
absolutely continuous w.r.t. the probability measure P if QnPn for all n ≥ 0. In this case we can
define the Hn-measurable integrable non negative random variable Ln = dQn/dPn.The process L is
called the density process and is a P martingale. This process can vanish, however, Ln = 0 on the
set {Ln−1 = 0}, and we take the convention that, on the set {Ln−1 = 0}, Ln/Ln−1 = 0.

Lemma 1.1.35 Let Q << P on a σ-algebra G with Radon-Nikodym derivative L := dQ/dP and F
a sub-σ-algebra of G. Suppose that X is Q integrable. Then, Q(E[L|F ] > 0) = 1 and one has

EQ[X|F ] =
E[XL|F ]

E[L|F ]
Q− a.s

Proof. In a first step, we prove that Q(E[L|F ] > 0) = 1 and the martingale L is positive Q-as..
Indeed,

Q(L = 0) = EP (L1{L=0}) = 0, .

In our setting, the Bayes formula states that, for any integrable HN measurable random variable Y
and n ≤ N ,

EQ(Y |Hn) =
1

Ln
EP(Y LN |Hn) Q− a.s.

�

If Pn ∼ Qn for all n, P and Q are called locally equivalent. In that case, L−1 is a Q-martingale.

Proposition 1.1.36 (i) Let X be an adapted process and assume Q locally absolutely continuous
w.r.t. P with density process L. The process X is a martingale under Q if the process XL is a
martingale under P.
(ii) The process X is a local martingale under Q if the process XL is a local martingale under P.
(iii) If moreover P is also locally absolutely continuous w.r.t. Q (i.e., P and Q are locally equivalent),
then the process XL is a local martingale under P iff the process X is a local martingale under Q.

Proof. (i) From EQ(|Xn|) = E(|XnLn| we obtain that XL is P-integrable. Bayes’s formula
EQ(Xn|Hn−1) =

E(XnLn|Hn−1)
Ln−1

leads to the result.
ii) This assertion is obtained by localization.
iii) If P and Q are locally equivalent, L−1 is a Q-martingale. So the result follows form ii) applying
with XL.

Proposition 1.1.37 Let X be an H-local martingale under P and let Q be locally absolutely con-
tinuous w.r.t. P. The process XQ defined as

XQ
n = Xn −

n∑
k=1

1

Lk
∆[X,L]k

and the process X̃Q defined as

X̃Q
n = Xn −

n∑
k=1

1

Lk−1
∆⟨X,L⟩k ,
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are well defined under Q and
(i) XQ is a local martingale under Q
(ii) if moreover E[|∆Xn|Ln|Hn−1] <∞ a.s. for all n, then X̃Q is a local martingale under Q.

Proof. Under Q, the process L is a.s. positive since Q(Ln = 0) = EP(Ln1{Ln=0}) = 0.
i) We have

∆XQ
n = ∆Xn − ∆Xn∆Ln

Ln
=

∆Xn

Ln
(Ln −∆Ln) =

∆Xn

Ln
Ln−1

From Bayes’ formula and the martingale property of L

EQ(∆X
Q
n |Hn−1) =

EP(Ln∆X
Q
n |Hn−1)

EP(Ln|Hn−1)
=

EP(∆XnLn−1|Hn−1)

Ln−1
= 0

ii) The result follows from the fact that the process X̃Q satisfies

X̃Q
n = Xn −

n∑
k=1

1

Lk−1
EP[Lk∆Xk|Hk−1] = Xn −

n∑
k=1

EQ[∆Xk|Hk−1]

hence is a Q-martingale if Xn is Q integrable. If E[|∆Xn|Ln|Fn−1] < ∞, then EQ[|∆Xk||Hk−1] <

+∞ and X̃Q is Q-local-martingale.

Remark 1.1.38 If X is a martingale under P and Q-integrable, then X̃Q is a martingale under Q.
This result can be proved directly using Doob’s decomposition. Moreover, if E[|∆Xn|Ln−1] < ∞,
XQ is a martingale under Q. Indeed we have,

∆XQ
n = ∆Xn − ∆Xn∆Ln

Ln
=

∆Xn

Ln
(Ln −∆Ln) =

∆Xn

Ln
Ln−1

From Bayes’ formula and the martingale property of L

EQ(∆X
Q
n |Hn−1) =

EP(Ln∆X
Q
n |Hn−1)

EP(Ln|Hn−1)
=

EP(∆XnLn−1|Hn−1)

Ln−1
= 0

Proposition 1.1.39 In discrete time, for any local martingale there exists an equivalent probability
measure so that it is a martingale.

See Kabanov

Predictable representation property

An important property for finance purpose is the existence of a multidimensional martingale which
enjoys the predictable representation property

Definition 1.1.40 A martingale X (which can be d-dimensional) enjoys the predictable represen-
tation property in the filtration H is any one-dimensional H-martingale has the form Y = Y0+φ �X
for a predictable process φ.

Note that, the predictability of φ imply that φ �X is a local martingale.

Proposition 1.1.41 If there exists a martingale which enjoys PRP, the space Ω is finite.

VOIR BJORK, CHAPITRE 1, OU JACOD SHI.
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Proposition 1.1.42 If X is an H-martingale, then for any H-martingale Y there exists a predictable
process φ and an H-martingale X⊥ orthogonal to X such that Y = Y0 + φ �X +X⊥.

Proof. Choosing a localization sequence (Tm)m∈N such that (X⊥
n )

Tm and XTm are square integrable
allows us to prove the result for square integrable martingales. Notice that if ∆⟨X,X⟩n = 0, then
∆⟨X,Y ⟩n = 0. Let φ be the H-predictable process φn = ∆⟨X,Y ⟩n

∆⟨X,X⟩n1{∆⟨X,X⟩n>0}
2. Then φ � X is a

local martingale, and X⊥ is a local martingale, as the difference of two local martingales. Since

E(∆X⊥
n ∆Xn|Hn−1) = ∆⟨X,Y ⟩n − ∆⟨X,Y ⟩n

∆⟨X,X⟩n
1∆⟨X,X⟩n>0∆⟨X,X⟩n = 0

the orthogonality is proved. �

Marché complet sans arbitrage = PRP= unicite mme. Voir Th 6 de JS

We now check that the PRP is stable by change of probability measure. This property is well
know in continuous time. The goal here is to give a direct proof.

Theorem 1.1.43 Let X be a d-dimensional (P,H)-martingale enjoying the H-predictable represen-
tation property under P. Let Q be a probability measure equivalent to P on Hn for any n ≥ 0, and
Ln := dQ

dP
∣∣
Hn

. The Q-martingale XQ defined as

XQ = X − 1

L
� [X,L]

enjoys (Q,H)-predictable representation property.

Proof. For a Q-martingale Y , we have to show that there exists an H-predictable process ϑ such
that

∆Yn = ϑn∆X
Q
n .

In a first step, we suppose that Y is of the form Yn = EQ(ζ|Hn), for ζ an HN -measurable Q-integrable
random variable. We set

Yn = EQ(ζ|Hn) =
1

Ln
EP(ζLN |Hn) =:

ζn
Ln

From integration by parts formula

∆Yn = ∆
( 1

Ln
ζn
)
= ζn−1∆

( 1

Ln

)
+

1

Ln
∆ζn . (1.6)

By definition, the process ζ is a P-martingale and using the PRP for X, we have the existence of an
H-predictable process ϕ such that

∆ζn = ϕn∆Xn. (1.7)

From Girsanov’s theorem, the process XQ defined as

∆XQ
n = ∆Xn − 1

Ln
∆Xn∆Ln =

Ln−1

Ln
∆Xn

is an (H,Q)-local martingale. Inserting ∆Xn in (1.7 ), it follows that

∆ζn = ϕn
Ln
Ln−1

∆XQ
n . (1.8)

Since X enjoys PRP, there exists an H-predictable process ψ such that ∆Ln = ψn∆Xn. Therefore,

∆
( 1

Ln

)
= − 1

LnLn−1
∆Ln = − 1

LnLn−1
ψn∆Xn = − ψn

L2
n−1

∆XQ
n . (1.9)

2with the convention a
b
1b>0 = 0 if b = 0
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Plugging (1.8) and (1.9) in (1.6) yields to

∆Yn = −ζn−1
ψn
L2
n−1

∆XQ
n + ϕn

1

Ln−1
∆XQ

n

= (
ϕn
Ln−1

− ζn−1
ψn
L2
n−1

)∆XQ
n = θn∆X

Q
n

where
θn =

ϕn
Ln−1

− ζn−1
ψn
L2
n−1

belongs to Hn−1. If Y is not u.i., or is a local martingale, we localize it with a sequence of stopping
times Tj so that the stopped processes are u.i. We apply PRP to the stopped processes and we pass
to the limit.
Let j fixed, then there is a predictable process φ s.t.

Yn∧Tj =
n∑
k=1

φk∧Tj∆X
Q
k . (1.10)

Indeed, since this equality is pathwise, and Yn∧Tj = Yn∧Tj+1∧Tj , the process φ for Tj+1 stopped at
Tj is the process φ for Tj . Then passing to the limit in Equation (1.10), we obtain that

Yn =

n∑
k=1

φk∆X
Q
k

Finally, XQ enjoys PRP.

�

1.1.8 Arbitrages

tout cette section est nouvelle

We follow Jacod and Shiryaev [13].

We now consider a d-dimensional positive semimartingale S on a filtered probability space
(Ω,H,P), which represents the prices of d risky assets. We assume that there exists a risk free
asset (the savings account) S0 defined as S0

n = (1 + r)n, where r is the interest rate. (One can
take as savings account any positive predictable process S0.) A portfolio is a vector of processes
(α, π) where π = (πi, i = 1, · · · d), with α adapted and π predictable. The wealth associated to
this portfolio is X such that Xn = αn +

∑d
i=1 π

i
nS

i
n =: αn + πnSn. The portfolio is said to be

self-financing if S0
n−1∆αn + Sn−1∆πn = 0 or equivalently ∆Xn = α0

n∆S
0
n + πn∆Sn.

It is standard to work with the discounted prices S̄ = S/S0 and discounted wealth X̄ = X/S0.
Then, the self-financing condition can be written as ∆X̄ = π∆S̄. This allows us to consider only
the part π of the portfolio and the initial wealth of the portfolio: the vector π being known, the
process α which satisfies self financing condition is then αnS

0
n = Xπ,x

n −
∑d
i=1 π

i
nS

i
n where X̄π,x

n =
x +

∑n
k=1 πk∆S̄k. We consider a model with horizon N , where N is given: processes are defined

only up to time N , and there are no more transactions after time N .

We say that the model is arbitrage-free if for any π with Xπ
0 = 0 and Xπ,0

N ≥ 0, then Xπ,0
N = 0.

The model is said to be weakly arbitrage-free if for π with Xπ
0 = 0 and Xπ,0

n ≥ 0, ∀n ≥ 0, then
Xπ,0
N = 0.

The model is said to be strongly arbitrage-free if for any π with Xπ
0 = 0 and Xπ,0

N ≥ 0, then
Xπ,0
n = 0, ∀n ≥ 0.

We will denote by Q the class of all probability measures which are equivalent to P and under
which the discounted process S is a martingale, and by Qloc the set of all probability measures which
are equivalent to P and under which the discounted process S̄ is a local martingale. Finally Qb is
the set of all Q in Q such that the Radon-Nikodym density L = dQ/dP is bounded.
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Proposition 1.1.44 There is equivalence between:
a) The model is arbitrage-free.
b) The model is weakly arbitrage-free.
c) The model is strongly arbitrage-free.
d) The set Q is non-empty.
e) The set Qb is non-empty.
f) The set Qloc is non-empty.

If Q is not empty, any Radon-Nikodym density is called a deflator.

Parler de NUPBR, asymptotic. Voir si on redémontre tout (sans recopier) où si on se contente
de citer JS

1.1.9 Enlargement of filtration

In continuous time, a difficult problem is to give conditions such that an F-martingale is a G-
semimartingale for two filtrations satisfying F ⊂ G, and, if it is the case, to give the G-semimartingale
decomposition of an F-martingale. In discrete time, the following proposition is an easy consequence
of Doob’s decomposition and states that if F ⊂ G, then any F-martingale is a G-semimartingale and
gives explicitly the decomposition of this semimartingale.

Proposition 1.1.45 In a discrete time setting, any integrable process is a special semimartingale
in any filtration with respect to which it is adapted: if F ⊂ G, and if X is an F-martingale, it is a
G special semimartingale with decomposition

X =MG + V G

where MG is a G-martingale and V G is G-predictable, V G
0 = 0, and

∆V G
n = E(∆Xn|Gn−1), n ≥ 1.

The process V G is often called the information drift of X relative to G.

�

Definition 1.1.46 Immersion is satisfied between the filtration F and a larger filtration G (or F is
immersed in G), if any F-martingale is a G-martingale. If this property is achieved, we will denote
it by F ↪→ G . In order to specify that the immersion is achieved with the probability measure P, we
will denote it by F P

↪→ G .

Immersion is also called (H)-hypothesis in the literature. The following result is well known and
useful (see [7] ).

Proposition 1.1.47 Immersion hypothesis is equivalent to any of the following properties,where for
a set A, we denote P(A|F) = E(1A|F):

(H1) ∀n ≥ 0, the σ-fields F∞ and Gn are conditionally independent given Fn, i.e. if for all n ≥ 0,
for all sets Gn ∈ Gn and F ∈ F∞ P(F ∩Gn|Fn) = P(F |Fn)P(Gn|Fn).

(H2) ∀n ≥ 0, Gn ∈ Gn, P(Gn|Fn) = P(Gn|F∞).

(H3) ∀n ≥ 0, F ∈ F∞, P(F |Fn) = P(F |Gn).

Proof. We recall the proof for the ease of the reader.
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• Immersion ⇒ (H1). Let F ∈ F∞. Under immersion, the F-martingale (Fn)n≥0, defined by
Fn := E(1F |Fn) for all n ≥ 0, is a G-martingale. Hence, for any n ≥ 0 and any Gn ∈ Gn,

P(F ∩Gn|Fn) = E
[
P(F |Gn)1Gn

∣∣Fn] (H)
= E

[
P(F |Fn)1Gn

∣∣Fn] = P(F |Fn)P(Gn|Fn) ,

which is (H1).

• (H1) ⇒ (H2). If (H1) holds, then for any F ∈ F∞ and any Gn ∈ Gn

E
[
1FP(Gn|Fn)

]
= E

[
P(F |Fn)P(Gn|Fn)

] (H1)
= E

[
P(F ∩Gn|Fn)

]
= P(F ∩Gn) ,

which is exactly (H2).

• (H2) ⇒ (H3). Suppose (H2) and let F ∈ F∞ and Gn ∈ Gn for any n ≥ 0, then

E
[
P(F |Fn)1Gn

]
= E

[
1FP(Gn|Fn)

] (H2)
= E

[
1FP(Gn|F∞)

]
= P(F ∩Gn) ,

which implies (H3).

• (H3) ⇒ immersion. Consider an F-martingale (Fn)n≥0 of the form Fn := P(F |Fn). Then,
(Gn)n≥0 defined by Gn := P(F∞|Gn) for all n ≥ 0 is an G-martingale. Then under (H3), we
have that Fn = Gn for all n ≥ 0, therefore immersion is satisfied for u.i. martingales. The
extension to all martingales is standard.

�

Our goal is to compute more explicitly the semimartingale decomposition in some specific cases,
and to show, with elementary computations, that we recover the classical general formulae estab-
lished in the literature in continuous time.

Comment 1.1.48 Note that results in continuous time can be directly applied to discrete time: if
F is a discrete time filtration and X a discrete time process, one can study the continuous on right
jumping filtration F̃ defined in continuous time for n ≤ t < n+1 as F̃t = Fn, and the càdlàg process
X̃t =

∑
nXn1{n≤t<n+1}. One interest of our computations relies on the fact that we do not need

hypotheses done in continuous time and that our proofs are simple.

Another goal of this paper is to study how enlarging the filtration may introduce arbitrages. We
start with a general result, valid for any filtration H:

Lemma 1.1.49 Let Y be an integrable H-semimartingale. If there exists a positive H-adapted pro-
cess ψ such that

E(Ynψn|Hn−1) = Yn−1E(ψn|Hn−1), ∀n ≥ 1 ,

there exists a positive H-martingale L such that LY is an H-martingale.

Proof. Let Y be a (P,H)-semimartingale with decomposition Y = MY + V Y , with ∆V Yn =
E(∆Yn|Hn−1) and where MY is a (P,H)-martingale. Define, for a given ψ, the (P,H)-martingale L

L0 = 1, Ln =

n∏
k=1

ψk
E(ψk|Hk−1)

= Ln−1
ψn

E(ψn|Hn−1)
, n ≥ 1,

then, setting dQ = LdP, the process MY decomposes as MY = mM + VM where mM is a (Q,H)-
martingale and

∆VMn = EQ(∆M
Y
n |Hn−1) =

1

Ln−1
EP(Ln∆M

Y
n |Hn−1)

=
1

Ln−1
(EP(LnM

Y
n |Hn−1)− Ln−1M

Y
n−1) =

1

EP(ψn|Hn−1)
EP(ψn∆M

Y
n |Hn−1) .
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The process Y is a (Q,H)-martingale if VM + V Y = 0 or equivalently ∆V Y +∆VM = 0, that is

E(ψn∆MY
n |Hn−1) + E(ψn|Hn−1)E(∆Yn|Hn−1) = 0 .

We develop and use that ∆MY
n = Yn − E(Yn|Hn−1) and obtain, after simplification

E(ψnYn|Hn−1) = E(ψn|Hn−1)Yn−1 .

�

In the setting of enlargement of filtration, we introduce the following definition of viable enlarge-
ment:

Definition 1.1.50 Let F ⊂ G, we say that the enlargement (F,G,P) is viable if there exists a
positive (P,G)-martingale L with L0 = 1 (called a deflator) such that, for any (P,F)-martingale X,
the process XL is a (P,G)-martingale.

Our definition implies that, if there is a discounted price process S, which is a (P,F)-martingale,
then the market (S,G) is arbitrage free. The study of necessary and sufficient conditions so that,
for a given (P,F)-martingale S, there exists a deflator, can be found in Choulli and Deng [9].

1.2 Initial Enlargement

The filtration Fσ(ξ) = (Fσ(ξ)
n , n ≥ 0) is an initial enlargement of F with a random variable ξ taking

values in R if Fσ(ξ)
n := Fn ∨ σ(ξ), n ≥ 0.

1.2.1 Bridge

We study the following particular example. Let (Yi, i ≥ 1) a sequence of i.i.d. random variables
with zero mean and the process X of the form X0 := 0, Xn :=

∑n
i=1 Yi, n ≥ 1. We note that X is

an F-martingale. We denote by F the natural filtration of X. For N fixed, we choose ξ := XN .
We need to compute ∆Vn = E(∆Xn|Fσ(ξ)

n−1 ) = E(∆Xn|Fn−1∨σ(XN )). Using the fact that (Yi, i ≥ 1)
are i.i.d, we have, for n ≤ j ≤ N

(Yj , X1, · · · , Xn−1, XN )
law
= (Yn, X1, · · · , Xn−1, XN ) ,

hence

E(Yn|Fn−1 ∨ σ(XN )) = E(Yj |Fn−1 ∨ σ(XN ))

=
1

N − (n− 1)
E(Yn + · · ·+ Yj + · · ·+ YN |Fn−1 ∨ σ(XN ))

=
1

N − (n− 1)
E(XN −Xn−1|Fn−1 ∨ σ(XN )) =

XN −Xn−1

N − (n− 1)
.

Therefore, the process X̃ defined as

X̃ng = Xn −
n∑
k=1

XN −Xk−1

N − (k − 1)
, n ≥ 0

is a Fσ(ξ)-martingale.

Comment 1.2.1 This formula is similar to the one obtained for Lévy bridges: if X is an integrable
Lévy process in continuous time (e.g. a Brownian motion) with natural filtration FX , setting G =
FX ∨ σ(XT ) leads to

XG
t = Xt −

∫ t

0

XT −Xs

T − s
ds, 0 ≤ t ≤ T,

where XG is a G-martingale.
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1.2.2 Initial enlargement with ξ, a Z-valued random variable

Let X be an F-martingale, ξ be a r.v. taking values in Z and, for any j ∈ Z, let p(j) be the
F-martingale defined as pn(j) = P(ξ = j|Fn).

Proposition 1.2.2 The process X̂ defined as

X̂n = Xn −
n∑
k=1

∆⟨X, p(j)⟩Fk|j=ξ
pk−1(ξ)

(1.11)

is an Fσ(ξ)-martingale. On the set {ξ = j}, one has pn(j) ̸= 0,∀n ≥ 0.

Proof. The Doob decomposition of X in Fσ(ξ) is X = M + V where M is a Fσ(ξ)-martingale and,
for n ≥ 1, ∆Vn = E(∆Xn|Fn−1 ∨ σ(ξ)) so that

(∆Vn)1{ξ=j} = 1{ξ=j}
E(1{ξ=j}∆Xn|Fn−1)

P(ξ = j|Fn−1)

= 1{ξ=j}
E(pn(j)∆Xn|Fn−1)

pn−1(j)
= 1{ξ=j}

∆⟨X, p(j)⟩Fn
pn−1(j)

, (1.12)

where we have used the tower property in the second equality.
On the set {ξ = j}, one has pn(j) ̸= 0, ∀n ≥ 0. Indeed,

E(1{pn(j)=0}1{ξ=j}) = E(1{pn(j)=0}E(1{ξ=j}|Fn)) = E(1{pn(j)=0}pn(j)) = 0 .

Proposition 1.2.3 (a) The process 1
p(ξ) is an Fσ(ξ)-supermartingale. If p(k) > 0 for any k, it is

an Fσ(ξ)-martingale.
(b) If X is an F-martingale and p(k) > 0, ∀k, X/p(ξ) is an Fσ(ξ)-martingale.

Proof. (a) In a first step, we note that p(ξ) > 0. Indeed, pn(ξ) =
∑∞
k=−∞ 1{ξ=k}pn(k) and pn(k) > 0

on {ξ = k}.

E(
1

pn(ξ)
|Fn−1 ∨ σ(ξ)) =

∞∑
k=−∞

1{ξ=k}
E(1{ξ=k}1{pn(k)>0}

1
pn(k)

|Fn−1)

E(1{ξ=k}|Fn−1)

=
∞∑

k=−∞

1{ξ=k}
E(1{pn(k)>0}|Fn−1)

pn−1(k)
≤

∞∑
k=−∞

1{ξ=k}
1

pn−1(k)
=

1

pn−1(ξ)
.

If p(k) > 0 for any k, the last inequality is in fact an equality.
(b) For a P martingale X, if p(k) > 0, one has

E(
Xn

pn(ξ)
|Fn−1 ∨ σ(ξ)) =

∞∑
k=−∞

1ξ=k
E(1{ξ=k}

Xn

pn(k)
|Fn−1)

E(1{ξ=k}|Fn−1)

=
∞∑

k=−∞

1{ξ=k}
E(Xn|Fn−1)

pn−1(k)
=

Xn−1

pn−1(ξ)
.

�

It follows that, if p(k) > 0, ∀k, the enlargement (F,Fσ(ξ)) is viable a deflator being 1/p(ζ).

Lemma 1.2.4 If p(k) > 0, the process Ln := p0(ζ)
pn(ζ)

is a positive martingale with expectation 1.
Define dQ = LndP. Then ζ is independent from Fn under Q, and Q|Fn = P|Fn , Qσ(ζ) = Pσ(ζ).
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Proof. For Xn ∈ Fn,

EQ(h(ζ)Xn) = EP(Lnh(ζ)Xn) = E(
∑
k

p0(k)

pn(k)
h(k)Xn1{ζ=k}) = E(

∑
k

p0(k)

pn(k)
h(k)Xnpn(k))

If follows that
EQ(h(ζ)Xn) = E(h(ζ))E(Xn)

Comment 1.2.5 In continuous time, under Jacod’s hypothesis P(τ ∈ du|Ft) = pt(u)P(ξ ∈ du), the
process XG is a G-martingale where

XG
t = Xt −

∫ t

0

d⟨X, p(u)⟩Fs |u=ξ
ps−(ξ)

, ∀t ≥ 0 .

If ξ takes discrete values, then Jacod’s hypothesis (the conditional law of ξ w.r.t Fn is absolutely
continuous w.r.t the law of ξ) is always true.

1.2.3 Supremum of random walk

We consider a particular case of the previous setting where we can compute the probabilities pn(j).
Let (Yi, i ≥ 1) a sequence of i.i.d. random variables taking values in Z and the process X of the
form X0 := 0, Xn :=

∑n
i=1 Yi, n ≥ 1. For N fixed, we put ξ := sup0≤n≤N Xn and we denote by F

the natural filtration of X.
We denote by g(n, k) = P(sup1≤j≤nXj = k) and by h(n, k) = P(sup1≤j≤nXj ≤ k). Then the
probability pn(j) can be expressed as follow.
We note that

{ sup
k≤N

Xk = j} = {sup
k≤n

Xk = j, sup
1≤k≤N−n

Xn+k < j} ∪ {sup
k≤n

Xk ≤ j, sup
1≤k≤N−n

Xn+k = j}

and that , setting X̃k = Xn+k −Xn =
∑N−n
i=1 Ỹi where Ỹ are copies of Y , independent from Fn

P( sup
1≤k≤N−n

Xn+k < j|Fn) = P( sup
1≤k≤N−n

Xn+k −Xn < j −Xn|Fn)

= P( sup
1≤k≤N−n

X̃k < j −Xn|Fn) = h(N − n, j −Xn)

P( sup
1≤k≤N−n

Xn+k = j|Fn) = P( sup
1≤k≤N−n

X̃k = j −Xn|Fn) = g(N − n, j −Xn))

Then

pn(j) = 1{sup0≤k≤nXk=j}h(N − n, j −Xn) + 1{sup0≤k≤nXk≤j}g(N − n, j −Xn).

1.2.4 Arbitrages

On peut sans doute déplacer ce qui suit, mais cela doit être utile pour arbitrage

Proposition 1.2.6 The process Y (ζ) is an Fσ(ζ)-martingale iff Yn(k)pn(k), n ≥ 0 is an F-martingale
for any k.

Proof. Let Yn(ζ) be an Fσ(ζ)-martingale. Then,

E(Yn(ζ)|Fσ(ζ)
m ) = Ym(ζ)

or, equivalently, for any k
E(Yn(ζ)|Fσ(ζ)

m )1{ζ=k} = Ym(ζ)1{ζ=k}
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and taking the Fm conditional expectation of both sides

E(Yn(k)1{ζ=k}|Fm) = Ym(k)pm(k)

hence, by tower property
E(Yn(k)pn(k)|Fm) = Ym(k)pm(k) .

Conversely, if (Yn(k)pn(k), n ≥ 0) is an F-martingale for any k

E(Yn(ζ)|F (σ(ζ)
m ) =

∑
k

E(Yn(ζ)1{ζ=k}|Fσ(ζ)
m ) =

∑
k

1{ζ=k}E(Yn(k)|Fσ(ζ)
m ) .

Then, using the fact that

1{ζ=k}E(Yn(ζ)|Fσ(ζ)
m ) = 1{ζ=k}

E(Yn(k)pn(k)|Fm)

pm(k)
= 1{ζ=k}E(Yn(ζ)|Fσ(ζ)

m )

we conclude �

Lemma 1.2.7 If ξ is an FN -measurable r.v. for some N and ξ is not F0 measurable, the enlarge-
ment (F,G,P) is not viable.

Proof. Let Xn = E(ξ|Fn). If a G-deflator L exists, the process XL would be a G-martingale, and
XnLn = E(XNLN |Gn). Using the fact that XN = ξ is Gn-measurable for 0 ≤ n ≤ N , we obtain
E(XNLN |Gn) = XNLn, in particular XNL0 = X0L0 which is not possible since XN = ξ is not F0

measurable. �

Proposition 1.2.8 For any Z-valued random variable ζ, the following are equivalent.
(a) The set {pn(k) = 0 < pkn−1} is negligeable, for all k and n.
(b) For any F-adapted integrable process X satisfying NA(F), X satifies NA(Fσ(ζ)).

Ajouter résultats de Choulli

1.3 Progressive Enlargement

We assume that τ is a random variable valued in N ∪ {+∞}, and introduce the filtration G where,
for n ≥ 0, we set Gn = Fn ∨ σ(τ ∧ n). In other words, G is the smallest filtration which contains F
and makes τ a stopping time. In particular {τ = 0} ∈ G0, so that, in general G0 is not trivial.
In continuous time, many results are obtained under the hypothesis that τ avoids F-stopping times,
or that all F-martingales are continuous, which is not the case here. We present here some basic
results. We assume that F0 is trivial. Recall that, in this setting, as written in Comment 1.2.5, τ
satisfies the absolutely continuous Jacod’s hypothesis.
In this section, the indicator of τ is

Hn = 1{τ≤n} . (1.13)

1.3.1 General results

Basic Properties

Lemma 1.3.1 1) If Y is a G-adapted process, there exists an F-adapted process y such that

Yn1{n<τ} = yn1{n<τ}, ∀n ≥ 0. (1.14)

2) If Y is a G-predictable process, there exists an F-predictable process y such that

Yn1{n≤τ} = yn1{n≤τ}, ∀n ≥ 0. (1.15)
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Proof. In a first step, one proves (1.14) for Yn = Xnh(τ ∧ n) where Xn ∈ Fn and h a bounded
Borel function. In that case, the result if obvious, with yn = Xnh(n). The general case follows from
monotone class theorem.
If Y is a G-predictable process, then the process S defined by S0 = Y0 and Sn = Yn+1 is adapted
and so there exists an F-adapted process s s.t.

Yn1{n≤τ} = Sn−11{n−1<τ} = sn−11{n−1<τ} = yn1{n≤τ}

where yn = sn−1 �

We introduce the supermartingale

Zn = P(τ > n|Fn),∀n ≥ 0

and its Doob’s decomposition
Z =M −A (1.16)

with
A0 = 0, ∆An = −E(∆Zn|Fn−1) = P(τ = n|Fn−1) , ∀n ≥ 1 . (1.17)

Note that A is, as it must be, the dual predictable projection of the process H defined as Hn = 1τ≤n.

In particular, since F0 is trivial, Z0 =M0 = P(τ > 0).

We also introduce the supermartingale

Z̃n = P(τ ≥ n|Fn), ∀n ≥ 0 (1.18)

and its Doob’s decomposition
Z̃ = M̃ − Ã (1.19)

where M̃ is an F-martingale and Ã the F-predictable increasing process satisfying Ã0 = 0, ∆Ãn =
P(τ = n− 1|Fn−1), ∀n ≥ 1.
We shall often use the trivial equalities

Z̃n = P(τ > n− 1|Fn) = Zn + P(τ = n|Fn), Zn = P(τ ≥ n+ 1|Fn), E(Z̃n|Fn−1) = Zn−1 .

Proposition 1.3.2 On the set {n ≤ τ}, the random variables Z̃n and Zn−1 are positive. On the
set {n > τ}, the random variables Z̃n and Zn−1 are strictly smaller than 1. One has Zτ < 1.

Proof. The first assertion is obtained from the two following equalities:

E(1{n≤τ}1{Zn−1=0}) = E(P(n ≤ τ |Fn−1)1{Zn−1=0}) = E(Zn−11{Zn−1=0}) = 0 ,

E(1{n≤τ}1{Z̃n=0}) = E(P(n ≤ τ |Fn)1{Z̃n=0}) = E(Z̃n1{Z̃n=0}) = 0 .

The second assertion is left to the reader . By definition,

Zτ1{τ<∞} =
∑
n

1{τ=n}P(τ > n|Fn) ≤ 1−
∑
n

1{τ=n}P(τ ≤ n|Fn)

and 1− Zn = P(τ ≤ n|Fn) ≥ P(τ = n|Fn) = pn(n). The quantity pn(n) being positive on {τ = n},
the result follows. �

We give a useful lemma known as key lemma. The proof of a) is standard, the proof of b) can be
found in Aksamit et al. [5] for continuous time. For the ease of the reader, we recall these proofs.

Lemma 1.3.3 One has, for any random time τ ,
a) if the random variable ζ is integrable

E(ζ|Gn)1{τ>n} = 1{τ>n}
E(ζ1{τ>n}|Fn)

Zn
, ∀n ≥ 0 .



24

b) for any integrable and Fn-measurable r.v. Yn,

E(Yn|Gn−1)1{τ≥n} = 1{τ≥n}
1

Zn−1
E(YnZ̃n|Fn−1), ∀n ≥ 1

E(
Yn

Z̃n
|Gn−1)1{τ≥n} = 1{τ≥n}

1

Zn−1
E(Yn1{Z̃n>0}|Fn−1) , ∀n ≥ 1. (1.20)

Proof.
a) Taking Yn = E(ζ|Gn) in (1.14), and taking expectation w.r.t. Fn we obtain

E(ζ1{τ>n}|Fn) = E(1{τ>n}|Fn)yn = Znyn ,

hence, taking into account that Zn is positive on the set {τ > n}, yn1{τ>n} = 1{τ>n}
E(ζ1{τ>n}|Fn)

Zn
.

b) The first part of b) follows from the equality (1.15). Only the second equality requires a proof.
For n ≥ 1, we have

E(
Yn

Z̃n
1{τ≥n}|Gn−1) = 1{τ≥n}

1

Zn−1
E(Yn

1

Z̃n
1{τ≥n}|Fn−1)

= 1{τ≥n}
1

Zn−1
E(Yn

1

Z̃n
1{τ≥n}1{Z̃n>0}|Fn−1)

= 1{τ≥n}
1

Zn−1
E(Yn1{Z̃n>0}|Fn−1) .

�

We give an immediate and important consequence in order to define the process y which satisfies
(1.14) and the process y which satisfies (1.15) on the whole space.

Lemma 1.3.4 The process y, which satisfies (1.14) can be chosen as yn = 1
Zn

E(Yn1{n≤τ}|Fn)1{Zn>0}.
The process y, which satisfies (1.15) can be chosen as

yn = E(YnZ̃n|Fn−1)1Z̃n−1>0 .

Proof. The proof is a consequence on Proposition 1.3.2 and Lemma 1.3.3 . �

Proposition 1.3.5 The process Υ := (1 − H) 1
Z is a G-supermartingale (where, by convention,

(1−Hn)
1
Zn

= 0 on the set {τ ≤ n} = {Hn = 1}). If Z is positive, Υ is a G-martingale.
If X is an F-martingale and Z positive, (1−H)X 1

Z is a G-martingale.

Proof.

E(1{τ>n}
1

Zn
|Gn−1) = 1{τ>n−1}

1

Zn−1
E(1{τ>n}

1

Zn
|Gn−1)

= 1{τ>n−1}
1

Zn−1
E(1{τ>n}1Zn>0

1

Zn
|Fn−1)

= 1{τ>n−1}
1

Zn−1
E(1Zn>0

1

Zn
E(1{τ>n}|Fn)|Fn−1)

= 1{τ>n−1}
1

Zn−1
E(1Zn>0|Fn−1) ≤ 1{τ>n−1}

1

Zn−1

In the first equality, we have used that, due to the fact that τ is a G-stopping time, {τ ≤ n− 1} ∈
Gn−1, hence E(1{τ>n}

1
Zn

|Gn−1)1{τ≤n−1} = 0, in the second equality that {τ > n} ⊂ {Zn > 0}.
Hence the result, noting that one has equality in the last line if Z > 0. If X is an F-martingale, the
same kind of proof establishes that, for Z > 0,

E(1{τ>n}
Xn

Zn
|Gn−1) = 1{τ>n−1}

Xn−1

Zn−1
.
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Lemma 1.3.6 Let Hn = 1{τ≤n}, n ≥ 0, and Λ be the F-predictable process defined as

Λ0 = 0, ∆Λn :=
∆An
Zn−1

1{Zn−1>0}, n ≥ 1 ,

where A is defined in 1.17. The process N defined as

Nn := Hn − Λn∧τ = Hn −
n∧τ∑
k=1

λk, n ≥ 0 (1.21)

where λn := ∆Λn is a G-martingale.

Proof. It suffices to find the Doob decomposition of the G-semimartingale H. The predictable part
of this decomposition is K with

∆Kn = E(∆Hn|Gn−1) = 1{τ≤n−1}0 + 1{τ>n−1}
E(∆Hn|Fn−1)

Zn−1

= 1{τ≥n}
E(Zn−1 − Zn|Fn−1)

Zn−1
= 1{τ≥n}

An −An−1

Zn−1
, n ≥ 1.

We conclude, as from Proposition 1.3.2 Zn−1 > 0 on {1 ≤ n ≤ τ}, so that, on {n ≤ τ}, one has
∆Kn = λn where λn = ∆An

Zn−1
1{Zn−1>0} is F-predictable.

Note for future use that 0 ≤ λn ≤ E(1− Zn

Zn−1
1{Zn−1>0}|Fn−1) < 1 (except if τ = equiv0!). This

will be useful to obtain that E(−Λ) is a positive process. �

Proposition 1.3.7 Suppose Z positive. The multiplicative predictable decomposition of Z is given
by Zn = NZ

n E
(
−Λ

)
n
, n ≥ 0 where NZ is a positive F-martingale and Λ is defined in Lemma 1.3.6.

Proof. We have seen that there exist an F-martingale NZ and an F-predictable process KZ such
that Z = NZKZ with

KZ
n =

n∏
k=1

E(Zk|Fk−1)

Zk−1
=

n∏
k=1

[
− Zk−1 − E(Zk|Fk−1)

Zk−1
+ 1
]
, ∀n ≥ 1 . (1.22)

From Lemma 1.3.6 and the positivity of Z, we have

∆Λn =
Zn−1 − E

(
Zn|Fn−1

)
Zn−1

, ∀n ≥ 1 , (1.23)

then by definition of the exponential process, we get that KZ = E
(
− Λ

)
. �

Lemma 1.3.8 If Z̃ is predictable and Z is positive, then E(∆Nn|Fn) = −∆Mn for all n ≥ 0, where
M is the martingale part in the Doob decomposition of Z defined in 1.16 and N is defined in (1.21).

Proof. By definition of N , we have that, for n ≥ 0,

E(∆Nn|Fn) = E(1{τ≤n} − 1{τ≤n−1} − λn1{τ≥n}|Fn)
= E(−1{τ>n} + 1{τ≥n}|Fn)− λnE(1{τ≥n}|Fn)

= −Zn + Z̃n − λnZ̃n = −∆Zn − λnZn−1 ,

where we have used that, since Z̃ is predictable, Z̃n = Zn−1. Finally, using that ∆Zn+∆An = ∆Mn

and, Z being positive, λn = ∆An

Zn−1
which implies λnZn−1 = ∆An , we get E(∆Nn|Fn) = −∆Mn . �
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Let Ho be the F-dual optional projection of H. From definition 1.1.15, Ho is defined by

Ho
n :=

n∑
k=0

E(∆Hk|Fk) =
n∑
k=0

P(τ = k|Fk) , ∀n ≥ 0,

and satisfies

E(Yτ1{τ<∞}) = E(
∞∑
n=0

Yn∆Hn) = E(
∞∑
n=0

YnE(∆Hn|Fn)) = E(
∞∑
n=0

Yn∆H
o
n) (1.24)

for any F-adapted bounded process Y . We define Ho
∞ := Ho

∞− + P(τ = ∞|F∞) where Ho
∞− =

limn→∞Ho
n :=

∑∞
k=0 P(τ = k|Fk). Note that ∆Ãn = Ho

n−1−Ho
n−2, where Ã is the predictable part

of M̃ and since Ã1 = Ho
0 we have Ãn = Ho

n−1, hence

Zn +Ho
n = Zn +∆Ho

n +Ho
n−1 = Z̃n + Ãn = M̃n .

Furthermore, since limn→∞ Zn = 1{τ=∞}, and E(Ho
∞−) = limE(H0

n) ≤ 1, one has

M̃n = Zn +Ho
n = E(11{τ=∞} +Ho

∞−|Fn) . (1.25)

Proposition 1.3.9 Let Π := H − (Z̃)−11[0,τ ] �Ho = H − Γ·∧τ , with

∆Γn = (Z̃n)
−11{Z̃n>0}∆H

o
n, Γ0 = 0 . (1.26)

Then, for any integrable F-adapted process Y , the process Y �Π is a G-martingale. In particular, Π
is a G-martingale.

Proof. From ∆Πn = 1{τ=n} − 1

Z̃n
1{τ≥n}P(τ = n|Fn), n ≥ 1, one has ∆Πn1{τ<n} = 0 and, from

Lemma 1.3.3 (1.20),

E(Yn∆Πn|Gn−1) = 1{τ>n−1}
1

Zn−1
E(Yn∆Πn1{τ≥n}|Fn−1) + E(Yn∆Πn1{τ<n}|Gn−1)

= 1{τ>n−1}
1

Zn−1
E
(
Yn

(
P(τ = n|Fn)−

1

Z̃n
P(τ = n|Fn)P(τ ≥ n|Fn)1{Z̃n>0}

)
|Fn−1

)
= 1{τ>n−1}

1

Zn−1
E
(
YnP(τ = n|Fn)

(
1− 1{Z̃n>0}

)
|Fn−1

)
= 1{τ>n−1}

1

Zn−1
E
(
YnP(τ = n|Fn)1{Z̃n=0}|Fn−1

)
,

where the fact that Y is F-adapted has been used in the second equality. It remains to note that,
on {Z̃n = 0}, one has P(τ = n|Fn) = 0 to obtain E(Yn∆Πn|Gn−1) = 0. �

Note that, if Y is an F-martingale, then, from lemma 1.1.9, the G-martingale part of Y is or-
thogonal to Π. This result is similar to the one obtained in continuous time by Choulli et al. [9].

There are obviously infinitely many nondecreasing G-adapted processes Θ such that µ := H −Θ
is a martingale stopped at time τ , e.g., Θ = H or any convex combination between Λ·∧τ and Γ·∧τ ,
where Λ is the F-predictable process defined in Lemma 1.3.6 and Γ the F-optional process defined
in (1.26). Assume that µ is a G-martingale stopped at τ (so that ∆µn1{τ<n} = 0) of the form
µ = H −K1[0,τ ] �J where K,J are F-adapted process and Y �µ is a G-martingale for any integrable
F-adapted Y . As we show below, the property that Y � µ is a martingale for any F-adapted Y
characterizes the pair of processes (K,J) and implies that µ = Π.
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One can write

0 = E(Yn∆µn|Gn−1) = 1{τ>n−1}
1

Zn−1
E(1{τ>n−1}Yn∆µn|Fn−1)

= 1{τ>n−1}
1

Zn−1

(
E(1{τ≥n}Yn∆Hn|Fn−1)− E(1{τ≥n}YnKn∆Jn|Fn−1)

)
= 1{τ≥n}

1

Zn−1

(
E(E(1{τ≥n}∆Hn|Fn)Yn|Fn−1)− E(E(1{τ≥n}|Fn)YnKn∆Jn|Fn−1)

)
= 1{τ≥n}

1

Zn−1

(
E(E(∆Hn|Fn)Yn|Fn−1)− E(Z̃nYnKn∆Jn|Fn−1)

)
= 1{τ≥n}

1

Zn−1
E(Yn(∆Ho

n − Z̃nKn∆Jn)|Fn−1)

where we used the fact that 1{τ≥n}∆Hn = ∆Hn. Then, taking conditional expectation w.r.t. Fn−1,
one obtains, for any Yn

1Zn−1>0(E(Yn(∆Ho
n − Z̃nKn∆Jn)|Fn−1) = 0 ,

hence
1Zn−1>0(∆H

o
n − Z̃nKn∆Jn) = 0 .

It follows that µ = Π.

Proposition 1.3.10 Assume that Z is positive. Then, Z admits an "optional" multiplicative de-
composition

Z = ÑE(−Γ)

where Ñ is an F-martingale.

Proof. In the case Z > 0, we have 1−∆Γn = 1− (Z̃n)
−1∆Ho

n = 1− (Z̃n)
−1P(τ = n|Fn) > 0, and

the stochastic exponential E(−Γ) is positive.
We check that Z/E(−Γ) is a martingale.

E(
Zn

E(−Γ)n
− Zn−1

E(−Γ)n−1
|Fn−1) =

1

E(−Γ)n−1
E(

Zn
1−∆Γn

− Zn−1|Fn−1)

From Z̃n −∆Ho
n = Zn, we obtain

E(
Zn

1−∆Γn
− Zn−1|Fn−1) = E(

ZnZ̃n

Z̃n −∆Ho
n

− Zn−1|Fn−1) = E(Z̃n − Zn−1|Fn−1) = 0

and the martingale property follows. �

G-martingales versus F-martingales

We first give a characterization for all G-martingales in term of F-martingales. We denote as before
P(τ = k|Fn) = pn(k).

Proposition 1.3.11 A G-adapted process of the form Y := y1[[0,τ [[ + y(τ)1[[τ,∞[[ where y and y(k)
are F-adapted processes, is a G-martingale if and only if the following two conditions are satisfied
(a) for any k, the process

(
yn(k)pn(k), n ≥ k

)
is an F-martingale,

(b) the process Y F is an F-martingale, where

Y F
n := E(Yn|Fn) = ynZn +

n∑
k=0

yn(k)pn(k) . (1.27)
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We first give a result of G-conditional expectation which be used in the proof of the Proposition.

Lemma 1.3.12 Let k ∈ N and n ≥ k. Consider Vn(j), j ≤ n a family of F-measurable random
variables, then

1{τ≤k}E (Vn(τ)|Gk) = 1{τ≤k}
1

pk(τ)
E
(
Vn(j)pn(j)|Fk

)
|j=τ

.

Proof. From

1{τ≤k}E (Vn(τ)|Gk) =
k∑
i=0

1{τ=i}E (Vn(i)|Gk)

and using the fact that there exists an Fk-measurable random variable vk(i) such that, for i ≤ k

1{τ=i}E (Vn(i)|Gk) = E
(
1{τ=i}Vn(i)|Gk

)
= 1{τ=i}vk(i) ,

taking the conditional expectation w.r.t Fk, we obtain that

E
(
Vn(i)1{τ=i}|Fk

)
= E (Vn(i)pn(i)|Fk) = vk(i)P (τ = i|Fk)

where we made use of the tower property to obtain the first equality. It follows that

1{τ≤k}E (Vn(τ)|Gk) =
k∑
i=0

1{τ=i}
E (Vn(i)pn(i)) |Fk)

pk(i)

�

Proof. [of Proposition 1.3.11] For the necessity, in a first step, we show that we can reduce our
attention to the case where Y is u.i. Indeed, let Y be a G-martingale and (Tj)j≥0 be a G-localizing
sequence such that, for each j, the associated stopped martingale (Yn∧Tj , n ≥ 0) is u.i. Assuming
that the result is established for u.i. martingales will prove that the processes in (a) and (b) are
martingales up to Tj for each j. Since Tj → ∞ as j → ∞, the result follows.
Assume, then, that Y is a u.i. G-martingale, hence the terminal value of this martingale is a G∞
measurable random variable that one can write as Y (τ) where for any k, the random variable Y (k)
is F∞ measurable, and Yn = E(Y (τ)|Gn) has the form Y = y1[[0,τ [[ + y(τ)1[[τ,∞[[.

• Assuming that Y is a G-martingale, one has E(Yn|Gn−1) = Yn−1, hence, E(Yn|Gn−1))1{τ=k} =
Yn−11{τ=k} and, for k ≤ n− 1, which leads to, writing Yn1{τ=k} = yn(k)1{τ=k},

E(yn(k)1{τ=k}|Gn−1) = yn−1(k)1{τ=k} ,

and taking conditional expectation w.r.t. Fn−1 E(yn(k)pn(k)|Fn−1) = yn−1(k)pn−1(k).
If Y is a G martingale, Y F is an F martingale. The form of Y F follows from

E(yn1{n<τ} + yn(τ)1{τ≤n}|Fn) = ynZn +
n∑
k=0

E(yn(τ)1{τ=k}|Fn)

= ynZn +

n∑
k=0

yn(k)pn(k) .

• Conversely, assuming (a) and (b), we shall verify that E(Yn|Gk) = Yk for k ≤ n. Let us first note
that

E(Yn|Gk) = 1{k<τ}
1

Zk
E(Yn1{k<τ}|Fk) + 1{τ≤k}E(Yn1{τ≤k}|Gk) . (1.28)
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We then compute the two conditional expectations in (1.28):

E(Yn1{k<τ}|Fk) = E(Yn|Fk)− E(Yn1{τ≤k}|Fk)

= E(Y F
n |Fk)− E

[
E(yn(τ)1{τ≤k}|Fn)|Fk

]
= Y F

k − E

 k∑
j=0

yn(j)pn(j)|Fk


= ykZk +

k∑
j=0

yk(j)pk(j)−
k∑
j=0

yk(j)pk(j) = ykZk

where we have used the condition (a) and the equality derived in condition (b) to obtain the next-
to-last identity. Furthermore, using Lemma 1.3.12

E(Yn1{τ≤k}|Gk) = E(yn(τ)1{τ≤k}|Gk) = 1{τ≤k}
1

pk(τ)
E
(
yn(i)pn(i)|Fk

)
|i=τ

= 1{τ≤k}
1

pk(τ)
yk(τ)pk(τ) = 1{τ≤k}yk(τ)

where the next-to-last identity holds in view of the condition (a).
Finally, E(Yn|Gk) = 1{k<τ}

1
Zk
ykZk + 1{τ≤k}yk(τ) = Yk. �

Immersion in progressive enlargement

We recall that F is immersed in G (we shall write F ↪→ G) if any F-martingale is a G-martingale.

Lemma 1.3.13 F is immersed in G is equivalent to Zn = P(τ > n|F∞) = P(τ > n|Fk) for any
k ≥ n ≥ 0.

Proof. First, suppose that immersion holds. The equality Zn = P(τ > n|F∞) = P(τ > n|Fk) is
valid as soon as

Zn = P(τ > n|F∞) (1.29)

and this is equivalent to E(X1τ>n) = E(XZn) for any bounded F∞-measurable random variable X.

E(X1τ>n) = E(E(X|Gn)1τ>n) = E(E(X|Fn)1τ>n)

where the second equality comes from immersion. The equality

E(E(X|Fn)1τ>n) = E(XE(1τ>n)|Fn)) = E(XZn)

implies the result.
Conversely, assuming P(τ > n|Fk) = P(τ > n|Fn) for k ≥ n, we prove that any F-martingale X is
a G-martingale, i.e., E(Xn|Gk) = Xk for k ≤ n, or equivalently for any Fk measurable r.v. Uk, for
any j,

E(XnUk1τ∧k=j) = E(XkUk1τ∧k=j).

This equality is obvious for k < j. For j ≤ k

E(XnUk1τ∧k=j) = E(XnUkP(τ ∧ k = j|Fn))) = E(XnUkP(τ = j|Fn))) = E(XnUkP(τ = j|Fk)))

where we have used the hypothesis in the last equality. It follows that, using the F-martingale
property of X

E(XnUkP(τ = j|Fk))) = E(XkUkP(τ = j|Fk))) = E(XkUk1τ∧k=j)

�



30

Proposition 1.3.14 Assume that Z is positive and that immersion holds. Then, Z = E(−Γ) where
Γ is defined in (1.26).

Proof. If immersion holds, the same kind of computation as the one in the proof of Proposition
1.3.10 leads to

Zn
E(−Γ)n

=
1

E(−Γ)n−1

Zn
1−∆Γn

=
Zn

E(−Γ)n−1

Z̃n

Z̃n −∆Ho
n

=
Z̃n

E(−Γ)n−1

and using the fact that immersion implies that Z̃n = Zn−1, we obtain, by recursion, that Zn

E(−Γ)n
= 1.

�

Lemma 1.3.15 F is immersed in G if and only if Z̃ is predictable and Z̃n = P(τ ≥ n|F∞), n ≥ 0.

Proof. Assume that F is immersed in G. Then, for n ≥ 0,

Z̃n = P(τ ≥ n|Fn) = P(τ > n− 1|Fn) = P(τ > n− 1|F∞) = P(τ ≥ n|F∞) ,

where the third equality follow from immersion assumption. The equality Z̃n = P(τ > n− 1|Fn−1) = Zn−1

establishes the predictability of Z̃.
Assume now that Z̃ is predictable and Z̃n = P(τ ≥ n|F∞). Then, Z̃n = P(τ ≥ n|Fn−1) and

P(τ > n|Fn) = P(τ ≥ n+ 1|Fn) = Z̃n+1 = P(τ > n|F∞) .

The immersion property follows. �

Remark 1.3.16 We will see in the proof of Theorem 1.3.48 that Z̃ predictable implies that τ is a
pseudo-stopping time, hence Z (and Z̃) is decreasing.

Lemma 1.3.17 Under immersion pn(k) = pk(k) for n ≥ k.

Theorem 1.3.18 Suppose F ↪→ G and Z > 0. Let N be defined in (1.21). Then the following
assertions are equivalent
(i) Z is F-predictable.
(ii) For any G-predictable process U , one has E

(
(U �N)n

)
= 0, ∀n ≥ 1 , in particular E

(
∆Nn

∣∣Fn) =

0, ∀n ≥ 1 .
(iii) Any F-martingale X is orthogonal to N .

Proof. (i)⇒ (ii). By uniqueness of Doob’s decomposition and the predictability of Z, Zn =M0−An,
hence ∆Mn = 0.
By Lemma 1.3.8 and 1.3.15, we have that

E(∆Nn|Fn) = −∆Mn

and E
(
∆Nn

∣∣Fn) = 0.
For k ≤ n, let Ūk be an Fk−1-measurable r.v. be such that Ūk11{τ>k−1} = Uk11{τ>k−1}, then

E(Uk∆Nk|Fn) = Ūk
[
E(−11{τ>k} + 11{τ≥k}|Fn)− λkE(11{τ≥k}|Fn)

]
,

which, using immersion propetry

E(Uk∆Nk|Fn) = Ūk
[
E(−11{τ>k} + 11{τ≥k}|Fk)− λkE(11{τ≥k}|Fk)

]
= ŪkE(∆Nk|Fk) = 0 ,
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taking the sum over all k ≤ n, and noting that, from immersion E(Ūk∆Nk|Fk) = E(Ūk∆Nk|Fn),
we obtain E

(∑n
k=1 Uk∆Nk

∣∣Fn) = 0, that is the desired result.

(ii) ⇒ (iii). In the proof, we suppose that X is square integrable. The general case follows by
localization. We prove that E(∆Xn ∆Nn|Gn−1) = 0 for all n ≥ 1.
From the Lemma 1.3.3, we have that

E(∆Xn ∆Nn|Gn−1)11{τ≥n} =
1

Zn−1
E[∆Xn11{τ>n−1}∆Nn|Fn−1]11{τ≥n} ,

since ∆Xn is Fn-measurable and 11{τ>n−1} is Gn−1-measurable we have, from (ii)

E(∆Xn11{τ>n−1}∆Nn|Fn−1) = E
[
∆XnE(11{τ>n−1}∆Nn|Fn)|Fn−1

]
= 0

hence
E(∆Xn∆Nn|Gn−1)11{τ≥n} = 0 .

On the set {τ < n}, using that {τ < n} ∈ Gn−1, we obtain

E(∆Xn ∆Nn|Gn−1)11{τ<n} = E[∆Xn(11{τ=n} − λn11{τ≥n})11{τ<n}|Gn−1] = 0 .

Finally, we get E[∆(XnNn)|Gn−1] = 0 .

(iii) ⇒ (i). By (iii), we have in the one hand, for n ≥ 1, E(∆Xn∆Nn|Gn−1) = 0, then
E(∆Xn∆Nn) = 0 . In the other hand, E(∆Xn∆Nn) = E[∆XnE(∆Nn|Fn)] . In the case X = M ,
applying Lemma 1.3.8, we obtain E(∆Nn∆Mn) = −E(|∆Mn|2) , which implies E(|∆Mn|2) = 0 .
Therefore ∆Mn = 0=, or equivalently E(Zn|Fn−1) = Zn, which is equivalent to the predictability
of Z. �

Example 1.3.19 Assume that τ = inf{n : Vn ≥ Θ} where V is an increasing F-adapted process
and Θ is independent from F, with an exponential law. Then, Zn = P(Vn > Θ|Fn) = e−Vn and
immersion property holds (and Z̃n = P(τ > n− 1|Fn) = P(Vn−1 > Θ|Fn) = e−Vn−1 = Zn−1).
If V is predictable, the Doob decomposition of Z is Zn = 1−An = 1− (1− e−Vn), and Zn = E(−Λ)
with ∆Λn = ∆An

Zn−1
= 1− e−∆Vn , where Λ was in Lemma 1.3.6. Note that, from Proposition 1.3.14,

Λ = Γ. Moreover, Z is predictable and assertions of Theorem 1.3.18 hold.
If V is not predictable,

∆Λn =
∆An
Zn−1

=
E(−∆Zn|Fn−1)

Zn−1
= e−Vn−1

1− E(e−∆Vn |Fn−1)

Zn−1
= 1− E(e−∆Vn |Fn−1)

and ∆Γn = 1− e−∆Vn .

Equivalent probability measures

Proposition 1.3.20 Suppose F P
↪→ G. Let Q be a probability measure which is equivalent to P and

let L be its Radon-Nikodym density. If L is F-adapted, then

Q(τ > n|Fn) = P(τ > n|Fn) = Zn , ∀n ≥ 0

and F
Q
↪→ G . Consequently, the predictable compensator of H is unchanged under such equivalent

changes of probability measures, i.e. N is a G-martingale under P and Q.

Proof. Let X be an (F,Q)-martingale, then, L being F adapted, (XnLn, n ≥ 0) is an (F,P)-
martingale, and since F is immersed in G under P we have that (XnLn, n ≥ 0) is a (G,P)-martingale
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which implies that X is a (G,Q)-martingale, i.e. F
Q
↪→ G. We have for each n ≤ k, using Bayes’

formula

Q(τ ≤ n|Fk) =
EP(Lk1{τ≤n}|Fk)

EP(Lk|Fk)
= P(τ ≤ n|Fk) ,

in particular, Q(τ ≤ n|Fn) = P(τ ≤ n|Fn), then by F P
↪→ G, Q(τ ≤ n|Fn) = Q(τ ≤ n|Fk) and the

assertion follows.

�

Immersion property is not stable by change of probability. We give here the result obtained in a
continous time setting in [?, Th. 6.32].

Theorem 1.3.21 Assume that F P
↪→ G and that Z is F-predictable and positive. Let X be an

(F,P)-martingale and let ψ be an integrable G-predictable process such thatE(ψ �X) is a positive G-
martingale. Let φ be an integrable F-predictable process such that E(φ�N) is a positive G-martingale.
Let us introduce the G-martingale

Ln := E(ψ �X)nE(φ �N)n , ∀n ≥ 0 ,

where N is defined in (1.21) and assume that L is uniformly integrable.
Define

dQ = LndP on Gn , ∀n ≥ 0 .

Then, the Q-Azéma supermartingale associated with τ has the following multiplicative decomposition:

ZQ
n = Q(τ > n|Fn) = E

(
(ψ̄ − pψ) �XQ

)
n
E
(
− φ � Λ

)
n
Zn , ∀n ≥ 0 ,

where

• Λ is defined in Lemma 1.3.6

• pψ is the F-predictable projection of the process ψ under the probability Q, i.e. pψ := ψ0 and
pψn := EQ(ψn|Fn−1), for all n ≥ 1,

• ψ̄ is an F-predictable process such that ψn1{τ>n−1} = ψ̄n1{τ>n−1}, for all n ≥ 0 and

• XQ defined by XQ
0 := X0 and XQ

n := Xn−
∑n
k=1

∆[X,ℓ]k
ℓk

for all n ≥ 0, is an (F,Q)-martingale
with ℓk = E(Lk|Fk), for all k ≥ 0.

Furthermore, the process

Hn −
n∧τ∑
k=1

(
1− Zk

Zk−1
φk

)
∆Λk , ∀n ≥ 0,

is the compensated Q-martingale associated with H. In particular, if the process ψ is F-predictable,
then:

ZQ
n = Q(τ > n|Fn) = E(−φ � Λ)nZn , ∀n ≥ 0

and the immersion property holds under Q .

Proof. Let n ≥ 0 be fixed. Note that L is a martingale: this is a local martingale by orthogonality
of X and N and a martingale by Proposition 1.1.31.
• In a first step, we compute ℓn := EP(Ln|Fn). By Lemma 1.1.24, we have that for all k ≥ 1,

∆Lk = Lk−1(ψk∆Xk + φk∆Nk + ψkφk∆[X,N ]k) .
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Then, taking the sum for 1 ≤ k ≤ n, and since L0 = 1,

Ln = 1 +
(
(L−ψ) �X)n +

(
(L−φ) �N

)
n
+
(
(L−ψφ) � [X,N ]

)
n
. (1.30)

Using that ∆Xk ∈ Fn, Lk−1ψkφk ∈ Gn−1 for all 1 ≤ k ≤ n and Z predictable, we have that by
Theorem 1.3.18

E
((

(L−ψφ) � [X,N ]
)
n

∣∣Fn) =

n∑
k=1

∆XkE(Lk−1ψkφk∆Nk|Fn) = 0 , (1.31)

and again by Theorem 1.3.18,
E
(
(L−φ �N)n

∣∣Fn) = 0 . (1.32)

Taking the conditional expectation of (1.30) and using (1.31) and (1.32), we obtain

ℓn = 1 + E
(
(L−ψ �X)n

∣∣Fn) = 1 +
n∑
k=1

E
(
Lk−1ψk|Fn

)
∆Xk .

Then, since Lk−1ψk ∈ Gk−1 and immersion holds, we obtain from Proposition 1.1.47 (H2) that
E(Lk−1ψk|Fn) = E(Lk−1ψk|Fk−1) for all k ≤ n, and

ℓn := 1 +
n∑
k=1

E(Lk−1ψk|Fk−1)∆Xk = ℓn−1 + E(Ln−1ψn|Fn−1)∆Xn .

From E(Ln−1ψn|Fn−1) = EQ(ψn|Fn−1)ℓn−1, we obtain

ℓn = ℓn−1(1 + EQ(ψn|Fn−1)∆Xn) = ℓn−1(1 +
pψn∆Xn) (1.33)

where pψ is the F-predictable projection of ψ under the probability Q. Finally

ℓn = E(pψ �X)n .

• In a second step, we compute E(1{τ>n}Ln|Fn). In the one hand, there exists an F-predictable
process ψ̄ such that ψk1{τ>n} = ψ̄k1{τ>n} for all k ≤ n. It follows that

E(ψ �X)n1{τ>n} = Πnk=1(1 + ψ̄k∆Xk)1{τ>n} . (1.34)

In the other hand, we have that

E(φ �N)n1{τ>n} = Πnk=1(1 + φk(∆Hk −∆Λk1{τ≥k})1{τ>n} = Πnk=1(1− φk∆Λk)1{τ>n} . (1.35)

Then, using (1.34), we get that

E(1{τ>n}Ln|Fn) = E(ψ̄ �X)nE
(
E(φ �N)n1{τ>n}

∣∣Fn) .
From (1.35) and the fact that φk∆Λk ∈ Fn for all 1 ≤ k ≤ n, we obtain

E(1{τ>n}Ln|Fn) = E(ψ̄ �X)nE(−φ � Λ)nZn . (1.36)

Replacing (1.33) and (1.36) in the formula ZQ
n = EP(1{τ>n}Ln|Fn)/ℓn leads to

ZQ
n = E(−φ � Λ)n

E(ψ̄ �X)n
E(pψ �X)n

Zn .

By definition of the exponential, it follows that

E(ψ̄ �X)n
E(pψ �X)n

= E
( .∑

k

(ψ̄k − pψk)∆Xk

pψk∆Xk + 1

)
n
. (1.37)
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From ∆ℓk
ℓk−1

= pψk∆Xk, we have that

1
pψk∆Xk + 1

=
ℓk−1

ℓk
= 1− ∆ℓk

ℓk
, ∀0 ≤ k ≤ n . (1.38)

Then, replacing (1.38) in (1.37), we obtain

E(ψ̄ �X)n
E(pψ �X)n

= E
(
(ψ̄ − pψ) �XQ)

n
,

whereXQ defined by ∆XQ
k = ∆Xk−∆ℓk∆Xk

ℓk
, for all 1 ≤ k ≤ n is an (F,Q)-martingale by Proposition

1.1.37. Therefore

ZQ
n = E(−φ � Λ)nE

(
(ψ̄ − pψ) �XQ)

n
Zn .

It follows that for all k ≥ 1, {ZQ
k−1 > 0} = {Zk−1 > 0} = Ω and

ZQ
k

ZQ
k−1

= (1− φk∆Λk)
(
1 + (ψ̄k − pψk)∆X

Q
k

) Zk
Zk−1

, (1.39)

then taking conditional expectation under Q in (1.39), and using that pψ, ψ̄, φ, Λ and Z are F-
predictable and that XQ is an (F,Q)-martingale, we get

EQ
( ZQ

k

ZQ
k−1

∣∣∣Fk−1

)
= (1− φk∆Λk)

Zk
Zk−1

, ∀k ≥ 1 . (1.40)

The compensated Q-martingale of H is

Hn −
n∧τ∑
k=1

ZQ
k−1 − EQ(ZQ

k |Fk−1)

ZQ
k−1

= Hn −
n∧τ∑
k=1

(
1− EQ

( ZQ
k

ZQ
k−1

∣∣∣Fk−1

))
=: νn . (1.41)

Therefore, using (1.40),

νn = Hn −
n∧τ∑
k=1

(
1− (1− φk∆Λk)

Zk
Zk−1

)
= Hn −

n∧τ∑
k=1

(Zk−1 − Zk
Zk−1

− φkZk∆Λk
Zk−1

)
, (1.42)

since Z is predictable, we have that ∆Λk = Zk−1−Zk

Zk−1
for all k ≥ 1, then (1.42) is equivalent to

νn = Hn −
n∧τ∑
k=1

(
1− φk

Zk
Zk−1

)
∆Λk .

In particular, if ψ is F-predictable, ψ̄ = pψ = ψ then

ZQ
n = E(−φ � Λ)nZn , ℓn = 1 .

Let X be an (F,Q)-martingale. Since e ≡ 1, the process X is an (F,P)-martingale, hence, by
immersion a (G,P) martingale. From Girsanov Theorem XG = X −

∑
k

1
Lk−1

∆⟨X,L⟩k is a G-
martingale. From the fact that any F martingale is orthogonal to N , the bracket is null which
implies that X is a (G,Q)-martingale. �

Corollary 1.3.22 Suppose that F P
↪→ G and Z is F-predictable. Define Q on Gn by

dQ
dP

= Ln := E(ψ �X)n , ∀n ≥ 0 ,

with X an F-martingale and ψ a G-predictable process such that L is a uniformly integrable G-
martingale. Then, under Q the process N = H − Λτ remains a G-martingale.
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Corollary 1.3.23 Suppose that F P
↪→ G and Z is F-predictable. Define Q on Gn by

dQ
dP

= Ln := E(ψ �X)n , ∀n ≥ 0 ,

with X an F-martingale and ψ a G-predictable process such that L is a uniformly integrable G-
martingale. Then, under Q the process N = H − Λτ remains a G-martingale.

Proof. It suffices to take φ = 0 in Theorem 1.3.21. �

Theorem 1.3.18, Theorem 1.3.21 and Corollary 1.3.23 are the discrete version of Lemma 5.1,
Theorem 6.4 and Corollary 6.5 in [10]. In continuous time the results holds under Assumption
(A): the random time τ avoids every F stopping time T , i.e. P(τ = T ) = 0, but in discrete time
Assumption (A) does not hold, in order to have the same results we need the hypothesis that Z is
predictable, instead Assumption (A).

1.3.2 Study before τ

Semimartingale decomposition

Proposition 1.3.24 Any square integrable F-martingale X stopped at τ is a G-semimartingale with
decomposition

Xτ
n = XG

n +
n∧τ∑
k=1

1

Zk−1
∆⟨M̃,X⟩Fk ,

where XG is a G-martingale (stopped at τ). Here, M̃ is the martingale part of the Doob decomposition
of the supermartingale Z̃.

Proof. We compute the predictable part of the G-semimartingale X on the set {0 ≤ n < τ} using
Lemma 1.3.3

1{τ>n}E(∆Xn+1|Gn) = 1{τ>n}
1

Zn
E(Z̃n+1∆Xn+1|Fn) .

Using now the Doob decomposition of Z̃, and the martingale property of X, we obtain

E(Z̃n+1∆Xn+1|Fn) = E((M̃n+1 − Ãn+1)∆Xn+1|Fn)
= E(M̃n+1∆Xn+1|Fn) = ∆⟨M̃,X⟩Fn+1

and finally

1{τ>n}E(∆Xn+1|Gn) = 1{τ>n}
1

Zn
∆⟨M̃,X⟩Fn+1 .

�

Remark 1.3.25 The result extends to any filtration K such that F ⊂ K and, for any K predictable
process U , there exists an F predictable process UF such that Un1{n≤τ} = Ũn1{n≤τ}.

Comment 1.3.26 From this result, we can hope that, in continuous time the G-semimartingale
decomposition formula of an F-martingale X stopped at time τ will be

Xτ
t = X̂t +

∫ t∧τ

0

1

Zs−
d⟨M̃,X⟩Fs ,

where Zt = P(τ > t|Ft), Z̃t = P(τ ≥ t|Ft) and M̃ is an F-martingale and Ã is F-predictable with
Z̃ = M̃ − Ã. This is indeed the case and known as the Jeulin formula. Note that, as Z̃ is not càdlàg,
the decomposition Z̃ = M̃ − Ã is not the standard Doob-Meyer decomposition established only for
càdlàg supermartingales.
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In the two following propositions, we present the discrete time version of well known decompo-
sition in continuous time. The first result (Proposition 1.3.24) is a predictable decomposition, the
second one (Proposition 1.3.28 an "optional" decomposition.

Proposition 1.3.27 )

Xτ
n = XG

n +

n∧τ∑
k=1

1

Zk−1

(
∆⟨M,X⟩Fk + (∆Xτ1τ,∞)p,Fk

)
,

Proof. Note that

E(Z̃n+1∆Xn+1|Fn) = E(Zn+1∆Xn+1|Fn) + E(1τ=n+1∆Xn+1|Fn)

and that the decomposition can be written as stated. �

In continuous time, one has that every càdlàg F-local martingale X stopped at time τ is a
G-special semimartingale with canonical decomposition

Xτ
t = X̂t +

∫ t∧τ

0

d⟨X,µ⟩Fs + dJs
Zs−

where X̂ is a G-local martingale, µ is the martingale part of the F-Doob Meyer decomposition of Z
and J is the F-dual predictable projection of the process (∆Xτ )1]τ,∞].

We introduce two F-stopping times which play an important role in the optional decomposition.
Let R =: inf{n ≥ 0, Zn = 0} and R̃ = R1{Z̃R=0<ZR−} +∞1{Z̃R=0<ZR−}c . If T is a stopping time,
we denote by [[T ]] := {(ω, n), T (ω) = n} and it is called the graph of T .

Proposition 1.3.28 Any F-local-martingale X stopped at τ admits the following optional decom-
position

Xτ
n = X̂G

n +
n∧τ∑
k=1

1

Z̃k
∆
[
M̃,X

]
k
+
n∧τ∑
k=1

(
∆XR̃1[[R̃,∞[[

)p,F
k

, (1.43)

where X̂G is a G-martingale and M̃ is the martingale part of the Doob decomposition of the super-
martingale Z̃ defined in (1.18).

Proof. The proof is inspired of the proof in continuous time in [4]. We give it for the ease of the
readers. We can remark that, for any F-martingale Y , one has E(Yτ ) = E([Y, M̃ ]∞). Indeed

E(Yτ ) =
∑
k≥0

E(Yk1{τ=k}) =
∑
k≥0

E(Yk∆Z̃k)

=
∑
k≥0

E(∆Yk∆Z̃k) = E([Y, M̃ ]∞)

The second equality is a consequence of the tower property and the two last equalities are obtained
using that Y is a F-martingale.

It is sufficient to prove that for all G-predictable process K, E((K � X̂G)∞) = 0. For any G-
predictable process K, there exists an F predictable process K̃ such that K1[[0,τ ]] = K̃1[[0,τ ]]. As
mentionned in Lemma 1.3.4, we can choose K̃ such that K̃1Z−=0 = 0. Then

E((K �Xτ )∞) = E((K̃ �X)τ ) = E([K̃ �X, M̃ ]∞)

= E

∑
k≥1

K̃kZ̃k

Z̃k
1{Z̃k>0}∆[X, M̃ ]k

+ E

∑
k≥1

K̃k1{Z̃k=0}∆[X, M̃ ]k

(1.44)
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As K̃ and M̃ are F-adapted, one has, by tower property

E

∑
k≥1

K̃kZ̃k (Z̃k)
−11{Z̃k>0}∆[X, M̃ ]k

 = E

∑
k≥1

K̃k1{k≤τ}(Z̃k)
−11{Z̃k>0}∆[X, M̃ ]k

 .

From Proposition 1.3.2, we obtain that the first term of the right hand side of (1.44)is equal to
E
(∑

k≥1
Kk1{k≤τ}

Z̃k
∆[X, M̃ ]k

)
.

For the second term of the right hand side of (1.44), we remark that, due to the choice of K̃, one
has

E

∑
k≥1

K̃k1{Z̃k=0}∆[X, M̃ ]k

 = E

∑
k≥1

K̃k1{Z̃k=0<Zk−1}∆[X, M̃ ]k


and that {Z̃ = 0 < Z−} = [R̃] and that ∆M̃R̃ = −ZR̃ on {R̃ <∞}. Then

1{Z̃=0<Z−}∆[X, M̃ ] = −ZR̃−
∆XR̃1[[R̃,∞[[.

Hence

E

∑
k≥1

Kk1{Z̃k=0<Zk−1}∆[X, M̃ ]k

 = −E

∑
k≥1

K̃kZk−1(∆XR̃1[[R̃,∞[[)k


Using that K̃Z− is predictable, we obtain

E

∑
k≥1

K̃k1{Z̃k=0}∆[X, M̃ ]k

 = −E

∑
k≥1

K̃kZk−1

(
∆XR̃1[[R̃,∞[[

)p
k


= −E

∑
k≥1

Kk1{k−1<τ}

(
∆XR̃1[[R̃,∞[[

)p
k


= −E

(
τ∑
k=1

Kk

(
∆XR̃1[[R̃,∞[[

)p
k

)
.

It now follows that E((K � X̂G)∞) = 0. �

Arbitrages

In the case of progressive enlargement, we distinguish arbitrages which can occur before τ and those
which can occur after τ .

Definition 1.3.29 The enlargement (F,Gτ ) is viable if there exists a positive G-martingale L such
that, for any F-martingale X, the process LXτ is a martingale.

Lemma 1.3.30 Let Gτ− be the filtration G “strictly before τ", i.e., Gτ−n = Gn∧(τ−1). There exists
a positive G-martingale L such that, for any F-martingale X, the process LXτ− is a martingale,
where Xτ−

n = Xn∧(τ−1).

Proof. For any F-martingale X we are looking for ψ such that on the set {1 ≤ n < τ} (strictly
before τ)

1{n−1≤τ}E(ψnXn|Gn−1) = 1{n−1≤τ}Xn−1E(ψn|Gn−1)

that is
1{n−1≤τ}

1

Z̃n−1

E(ψnXnZn|Fn−1) = 1{n−1≤τ}
Xn−1

Z̃n−1

E(ψnZn|Fn−1) .



38

We are looking for a positive F-adapted process ψ, satisfying

E(ψnXnZn|Fn−1) = Xn−1E(ψnZn|Fn−1) .

The choice ψ = (1/Z)1{Z>0} + 1{Z=0} provides a solution, valid for any martingale X. �

Theorem 1.3.31 Assume that τ is not an F-stopping time and denote by Gτ the filtration Gτn =

Gτ∧n, n ≥ 0. Then, the enlargement (F,Gτ ) is viable if and only, for any n, the set {0 = Z̃n < Zn−1}
is empty.

We mean here that, for any F-martingaleX, the stopped processXτ admits a deflator. This result
was established in Choulli and Deng [9] and is a particular case of the general results obtained in
Aksamit et al.[5]. We give here a slightly different proof, by means of the two following propositions.

Proposition 1.3.32 Assume that for any n, the set {Z̃n = 0 < Zn−1} is empty. The process
L = E(Y ), where Y is the G-martingale defined by ∆Yk = 1{τ≥k}(

Zk−1

Z̃k
− 1) for k ≥ 1 and Y0 = 0,

is a positive G-martingale. If X is an F-martingale, the process XτL is a (G,P) martingale.

Proof. The process Y is a martingale: for n ≥ 1,

E(∆Yn|Gn−1) = E(1{τ≥n}
Zn−1 − Z̃n

Z̃n
|Gn−1) = 1{τ≥n}

1

Zn−1
E(1{Z̃n>0}(Zn−1 − Z̃n)|Fn−1)

= 1{τ≥n}
1

Zn−1
E(Zn−1 − Z̃n − 1{Z̃n=0}(Zn−1 − Z̃n)|Fn−1)

= 1{τ≥n}
1

Zn−1
E(Zn−1 − Z̃n|Fn−1) = 0 ,

where we have used (1.20), the fact that E(Z̃n|Fn−1) = Zn−1 and that, by assumption {Z̃n = 0} ⊂
{Zn−1 = 0}, hence 1{Z̃n=0}(Zn−1 − Z̃n) = 0.

Hence L is a martingale. Note that the fact that {Zn−1 = 0} ⊂ {Z̃n = 0} implies that the
inclusion {Z̃n = 0} ⊂ {Zn−1 = 0} is equivalent to {Z̃n = 0} = {Zn−1 = 0}, or to {Z̃n = 0 < Zn−1}
is empty. On the set {τ ≥ k}, one has Zk−1 > 0 which implies that ∆Yk = (Zk−1

Z̃k
− 1) ≥ −1, hence

L is positive. Furthermore, for X an F-martingale

E(Xτ
n+1

Ln+1

Ln
|Gn) = E(X(n+1)∧τ (1 + 1{τ≥n+1}

Zn − Z̃n+1

Z̃n+1

)|Gn)

= E(Xn+11{τ≥n+1}
Zn

Z̃n+1

|Gn) + E(Xτ1{τ<n+1}|Gn)

= E(Xn+11{τ≥n+1}
Zn

Z̃n+1

|Gn) +Xτ1{τ<n+1}

= 1{τ>n}
1

Zn
E(Xn+1Zn1{Z̃n+1>0}|Fn) +Xτ1{τ≤n}

= 1{τ>n}
1

Zn
E(Xn+1Zn(1− 1{Z̃n+1=0})|Fn) +Xτ1{τ≤n}

= 1{τ>n}
1

Zn
E(Xn+1Zn|Fn) +Xτ1{τ≤n} = Xn∧τ ,

where we have used that, by assumption, Zn1{Z̃n+1=0} = 0. Hence the deflator property. �

Remark 1.3.33 In case of immersion, there are no arbitrages (indeed any e.m.m. in F will be
an e.m.m. in G). This can be also obtained using the previous result, since, under immersion
hypothesis, one has Zn−1 = Z̃n.
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Proposition 1.3.34 If there exists n ≥ 1 such that the set {0 = Z̃n < Zn−1} is not empty, and if
τ is not an F-stopping time, there exists an F-martingale X such that Xτ is a G-adapted increasing
process with Xτ

0 = 1, P(Xτ
τ > 1) > 0. Hence, the enlargement (F,Gτ ) is not viable.

Proof. The proof is the discrete time version of Acciaio et al. [1]. Let ϑ = inf{n : 0 = Z̃n < Zn−1}.
The random time ϑ is an F-stopping time satisfying τ ≤ ϑ and P(τ < ϑ) > 0. Let In = 1{ϑ≤n} and
denote by D the F-predictable process part of the Doob decomposition of I. One has D0 = 0 and
∆Dn = P(ϑ = n|Fn−1). We introduce the F-predictable increasing process U setting Un = 1

E(−D)n
.

Then,

∆Un =
1

E(−D)n−1
(

1

1−∆Dn
− 1) =

1

E(−D)n−1

∆Dn

1−∆Dn
= Un∆Dn

We consider the process X = UK, where K = 1− I,

∆Xn = −Un∆In +Kn−1∆Un = −Un (∆In −Kn−1∆Dn)

and

E(∆Xn|Fn−1) = −UnE(∆In −Kn−1∆Dn|Fn−1) = Un (P(ϑ = n|Fn−1)−Kn−1P(∆Dn|Fn−1))

= UnKn−1 (P(ϑ = n|Fn−1)− P(∆Dn|Fn−1)) = 0 ,

where we have used that Kn−1P(ϑ = n|Fn−1) = E(Kn−11ϑ=n|Fn−1) = P(ϑ = n|Fn−1) . Hence X
is an F-martingale.
We now prove that Xτ ≥ 1 and P(Xτ > 1) > 0, equivalently that Dτ ≥ 0 and P(Dτ > 0) > 0. For
that, we compute

E(Dτ1τ<∞) =
∞∑
n=0

E(Dn1{τ=n}) =
∞∑
n=0

E(DnP(τ = n|Fn))

=
∞∑
n=1

E(DnP(τ > n|Fn))−
∞∑
n=1

E(DnP(τ > n− 1|Fn)) +D0P(τ = 0)

Since D is predictable

E(Dτ1τ<∞) =
∞∑
n=1

E(DnP(τ > n|Fn))−
∞∑
n=1

E(DnP(τ > n− 1|Fn−1)) = −
∞∑
n=1

E(Dn∆Zn)

= E(
∞∑
n=1

Zn−1∆Dn) = E(Zϑ−11ϑ<∞) > 0 ,

where, in the last inequality, we used that τ ≤ ϑ and P(τ = ϑ) < 1. The process Xτ is then an
increasing process and can not be turned in a martingale by change of probability. �

If Z̃ > 0, there are no arbitrages before τ .
We prove that if S is an F martingale, then, there exists a positive G-martingale such that SτL is
a local martingale.

Proposition 1.3.35 If Z̃ > 0, the process

Ln =
n∏
k=1

(1 + ∆Uk) = Ln−1(1 + ∆Un)

where ∆Uk = 1τ≥k(
Zk−1

Z̃k
−1) is a positive G-martingale and the process SτL is a (G,P) martingale.
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Proof. Indeed,

E(1 + ∆Un|Gn−1) = 1 + E(1τ≥n(
Zn−1

Z̃n
− 1)|Gn−1)

= 1 + 1τ>n−1
1

Zn−1
E(1τ≥n(

Zn−1

Z̃n
− 1)|Fn−1)

= 1 + 1τ>n−1
1

Zn−1
(E(Z̃n

Zn−1

Z̃n
|Fn−1)− Zn−1) = 1

where we have used the positivity of Z̃ in the third equality. Then,

E(S(n+1)∧τ (1 + 1τ≥n+1(
Zn

Z̃n+1

− 1))|Gn)

= E(Sn+11τ≥n+1(1 +
Zn

Z̃n+1

− 1)|Gn) + E(Sτ1τ<n+1|Gn)

= E(Sn+11τ≥n+1
Zn

Z̃n+1

|Gn) + Sτ1τ<n+1

= 1τ>n
1

Zn
E(Sn+1Z̃n+1

Zn

Z̃n+1

|Fn) + Sτ1τ≤n = Sn∧τ

�

Comment 1.3.36 A necessary and sufficient condition can be found in Choulli-Deng for any S
satisfying NA(F), S satisfies NA(G) is equivalent to {Z̃n = 0} = {Zn−1 = 0}.

More generally

Lemma 1.3.37 The following assertions hold.
(a) The process LG defined by

LG
n :=

n∏
k=1

(1 + ∆Xk)

where

∆Xn = −P(Z̃n > 0|Fn−1)1{τ≥n} +
Zn−1

Z̃n
1{τ≥n}

is a positive G-martingale.
(b) The process LF given by

LF
n :=

n∏
k=1

(1 + ∆Yk)

and
∆Yn = Z̃nP(Z̃n = 0|Fn−1)− Zn−11{Z̃n=0}

is a positive F-martingale.

Proposition 1.3.38 Suppose that S is an F-martingale, and consider the equivalent probability
measures QF and QG given by QF := LFP and QG := LGP. Then, S is an (F,QF)-martingale if and
only if Sτ is a G,QG)-martingale.

See Choulli and Deng [9]
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1.3.3 After τ

As we mentioned at the beginning, any F-martingale is a G-semimartingale (which is not the case
in continuous time). In a progressive enlargement of filtration with a random time valued in N, one
can give the decomposition formula. We start with the general case, then we study the particular
case where τ is honest, to provide comparison with the classical results. We also study the case of
pseudo stopping times.

General case

Mixing the results obtained in initial enlargement and progressive enlargement before τ , for any
F-martingale X

Xn = XG
n +

n∧τ∑
k=1

1

Zk−1
∆⟨M̃,X⟩Fk +

n∑
k=τ+1

∆⟨X, p(j)⟩Fk|j=τ
pk−1(τ)

. (1.45)

where XG is a G-martingale.

Honest times

In continuous time, strong conditions are needed to keep the semimartingale property after τ , here
it is no more the case. However, we now consider the case where τ is honest (and valued in N). We
recall the definition (see Barlow [6]) and some of the main properties.

Definition 1.3.39 A random time is honest , if, for any n ≥ 0, there exists an Fn-measurable
random variable τ(n) such that

1{τ≤n}τ = 1{τ≤n}τ(n) . (1.46)

Remark 1.3.40 Following Jeulin, τ is honest if there exists an Fn measurable random variable
τ̂(n), such that

1{τ<n}τ = 1{τ<n}τ̂(n) . (1.47)

The two definitions are equivalent. Indeed, starting with the equality (1.47), one can define τ(n) =
τ̂(n) ∧ n; then on {τ = n}, τ(n) = n and 1{τ≤n}τ = 1{τ≤n}τ(n).

It follows that any G-predictable process V can be written as Vn = V bn1{n≤τ}+V
a
n 1{τ<n} where

V a, V b are F-predictable processes (the superscript a is for after τ and b for before).

Lemma 1.3.41 If τ is honest, Zn = Z̃n on the set {n > τ} and Z̃τ = 1.
If Z̃τ = 1, then τ is honest.

Proof. For any n ≥ 0,

P(τ = n|Fn)1{n>τ} = P(τ = n|Fn)1{n>τ}1{n>τ(n)} = E(1{τ=n}1{n>τ(n)}|Fn)1{n>τ}

= E(1{τ=n}1{n>τ(n)}1{n>τ}|Fn)1{n>τ} = 0 .

It follows that Zn1{τ<n} = Z̃n1{τ<n}. Furthermore,

Z̃n1{τ=n} = 1{τ=n}P(τ ≥ n|Fn) = 1{τ=n}1{τ(n)=n}P(τ ≥ n|Fn)
= 1{τ=n}E(1{τ(n)=n}1{τ≥n}|Fn) = 1{τ=n}

which implies Z̃τ = 1.

If Z̃τ = 1, let ℓ(n) = sup{k ≤ n : Z̃k = 1}. Then, for any n ≥ 0, Proposition 1.3.2 implies
τ = ℓ(n) on the set {τ ≤ n}, and τ is honest . �
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Proposition 1.3.42 If τ is honest then τ = sup{n : Z̃n = 1}

Proof. It follows from the previous lemma and Proposition 1.3.2. �

Proposition 1.3.43 Let τ be an honest time and X an F-martingale. Then,

Xn = XG
n +

n∧τ∑
k=1

1

Zk−1
∆⟨M̃,X⟩Fk −

n∑
k=τ+1

1

1− Zk−1
∆⟨M̃,X⟩Fk

where XG is a G-martingale.

Proof. Let X =MG + V G be the G-semimartingale decomposition of X. Let n ≥ 0 be fixed. From
the property of honest times, there exists Ṽ , an F-predictable process, such that

V G
n 1{τ≤n} = Ṽn1{τ≤n} .

Then,

1{τ≤n}(V
G
n+1 − V G

n ) = 1{τ≤n}(Ṽn+1 − Ṽn) = 1{τ≤n}E(Xn+1 −Xn|Gn)
= E(1{τ≤n}(Xn+1 −Xn)|Gn) . (1.48)

We now take the conditional expectation w.r.t. Fn in (1.48). Taking into account that Ṽ is F-
predictable, and the fact that F ⊂ G, we get

E(1{τ≤n}|Fn)(Ṽn+1 − Ṽn) = E(1{τ≤n}(Xn+1 −Xn)|Fn)
= E(E(1{τ≤n}|Fn+1)(Xn+1 −Xn)|Fn) .

Now, using the fact that

E(1{τ≤n}|Fn) = 1− E(1{τ>n}|Fn) = 1− Zn

E(1{τ≤n}|Fn+1) = 1− E(1{τ>n}|Fn+1) = 1− E(1{τ≥n+1}|Fn+1) = 1− Z̃n+1

and that X is an F-martingale, we obtain, on the set {τ ≤ n}

(1− Zn)(Ṽn+1 − Ṽn) = −E(Z̃n+1(Xn+1 −Xn)|Fn) = −∆⟨M̃,X⟩Fn .

�

Remark 1.3.44 It seems important to note that the Doob decomposition of Z is not needed.
Indeed, Equation (1.25) implies that Z admits the optional decomposition Z = M̃−Ho and hence, M̃
can be viewed as the martingale part this optional decomposition. This "explains" why, in continuous
time, such an optional decomposition of Z is required. However, since optional decompositions are
not unique, we prefer to refer to M̃ as the martingale part of the (unique) Doob-Meyer decomposition
of Z̃.

Comment 1.3.45 We recall, for the ease of the reader, the Jeulin formula in continuous time:

Xt = XG
t +

∫ t∧τ

0

1

Zs−
∆⟨M̃,X⟩Fs −

∫ t

τ

1

1− Zs−
d⟨M̃,X⟩Fs .

where M̃ is the martingale in the optional decomposition of Z as Z = M̃ −Ho.



43

Comment 1.3.46 Let τ an honest time. We have obtained a formula using Jacod’s hypothesis in
(1.45). In continuous time, one can show that an honest time satisfy equivalence Jacod’s hypothesis
if and only if it takes countably many values (see [2, lemma 4.11]) and one can not compare the two
decompositions. In discrete time, honest times satisfy equivalence Jacod’s hypothesis and one can
check that the decompositions obtained in (1.45) and the one for honest times are the same. We
proceed as in Aksamit [2]. Let n ≥ 1 be fixed. On τ < n, we have τ = τ(n− 1) where τ(n− 1) is a
Fn−1-measurable r.v. and Fn−1 ⊂ Fn. We now restrict our attention to k < n. On the one hand,

1{τ=k}(1− Zn−1) = 1{τ=k=τ(n−1)}P(τ ≤ n− 1|Fn−1) = 1{τ=k}E(1{τ(n−1)=k}1{τ≤n−1}|Fn−1)

= 1{τ=k}E(1{τ(n−1)=k}1{τ=k}|Fn−1) = 1{τ=k}E(1{τ=k}|Fn−1) = 1{τ=k}pn−1(k)

On the other hand

1{τ=k}E(M̃n∆Xn|Fn−1) = −1{τ=k}E((1− M̃n)∆Xn|Fn−1) = −1{τ=k=τ(n−1)}E((1− Z̃n)∆Xn|Fn−1)

= −1{τ=k}E(1{k=τ(n−1)}1{τ<n}∆Xn|Fn−1)

= −1{τ=k}E((E(1{k=τ}|Fn)∆Xn|Fn−1) = −1{τ=k}E(pn(k)∆Xn|Fn−1) .

Arbitrages before τ

Let τ be a bounded honest time which is not an F-stopping time. The enlargement (F,G) is not
viable. Indeed, assuming the existence of a deflator L implies that M̃L is a G-martingale. Since
Z̃τ = 1, one has M̃τ ≥ 1, and P(M̃τ > 1) > 0. Therefore, using optional sampling theorem,
1 = E(M̃τLτ ) > E(Lτ ) = 1 yields to a contradiction and to existence of arbitrages.

We refer to Choulli and Deng [9] for a necessary and sufficient condition to avoid arbitrages after
τ .

Links between progressive and initial enlargement

Proposition 1.3.47 Let X be a process such that X = 1]]τ,∞[[ �X. The process X is an Fσ(τ) local
martingale if and if it is a G-local martingale.

1.3.4 Pseudo-stopping times

We end the study of progressive enlargement with a specific class of random times. We assume that
F0 is trivial. We recall that a random time τ is an F-pseudo stopping time if E(Xτ ) = E(X0) for
any bounded F-martingale X (see [11]).

Theorem 1.3.48 The following statements are equivalent:

(i) τ is an F-pseudo stopping time.

(ii) Ho
∞− = P(τ <∞|F∞), Ho

∞ = 1 .

(iii) M̃ ≡ 1.

(iv) Z̃ is predictable.

(v) Every F-martingale stopped at τ is a G-martingale.

Proof. (i) ⇒ (ii) Using that the bounded martingale X is closed, limn→∞Xn =: X∞ exists and one
can write the integration by parts formula

Ho
∞−X∞ =

∞∑
n=1

Ho
n−1∆Xn +

∞∑
n=0

Xn∆H
o
n .
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Taking expectation, and using the fact that X is an F-martingale, we obtain

E(Ho
∞−X∞) = E(

∞∑
n=0

Xn∆H
o
n)

and, from property (1.24) of Ho , one has

E(Ho
∞−X∞) = E(Xτ1{τ<∞}) .

It follows that

X0 = E(Xτ ) = E(Xτ1{τ<∞}) + E(X∞1{τ=∞}) = E(Xτ1{τ<∞}) + E(X∞)− E(X∞1{τ<∞})

= E(Ho
∞−X∞) +X0 − E(X∞1{τ<∞}) ,

hence E(Ho
∞−X∞) = E(X∞1{τ<∞}) = E(X∞P(τ <∞|F∞)) which implies Ho

∞− = P(τ <∞|F∞).

(ii) ⇒ (iii) Obvious

(iii) ⇒ (iv) By definition of Ho, and (1.25) , we have that

M̃n = H0
n + Zn = H0

n−1 + Z̃n , ∀n ≥ 1 , (1.49)

therefore, by (iii), we deduce that Z̃n = 1−H0
n−1 which, since H0 is F-adapted, is Fn−1-measurable

for all n ≥ 1, i.e. Z̃ is F-predictable.

(iv) ⇒ (v) If Z̃ is predictable, M̃ is a predictable martingale, hence a constant (indeed, E(M̃n|Fn−1) =

M̃n = M̃n−1) and for any F martingale X, ∆⟨X, M̃⟩n = 0 for all n ≥ 1. The result follows from
Proposition 1.3.24.

(v) ⇒ (i) For any bounded F-martingale X, the stopped process Xτ is a bounded (hence
a uniformly integrable) G-martingale. Then, as a consequence of the optional stopping theorem
applied in G at time τ , we get E(Xτ ) = E(X0), hence, τ is an F pseudo-stopping time. �

Proposition 1.3.49 If a pseudo time is honest, it is a stopping time.

Proof. From Proposition 1.3.42 τ = sup{n : Z̃n = 1} on {τ < ∞}. The pseudo-stopping time
property of τ implies Z = 1−Ho. Moreover, Z̃ − Z = ∆Ho. Then, on {τ <∞} we obtain

τ = sup{n : Z̃n = 1} = sup{n : Zn +∆Ho
n = 1}

= sup{n : 1−Ho
n +∆Ho

n = 1} = sup{n : Ho
n−1 = 0} = inf{n : Ho

n > 0}.

So, τ equals an F-stopping time on {τ <∞}. �

Obviously, pseudo-stopping times do not create arbitrages before τ . In continuous time, the links
between pseudo-stopping times and immersion property are presented in [3], and it is proved that τ
is a pseudo-stopping time if and only if Z̃ is a càglàd decreasing process. In discrete time, we obtain
a similar result, τ is a pseudo-stopping time if and only if Z̃ is a predictable process (note that we
do not require the deceasing assumption).
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1.3.5 Martingale Representation in G

Predictable representation

1.4 Other Enlargements

1.4.1 Enlargement with ζ, τ

A random variable ζ, valued in Z and a random time τ , valued in N are given. The filtration G is
the smallest filtration with contains F, makes τ a stopping time and ζ belongs to Gτ . We denote
by pn(j, k) = P(τ = j, ζ = k|Fn). Let X be an F-martingale, hence a G-semimartingale with
decomposition X = V G +MG and

∆V G
n = E(∆Xn|Gn−1) = 1{τ≤n−1}E(∆Xn|Gn−1) + 1{n−1<τ}

1

Zn−1
E(∆XnZ̃n|Fn−1) .

Before τ we can apply the results for progressive enlargement. We now compute the after τ part.

1{τ≤n−1}E(∆Xn|Gn−1) =

j=n−1,k=∞∑
j=1,k=−∞

1{τ=j}1{ζ=k}E
(
1{τ=j}

1

pn−1(j, k)
1{ζ=k}∆Xn|Fn−1

)
.

It follows that

X = XG + 1[0,τ [(Z−)
−1 � ⟨X, M̃⟩F +

k=∞∑
k=−∞

1[τ,∞]
1

p−(j, k)
� ⟨X, p(j, k)⟩F|k=ζ,j=τ .

This decomposition is a mixed of Equation (1.45) and (1.11). The case of (1.11) corresponds to the
particular case τ ≡ 0 whereas (1.45) corresponds to ζ ≡ 0

1.4.2 Enlargement with a process

Let Y be a process and consider the enlargement of F of the form Gn = Fn ∨ σ(Yk, k = 0, . . . , n).3

We assume that X is a given F-martingale. For n ≥ 0 let Un(dy) be the regular conditional
distribution of the random vector Yn−1 = (Y0, . . . ,Yn−1) with respect to Fn and let Vn(dy) be the
regular conditional distribution of Yn−1 with respect to Fn−1. In the following we will make the
following assumption.

(A) Un(dy) is absolutely continuous w.r.t. Vn(dy) for all n ≥ 1.

If Condition (A) is satisfied, then we can define the density dn(y) =
Un(dy)
Vn(dy)

. We next show that we
can express the information drift in terms of d.

Proposition 1.4.1 Suppose that (A) holds true. Then the information drift of X w.r.t. to G is
given by

An =

n∑
k=1

⟨X, d(y)⟩k
∣∣
y=(Y0,...,Yk−1)

. (1.50)

For the proof of Proposition (1.4.1) we need the following auxiliary result.

3The results of this section are based on some notes written by Stefan Ankirchner during his stay in Evry in
september 2014.
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Lemma 1.4.2 Let n ≥ 1 and f : Rn × Ω → R be a B(Rn) ⊗ Fn−1-measurable non-negative map.
Then

f(Yn−1, ·) =

∫
f(y, ·)Vn(dy).

Proof. The lemma follows from a monotone class theorem. �

Moreover we have the following.

Lemma 1.4.3 Let n ≥ 1 and ψ : Rn×Ω → R be a B(Rn)⊗Fn-measurable non-negative map. Then

E
[∫

ψ(y, ·)Vn(dy)
∣∣∣∣Fn−1

]
=

∫
E [ψ(y, ·)|Fn−1] Vn(dy). (1.51)

Proof. We use a monotone class argument. Suppose first that ψ(y, ω) = 1B(y)1C(ω) with B ∈
B(Rn) and C ∈ Fn. Then we have

E
[∫

ψ(y, ·)Vn(dy)
∣∣∣∣Fn−1

]
= E

[∫
1B(y)1C(ω)Vn(dy)

∣∣∣∣Fn−1

]
= E [1C(ω)Vn(B)|Fn−1] = Vn(B)P(C|Fn−1)

=

∫
1B(y)P(C|Fn−1)Vn(dy) =

∫
E [ψ(y, ·)|Fn−1] Vn(dy).

The claim follows for arbitrary non-negative B(Rn) ⊗ Fn-measurable functions ψ via a monotone
class theorem. �

Proof. [ of Proposition 1.4.1] LetA ∈ Fn−1 and C ∈ B(Rn). Moreover, let ψ(y, ω) = 1A(ω)1C(y)∆Xn(ω)dn(y, ω).
Then Lemma 1.4.2 implies, with f(y, ·) = E[ψ(y, ·)|Fn−1],

E[1A1{Yn−1∈C}E[∆Xndn(y)|Fn−1]|y=Yn−1 ] = E[E[1A1C(y)∆Xndn(y)|Fn−1]|y=Yn−1 ]

= E[E[ψ(y, ·)|Fn−1]|y=Ȳn−1
] = E[

∫
E[ψ(y, ·)|Fn−1]Vn(dy)].

Now Lemma 1.4.3 further yields

E[1A1{Yn−1∈C}E[∆Xndn(y)|Fn−1]|y=Yn−1 ] = E[
∫

1A1C(y)∆XnUn(dy)]

= E[1A∆XnP({Yn−1 ∈ C}|Fn)]

= E[1A1{Yn−1∈C}∆Xn].

This shows E[∆Xn|Gn−1] = E[∆Xndn(y)|Fn−1]|y=Yn−1 ], and hence the result. �

Ajouter ce que Stephan avait écrit sur random measure?

1.5 Credit Risk

In the credit risk framework, one defines a random time τ to represent the default time. The
information is such as τ is turned into a stopping time, therefore, the enlargement setting can be
a useful tool. Then, one of the goal is to give the price of a claim of the form ζ1{τ>T}, given the
information at hand.

1.5.1 Cox Model

The basic methodology (called the Cox model) consists of the following definitions. Let F be a given
filtration and V an F-adapted process. Assume that Θ is a positive random variable, independent
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of F and define
τ := inf{n : Vn ≥ Θ}

and G the progressive enlargement of F with τ . Then P(τ > n|Fn) = P(V ∗
n < Θ|Fn) = 1 − e−V

∗
n ,

where V ∗
n = supk≤n Vk. One of the tools is the intensity of τ , i.e., the predictable process ΛG

such that H − ΛG is a G martingale (See Lemma 1.3.6). As we have seen, ΛG = ΛF
·∧τ where

∆ΛF
n = ∆An

Zn−1
1{Zn−1>0}.

From now on, we assume that V is increasing (hence Zn = e−Vn and Z is positive) and recall
results of example 1.3.19.
If V is predictable, Zn = E(−ΛF) with ∆ΛF

n = 1− e−∆Vn . Moreover, Z is predictable and assertions
of Theorem 1.3.18 hold.
If V is not predictable,

∆Λn = 1− E(e−∆Vn |Fn−1)

and ∆Γn = ∆An

Zn−1
= 1− e−∆Vn .

Let ζ ∈ FN . Then, using that Z = E(−Γ) where Γ is defined in (1.26)

E(ζ1N<τ |Gn) = 1n<τ
1

E(−Γ)n
E(ζE(−Γ)N |Fn)

If V is predictable

E(ζ1N<τ |Gn) = 1n<τ
1

E(−Λ)n
E(ζE(−Λ)N |Fn)

If V is not predictable, Z/E(−Λ) is an F-martingale. Let us denote Zn/E(−Λ) = NZ
n , setting

P̂ = NZP

E(ζ1N<τ |Gn) = 1n<τ
1

NZ
n E(−Λ)n

E(ζE(−Λ)NN
Z
N |Fn) = 1n<τ

1

E(−Λ)n
Ê(ζE(−Λ)N |Fn)

In the Cox model, one can assume that Θ is known. A first step is then to introduce G = F(σ(Θ).
Then, τ is a stopping time in F(σ(Θ). If V is predictable, τ is predictable as well. If V is not
predictable, one can compute the process Λ such thatH−Λ is a martingale, by Doob’s decomposition
of H. We obtain

∆Λn = E(∆Hn|Gn−1) = P(τ = n|Gn−1) = P(Vn ≥ Θ > Vn−1|Gn−1) = 1{Θ>Vn−1}P(Vn > x|Fn−1)|x=Θ

1.5.2 General model

As we have seen, ΛG = Λ·∧τ where ∆ΛF
n = ∆An

Zn−1
1{Zn−1>0} = P(τ = n|Fn−1, τ > n− 1) =: λn is the

probability that the default occurs at time n, given the current information Fn−1 and knowing that
the default has not occurred at time n− 1.

Proposition 1.5.1 P(τ = n+ 1|Fn, τ > n) = 1− λn+1

Proof.

P(τ = n+ 1|Fn, τ > n)
P(τ = n+ 1|Fn)
P(τ > n|Fn)

1Zn>0
=
Mn −An+1

Zn
= 1− ∆An+1

Zn

�

For pricing the defaultable claim ζ1N<τ

E(ζ1N<τ |Gn) = 1n<τ
1

Zn
E(XZN |Fn)
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1.5.3 Multidefaults

Let τ1, τ2 be two default and consider the progressive enlargement of F with the pair τ1, τ2, i.e.
Gn = Fn ∨ σ(τ1 ∧ n)∨ σ(τ2 ∧ n). In a first step, we compute the G predictable process Λ1 such that
H1 − Λ1 is a G martingale. From Doob’s decomposition ∆Λ1

n = P(τ1 = n|Gn−1). We denote by G2

the progressive enlargement of F with τ2

P(τ1 = n|Gn−1) = 1{τ1>n−1}
P(τ1 = n|G2

n−1)

P(τ1 > n− 1|G2
n−1)

P(τ1 = n|G2
n−1) = 1{τ2>n−1}

P(τ1 = n, τ2 > n− 1|Fn−1)

P( τ2 > n− 1|Fn−1)
+

n−1∑
k=0

1{τ2=k}
P(τ1 = n, τ2 = k|Fn−1)

P(τ2 = k|Fn−1)

We set pn(i, j) = P(τ1 = i, τ2 = j|Fn) and p(2)n (k) = P(τ2 = k|Fn)

P(τ1 = n|G2
n−1) = 1{τ2>n−1}

∑∞
k=n pn−1(n, k)∑∞
k=n p

(2)
n−1(k)

+

n−1∑
k=0

1{τ2=k}
pn−1(n, k)

p
(2)
n−1(k)

The same computations yield to

P(τ1 > n− 1|G2
n−1) = 1{τ2>n−1}

∑∞
k=n

∑∞
i=n pn−1(i, k)∑∞

k=n p
(2)
n−1(k)

+
n−1∑
k=0

1{τ2=k}

∑∞
i=n−1 pn−1(i, k)

p
(2)
n−1(k)

Finally

P(τ1 = n|Gn−1) = 1{τ2>n−1}

∑∞
k=n pn−1(n, k)∑∞

k=n

∑∞
i=n pn−1(i, k)

+
n−1∑
k=0

1{τ2=k}
pn−1(n, k)∑∞

i=n−1 pn−1(i, k)
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