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The problem of enlargement of filtration is the following.
Let X be an [F-martingale and G a filtration larger than IF (that is such that F; C G; for any t).

In finance, its means that one of the agent (the G one) has more information than the other (the I¥

one).

What can be said about X in the filtration G? This is important when one would like to define
stochastic integrals of the form f Y.d X when 1 is G -adapted (e.g. if an investor has access to
some information not contained in the prices). If X is a price process (an [F-semimartingale), which
is not a G-semimartingale, the informed agent has obviously arbitrage opportunities due to the

fundamental theorem of asset pricing.

A semimartingale is a process of the form X = M + A where M is a martingale and A a bounded

variation process.



Examples and counter examples:
o Let G; = F and Fy trivial. Then, only constant [F-martingales are (-semimartingales.

e Let [F be the natural filtration of a Brownian motion and §; = F;.1., Vt. Then, the [F-BM is not a
(G-semimartingale.

oletG, = F; V ft with jfoo independent of F ., under a probability (Q, equivalent to IP. Then all
(P, F)-martingales are (IP, G)-semimartingales

e Initial enlargement : Let { be a random variable and G; = F; V o ().
Example: Let S be a price process [F-adapted and G; = F; V o (ST ). Obviously there are
arbitrages.

® Progressive enlargement : Let 7 a random time, i.e., a non negative random variable. Then,

G =Fi V 0'(7' A t) is the smallest filtration which contains I and makes 7 a stopping time.
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1 Drift information for an Enlargement in a Brownian setting

We assume in this part that
e [' is the filtration generated by a Brownian motion W and G is a filtration larger than IF

e there exists an integrable G-adapted process 11© such that dW; = thG + u?dt where W€ is
a G-BM,

e In the financial market, a risky asset with price S (an [F-adapted positive process) and a riskless
asset S° = 1 are traded. This market is supposed to be arbitrage free. More precisely, we assume
that S is a (P, IF') (local) martingale, dS; = SiodW;.
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Let X be the wealth process associated with an [F (resp. G) -predictable strategy 7: d.X; = m:dS;.
Our goal is to solve sup(E(In X7), 7 € F) and sup(E(In X7), 7 € G).

e For T € T, restricting attention to positive wealth processes,

dXt = iT\tStO'tth — WtXtth

¢ 1 [t
X; = zexp (/ T dW, — —/ W?ds) :
0 2 Jo

Then, assuming some regularity on the set of strategies

and

T 1 /7 1 (7
E(ln X7) =Inz + IE(/ TsdWs — 5/ m2ds) = Ilnx — 5/ E(7?)ds .
0 0 0

The optimal strategy is 7 = 0 and E(In X7) = In .



1 DRIFT INFORMATION FOR AN ENLARGEMENT IN A BROWNIAN SETTING

eForT e G
dX, = m X dW, = 1 X, (dWE + pfdt)
so that
¢ 1 [t t
Xy = xexp (/ T dWE — —/ m2ds +/ Wsuf’ds)
0 2 Jo 0
Therefore

1 (T T
E(lnX7)=lnz+E —5/ m2ds +/ TspZds
0 0

and the optimal strategy is 7* = u and

1 /7
supE(In X7) =Inx + 5/ E((u5)?)ds
G 0
Finally

1 /7T
supE(In X7) =Inz <supE(In X7) =lnx + E </ (,ug’)2ds>
nel meG 2 0
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which leads to a finite utility if

E (/OT(,LLS’)QCZS> < 00.
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2 Immersion Hypothesis

2.1 Definition

The filtration [ is said to be immersed in G if any [F-martingale is a G-martingale. This is also

referred to as the (7{) hypothesis in the literature.

Proposition 2.1. Immersion holds for (IF, &) is equivalent to any of the following properties:

(1) Vt > 0, the o-fields F ., and G, are conditionally independent given JF, i.e.,
V>0, VG € L2(G,),VF € L2(Fx), E(Gy F|F,) = E(G4| F)E(F|F,).

(i) Yt >0,V Gy € LY(Gy), B(Gy| Foo) = B(GY|Fy).
(i5) Yt > 0, VF € LY (Fu), E(F|G,) = E(F|F,).

Furthermore, if immersion holds for (F, G), then G; N Foo = Fr.
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PROOF: First we prove that immersion implies (i).

Let I’ € L?(F. ) and assume that immersion holds for (IF, G). This implies that the [F-martingale
X = E(F|F;) is a G-martingale with terminal value X, = F, hence

It follows that for any ¢ and any G; € L?(G;):

E(FGtLFt) — E(GtE(F|gt)|-7:t) — E(GtE(F‘ft”Ft) — E(Gt’ft)E(F|Ft)

which is exactly (i).



2.1 Definition 2 IMMERSION HYPOTHESIS

e To prove (i) = (ii), let F' € L*(F4) and G; € L?(G;).
Under (i),

E(FE(G|F)) = BE(F|F)E(GF)) L B(E(FG|F)) = E(FG,)

which implies E(G¢|F ) = E(G¢|F:) that s (ii).
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e To prove (i) = (ii), let F' € L*(F4) and G; € L?(G;).
Under (i),

E(FE(G|F)) = BE(F|F)E(GF)) L B(E(FG|F)) = E(FG,)
which implies E(G¢|F ) = E(G¢|F:) that s (ii).

e Next, we give a proof of (i) = (iii).
Let ' € L?(Fu) and Gy € L*(Gy).

If (ii) holds, then, for F' € L?(Fy),

E(GiE(F|F)) = B(FE(GY|F)) = B(FE(G|Fx)) = E(FGy),

which implies which implies E(F'|G;) = E(F'|F%), that is (iii).
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e To prove (i) = (ii), let F' € L*(Fs) and G; € L?(G;).
Under (i),

E(FE(G| 7)) = BE(F|F)E(GF)) L B(E(FG|F)) = E(FG,)

which implies E(Gt|F) = E(G¢|F;) that is (ii).
eNext, we give a proof of (ii) = (iii).

Let ' € L?(Fu) and Gy € L*(Gy).

If (ii) holds, then, for I’ € L?(Fa ),

E(GE(F|F,)) = E(FE(Gi| ) "2 B(FE(G|Fa)) = E(FGY).

which implies which implies E(F'|G;) = E(F'|F%), that is (iii).

e Finally, obviously (iii) implies (7).
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The proof of G; N Foo = F¢ is now simple.
We have only to check that G; N Foo C Fi.
For A € G, N Foo, we have 1 4 = E(1L4|F) = E(1L4|F;) which implies that A € F. JAN
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2.2 Change of probability

In general, immersion is not stable by change of probability. Nevertheless, it is true under specific

conditions.

Proposition 2.2. Assume that the filtration IF is immersed in G under P, and let Q be equivalent to
P, with Q|g, = L:P|g, where L is assumed to be F-adapted. Then, IF is immersed in G under Q.

ProoOF: Let IV be an (IF, Q)-martingale, then (N;L;,t > 0) is a (IF, IP)-martingale, and since ¥ is
immersed in G under P, (N¢L,t > 0) is a (G, IP)-martingale which implies that IV is a
(G, Q)-martingale, L being as well a (G, IP)-martingale. JAN
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2.3 Example: reduced form in Credit Risk

Let (€2, G, IP) be a probability space endowed with a filiration IF. A nonnegative IF -adapted process
A is given. We assume that there exists, on the space (Q, g, IP), a random variable ©, independent
of Foo, With an exponential law: P(© > t) = e~*. We define the default time T as the first time

when the increasing process A; = fot A ds is above the random level O, i.e.,
T=inf{t >0 : A; > O}.

In particular, using the increasing property of A, one gets {7 > s} = {A; < ©}. We assume that
Ay < 00,Vt, Aoo = 00, hence T is a real-valued r.v. We define H; = H{Tgt} and
H: = o(Hs : s <t). Weintroduce the smallest right-continuous filtration G which contains [F

and turns 7 in a stopping time G = [ vV H.
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Lemma 2.3. The conditional distribution function of T given the o -field F; is fort > s

P(1 > s|F;) =exp (— Ay) . (2.1)
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Lemma 2.4. The conditional distribution function of T given the o -field F; is fort > s

P(1 > s|F;) =exp (— Ay) . (2.3)

PROOF: The proof follows from the equality {7 > s} = {As; < ©}. From the independence
assumption and the J;-measurability of A for s < ¢, we obtain

P(r > s|F;) = IP’(AS <O | ]—“t> —exp (— Ay).

In particular, we have

P(r <t|F) =P(r < t|F), (2.4)

and, fort > s, P(17 > s|F;) = P(7 > s|Fs). Let us notice that the process F; = P(7 < t|F;)
is here an increasing process, as the right-hand side of (2.4) is. JAN



2.3 Example: reduced form in Credit Risk 2 IMMERSION HYPOTHESIS

Immersion holds in that example: Indeed any I martingale is an I a(@) martingale. Being

(G-adapted, it is also a G martingale.

We have used the fact that, if ¥ C K and if an [F-adapted process X is a IK-martingale, then X is

an [F-martingale.
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Proposition 2.5. LetY € Fr. Then

E(Y1,7|G) = Liere™E(Ye 27| F)
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Proposition 2.6. LetY € Fr. Then

E(Y1,7|G) = Licre™E(Ye 7| F)

PROOF: From definition of G, for any Y; € Gy, there exists y; € JF; such that
Yillier =y i~

Then,
E(Y]lT>T|gt) — ]]-t<TYt — ]1t<7'yt

Taking J; conditional expectations, this implies that
—A
E(YL >7|F) =e My,
therefore

E(Ye 2 |F) = e My,
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Proposition 2.7. The process L; = e’ (1 — Hy) is aG martingale. The process M
My = Hy — Agas

is a G-martingale.
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Proposition 2.8. The process L; = e™t(1 — Hy) is a-G martingale. The process M
My = Hy — Aipr

is a G-martingale.

PROOF:

]]-3<T€ASE(L7S|JTS)
= ]18<T€ASE(6At€_At|JTS> = L,

E(Lt|Gs)

Then, from dL; = e (—dH; + (1 — Hy)\ydt) we obtain dM; = —e’+dL;. AN



2.3 Example: reduced form in Credit Risk 2 IMMERSION HYPOTHESIS

If ' is immersed in G, then for any utility function U defined on R,

E(U(X77)) = E(U(X77)).
max B(U(X77)) = max B(U(X77))

PROOF: The solution of the optimisation problem in IF' is known to be X% = (U’)~*(\L%) where
L is the Radon Nikodym density optimal solution of the dual problem and A is a parameter such that
E(L*X7%) = x. Being an F-martingale, L* is a G-martingale by immersion property, and is a
Radon-Nikodym density in G, hence for any strategy ™ € A®, the process X™ L* is a
(G-supermartingale (if one restrict attention to strategies such that the wealth is non negative) with

initial value x. By concavity of the utility function
E(U(X7) - U(X7)) < E(XT — X7)U'(X7)) = AE((XT — X7)LT)) <0

which proves that X 7. is optimal for AG-strategieS. JAN
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2.4 Pseudo-stopping times

The property that £ is a decreasing process does not imply that immersion holds.

An [F-pseudo-stopping time is a random time such that E(M..) = [E( M) for any bounded
[F-martingale M. In a Brownian filtration, random times with a decreasing continuous Azéma
supermartingale (i.e., P(7 > t|F;)) are pseudo-stopping times. They enjoy the property that any
[F-martingale stopped at 7 is a (G-martingale.
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An Example:

Let S be defined through d.S; = o S;dW;, where W is a Brownian motion and o a constant. Let
T=sup{t <1 : 57 —25; =0}, that is the last time before 1 at which the price is equal to half

of its terminal value at time 1.

Note that

{r<t}={inf 25,> 5} ={ inf 2S 51

t<s<1 t<s<1 Sp; — St}

Since gt s > t and Sl are independent from F;,
P( f2S |.7-") P( inf 2S > S14)=®(1 —1t)
in — 1n s—t = O1—t) = —
t<s<1 S; = S, t t<s<1 t 1=t

where ®(u) = P(infs<, 255 > S,,). It follows that the supermartingale Z is a deterministic
decreasing function, hence, T is a pseudo-stopping time and .S is a G-martingale up to time 7 and

there are no arbitrages up to 7.

There are obviously classical arbitrages after 7, since S is known at time 7.
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3 Initial Enlargement

We study initial enlargement of a filtration I with a real valued random variable (, where the enlarged
filtration is

]:f@ = Ne>0 {Ftqe Va(()} .

We work in a rather general framework and we study () hypothesis between F and F7(¢) e,
conditions such that F-martingales are F?(¢)-semimartingales. Note that, under (H') hypothesis,
every F-semimartingale (X} );<7 is also an Fo(€) .semimartingale.
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3.1 Jacod’s equivalence criterion

Let P;(w, du) be the conditional law of { given F; i.e.,

Ew@vazfuwaum>

R
We say that ( satisfies Jacod’s equivalence criterion if for each ¢ > 0,
Pi(w, du) ~ n(du)

where 7) is the law of (.

There exists a family of positive martingales p(x) such that

©.@)

P@>uva=/’m@mu@

(v

Here, the main difficulty is to prove that one an find a "regular" version of p, in order to take care

about negligeable sets and to be able to define the process p(().
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Lemma 3.1. The process L defined as L; = pt% Zy t>0isa(P, F(“(C))-martinga/e. LetIP* be

the probability measure defined on (%) as

dP*|ff<c> = L dP|ff<c>-

Under IP*, the random variable ( is independent of F; for anyt > 0 and, moreover

IP)*|_7:t = IP)|]:t foranyt > 0, P*|0(C) = P|J(C).
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Lemma 3.2. The process L defined as L; = pt% Zy t>0isa(P, F(“(C))-martinga/e. LetIP* be

the probability measure defined on (%) as

* _
AP o) = Lt dP 2o o).
Under IP*, the random variable ( is independent of F; for anyt > 0 and, moreover

IP)*|_7:t = IP)|]:t foranyt > 0, P*|0(C) = P|J(C).

PROOF: From the definition of p, setting L} := ﬁ one has, for any (bounded) Borel function h

and any J¢-measurable (bounded) random variable K
E(Lth(C)KS) = K /Lx x)pe(x K /
— [ Mom(do)B(K.) = B(K) E(R()

The particular case t = s leads to E(Lsh(()Ks) = E(h(C)) E(Ks), hence
E(Lsh(¢)Ks) = E(L:h(()Ks), and it follows that L is a martingale.
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Note that, since po(x) = 1, one has E(l/pt(§)|]:g(o) =1/po(¢) = 1.
Now, we prove the required independence. From the above,

E*(h(C)Ks) = E(Lsh(C)Ks) = E(h(C)) E(K)

where [E* is the expectation under P*. For h = 1 (resp. K5 = 1), one obtains E* (K ) = E(Kj)
(resp. E*(h(()) = E(h({))) and the assertion is proved. JAN
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It is now obvious that, under positive density hypothesis, NFLVR holds in the enlarged filtration
F V o(7). Indeed, the (IF, P) martingale .S is an (IF, P*) martingale, and - using the independence
property - an (IF"(T), P*) martingale.
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Optimisation Under the equivalence hypothesis on can reduce the study of optimal

IF"(C)-predictabIe portfolio using results on [F-predictable optimal portfolio. Indeed, for
dX; = m(()dSt, one has

E(U(X7(¢))) = E* (pr(QU(X7(C))) = /E*(pT(U)U<XT(U>))77(dU)

and the problem can be solved finding an optimal [F-portfolio of the problem E* (pr (u)U (X1 (u))).

See Hillairet and Jiao for examples.
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o (¢)_semimartingale decomposition of F martingales

Proposition 3.3. Any (P, F)-local martingale X is a (P, F?(¢))-semimartingale with canonical

decomposition
t
d(X, s
Xt:Xt(OJr/ (X, p.(Q) |
0 ps—(C)

where X () is a (P, F°(©))-local martingale.
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Proposition 3.4. Any (P, F)-local martingale X is a (P, F°(¢))-semimartingale with canonical

X = Xt(o + /t d<‘;§’?(g>>s’

decomposition

where X(©) is a (P, F°(©))-local martingale.

ProOF: If X is a (P, IF)-martingale, it is a (P*, F°(¢))-martingale, too (Indeed, since IP and P* are
equal on I, X is a (IP*, IF) martingale, hence, using the fact that ( is P* independent of IF, it is a
(P*,F?(¢)) martingale). Noting that dP = p, (¢)dP* on ]-"f(o, Girsanov’'s theorem tells us that
the process X (©) | defined by

x© _x, /t d<§,p.((<4))>s

is a (P, F7(¢))-martingale. JAN
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Example Enlargement with ¢ := [ f(s)dBs

Let ( := [ f(s)dBs where f is a deterministic function such that [, f2(s)ds < oo and
f f2(s) 7& O It is easy to compute p; (), since conditionally on F;, ¢ is Gaussian, with mean

fo s) dBs, and variance o2(t) = [,” f? (s) ds. Therefore,

<< < x\Ft) = o

Gaussian law, and the absolute continuity requirement is satisfied with:

), where @ is the cumulative distribution function of a standard

pla(de) =~

o(t)

where @ is the density of a standard Gaussian law, and v the law of ( (a centered Gaussian law with

Ydz,

variance 0%(0)). Note that, from It8’s calculus,

dpi(x) = pe() -
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Then B is an F“(C)-semimartingale with canonical decomposition:

B, = Bt+/ (/ f (u dB)
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Many results extend to the weaker hypothesis

We say that ( satisfies Jacod’s equivalence criterion if for each ¢ > 0,

P (w, du) << n(du)
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3.2 Bridge

Some situations require another criteria: for example the Brownian Bridge

Let B be a Brownian motion. The conditional law of  := B is not equivalent (not even absolutely

continuous) to the law of B7.
o(B1)

Proposition 3.5. Let F, = NesoFtre V 0(B1). The process
tA1
By — B
Bt = Bt — / ! i ds
0 1—s

is an o (B1) -martingale, and an Fo(B1) Brownian motion. In other words,

tA1
Bt:5t+/ - ds
0 1 —s

is the decomposition of B as an F?(B1) .semi-martingale.
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PROOF: One has F; V o (B1) = Ft V o(B1 — By). Then, since Fy is independent of
(Bsin — Bs,h > 0), one has, for s < t:

t_
E(Bt — BS|F5(B1)) — E(Bt — Bs|Bl — Bs) — 1 ° (Bl — Bs)'
— S
Fors <t < 1,
t t
B, — B 1
E Y du| Fo (B :/ E(B, — B,|B; — B,)d
(| A=ftauFs ) = [ B - BB - B du
t
_ /1 (By — B, — E(B, — B.|By — B.)) du
s — U
t
1 U — 8
_ B, — B, — B, —B,) | d
/8 1—u< ! 1—5( ! )> “
1 t t— s
— B, — B, du = B, — B,
1—3( ! )/S " 1—5( ! )

It follows that [E(3; — 63\]-"30(31)) — 0 hence, 3 is an F?(B1) martingale (and an
[ (B1) Brownian motion). JAN
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Note that there is a "trap" to avoid. One can think that any [F-martingale, being a stochastic integral

w.r.t. the Brownian motion will be a F“(Bl)-semimartingale.

This is not the case.

Al _ .
Hs%ds is well

Take |, 05dB; be a martingale. One needs a condition on  to insure that fg
defined.
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Insider trading

Let
dSt — St(,udt + O'dBt)

where 1 and o are constants, be the price of a risky asset. Assume that the riskless asset has an
constant interest rate 7. We denote by § = #— the risk premium.

The wealth of an agent holding 7r,9 shares of the savings account and 7@1 shares of the underlying

risky process is X; = mpe™ + m}S;. The self financing condition is that

dX; = nde™ 4+ 7;dS; = rX;dt + 7} (dS; — rS;dt)
With the change of notation m; = 7rtl St/Xt (so that the wealth remains non negative) one has
dXt = TXtdt + WtUXt(dBt -+ Gdt), X() =T

Here 7! is the number of shares of the risky asset, and 7 the proportion of wealth invested in the
risky asset. It follows that

T T
1
In(X7*) =Inz + / (r — 577?02 + Orso)ds + / omsdBg
0 0
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Then, assuming that the local martingale represented by the stochastic integral is in fact a martingale,

T
1
E(IH(XZ;@)) —Inx —|—/ E (’F — 5%302 + (97’('30') ds
0

The portfolio which maximizes E(In(X 7)) is 7, = £ and

1
sup E(In(X7*)) =lnz+T (7“ — 592)

We now enlarge the filtration with S7 (or equivalently, with B1). In the enlarged filtration, setting, for

t <1, oy — Bi:tBt

, the dynamics of S' are
dSt = St((u + oay)dt + odpBt)
where (3 is defined in Proposition 3.5 and the dynamics of the wealth are

dXt = TXtdt -+ WtOXt(dﬁt -+ gtdt), XO =T

with 0, = oy = - — Bi:ft. Assuming again that the stochastic integral which appears

is a martingale, the portfolio which maximizes E(In(X ")) is w5 = Z=.
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Then, for’ [’ < 1,

T | - T
In(X7"%) = lna:—i—/ (r+§9§)ds+/ Vsdfs
0 0
r 1
E(n(XZ"") = Iz / (r + 3 (6° + E(02) + 20E(0))ds
0

1, |
= 1na;—|—(r—|—§9 )T—|—§ E(az)ds
0

where we have used the fact that E(a;) = 0. Let

V¥ () = maxE(In(X
VE(z) = maxE(In(X

7)) ; mis IF adapted
7)) ; mis G adapted

Then V& (z) = VF(z) + 1E fOT a?ds =V¥(z) — iIn(1-T).
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If 1" = 1, the value function is infinite: there is an arbitrage opportunity and there does not exist an
e.m.m. such that the discounted price process (e~ " S;,t < 1) is a G-martingale. However, for any

e €10, 1], there exists a uniformly integrable G-martingale L defined as

w—r-—+ ooy

st: Ltdﬂt,tél—é, L():].,

such that, setting dQ|g, = L;dP|g,, the process (e~ " S;,t < 1 —¢) isa (Q, G)-martingale.

The same computations can be done if 4 and o are [F-adapted.



3.3 Poisson bridge 3 INITIAL ENLARGEMENT

3.3 Poisson bridge

Let N be a Poisson process with constant intensity 1, ;¥ = o(N,, s < t) its natural filtration. The
process M; = N; — t is a martingale. Let Ff(NT) = 0(Ns, s < t; Nr) be the natural filtration of

NN enlarged with the terminal value N1 of the process V.

Proposition 3.6. The process

tAT
Mp — M,
= M, — d
Tt t 0 T _ o S,
is an FoNT) martingale, or
¢
Npr — Ng
e = N¢ — ~ ds = Ny — My
o 1I'—s

is an Fo(NT) _martingale.
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ForO<s<t<T,

o t T
E(N, — N,|F7N) — B(N, — N,|Np — N,) = . ® (N — N,)

— S

where the last equality follows from the fact that, if X and Y are independent with Poisson laws with

parameters 1 and v respectively, then

_ ) — n! k n—k
IP’(X—k|X+Y—n)—k!(n_k)!oz (1 —«)
where ov = ﬁ Hence,
¢ t
NT—N du
E( /[ d v\ FeNr) ) = / (Nr = Ny = B(N, — N, Fg@)))
([ g =eimzn) = [ 2 (v (N, — N FZO0)
t
du U—S
p— N _NS_ N _NS
/ST—”LL( g T—s< g >)

t
du t—s
- Ny — N,) = Ny — N,).
/S (Nt )= 7, (N1 )
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Therefore,

t— s t— s
Np — Ng) —
T—s( g ) T —s

Fg(NT)) — (NT _ NS) — 0

and the result follows.
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Optimisation We suppose that the interest rate is null and that the risky asset has dynamics
dS; = Sy (pdt + cdWy + pd M)
Let (X¢,t > 0) be the wealth of an un-informed agent whose portfolio is described by (7). Then
dX; = m Xe_ (pdt + cdWy + pd M) (3.1)

Then,

[ ' 1t '
X; = zexp (/ Ts(pt — PN)ds +/ o dWy + 5/ azwgds +/ In(1 4+ quﬁ)dNS)
0 0 0 0
Then
T 1
E[ln(X7)] = In(xz) + / E(umrs — 502713 + A(In(1 + ¢my) — pms)ds.
0

Our aim is to solve
V(x) =supE (In(X7"))

The maximum attainable wealth for the uninformed agent is obtained using the constant strategy 7
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for which
1 1
7+ AIn(1 + 7¢) — Td| — 57%202 = sup[mu + A\[In(1 + 7¢) — w¢] — §7T202] .
Hence |
7= (10— 02— 02 £ /(06 — 97X — 07)7 + do%op) .
202¢

The quantity under the square root is (j1¢ — ¢*\ + 02)? + 402>\ and is non-negative.
The sign to be used depends on the sign of quantities related to the parameters. The optimal 7 is the
only one such that 1 + ¢ > 0.



3.3 Poisson bridge 3 INITIAL ENLARGEMENT

We assume now that the informed agent knows /N from time 0. Therefore, his wealth evolves
according to the dynamics

dX; =mX [(u+ ¢(ye — N)|dt + cdW; + ¢pd M ]

N1 —Ny
T —t

1— Ap + cb’ys[ﬁ] — m*0? = 0 and is given by

where v = . The optimal portfolio 77* is now such that

W: — 20.12¢ (:LL¢ o ¢2)\ o 02 + \/(:LLQ5 o ¢2)‘ + 02)2 + 40_2¢2’Ys) )




