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Chapter 1

Theory of Stochastic Processes

In this chapter, we recall some facts on theory of stochastic processes. Proofs can be found for
example in Dellacherie [40], Dellacherie and Meyer [44], He, Wang and Yan [67] and Rogers and
Williams [113].

1.1 Background

As usual, we start with a filtered probability space (Ω,F ,F,P) where F = (Ft, t ≥ 0) is a given
filtration satisfying the usual conditions, i.e., F is continuous on right (Ft = ∩s>tFs) and F0 contains
all negligeable sets, and F = F∞. A process X is a family of random variables such that (ω, t) →
Xt(ω) is F × B measurable, where B is the Borel field on R+ (one says also measurable process).

1.1.1 Path properties

Definition 1.1.1 1) A process X is continuous if, for almost all ω, the map t→ Xt(ω) is contin-
uous. A process X is continuous on the right with limits on the left (in short càdlàg following the
French acronym1) if, for almost all ω, the map t→ Xt(ω) is càdlàg.
2) A process A is increasing if A0 = 0, A is right-continuous, and As ≤ At, a.s. for s ≤ t. An
increasing process A = (At, t ≥ 0) is integrable if E(A∞−) <∞, where A∞− = limt→∞At.

Sometimes, one has to consider increasing processes defined for t ∈ [0,∞] (with a possible jump at
+∞). In that case, the process is integrable if E(A∞) <∞.

For a (right-continuous) increasing process A, we note
∫ b
a
φsdAs :=

∫
]a,b]

φsdAs as soon as the
integral is well defined. The point here is that the integration is done on the interval ]a, b].

Definition 1.1.2 A process X is F-adapted if for any t ≥ 0, the random variable Xt is Ft-
measurable.

The natural filtration FX of a stochastic process X is the smallest filtration F which satisfies the
usual hypotheses and such that X is F-adapted. We shall write in short (with an abuse of notation)
FX
t = σ(Xs, s ≤ t).

Remark 1.1.3 It is not true in general that if F and F̃ are right-continuous, the filtration K defined
as Kt := Ft ∨ F̃t is right-continuous. Nevertheless, we shall often write F ∨ F̃ (with an abuse of
notation) the smallest right-continuous filtration which contains F and F̃.

1In French, continuous on the right is continu à droite, and with limits on the left is admettant des limites à
gauche. We shall also use càd for continuous on the right. The use of this acronym comes from P-A. Meyer.
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Exercise 1.1.4 Starting from a non continuous on right filtration F0, define the smallest right-
continuous filtration F which contains F0. ▹

In all the book, we shall write X ∈ FT (resp. X ∈ bFT ) for X is an FT -measurable (resp. a
bounded FT -measurable) random variable.

1.1.2 Stopping times

A random variable τ , valued in [0,∞] is an F-stopping time if, for any t ≥ 0, {τ ≤ t} ∈ Ft.
A stopping time τ is predictable if there exists an increasing sequence (τn) of stopping times

such that almost surely
(i) limn τn = τ ,
(ii) τn < τ for every n on the set {τ > 0}. If needed, we shall make precise the choice of the

filtration, writing that the F-stopping time τ is F-predictable.
A stopping time τ is totally inaccessible if P(τ = ϑ <∞) = 0 for any predictable stopping time ϑ
(or, equivalently, if for any increasing sequence of stopping times (τn, n ≥ 0), P({lim τn = τ}∩A) = 0
where A = ∩n{τn < τ}).

If all F-martingales are continuous, then any F-stopping time is predictable. This is the case in
particular if F is a Brownian filtration

Definition 1.1.5 If τ is an F-stopping time, the σ-algebra Fτ of events prior to τ , and the σ-algebra
Fτ− of events strictly prior to τ are defined as:

Fτ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft, ∀t}

whereas Fτ− is the smallest σ-algebra which contains F0 and all the sets of the form A∩{t < τ}, t > 0
for A ∈ Ft.

For A ∈ Fτ , one sets τA the stopping time defined as τA = τ11A +∞11Ac .

Exercise 1.1.6 Prove that τA is a stopping time. ▹

Exercise 1.1.7 Show that for a stopping time τ , one has τ ∈ Fτ− and Fτ− ⊂ Fτ . Find an example
where Fτ− ̸= Fτ ▹

Exercise 1.1.8 Check that if F ⊂ G and τ is an F-stopping time, (resp. F-predictable stopping
time) it is a G-stopping time, (resp. G-predictable stopping time). Give an example where τ is a
G-stopping time but not an F-stopping time. Give an example where τ is a G-predictable stopping
time, and an F-stopping time, but not a predictable F-stopping time. ▹

1.1.3 Predictable and optional σ-algebra

If τ and ϑ are two stopping times, the stochastic interval ]]ϑ, τ ]] is the set {(ω, t) : ϑ(ω) < t ≤ τ(ω)}.
In the same way, we shall use the notation [[ϑ, τ ]], as well as for other stochastic intervals.

Proposition 1.1.9 Let F be a given filtration.

• The optional σ-algebra O is the σ-algebra on R+×Ω generated by càdlàg F-adapted processes
(considered as mappings on R+ × Ω). The optional σ-algebra O is equal to the σ-algebra
generated on F × B by the stochastic intervals [[τ,∞[[ where τ is an F-stopping time.

• The predictable σ-algebra P is the σ-algebra on R+ × Ω generated by the F-adapted càg (or
continuous) processes. The predictable σ-algebra P is equal to the σ-algebra generated on F×B
by the stochastic intervals ]]ϑ, τ ]] where ϑ and τ are two F-stopping times such that ϑ ≤ τ .
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If necessary, we shall note P(F) this predictable σ-algebra, to emphasize the rôle of F. A process X
is said to be F-predictable (resp. F-optional) if the map (ω, t) → Xt(ω) is P-measurable (resp.
O-measurable).

Example 1.1.10 An adapted càg process is predictable.

The inclusion P ⊂ O holds. These two σ-algebras P and O are equal if all F-martingales are
continuous. Note that O = P if and only if any stopping time is predictable. In general

O = P ∨ σ(∆M,M describing the set of F martingales) .

If X is a predictable (resp. optional) process and τ a stopping time, then the stopped process
Xτ = (Xτ

t = Xt∧τ , t ≥ 0) is also predictable (resp. optional). If X is a càdlàg adapted process, then
(Xt− , t ≥ 0) is a predictable process.

If τ is a stopping time, the (càg) process 11τ<t is predictable. A stopping time τ is predictable
if and only if the process (11{t<τ} = 1 − 11{τ≤t}, t ≥ 0) is predictable, that is if and only if the
stochastic interval [[0, τ [[= {(ω, t) : 0 ≤ t < τ(ω)} is predictable. See Dellacherie [40], Dellacherie
and Meyer [42] and Cohen & Elliott [51] for related results.

Definition 1.1.11 A real-valued process X is progressively measurable with respect to a given
filtration F = (Ft, t ≥ 0), if, for every t, the map (ω, s) → Xs(ω) from Ω×[0, t] into R is Ft×B([0, t])-
measurable.

Any càd (or càg) F-adapted process is progressively measurable. An F-progressively measurable
process is F-adapted. If X is progressively measurable, then

E
(∫ ∞

0

Xtdt

)
=

∫ ∞

0

E (Xt) dt,

where the existence of one of these expressions implies the existence of the other.
If X is F-progressively measurable and τ an F-stopping time, then the r.v. Xτ is Fτ -measurable on
the set {τ <∞}.

If τ is a random time (i.e. a non negative r.v.), the σ-algebra Fτ and Fτ− are defined as

Fτ = σ(Yτ , Y is anF− optional process)
Fτ− = σ(Yτ , Y is anF− predictable process)

1.1.4 Doob’s maximal identity

We present here a result that will be used letter on.

Definition 1.1.12 An F-local martingale N belongs to the class (C0), if it is strictly positive, with
no positive jumps, and limt→∞Nt = 0.

Lemma 1.1.13 For any a > 0, we have:

P (S∞ > a) =
(x
a

)
∧ 1. (1.1.1)

In particular,
x

S∞
is a uniform random variable on (0, 1).

For any F-stopping time ϑ, denoting Sϑ = supu≥ϑNu :

P
(
Sϑ > a|Fϑ

)
=

(
Nϑ
a

)
∧ 1, (1.1.2)

Hence
Nϑ
Sϑ

is also a uniform random variable on (0, 1), independent of Fϑ.
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Proof: The first part is left as the Exercise 1.7.3. The second part is an application of the first one
for the martingale (Nϑ+t, t ≥ 0) and the filtration (Fϑ+t, t ≥ 0). �

Exercise 1.1.14 et B be a Brownian motion. Prove that exp(λBt − λ2

2 t) belongs to (C0). ▹

1.1.5 Localization

Definition 1.1.15 An adapted, right-continuous process M is an F-local martingale if there exists
a sequence of stopping times (τn) such that:

• The sequence τn is increasing and limn τn = ∞, a.s.

• For every n, the stopped process Mτn11{τn>0} is an F-martingale (we recall that Mτ
t =Mt∧τ ).

A sequence of stopping times such that the two previous conditions hold is called a localizing or
reducing sequence. We also use the following definitions: A local martingale M is locally square
integrable if there exists a localizing sequence of stopping times (τn) such that Mτn11{τn>0} is a
square integrable martingale. An increasing process A is locally integrable if there exists a localizing
sequence of stopping times such that Aτn is integrable. By similar localization, we may define locally
bounded martingales, local super-martingales, and locally finite variation processes.
If M is a local martingale, it is always possible to choose the localizing sequence (τn, n ≥ 1) such

that each martingale Mτn11{τn>0} is uniformly integrable.
We denote by Mloc(P,F) the space of P local martingales relative to F.

Exercise 1.1.16 Prove that a positive local martingale is a super-martingale. ▹

1.1.6 Doob-Meyer decomposition

An adapted process X is said to be of class2 (D) if the collection Xτ11τ<∞ where τ is a stopping
time is uniformly integrable.

If Z is a supermartingale of class (D), there exists a unique increasing, integrable and predictable
process A such that Zt = E(A∞ − At|Ft). In particular, any supermartingale of class (D) can be
written as Z =M −A where M is a uniformly integrable martingale. The decomposition is unique.

Any supermartingale can be written as Z = M − A where M is a local martingale and A a
predictable increasing process. The decomposition is unique.

There are other decompositions of supermartingales, as a sum of a martingale and an optional
process which satisfies particular conditions that are useful. We shall comment that later on.

Multiplicative decomposition of positive supermartingales

Lemma 1.1.17 Let Z be a positive supermartingale of class D. There exists a local martingale N
and a predictable decreasing process D such that Z = ND.

Proof: Assume that the multiplicative decomposition exists. Then, from Yoeurp’s lemma 1.2.11
dZt = DtdNt + Nt−dDt, and the Doob-Meyer decomposition of Z is dZt = dµt − dApt . From
uniqueness

dApt = −Nt−dDt (1.1.3)

2Class (D) is in honor of Doob.
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which in particular, yields to ∆Apt = −Nt−∆Dt, so that Dt−(1− 1
Zt−

∆Apt ) = Dt. Therefore, using
(1.1.3) again, dDt = − Dt

Zt−−∆Ap
t
dApt , so that

Dt = exp

(
−
∫ t

0

1

Zs− −∆Aps
dAps

)
Setting dNt = 1

Dt
dµt, we obtain the existence of the decomposition. If Ap is continuous, Dt = e−Γt

where Γt =
∫ t
0

1
Zs−

dAps . �

1.2 Semi-martingales

1.2.1 Definition

An F-adapted process X is an F-semi-martingale if X = M + A where M is an F-local martingale
and A an F-adapted process with finite variation. If there exists a decomposition with a process
A which is predictable, the decomposition X = M + A where M is an F-martingale and A an
F-predictable process with finite variation is unique and X is called a special semi-martingale. If
X is continuous, the process A is continuous.

In general, if G = (Gt, t ≥ 0) is a filtration larger than F = (Ft, t ≥ 0), i.e., Ft ⊂ Gt,∀t ≥ 0 (we
shall write F ⊂ G), it is not true that an F-martingale remains a martingale in the filtration G. It
is not even true that F-martingales remain G-semi-martingales. One of the goal of this book is to
give conditions so that this property holds.

Example 1.2.1 (a) Let Gt = F∞. Then, the only F-martingales which are G-martingales are
constants.
(b) An interesting example is Azéma’s martingale µ, defined as follows. Let B be a Brownian motion
and gt = sup{s ≤ t, Bs = 0}. The process

µt = (sgnBt)
√
t− gt, t ≥ 0

is a martingale in its own filtration. This discontinuous Fµ-martingale is not an FB-martingale, it
is not even an FB-semi-martingale.
(c) Let F be the filtration generated by a Brownian motion B and Gt = Ft+δ. The process B is not
a G-semimartingale.

Exercise 1.2.2 Let B be a Brownian motion. Prove that Wt =
∫ t
0

sgneBsdBs defines an FB and
an FW Brownian motion.
Prove that βt = Bt −

∫ t
0
Bs

s ds defines a Brownian motion (in its own filtration) which is not a
Brownian motion in FB . ▹

1.2.2 Properties

Proposition 1.2.3 Let G be a filtration larger than F, i.e., F ⊂ G. If x is a u.i. (uniformly
integrable) F-martingale, then there exists a G-martingale X, such that E(Xt|Ft) = xt, t ≥ 0.

Proof: The process X defined by Xt := E(x∞|Gt) is a G-martingale, and

E(Xt|Ft) = E
(
E(x∞|Gt)|Ft

)
= E(x∞|Ft) = xt .

�
The uniqueness of such a martingale X is not claimed in the above proposition and it is not true in
general.

We recall an important (but difficult) result due to Stricker [120].
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Proposition 1.2.4 Let F and G be two filtrations such that F ⊂ G. If X is a G-semimartingale
which is F-adapted, then it is an F-semimartingale.

One has also the (obvious) following result (see Exercise 1.2.9)

Proposition 1.2.5 Let F and G be two filtrations such that F ⊂ G. If X is a G-martingale which
is F-adapted, then it is also an F-martingale.

Remark 1.2.6 This result does not extend to local martingales. See Stricker [120] and Föllmer and
Protter [61].

Exercise 1.2.7 Let N be a Poisson process (i.e., a process with stationary and independent in-
crements, such that the law of Nt is a Poisson law with parameter λt). Prove that the process M
defined as Mt = Nt − λt is a martingale and that the process M2

t − λt = (Nt − λt)2 − λt is also a
martingale. Prove that for any θ ∈ [0, 1],

Nt = θ(Nt − λt) + (1− θ)Nt + θλt = µt + (1− θ)Nt + θλt

is a decomposition of the semi-martingale N , where µ is a martingale. For which decomposition is
the finite variation process (1− θ)Nt + θλt a predictable process ? ▹

Exercise 1.2.8 Let τ be a random time. Prove that τ is a H-stopping time, where H is the natural
filtration of Ht = 11{τ≤t}, and that τ is a G stopping time, where G = F ∨H, for any filtration F.▹

Exercise 1.2.9 Prove that, if M is a G-martingale, then M̂ defined as M̂t = E(Mt|Ft) is an
F-martingale. ▹

Exercise 1.2.10 Prove that, if G = F ∨ F̃ where F̃ is independent of F, then any F martingale
remains a G-martingale.
Prove that, if F is generated by a Brownian motion W , and if there exists a probability Q equivalent
to P such that F̃ is independent of F under Q, then any (P,F)-martingale remains a (P,G)-semi
martingale. ▹

1.2.3 Stochastic Integration

If X = M + A is a semi-martingale and Y a (bounded) predictable process, we denote Y �X the
stochastic integral

(Y �X)t :=

∫ t

0

YsdXs =

∫ t

0

YsdMs +

∫ t

0

YsdAs

The process Y �X is a semi-martingale. Note that here, for a right-continuous process, the symbol∫ t
0
YsdXs stands for

∫
]0,t]

YsdXs, i.e., the upper bound t is included in the integration.

1.2.4 Integration by Parts

By definition, any semi-martingale X admits a decomposition as a local martingale M and a finite
variation process. The martingale part admits a decomposition as M = M c +Md where M c is
continuous and Md a discontinuous martingale. The process M c is denoted in the literature as
Xc (even if this notation is missleading!). The optional Itô formula is (for f in C2, with bounded
derivatives)

f(Xt) = f(X0) +
∫ t
0
f ′(Xs−)dXs +

1
2

∫ t
0
f ′′(Xs)d⟨Xc⟩s

+
∑

0<s≤t[f(Xs)− f(Xs−)− f ′(Xs−)∆Xs] .
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where ∆Xt = Xt −Xt−
3.

If U and V are two finite variation processes, the Stieltjes integration by parts formula can be
written as follows:

UtVt = U0V0 +

∫
]0,t]

VsdUs +

∫
]0,t]

Us−dVs (1.2.1)

= U0V0 +

∫
]0,t]

Vs−dUs +

∫
]0,t]

Us−dVs +
∑
s≤t

∆Us∆Vs .

As a partial check, one can verify that the jump process of the left-hand side, i.e., UtVt−Ut−Vt− , is
equal to the jump process of the right-hand side, i.e., Vt−∆Ut + Ut−∆Vt +∆Ut∆Vt.

Let X be a continuous local martingale. The predictable quadratic variation process of X is the
continuous increasing process ⟨X⟩ such that X2 − ⟨X⟩ is a local martingale.
Let X and Y be two continuous local martingales. The predictable covariation process is the con-
tinuous finite variation process ⟨X,Y ⟩ such that XY −⟨X,Y ⟩ is a local martingale. The covariation
process of continuous martingales does not depend on the filtration.

Let X and Y be two local martingales. The covariation process [X,Y ] is the finite variation
process such that

(i) XY − [X,Y ] is a local martingale
(ii) ∆[X,Y ]t = ∆Xt∆Yt

The process [X] = [X,X] is non-decreasing; if X is continuous, then [X] = ⟨X⟩.
The predictable covariation process is (if it exists) the predictable finite variation process ⟨X,Y ⟩
such that XY − ⟨X,Y ⟩ is a local martingale.
If X is a semi-martingale with respect to F and to G, then [X] is independent of the filtration.

The integration by parts for semi-martingales is

XtYt = X0Y0 +

∫ t

0

Xs−dYs +

∫ t

0

Ys−dXs + [X,Y ]t . (1.2.2)

For finite variation processes
[U, V ]t =

∑
s≤t

∆Us∆Vs

and, if Y is with finite variation, Yoeurp’s formula states that

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

Ys−dXs . (1.2.3)

We recall also Yoeurp [124] lemma (see also [78, Proposition 9.3.7.1]):

Proposition 1.2.11 Let X be a semi-martingale.
a) If A is a bounded variation process

XtAt = X0A0 +

∫ t

0

XsdAs +

∫ t

0

As−dXs (1.2.4)

and [X,A] = ∆X�A.
b) If A is a predictable process with bounded variation

XtAt = X0A0 +

∫ t

0

Xs−dAs +

∫ t

0

AsdXs (1.2.5)

and [X,A] = ∆A�X.
3one can prove that, for a semi-martingale X, the sum is well defined.
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Exercise 1.2.12 Prove that if X and Y are continuous, ⟨X,Y ⟩ = [X,Y ].
Prove that if M is the compensated martingale of a Poisson process with intensity λ, [M ] = N and
⟨M⟩t = λt. ▹

1.3 Change of probability and Girsanov’s Theorem

1.3.1 Brownian filtration

Let F be a Brownian filtration, L an F-martingale, strictly positive such that L0 = 1 and define
dQ|Ft

= LtdP|Ft
. Then,

B̃t := Bt −
∫ t

0

1

Ls
d⟨B,L⟩s

is a (Q,F)-Brownian motion. If M is an F-martingale,

M̃t :=Mt −
∫ t

0

1

Ls
d⟨M,L⟩s

is a (Q,F)-local martingale.

1.3.2 Doléans-Dade exponential

Let F be a Brownian filtration and ψ an adapted process satisfying
∫ t
0
ψ2
sds < ∞,∀t. The solution

of dLt = LtψtdWt is the local martingale

Lt = L0 exp

(∫ t

0

ψsdWs −
1

2

∫ t

0

ψ2
sds

)
=: L0E(ψ�W )t

If E(Lt) = 1 , the process L is a martingale.

If L is a strict local martingale, the positive measure Q defined as dQ = LtdP is not a probability
(Q(Ω) ̸= 1)

For a continuous martingale M , the solution of dLt = LtψtdMt is a positive local martingale

Lt = L0 exp

(∫ t

0

ψsdMs −
1

2

∫ t

0

ψ2
sd⟨M⟩s

)
= L0E(ψ�M)t

1.3.3 General case

More generally, let F be a filtration and L an F-martingale, strictly positive such that L0 = 1
and define dQ|Ft = LtdP|Ft . Then, if M is an F-martingale,

M̃t :=Mt −
∫ t

0

1

Ls
d[M,L]s

is a (Q,F)-martingale. If the predictable co-variation process ⟨M,L⟩ exists,

Mt −
∫ t

0

1

Ls−
d⟨M,L⟩s

is a (Q,F)-local martingale.

If M is a discontinuous martingale, the solution of dLt = Lt−ψtdMt can take negative values
and Q is a signed measure. The solution of dLt = Lt−dYt is

E(Y )t := exp

(
Yt − Y0 −

1

2
⟨Y c⟩t

) ∏
s≤t

(1 + ∆Ys)e
−∆Ys .
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The solution of dLt = Lt−ψtdMt is positive if ψ > −1.

1.3.4 Itô-Kunita-Wentcell formula

We recall here the Itô-Kunita-Wentcell formula (see Kunita [95]). Let Ft(x) be a family of stochastic
processes, continuous in (t, x) ∈ (R+ × Rd) a.s., and satisfying the following conditions:
(i) for each t > 0, x→ Ft(x) is C2 from Rd to R,
(ii) for each x, (Ft(x), t ≥ 0) is a continuous semimartingale

dFt(x) =

n∑
j=1

f jt (x) dM
j
t ,

where M j are continuous semimartingales, and f j(x) are stochastic processes continuous in (t, x),
such that for every s > 0, the map x → f js (x) is C1, and for every x, f j(x) is an adapted process.
Let X = (X1, · · · , Xd) be a continuous semimartingale. Then

Ft(Xt) = F0(X0) +

n∑
j=1

∫ t

0

f js (Xs) dM
j
s +

d∑
i=1

∫ t

0

∂Fs
∂xi

(Xs) dX
i
s

+

d∑
i=1

n∑
j=1

∫ t

0

∂fs
∂xi

(Xs) d⟨M j , Xi⟩s +
1

2

d∑
i,k=1

∫ t

0

∂2Fs
∂xi∂xk

d⟨Xk, Xi⟩s.

See Bank and Baum [17] for an extension to processes with jumps.

1.4 Projections and Dual Projections

In this section, after recalling some basic facts about optional and predictable projections, we intro-
duce the concept of a dual predictable (resp. optional) projection, which leads to the fundamental
notion of predictable compensators. We recommend the survey paper of Nikeghbali [108].

1.4.1 Definition of Projections

Let X be a bounded (or positive) process, and F a given filtration (we do not assume that X is
F-adapted). The optional projection of X is the unique optional process oX which satisfies: for
any F-stopping time τ

E(Xτ11{τ<∞}) = E( oXτ11{τ<∞}) . (1.4.1)

In case where many filtrations are involved, we shall use the notation o,FX for the F-optional pro-
jection. For any F-stopping time τ , let Γ ∈ Fτ and apply the equality (1.4.1) to the stopping time
τΓ = τ11Γ +∞11Γc . We get the re-inforced identity:

E(Xτ11{τ<∞}|Fτ ) = oXτ11{τ<∞} .

In particular, if A is an increasing process, then, for s ≤ t:

E( oAt − oAs|Fs) = E(At −As|Fs) ≥ 0 . (1.4.2)

Note that, for any t, E(Xt|Ft) = oXt. However, E(Xt|Ft) is defined almost surely for any t; thus
uncountably many null sets are involved, hence, a priori, E(Xt|Ft) is not a well-defined process
whereas oX takes care of this difficulty.

Comment 1.4.1 Let us comment the difficulty here. If X is an integrable random variable, the
quantity E(X|Ft) is defined a.s., i.e., if Xt = E(X|Ft) and X̃t = E(X|Ft), then P(Xt = X̃t) = 1.
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That means that, for any fixed t, there exists a negligible set Ωt such that Xt(ω) = X̃t(ω) for
ω /∈ Ωt. For processes, we introduce the following definition: the process X is a modification (or
a version of)of Y if, for any t, P(Xt = Yt) = 1. However, one needs a stronger assumption to
be able to compare functionals of the processes. The process X is indistinguishable from Y if
{ω : Xt(ω) = Yt(ω),∀t} is a measurable set and P(Xt = Yt,∀t) = 1. If X and Y are modifications
of each other and are a.s. continuous, they are indistinguishable.
A difficult, but important result (see Dellacherie [39, p.73]) states: Let X and Y two optional (resp.
predictable) processes. If for every finite stopping time (resp. predictable stopping time) τ , Xτ = Yτ
a.s., then the processes X and Y are indistinguishable.

Likewise, the predictable projection of X is the unique predictable process pX such that for
any F-predictable stopping time τ

E(Xτ11{τ<∞}) = E( pXτ11{τ<∞}) . (1.4.3)

As above, this identity reinforces as

E(Xτ11{τ<∞}|Fτ−) = pXτ11{τ<∞} ,

for any F-predictable stopping time τ (see Section 1.1 for the definition of Fτ−).

Let τ and ϑ be two stopping times such that ϑ ≤ τ and X a positive process. If A is an increasing
optional process, then,

E
(∫ τ

ϑ

XtdAt

)
= E

(∫ τ

ϑ

oXtdAt

)
.

If A is an increasing predictable process, then, since 11]]ϑ,τ ]](t) is predictable

E(
∫ τ

ϑ

XtdAt) = E(
∫ τ

ϑ

pXtdAt) .

IfA is an increasing integrable (hence optional) adapted process, E(
∫
[0,∞[

XsdAs) = E(
∫
[0,∞[

oXsdAs).
If A is an increasing integrable predictable process , E(

∫
[0,∞[

XsdAs) = E(
∫
[0,∞[

pXsdAs).

1.4.2 Dual Projections

The notion of interest in this section is that of dual predictable projection, which we define as
follows:

Proposition 1.4.2 Let (At, t ≥ 0) be an integrable increasing process (not necessarily F-adapted).
There exists a unique integrable F-predictable increasing process (Apt , t ≥ 0), called the dual pre-
dictable projection of A such that

E
(∫ ∞

0

YsdAs

)
= E

(∫ ∞

0

YsdA
p
s

)
for any positive F-predictable process Y .

In the particular case where At =
∫ t
0
asds, one has

Apt =

∫ t

0

pasds (1.4.4)

Proof: See Dellacherie [40, Chapter V], Dellacherie and Meyer [44, Chapter 6, (73), p. 148], or
Protter [112, Chapter 3, Section 5]. The integrability condition of (Apt , t ≥ 0) results from the
definition, since for Y = 1, one obtains E(Ap∞−) = E(A∞−). �
The dual optional projection is also useful
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Proposition 1.4.3 Let (At, t ≥ 0) be an integrable increasing process (not necessarily F-adapted).
There exists a unique integrable F-optional increasing process (Aot , t ≥ 0), called the dual optional
projection of A such that

E
(∫ ∞

0

YsdAs

)
= E

(∫ ∞

0

YsdA
o
s

)
for any positive F-optional process Y .

In the particular case where At =
∫ t
0
asds, one has

Aot =

∫ t

0

oasds (1.4.5)

This definition extends to the difference between two integrable increasing processes. The terminol-
ogy “dual predictable projection" refers to the fact that

E
(∫ ∞

0

YsdA
(p)
s

)
= E

(∫ ∞

0

(p)YsdAs

)
for any positive F-measurable process Y . Note that the predictable projection of an increasing
process is not necessarily increasing, whereas its dual predictable projection is.

If X is bounded and A (not necessarily adapted) has integrable variation, then

E((X�Ap)∞) = E(( pX�A)∞) .

This is equivalent to: for s < t,

E(At −As|Fs) = E(Apt −Aps |Fs) . (1.4.6)

Hence, if A is F-adapted (not necessarily predictable), then (At − Apt , t ≥ 0) is an F-martingale. In
that case, Ap is also called the predictable compensator of A.

Example 1.4.4 If N is a Poisson process, Np
t = λt. If X is a Lévy process with Lévy measure ν and

f a positive function with compact support which does not contain 0, the predictable compensator
of
∑
s≤t f(∆Xs) is t

∫
f(x)ν(dx)

In a general setting, the predictable projection of an increasing process A is a sub-martingale whereas
the dual predictable projection is an increasing process. The predictable projection and the dual
predictable projection of an increasing process A are equal if and only if pA is increasing.

Proposition 1.4.5 If A is increasing, the process oA is a sub-martingale and Ap is the predictable
increasing process in the Doob-Meyer decomposition of the sub-martingale oA. The process oA−Ap

is a martingale.

Proof: Apply (1.4.1) and (1.4.6). �

Using that terminology, for two martingales X,Y , the predictable covariation process ⟨X,Y ⟩ is
the dual predictable projection of the covariation process [X,Y ]. The predictable covariation process
depends on the filtration.

Example

We now present an example of computation of dual predictable projection. Let (Bs)s≥0 be an F−
Brownian motion starting from 0 and B

(ν)
s = Bs + νs. Let G(ν) be the filtration generated by the

process (|B(ν)
s |, s ≥ 0) (which coincides with the one generated by (B

(ν)
s )2) (note that G(ν) ⊂ F).



20 CHAPTER 1. THEORY OF STOCHASTIC PROCESSES

We now compute the decomposition of the semi-martingale (B(ν))2 in the filtration G(ν) and the
G(ν)-dual predictable projection of the finite variation process

∫ t
0
B

(ν)
s ds.

Itô’s lemma provides us with the decomposition of the process (B(ν))2 in the filtration F:

(B
(ν)
t )2 = 2

∫ t

0

B(ν)
s dBs + 2ν

∫ t

0

B(ν)
s ds+ t . (1.4.7)

To obtain the decomposition in the filtration G(ν) we remark that,

E(eνBs |F |B|
s ) = cosh(νBs)(= cosh(ν|Bs|))

which leads, thanks to Girsanov’s Theorem to the equality:

E(Bs + νs|F |B|
s ) =

E(BseνBs |F |B|
s )

E(eνBs |F |B|
s )

= Bs tanh(νBs) = ψ(νBs)/ν ,

where ψ(x) = x tanh(x). We now come back to equality (1.4.7). Due to (1.4.4), we have just shown
that:

The dual predictable projection of 2ν

∫ t

0

B(ν)
s ds is 2

∫ t

0

dsψ(νB(ν)
s ) . (1.4.8)

As a consequence,

(B
(ν)
t )2 − 2

∫ t

0

dsψ(νB(ν)
s )− t

is a G(ν)-martingale with increasing process 4
∫ t
0
(B

(ν)
s )2ds. Hence, there exists a G(ν)-Brownian

motion β such that

(Bt + νt)2 = 2

∫ t

0

|Bs + νs|dβs + 2

∫ t

0

dsψ(ν(Bs + νs)) + t . (1.4.9)

1.4.3 Compensator of a random time

Let τ be a random time andHt : = 11τ≤t. It will be convenient to introduce the following terminology:

Definition 1.4.6 We call the F-predictable compensator associated with τ the F-dual predictable
projection Ap of the increasing process 11{τ≤t}. This dual predictable projection Ap satisfies

E(Yτ ) = E
(∫ ∞

0

YsdA
p
s

)
(1.4.10)

for any positive, F-predictable process Y .

In case of possible confusion, we shall denote Ap,τ , or even Ap,τ,F this projection.

In the case where τ is an F-stoping time, the process 11{τ≤t} −Ap,τ is an F-martingale.

In what follows (in particular in Chapter 7), a main tool will be the process Zt = P(τ > t|Ft),
which is the optional projection of 11]0,τ [ and is a right-continuous supermartingale (This process is
also called the Azéma supermartingale). Note that the process Zt− is the predictable projection of
11]0,τ [. (see [41, Chapter XX]).

Proposition 1.4.7 The Doob-Meyer decomposition of the super-martingale Zt = P(τ > t|Ft) is

Zt = E(Ap∞|Ft)−Apt = µt −Apt

where µt : = E(Ap∞|Ft) is the martingale part of Z.
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Proof: From the definition of the dual predictable projection, for any predictable process Y , one
has

E(Yτ ) = E
(∫ ∞

0

YudA
p
u

)
.

Let t be fixed and Ft ∈ Ft. Then, the process Yu = Ft11{t<u}, u ≥ 0 is F-predictable. Then

E(Ft11{t<τ}) = E(Ft(Ap∞ −Apt )) .

It follows that E(Ap∞|Ft) = Zt +Apt . Note that µ is a non-negative martingale. �

Proposition 1.4.8 Let τ be a totally inaccessible stopping time for a filtration F.
a) The process Ht = 11τ≤t is a submartingale, and there exists a continuous increasing, F-adapted
process C = (Ct), t ≥ 0 such that H − C is an F-martingale.
b) If the process C is absolutely continuous with respect to Lebesgue measure, then the compensator
of τ is absolutely continuous in any smaller filtration and in particular F (t) = P (τ ≤ t) is an
absolutely continuous function.
c) There exists an event Γ ∈ Gτ such that τΓ has an absolutely continuous compensator and the
compensator of τΓc is not absolutely continuous

Notation: We shall use frequently the two following conditions :
Condition (A): the random time τ avoids the F-stopping times, i.e., P(τ = ϑ) = 0 for any

F-stopping time ϑ
Condition (C) : all F-martingales are continuous

Lemma 1.4.9 Let τ a random time, Ap be the F-dual predictable projection of the process H and
let Ao be the F-dual optional projection of H.
1) Assume condition (A), then Ap = Ao and these processes are continuous.
2) Under conditions (C) and (A), Zt := P(τ > t|Ft) is continuous.

Proof: Indeed, if ϑ is a jump time of Ap, it is an F-stopping time, hence is predictable, and

E(Apϑ −Apϑ−) = E(11τ=ϑ) = 0 ;

the continuity of Ap follows.
See Dellacherie and Meyer [44] or Nikeghbali [108].

Lemma 1.4.10 Let τ be a finite random time such that its associated Azéma’s supermartingale Z
is continuous. Then τ avoids F-stopping times.

Proof: See Coculescu and Nikeghbali [35].

Comment 1.4.11 It can be proved that the martingale

µt : = E(Ap∞|Ft) = Apt + Zt

is BMO. We recall that a continuous uniformly integrable martingale M belongs to BMO space if
there exists a constant m such that

E(⟨M⟩∞ − ⟨M⟩τ |Fτ ) ≤ m

for any stopping time τ . It can be proved (see, e.g., Dellacherie and Meyer [44, Chapter VII] ) that
the space BMO is the dual of H1, the space of martingales such that E(supt≥0 |Mt|) < ∞. Recall
that Mloc = H1

loc.
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Single Jump Processes, Counting Processes

For τ being an F-stopping time and X = U11]τ,∞[ where U is a non negative r.v. Fτ measure, we
study some properties of the dual predictable projection (also called compensator) of X.

If τ is positive and predictable, then Xp = E(U |Fτ−)11]τ,∞[

If τ is totally inaccessible, then Xp is the unique continuous finite variation process such that
e−λX

p
t (1 + λU11]τ,∞[) is a local martingale.

Proposition 1.4.12 If X is a quasi-left continuous counting process with compensator Xp, then
Xp is continuous and exp(aXt − (ea − 1)Xp

t ) is a local martingale for any a.

Proof: The proof follows by Itô’s calculus. In a first step, setting α = ea− 1, one has d exp(aXt) =
α exp(aXt−)dXt. Then, setting Yt = exp(aXt − (ea − 1)Xp

t = exp(aXt − αXp
t ), one deduces

dYt = e−αX
p
t d(eaXt − αYt−dX

p
t

= e−αX
p
t eaXt−dXt − αYt−dX

p
t = e−αX

p
t eaXt−dXt − αYt−d(Xt −Xp

t )

�

Exercise 1.4.13 Let M a càdlàg martingale. Prove that its predictable projection is Mt−. ▹

Exercise 1.4.14 Let X be a measurable process such that E(
∫ t
0
|Xs|ds) < ∞ and Yt =

∫ t
0
Xsds. .

Prove that oYt −
∫ t
0
oXsds is an F-martingale ▹

Exercise 1.4.15 Prove that if X is bounded and Y predictable p(Y X) = Y pX ▹

Exercise 1.4.16 Prove that, more generally than (1.4.8), the dual predictable projection of
∫ t
0
f(B

(ν)
s )ds

is
∫ t
0
E(f(B(ν)

s )|G(ν)
s )ds and that

E(f(B(ν)
s )|G(ν)

s ) =
f(B

(ν)
s )eνB

(ν)
s + f(−B(ν)

s )e−νB
(ν)
s

2 cosh(νB
(ν)
s )

.

▹

Exercise 1.4.17 Prove that, if (αs, s ≥ 0) is an increasing F-predictable process and X a positive
measurable process, then (∫ ·

0

Xsdαs

)(p)

=

∫ ·

0

(p)Xsdαs

In particular (∫ ·

0

Xsds

)(p)

=

∫ ·

0

(p)Xsds

▹

Exercise 1.4.18 Give an example of random time τ where A(p) and A(o) are different. ▹

1.5 Arbitrages

We recall some standard definitions on arbitrages (adapted to the case of enlargement of filtration).
We assume that the financial market has a savings account with null interest rate and a risky asset,
with price S which is an F-adapted semi-martingale and a G,F(τ) semi-martingale
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Let K be one of the filtrations
{
F,G,F(τ)

}
.

For a ∈ R+, an element θ ∈ LK (S) is said to be an a-admissible K-strategy if (θ � S)∞ :=
limt→∞ (θ � S)t exists and Vt(0, θ) := (θ � S)t ≥ −a P-a.s. for all t ≥ 0. We denote by AK

a the
set of all a-admissible K-strategies. A process θ ∈ LK (S) is called an admissible K-strategy if
θ ∈ AK :=

∪
a∈R+

AK
a .

1.5.1 Classical arbitrages and NFLVR

An admissible strategy yields an Arbitrage Opportunity if V (0, θ)∞ ≥ 0 P-a.s. and P
(
V (0, θ)∞ >

0
)
> 0. In order to avoid confusions, we shall call these arbitrages classical arbitrages. If there exists

no such θ ∈ AK we say that the financial market M(K) := (Ω,K,P;S) satisfies the No Arbitrage
(NA) condition. No Free Lunch with Vanishing Risk (NFLVR) holds in the financial market M(K)
if and only if there exists an Equivalent Martingale Measure in K, i.e., a probability measure Q, such
that Q ∼ P and the process S is a (Q,K)-local martingale. If NFLVR holds, there are no classical
arbitrages. In this section, we study another kind of arbitrages. We do not present the full theory
(for which we refer the reader to [5, 6, 4] and [1]).

If there exists no such θ ∈ AK we say that the financial market M(K) := (Ω,K,P;S) satisfies the
No Arbitrage (NA) condition. No Free Lunch with Vanishing Risk (NFLVR) holds in the financial
market M(K) if and only if there exists an Equivalent Martingale Measure in K, i.e., a probability
measure Q, such that Q ∼ P and the process S is a (Q,K)-local martingale. If NFLVR holds, there
are no classical arbitrages.

For future use, we state the following (obvious) proposition

Proposition 1.5.1 Assume that the financial market (S,F) is complete, and that S is a G semi-
martingale. Assume that X is an F-martingale such that X0 = 1 and there exists a with Xt ≥ a.
If, Xτ ≥ 1 and P(Xτ > 1) > 0, then, there is a classical arbitrage strategy in the market ”before τ ”,
i.e., in (Sτ ,G).

Proof: From the market completeness, there exists an F-predictable process φ such that X =
1+ φ � S. Then, φ11t≤τ is a G-predictable admissible self-financing strategy with initial value 1 and
final value Xτ − 1 satisfying Xτ − 1 ≥ 0 a.s. and P(Xτ − 1 > 0) > 0, so it is a classical arbitrage
strategy in (Sτ ,G). �

1.6 NUPBR

We present another kind of Arbitrages; Unbounded Profit with Bounded Risk.

A non-negative K∞-measurable random variable ξ with P (ξ > 0) > 0 yields an Unbounded
Profit with Bounded Risk if for all x > 0 there exists an element θx ∈ AK

x such that V (x, θx)∞ :=
x + (θx � S)∞ ≥ ξ P-a.s. If there exists no such random variable, we say that the financial market
M(K) satisfies the No Unbounded Profit with Bounded Risk (NUPBR) condition (we recall that
NFLVR is equivalent to NA and NUPBR).

A strictly positive K-local martingale L = (Lt)t≥0 with L0 = 1 and L∞ > 0 P-a.s. is said to be
a local martingale deflator in K on the time horizon [0, ϱ] if the process LSϱ is a K-local martingale;
here ϱ is a K-stopping time. If there exists a deflator, then NUPBR holds.
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1.7 Some Important Exercices

Exercise 1.7.1 Let B be a Brownian motion, F its natural filtration and B∗
t = sups≤tBs. Prove

that, for t < 1,
E(f(B∗

1)|Ft) = F (1− t, Bt, B
∗
t )

with

F (s, a, b) =

√
2

πs

(
f(b)

∫ b−a

0

e−u
2/(2s)du+

∫ ∞

b

f(u) exp

(
− (u− a)2

2s

)
du

)
.

Hint: Note that
sup
s≤1

Bs = sup
s≤t

Bs ∨ sup
t≤s≤1

Bs = sup
s≤t

Bs ∨ (B̂∗
1−t +Bt)

where B̂∗
s = supu≤s B̂u for B̂u = Bu+t −Bt. ▹

Exercise 1.7.2 Let φ be a C1 function, B a Brownian motion and B∗
t = sups≤tBs. Prove that the

process
φ(B∗

t )− (B∗
t −Bt)φ

′(B∗
t )

is a local martingale. ▹

Exercise 1.7.3 A Useful Lemma: Doob’s Maximal Identity. (see [102, lemma 0.1])
Let M be a positive continuous martingale such that M0 = x.

(i) Prove that if limt→∞Mt = 0, then

P(supMt > a) =
(x
a

)
∧ 1 (1.7.1)

and supMt
law
=

x

U
where U is a random variable with a uniform law on [0, 1].

(ii) Conversely, if supMt
law
=

x

U
, show that M∞ = 0.

(iii) Let T a stopping time and ST = sups≥T Ms. Prove that MT /S
T has a uniform law and is

independent from FT
▹

Exercise 1.7.4 Prove that, for any (bounded) process a (not necessarily adapted)

Mt := E(
∫ t

0

audu|Ft)−
∫ t

0

E(au|Fu)du

is an F-martingale. Extend the result to the case
∫ ·
0
Xsdαs where (αs, s ≥ 0) is an increasing

predictable process and X a positive measurable process. ▹

Hint: Compute E(Mt −Ms|Fs) = E(
∫ t
s
audu−

∫ t
s
E(au|Fu)du|Fs).

Exercise 1.7.5 Show that if Xn, n ≥ 1 is an integrable sequence of r.vs, viewed as a discrete time
process, adapted to some filtration F, then, there exists a martingale M and a predictable process
A such that Xn =Mn +An. ▹



Chapter 2

Compensators, Single Default

The F-compensator of a càdlàg F-submartingale X is the càdlàg increasing and F-predictable process
A such that X − A is an F-martingale. From Doob-Meyer decomposition, the compensator exists
(and is unique) ifX is of class (D). Of course, the value of the compensator depends on the underlying
filtration, as well on the underlying probability.

An important example is a Poisson process N , with constant intensity λ. In that case, the
increasing process N (a sub-martingale) admits At = λt as compensator (in its own filtration).

In this chapter, we shall study in more details compensators of some increasing processes (which
are obviously submartingales), in particular compensators of 11τ≤t for a positive random variable τ ,
of single jumps processes and of counting processes. Let us note that, if F is a Brownian filtration and
τ an F-stopping time (or more generally, if τ is an F-predictable stopping time), the F-compensator
of 11τ≤t is 11τ≤t.

2.1 Compensator of a Random Time

Let τ be a random time (a non-negative random variable) on a probability space (Ω,A,P). We
denote by (Ht, t ≥ 0) the right-continuous increasing process Ht = 11{τ≤t} and by H = (Ht, t ≥ 0)
its natural filtration. It is proved in Bélanger et al. [21] that the filtration H is continuous on right.
The filtration H is the smallest filtration which satisfies usual hypothesis, which makes τ a stopping
time.

A key point is that any integrable Ht-measurable r.v. K is of the form K = g(τ)11{τ≤t} +

h(t)11{t<τ} where g, h are Borel functions. It is also important (and obvious) to note that
∫ t
0
h(u)dHu =∫

]0,t]
h(u)dHu = Hth(τ), where the first equality is due to the definition of the symbol

∫ t
0
·dKs for a

continuous on right process K.

We denote by F the (right-continuous) cumulative distribution function of τ , defined as F (t) =
P(τ ≤ t), and by G the survival function G(t) = 1− F (t).
We first give some elementary tools to compute the conditional expectation w.r.t. Ht, as presented
in Brémaud [29], Dellacherie [39, 40], Cohen & Elliott [51]. Note that if the cumulative distribution
function of τ is continuous, then τ is an H-totally inaccessible stopping time. (See Dellacherie and
Meyer [44, Chapter IV, p.239 in the French version].)

The goal is to compute the H-compensator of τ .

Remark 2.1.1 Dellacherie [39, 44] considers the σ algebra H0
t generated by τ ∧ t (which contains

the atom {τ ≥ t} ) and the associated filtration H0. This filtration is not continuous on right: H0
t+

is obtained by splitting the atom {τ ≥ t} into {τ = t} and {τ > t}. Setting H∗
t = H0

t+, the random
time τ is an H∗ stopping time, but is not an H0 stopping time (hence H∗ = H). It is proved that

25
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any H0-stopping time is predictable and that, if the law of τ is atomic and not degenerate, then τ
is H-accessible and not H-predictable.

2.1.1 Key Lemma

Lemma 2.1.2 If X is any integrable, A-measurable r.v., one has

E(X|Hs)11{s<τ} = 11{s<τ}
E(X11{s<τ})

P(s < τ)
. (2.1.1)

Proof: The r.v. E(X|Hs) is Hs-measurable. Therefore, it can be written in the form E(X|Hs) =
g(τ)11{s≥τ} + h(s)11{s<τ} for some functions g, h. By multiplying both members by 11{s<τ}, and
taking the expectation, we obtain, using the fact that {s < τ} ∈ Hs,

E[11{s<τ}E(X|Hs)] = E[E(11{s<τ}X|Hs)] = E[11{s<τ}X]

= E(h(s)11{s<τ}) = h(s)P(s < τ) .

Hence, if P(s < τ) ̸= 0, h(s) =
E(X11{s<τ})

P(s < τ)
gives the desired result. If, for some s, one has

P(s < τ) = 0, then {τ > s} is a negligeable set and 11s<τ = 0 a.s. Then, in the right-hand side of
(2.1.1), we set 0

0 = 0. �

Exercise 2.1.3 Assume that Y is H∞-measurable, so that Y = h(τ) for some Borel measurable
function h : R+ → R and that F (t) < 1 for t > 0, F being continuous. Prove that

E(Y |Ht) = 11{τ≤t}h(τ) +
1

1− F (t)
11{t<τ}

∫ ∞

t

h(u) dF (u). (2.1.2)

▹

2.1.2 Some Martingales

In all this section, we assume that F is continuous. The general case can be found in [8].

Proposition 2.1.4 Assuming that F is continuous and F (t) < 1,∀t, the process (Mt, t ≥ 0) defined
as

Mt = Ht −
∫ τ∧t

0

dF (s)

1− F (s)
= Ht −

∫ t

0

(1−Hs−)
dF (s)

1− F (s)
= Ht +

∫ t

0

(1−Hs−)
dG(s)

G(s)

is an H-martingale.

Proof: Let s < t. Then:

E(Ht −Hs|Hs) = 11{s<τ}E(11{s<τ≤t}|Hs) = 11{s<τ}
F (t)− F (s)

1− F (s)
, (2.1.3)

which follows from (2.1.1) with X = 11{τ≤t}.
On the other hand, the quantity

C : = E
[∫ t

s

(1−Hu−)
dF (u)

1− F (u)

∣∣Hs

]
,
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is equal to

C =

∫ t

s

dF (u)

1− F (u)
E
[
11{τ>u}

∣∣Hs

]
= 11{τ>s}

∫ t

s

dF (u)

1− F (u)

(
1− F (u)− F (s)

1− F (s)

)
= 11{τ>s}

∫ t

s

dF (u)

1− F (s)

= 11{τ>s}
F (t)− F (s)

1− F (s)

which, from (2.1.3) proves the desired result. �

The (continuous increasing) function

Γ(t) :=

∫ t

0

dF (s)

1− F (s)
= − ln(1− F (t)) = − ln(G(t))

is called the hazard function of τ . Note, for future use, that dF (t) = G(t)dΓ(t) = e−Γ(t)dΓ(t).
From Proposition 2.1.4, we obtain that the process Mt := Ht − Γ(t ∧ τ) is an H martingale, hence
the Doob-Meyer decomposition of the submartingale H is Ht = Mt + Γ(t ∧ τ). The (predictable)
process At = Γ(t ∧ τ) is called the compensator of H.
Moreover, if F is differentiable with derivative f , the process

Mt = Ht −
∫ τ∧t

0

γ(s)ds = Ht −
∫ t

0

γ(s)(1−Hs)ds

is a martingale, where γ(s) =
f(s)

1− F (s)
is a deterministic non-negative function, called the intensity

of τ .

Proposition 2.1.5 Assume that F is a continuous function. For any (bounded) Borel measurable
function h : R+ → R, the process

Mh
t = 11{τ≤t}h(τ)−

∫ t∧τ

0

h(u) dΓ(u) (2.1.4)

is an H-martingale. Moreover, dMh
t = h(t)dMt.

Proof: On the one hand, for s < t,

E
(
h(τ)11{s<τ≤t} |Hs

)
= 11{s<τ}

1

P(s < τ)
E(h(τ)11s<τ≤t) = 11{s<τ}e

Γ(s)

∫ t

s

h(u)dF (u)

= 11{s<τ}e
Γ(s)

∫ t

s

h(u)e−Γ(u) dΓ(u).

On the other hand, we get

J := E
(∫ t∧τ

s∧τ
h(u) dΓ(u)|Hs

)
= E

(
h̃(τ)11{s<τ≤t} + h̃(t)11{τ>t} |Hs

)
where, for fixed s, we set h̃(t) =

∫ t
s
h(u) dΓ(u). Consequently,

J = 11{s<τ}e
Γ(s)
(∫ t

s

h̃(u)e−Γ(u) dΓ(u) + e−Γ(t)h̃(t)
)
=: 11{s<τ}e

Γ(s)J̃ .
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To conclude the proof, it is enough to observe that Fubini’s theorem yields

J̃ =

∫ t

s

dΓ(u)e−Γ(u)

∫ u

s

h(v) dΓ(v) + e−Γ(t)h̃(t)

=

∫ t

s

dΓ(u)h(u)

∫ t

u

e−Γ(v) dΓ(v) + e−Γ(t)

∫ t

s

h(u) dΓ(u)

=

∫ t

s

h(u)e−Γ(u) dΓ(u),

as expected. Writing

Mh
t =

∫ t

0

h(u)dHu −
∫ t

0

(1−Hu)h(u) dΓ(u) ,

the differential form of Mh is obtained. �

Example 2.1.6 In the case where N is an inhomogeneous Poisson process with deterministic in-

tensity λ and τ is the first time when N jumps, let Ht = Nt∧τ . It is well known that Nt−
∫ t

0

λ(s)ds

is a martingale (indeed, N can be viewed as a standard Poisson process Ñ of intensity 1, changed
of time; Nt = ÑΛ(t) with Λt =

∫ t
0
λ(s)ds. (We shall come back to this change of time methodology

latter). Therefore, the process stopped at time τ is also a martingale, i.e., Ht −
∫ t∧τ

0

λ(s)ds is a

martingale.

Exercise 2.1.7 Take the example of Exercise 2.1.3 and assume that Γ is continuous. Prove that

E(Y |Ht) = 11{τ≤t}h(τ) + 11{t<τ}

∫ ∞

t

h(u)eΓ(t)−Γ(u) dΓ(u) .

Find a predictable process φ so that dYt = φtdMt. ▹

Exercise 2.1.8 Let B be a Brownian motion and τ = inf{t Bt = a}. Find the FB compensator of
τ . Find the F0 compensator of τ , when F0 is the trivial filtration. ▹

Exercise 2.1.9 a) Prove that the process Lt : = 11{τ>t} exp

(∫ t

0

γ(s)ds

)
is an H-martingale and

Lt = 1−
∫
]0,t]

Lu−dMu (2.1.5)

In particular, for t < T ,

E(11{τ>T}|Ht) = 11{τ>t} exp

(
−
∫ T

t

γ(s)ds

)
.

b) Let dQ|Ht
= LtdP|Ht

. Prove that Q(τ ≤ t) = 0. ▹

Exercise 2.1.10 a) Let F be continuous and h : R+ → R be a (bounded) Borel measurable function.
Prove that the process

Yt := exp
(
11{τ≤t}h(τ)

)
−
∫ t∧τ

0

(eh(u) − 1) dΓ(u) (2.1.6)

is a H-martingale. Find a predictable process φ such that

dYt = φtdMt

▹
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Exercise 2.1.11 Assume that Γ is a continuous function. Let h : R+ → R be a non-negative Borel
measurable function such that the random variable h(τ) is integrable. Prove that the process

Yt := (1 + 11τ≤th(τ)) exp
(
−
∫ t∧τ

0

h(u) dΓ(u)
)
. (2.1.7)

is an H-martingale. Find a predictable process φ such that dYt = φtdMt . Give a condition on h so
that Y is positive. In that case, find a predictable process ψ such that dYt = Yt−ψtdMt. ▹

Exercise 2.1.12 In this exercise, F is only continuous on right, and F (t−) is the left limit of F at
point t. Prove that the process (Mt, t ≥ 0) defined as

Mt = Ht −
∫ τ∧t

0

dF (s)

1− F (s−)
= Ht −

∫ t

0

(1−Hs)
dF (s)

1− F (s−)

is an H-martingale. ▹

2.2 Compensator of a Random Time with respect to a Refer-
ence Filtration

We denote (with an abuse of notation) by G = F ∨ H the enlarged filtration which is the smallest
right-continuous filtration which contains F, making τ a stopping time. More precisely

Gt = ∩s>tFs ∨Hs

It is straightforward to establish that any Gt-measurable random variable is equal, on the set {τ > t},
to an Ft-measurable random variable. Indeed, Gt-measurable random variables are generated by
xt(g(τ)11τ≤t+ h(t)11t<τ ), where xt is Ft measurable and g, h are Borel functions. In particular, if Y
is a G-adapted process, there exists an F-adapted process Y F, called the predefault-value of Y , such
that 11{t<τ}Yt = 11{t<τ}Y

F
t . Under the standing assumption that Gt := P (τ > t | Ft) > 0 for t ∈ R+,

the uniqueness of pre-default value process follows from [41, p.186]. Moreover, if Y is G-predictable
its pre-default value Y F coincide up to τ included (see [41, p.186]), namely,

11{t≤τ}Yt = 11{t≤τ}Y
F
t .

If Y is G-adapted, it is standard to check that Y ≥ 0 implies Y F ≥ 0.

2.2.1 Key Lemma

We denote by Ft = P(τ ≤ t|Ft) the conditional cumulative probability of τ given the information
Ft and we set1 Gt = P(τ > t|Ft) = 1− Ft. We assume Gt > 0, for t > 0. See [8] for the case where
G can vanish.

Lemma 2.2.1 Key Lemma 1. Let X be an FT -measurable integrable r.v. Then, for t ≤ T

E(X11T<τ |Gt) = 11{τ>t}
E(X11{τ>T}|Ft)
E(11{τ>t}|Ft)

= 11{τ>t}
1

Gt
E(XGT |Ft) . (2.2.1)

Proof: Note that
11{τ>t}E(X|Gt) = 11{τ>t}xt

1Latter on, we shall denote frequently by Z this quantity, as it is done in the literature on enlargement of filtration.
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where xt is Ft-measurable, and taking conditional expectation w.r.t. Ft of both members, we deduce

xt =
E(X11{τ>t}|Ft)
E(11{τ>t}|Ft)

= 11{τ>t}
1

Gt
E(XGT |Ft) .

�

Lemma 2.2.2 Key lemma 2. Let h be an F-predictable process. Then, for t < T ,

E(hτ11τ<T |Gt) = hτ11{τ<t} + 11{τ>t}
1

Gt
E(
∫ T

t

hudFu|Ft) (2.2.2)

Proof: In a first step, the result is established for processes h of the form ht = 11]u,v](t)Ku where
Ku ∈ Fu. In that case, for t < u < v < T , applying the key lemma

E(hτ11τ<T |Gt) = E(Ku11u<τ<v|Gt) = 11t<τ
1

Gt
E(Ku11u<τ<v|Ft)

It remains to note that

E(Ku11u<τ<v|Ft) = E(Ku11τ<v|Ft)− E(Ku11τ<u|Ft)

= E(Ku(1− Fv)|Ft)− E(Ku(1− Fu)|Ft) = E(
∫ T

t

hrdFr|Ft)

The other cases are done in the same way. The result follows by approximation. �

As we shall see, this elementary result will allow us to compute the value of credit derivatives.

Comment 2.2.3 It can be useful to understand the meaning of the lemma in the case where, as in
the structural model, the default time is an F-stopping time.
We are not interested in this lemma with G-predictable processes, mainly because any G-predictable
process is equal, on {t ≤ τ} to an F-predictable process.

2.2.2 Martingales

Proposition 2.2.4 The process (Ft, t ≥ 0) is an F-submartingale. The process G is an F-supermartingale.
Furthemore,

{τ > t} ⊂ {Gt > 0} (2.2.3)

Proof: From definition, and from the increasing property of the process H, for s < t:

E(Ft|Fs) = E (E(Ht|Ft) |Fs) = E (Ht|Fs) ≥ E (Hs|Fs) = Fs .

Let At = {Gt > 0}. Then P(Act ∩ {τ > t}) = E(11Ac
t
P(τ > t|Ft)) = 0. �

As a supermartingale, G admits a Doob-Meyer decomposition

Gt = µt −Apt (2.2.4)

where µ is a martingale and Ap is a predictable increasing process (we have used that G, being
bounded is of class (D)).

Proposition 2.2.5 (i) The process Lt = (1−Ht)/Gt is a G -martingale.
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(ii) If X is an F-martingale, XL is a G -martingale.

(iii) If the process G is decreasing and continuous, the process Mt = Ht−Γ(t∧τ) is a G -martingale
where Γ = − lnG.

Proof: (i) From the key lemma, for t > s

E(Lt|Gs) = E(11{τ>t}
1

Gt
|Gs) = 11{τ>s}

1

Gs
E(11{τ>t}

1

Gt
|Fs) = 11{τ>s}

1

Gs
E(

1

Gt
Gt|Fs) = 11{τ>s}

1

Gs
= Ls

(ii) From the key lemma,

E(LtXt|Gs) = E(11{τ>t}LtXt|Gs)

= 11{τ>s}
1

Gs
E(11{τ>t}

1

Gt
Xt|Fs)

= 11{τ>s}
1

Gs
E(E(11{τ>t}|Ft)

1

Gt
Xt|Fs) = LsE(Xt|Fs) = LsXs.

(iii) From integration by parts formula (H is a finite variation process, and Γ an increasing continuous
process):

dLt = (1−Ht)e
ΓtdΓt − eΓtdHt

and the process Mt = Ht − Γ(t ∧ τ) can be written

Mt ≡
∫
]0,t]

dHu −
∫
]0,t]

(1−Hu)dΓu = −
∫
]0,t]

e−ΓudLu

and is a G-local martingale since L is G-martingale. (It can be noted that, if Γ is not increasing,
the differential of eΓ is more complicated.) �

Comment 2.2.6 Assertion (ii) seems to be related with a change of probability. It is important to
note that here, one changes the filtration, not the probability measure. Moreover, setting dQ∗ = LdP
does not define a probability Q equivalent to P, since the positive martingale L vanishes. The
probability Q∗ would be only absolutely continuous w.r.t. P. See Collin-Dufresne and Hugonnier
[36].

Proposition 2.2.7 Let Ap be defined in (2.2.4). The process

Mt = Ht −
∫ t∧τ

0

dApu
Gu−

=: Ht − Λt∧τ

is a G-martingale.

Proof: We give the proof in the case where G is continuous in two steps. In the proof A = Ap.
In a first step, we prove that, for s < t

E(Ht|Gs) = Hs + 11s<τ
1

Gs
E(At −As|Fs)

Indeed,

E(Ht|Gs) = 1− P(t < τ |Gs) = 1− 11s<τ
1

Gs
E(Gt|Fs) = 1− 11s<τ

1

Gs
E(µt −At|Fs)

= 1− 11s<τ
1

Gs
(µs −As − E(At −As|Fs)) = 1− 11s<τ

1

Gs
(µs − E(At −As|Fs))

= 11τ≤s + 11s<τ
1

Gs
E(At −As|Fs) .
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In a second step, we prove that, setting, for any v, Kv =
∫ v
0
(1−Hs)

dAs

Gs
,

E(Kt∧τ |Gs) = Ks∧τ + 11s<τ
1

Gs
E(At −As|Fs)

Indeed, from the key formula, for fixed t and hu = Kt∧u

E(Kt∧τ |Gs) = Kt∧τ11τ≤s + 11s<τ
1

Gs
E
(∫ ∞

s

Kt∧udFu|Fs
)

= Kτ11τ≤s + 11s<τ
1

Gs
E
(∫ t

s

KudFu +

∫ ∞

t

KtdFu|Fs
)

= Ks∧τ11τ≤s + 11s<τ
1

Gs
E
(∫ t

s

KudFu +KtGt|Fs
)

We now use IP formula, using the fact that K has finite variation and is continuous

d(Kt(1− Ft)) = −KtdFt + (1− Ft)dKt = −KtdFt + dAt

hence∫ t

s

KudFu+Kt(1−Ft) = −Kt(1−Ft)+Ks(1−Fs)+At−As+Kt(1−Ft) = Ks(1−Fs)+At−As .

It follows that

E(Kt∧τ |Gs) = Ks∧τ11τ≤s + 11s<τ
1

Gs
E (KsGs +At −As|Fs)

= Ks∧τ + 11s<τ
1

Gs
E (At −As|Fs) .

Assuming that A is absolutely continuous w.r.t. the Lebesgue measure and denoting by a its
derivative, we have proved the existence of a F-adapted process λ, called the intensity rate such
that the process

Ht −
∫ t∧τ

0

λudu = Ht −
∫ t

0

(1−Hu)λudu (2.2.5)

is a G-martingale. More precisely, λs = as
1−Fs

.
For the general case, see Bielecki and Rutkowski [28] or Elliott et al [53] �

Lemma 2.2.8 If (2.2.5) holds, the process λ satisfies

λt = lim
h→0

1

h

P(t < τ < t+ h|Ft)
P(t < τ |Ft)

.

Proof: The martingale property of M implies that

E(11t<τ<t+h|Gt) =
∫ t+h

t

E((1−Hs)λs|Gt)ds

It follows that, on {t < τ}

λt =
1

h
limP(t < τ < t+ h|Gt) = lim

h→0

1

h

P(t < τ < t+ h|Ft)
P(t < τ |Ft)

.

�
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Comment 2.2.9 We assume G continuous. We recall that the Doob-Meyer decomposition of G is
denoted Gt = µt −At. From Lt = (1−Ht)(Gt)

−1, one obtains

dLt = −(1−Ht−)
1

G2
t

(dµt − dAt) +
1

G3
t

d⟨µ⟩t −
1

Gt
dHt

it follows that
dLt −

1

Gt
dMt = −(1−Ht)

1

G2
t

(
dµt −

1

Gt
d⟨µ⟩t

)
hence, due to the G-martingale property of L, the quantity (1−Ht)

1
G2

t

(
dµt − 1

Gt
d⟨µ⟩t

)
corresponds

to a G-local martingale.

Proposition 2.2.10 Let Λp be the G-predictable compensator of H. The random variable Λpτ has
a unit exponential law.

Proof: Let f be a bounded Borel function, F (t) =
∫ t
0
f(s)ds and

Mf
t :=

∫ t

0

f(Λps)dMs = f(Λpτ )11τ≤t −
∫ t

0

f(Λps)dΛ
p
s = f(Λpτ )11τ≤t − F (Λpt )

Then, for t = ∞, using the fact that Λp∞ = Λpτ , one has E(f(Λpτ )) = E(F (Λpτ )) and the result follows.
�

2.2.3 Covariation process

We suppose Ap continuous, and write Mt = Ht − Λt∧τ the fundamental martingale M , where
Ap is continuous. The covariation process of M is obviously H: indeed, M being a pure jump
martingale, M2

t −
∑
s≤t(∆Ms)

2 is a martingale. It suffices to note that (∆Ms)
2 = ∆Ms = ∆Hs so

that
∑
s≤t(∆Ms)

2 = Ht. It follows that M2
t − (Ht − Λ(t ∧ τ))− Λ(t ∧ τ) = M2

t −Mt − Γ(t ∧ τ) is
a martingale, so that M2

t − Λ(t ∧ τ) is a martingale too, and the predictable covariation process is
Λ(t ∧ τ).

2.3 Cox Processes and Extensions

In this section, we present a particular construction of random times. This construction is the basic
one to define a default time in finance.In a credit risk setting, the random variable τ represents the
time when a default occurs. In the literature, models for default times are often based on a threshold:
the default occurs when some driving process X reaches a given barrier. Based on this observation,
we consider the random time on IR+ in a general threshold model. Let X be a stochastic process
and Θ be a barrier which we shall make precise later. Define the random time as the first passage
time

τ := inf{t : Xt ≥ Θ} .

In classical structural models, a reference filtration F is given, the process X is an F-adapted process
associated with the value of a firm and the barrier Θ is a constant. So, τ is an F-stopping time. If
τ is a predictable stopping time (e.g., if F is a Brownian filtration), the compensator of Ht = 11τ≤t
is Ht. The goal is then to compute the conditional law of the default P (τ > θ|FX

t ), for θ > t

In reduced form approach (say, if τ is not the first time where a process reaches a constant
barrier), we shall deal with two kinds of information: some information denoted as (Ft, t ≥ 0) and
the information from the default time, i.e. the knowledge of the time where the default occurred in
the past, it the default has appeared. More precisely, this information is modeled by the filtration
H generated by the default process H (completed with negligeable sets).
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At the intuitive level, F is generated by prices of some assets, or by other economic factors (e.g.,
interest rates). This filtration can also be a subfiltration of the prices. The case where F is the
trivial filtration is exactly what we have studied in the toy model. Though in typical examples F is
chosen to be the Brownian filtration, most theoretical results do not rely on such a specification of
the filtration F.

2.3.1 Construction of Cox Processes with a given stochastic intensity

Let (Ω,G,P) be a probability space endowed with a filtration F. A nonnegative F-adapted process λ
is given. We assume that there exists, on the space (Ω,G,P), a random variable Θ, independent of
F∞, with an exponential law: P(Θ ≥ t) = e−t. We define the default time τ as the first time when
the increasing process Λt =

∫ t
0
λs ds is above the random level Θ, i.e.,

τ = inf {t ≥ 0 : Λt ≥ Θ}.

In particular, using the increasing property of Λ, one gets {τ > s} = {Λs < Θ}. We assume that
Λt <∞,∀t, Λ∞ = ∞, hence τ is a real-valued r.v.. One can also define τ as

τ = inf {t ≥ 0 : Λt ≥ − lnU}

where U has a uniform law and is independent of F∞. Indeed, the r.v. − lnU has an exponential
law of parameter 1, since {− lnU > a} = {U < e−a}.

We write as usual Ht = 11{τ≤t} and Ht = σ(Hs : s ≤ t). We introduce the smallest right-
continuous filtration G which contains F and turns τ in a stopping time. (We denote by F the
original Filtration and by G the enlarGed one.) As already said, we shall write G = F ∨H.

It is easy to describe the events which belong to the σ-field Gt on the set {τ > t}. Indeed, if
Gt ∈ Gt, then Gt ∩ {τ > t} = Bt ∩ {τ > t} for some event Bt ∈ Ft.

Therefore any Gt-measurable random variable Yt satisfies 11{τ>t}Yt = 11{τ>t}yt, where yt is an
Ft-measurable random variable.

Comments 2.3.1 (i) In order to construct the r.v. Θ, one needs to enlarge the probability space
as follows. Let (Ω̂, F̂ , P̂) be an auxiliary probability space with a r.v. Θ with exponential law. We
introduce the product probability space (Ω̃, G̃, Q̃) = (Ω× Ω̂,F∞ ⊗ F̂ ,Q⊗ P̂).
(ii) Another construction for the default time τ is to choose τ = inf {t ≥ 0 : ÑΛt = 1}, where
Λt =

∫ t
0
λs ds and Ñ is a Poisson process with intensity 1, independent of the filtration F. This

second method is in fact equivalent to the first. Cox processes are used in a great number of studies
(see, e.g., [97])

2.3.2 Conditional Expectations

Lemma 2.3.2 The conditional distribution function of τ given the σ-field Ft is for t ≥ s

P(τ > s|Ft) = exp
(
− Λs

)
.

Proof: The proof follows from the equality {τ > s} = {Λs < Θ}. From the independence assump-
tion and the Ft-measurability of Λs for s ≤ t, we obtain

P(τ > s|Ft) = P
(
Λs < Θ

∣∣∣Ft) = exp
(
− Λs

)
.

In particular, we have
P(τ ≤ t|Ft) = P(τ ≤ t|F∞), (2.3.1)
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and, for t ≥ s, P(τ > s|Ft) = P(τ > s|Fs). Let us notice that the process Ft = P(τ ≤ t|Ft) is here
an increasing process, as the right-hand side of (2.3.1) is. �

The conditional density of τ , and the law of τ can be easily computed. One has P(τ > t) =
E(e−Λt), so that P(τ ∈ dθ) = E(λθe−Λθ )dθ and, for θ ≤ t

P(τ ∈ dθ|Ft) = λθe
−Λθdθ

For θ > t, one has P(τ > θ|Ft) = P(τ > θ|Fθ|Ft) = E(e−Λθ |Ft) = E(
∫∞
θ
λue

−Λudu|Ft), hence

P(τ ∈ dθ|Ft) = E(λθe−Λθ |Ft)dθ

Remark 2.3.3 If the process λ is not non-negative, we get,

{τ > s} = {sup
u≤s

Λu < Θ} ,

hence for s < t
P(τ > s|Ft) = exp(− sup

u≤s
Λu) .

More generally, some authors define the default time as

τ = inf {t ≥ 0 : Xt ≥ Θ}

where X is a given F-semi-martingale. Then, for s ≤ t

P(τ > s|Ft) = exp(− sup
u≤s

Xu) .

Exercise 2.3.4 Prove that τ is independent of F∞ if and only if λ is a deterministic function. ▹

2.3.3 Immersion property

Lemma 2.3.5 Let X be an F∞-measurable integrable r.v.. Then

E(X|Gt) = E(X|Ft) . (2.3.2)

Proof: To prove that E(X|Gt) = E(X|Ft), it suffices to check that

E(Bth(τ ∧ t)X) = E(Bth(τ ∧ t)E(X|Ft))

for any Bt ∈ Ft and any h = 11[0,a]. For t ≤ a, the equality is obvious. For t > a, we have from
(2.3.1)

E(Bt11{τ≤a}E(X|Ft)) = E(E(BtX|Ft)E(11{τ≤a}|Ft)) = E(XBtE(11{τ≤a}|Ft))
= E(BtXE(11{τ≤a}|F∞)) = E(BtX11{τ≤a})

as expected. �

Remark 2.3.6 Let us remark that (2.3.2) implies that every F-martingale is a G-martingale.
However, equality (2.3.2) does not apply to any G∞-measurable random variable; in particular
P(τ ≤ t|Gt) = 11{τ≤t} is not equal to Ft = P(τ ≤ t|Ft).

This lemma implies that any (u.i.) F-martingale is a G martingale. This property is known as
the immersion property of F with respect to G and will be studied in the next chapter. Let us give
another proof of this result.
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Lemma 2.3.7 In a Cox model, any F-martingale is a G martingale

Proof: Since Θ is independent from F, it is obvious that any F-martingale M is an Fτ = F ∨ σ(Θ)
martingale. Since G ⊂ Fτ , it follows that M is a G martingale. �

Exercise 2.3.8 Prove that H is, in general, not immersed in G. Prove that, if λ is deterministic,
H is immersed in G. ▹

2.3.4 Predictable Representation Theorem, Change of Probability

In this section, we assume the condition (C), that is any F-martingale is continuous. We study the
form of a general u.i. G martingale. Restricting in the last step our attention to the case where F
is a Brownian filtration, we shall establish a predictable representation theorem, similar to the one
given in Kusuoka [96].

Predictable Representation Theorem

We start with u.i. G-martingales of the form Yt = E(Xf(τ)|Gt) where X ∈ F∞ is integrable and f
is a bounded Borel function. From the key lemma

Yt = f(τ)E(X|Gt)11t>τ + 11t≤τe
ΛtE(X

∫ ∞

t

f(u)e−Λuλudu|Ft) =: f(τ)E(X|Gt)11t>τ + 11t≤τY
F
t

From immersion, and hypothesis (C), E(X|Gt) = E(X|Ft) =: Xt is a continuous F-martingale. We
write

E(X
∫ ∞

t

f(u)e−Λuλudu|Ft) = Xf
t −Xt

∫ t

0

f(u)e−Λuλudu

where Xf
t := E(X

∫∞
0
f(u)e−Λuλudu|Ft) is an F-martingale. Finally, introducing the G martingale

Lt = 11t≤τe
Λt

Yt = Xt

∫ t

0

f(u)dHu + Lt

(
Xf
t −Xt

∫ t

0

f(u)e−Λuλudu

)
By integration by parts, using that the F-martingales are orthogonal to L, and after easy sim-

plifications, we get

dYt = Xtf(t)(dHt − (1−Ht)λtdt) + ψtdLt + φtdXt + Lt−dX
f
t

where ψt = Xf
t −Xt

∫ t
0
f(u)e−Λuλudu, φt =

∫
]0,t[

f(u)dHu − Lt−
∫ t
0
f(u)λue

Λudu are G-predictable
processes. Finally

dYt = (Xtf(t)− ψtLt−)dMt + φtdXt + Lt−dX
f
t

In the case where F is a Brownian filtration, any continuous F-martingale admits a representation
w.r.t. the Brownian motionW . Being true for u.i. martingales, of the specific form, the result extend
and we have obtained

Theorem 2.3.9 In the Cox model, if F is a Brownian filtration generated by W , any G martingale
admits a representation of the form

Yt = Y0 +

∫ t

0

ψsdMs +

∫ t

0

φsdWs

where ψ and φ are predictable processes, and ψs = Ys − Y F
s where Y F is the predefault value of Y .

Remark 2.3.10 This result will be extended in Theorem 3.2.14.
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Change of Probability

We assume that we are under the conditions of the previous theorem, i.e. under condition (C), in
a Cox model. We are interested with the impact of a change of probability. Due to Theorem 2.3.9,
any equivalent probability measure Q can be written as dQ|Gt

= LtdP|Gt; where L satisfies

dLt = Lt− (ψtdWt + γtdMt)

where ψ and γ are predictable processes, with γ > −1 to preserve positivity of L. Indeed, the
process L can be written as

Lt = exp
( ∫ t

0

ψsdWs −
1

2

∫ t

0

ψ2
sds
)
exp

(
−
∫ t

0

γsλ
G
s ds

)
(1 + γτ )

Ht

where λGt = λt(1−Ht). Under Q, the processes WQ and MQ defined below, ae Q martingales:

WQ
t :=Wt −

∫ t

0

ψsds , MQ
t =Mt −

∫ t

0

λGs γsds

Note that the F-intensity of τ under Q is λQt = λt(1 + γt) (so that H −
∫ ·
0
(1−Hs)λs(1 + γs)ds is a

(Q,G) martingale).

In general, the immersion hypothesis between F and G is not satisfied under Q (see Coculescu et
al. [34], Section 3.1.2 and Section 7.6 for a counterexample). However, if ψ is taken as F-predictable,
then, from Bayes formula, denotingℓt = EP(Lt|Ft) = exp

( ∫ t
0
ψsdWs − 1

2

∫ t
0
ψ2
sds
)
, one has

Q(τ > t|Ft) =
1

ℓt
EP(11τ>tLt|Ft) = EP(11τ>t exp

(
−
∫ t

0

γsλsds
)
|Ft) = exp

(
−
∫ t

0

λs(1 + γs)ds

)
In can be noted that Θ ∈ Gτ (indeed Θ =

∫ τ
0
λsds) and that, under a change of probability in

the filtration G, the independence of F and Θ can fail.

2.3.5 Extension to different barrier

One can define the time of default as

τ = inf{t : Λt ≥ Σ}

where Σ a non-negative r.v. independent of F∞. This model reduces to the previous one: if Φ is
the cumulative function of Σ, the r.v. Φ(Σ) has a uniform distribution and

τ = inf{t : Φ(Λt) ≥ Φ(Σ)} = inf{t : Ψ−1[Φ(Λt)] ≥ Θ}

where Ψ is the cumulative function of the exponential law. Then,

Ft = P(τ ≤ t|Ft) = P(Λt ≥ Σ|Ft) = 1− exp
(
−Ψ−1(Φ(Λt))

)
.

2.3.6 Dynamics of prices in a default setting

We assume here that F-martingales are continuous.

Defaultable Zero-Coupon Bond

A defaultable Zero-coupon Bond of maturity T pays one monetary unit at time T , if the default has
not occurred before T . Let Q be a risk-neutral probability and B(t, T ) be the price at time t of a
default-free bond paying 1 at maturity T given by

B(t, T ) = EQ

(
exp

(
−
∫ T

t

rs ds
) ∣∣∣Ft).
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The market price D(t, T ) of a defaultable zero-coupon bond with maturity T is

D(t, T ) = EQ

(
11{T<τ} exp

(
−
∫ T

t

rs ds
) ∣∣∣Gt)

= 11{τ>t}EQ

(
exp

(
−
∫ T

t

[rs + λs] ds
) ∣∣∣Ft).

Here, we are working in a Cox model under Q, i.e. τ = inf{t
∫ t
0
λsds ≥ Θ} where Θ is independent

of F under Q. In particular, Q(τ > t|Ft) = exp−
∫ t
0
λsds). Then, in the case r = 0,

D(t, T ) = 11t<τe
ΛtQ(τ > T |Ft) = Ltmt

with mt = Q(τ > T |Ft) = EQ(e
−ΛT |Ft). Then,

dD(t, T ) = mtdLt + Lt−dmt = −mtLt−dMt + Lt−dmt = −D(t−, T )dMt + Lt−dmt

In the particular case where λ is deterministic, mt = e−ΛT and dmt = 0. Hence D(t, T ) = Lte
−ΛT

and
dD(t, T ) = −D(t−, T )dMt .

Remark 2.3.11 If P is a probability such that Θ is independent of F∞ and Q a probability equiv-
alent to P, it is not true, in general that Θ is independent of F∞ and has an exponential law under
Q. Changes of probabilities that preserve the independence of Θ and F∞ change the law of Θ, hence
the intensity.

Exercise 2.3.12 Write the risk-neutral dynamics of D for a general interest rate r. ▹

Recovery with Payment at maturity

We assume here that r = 0. We consider a contract which pays Kτ at date T , if τ ≤ T and no
payment in the case τ > T , where K is a given F-predictable process.

An immediate application of the key lemma shows that the price at time t of this contract is

St = E(Kτ11τ<T |Gt) = Kτ11τ<t + 11t<τE(Kτ11t<τ<T |Gt)

= Kτ11τ<t + 11t<τe
ΛtE(

∫ T

t

KudFu|Ft)

where Fu = P (τ ≤ u|Fu) = 1− e−Λu , or

St = Kτ11τ<t + 11t<τe
ΛtE(

∫ T

t

Kue
−Λuλudu|Ft)

or

St =

∫ t

0

KudHu + Lt

(
−
∫ t

0

Kue
−Λuλudu+mK

t

)
where mK

t = E(
∫ T
0
Kue

−Λuλudu|Ft). From dLt = −Lt−dMt and

d(LmK)t = Lt−dm
K
t +mK

t−dLt + d[mK , L]t = Lt−dm
K
t +mK

t−dLt

we deduce that

dSt = Kt(dHt − λt(1−Ht)dt)− St−dMt + Ltdm
K
t = (Kt − St−)dMt + Ltdm

K
t

Note that, since mK is continuous, its covariation process with L is null and that one can write
Ltdm

K
t instead of Lt−dmK

t . Note also that, from the definition, the process S is a G-martingale.
This can be checked looking at the dynamics, since mK is a F, hence a G, martingale.(WHY?)

Exercise 2.3.13 Write the risk-neutral dynamics of the price of the recovery for a general interest
rate r. ▹
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Recovery with Payment at Default Time

Let K be a given F-predictable process. The payment Kτ is done at time τ . Then, in the case r = 0,

St = 11t<τE(Kτ11t<τ<T |Gt) = 11t<τe
ΛtE(

∫ T

t

KudFu|Ft) .

The dynamics of S is

dSt = −St−dMt + Lt(dm
K
t −Kte

−Λtλt)dt = −St−dMt + (1−Ht)(e
ΛtdmK

t −Ktλt)dt

and the process St+Kτ11{τ<t} = St+
∫ t
0
KsdHs = E(Kτ |Gt) is a G-martingale, as well as the process

St +
∫ t∧τ
0

Ksλsds. The quantity Ktλt which appears in the dynamics of S can be interpreted as a
dividend Kt paid at rate λt (or with probability λtdt = P (t < τ < t+ dt|Ft)/P (t < τ |Ft))

Price and Hedging a Defaultable Call

We assume that

• the savings account Y 0
t = 1

• a risky asset with risk-neutral dynamics

dYt = YtσdWt

where W is a Brownian motion and σ is a constant

• a DZC of maturity T with price D(t, T )

are traded. The reference filtration is that of the BM W . The price of a defaultable call with payoff
11T<τ (YT −K)+ is

Ct = E(11T<τ (YT −K)+|Gt) = 11t<τe
ΛtE(e−ΛT (YT −K)+|Ft)

= Ltm
Y
t

with mY
t = E(e−ΛT (YT −K)+|Ft). Hence

dCt = Ltdm
Y
t −mY

t Lt−dMt

• In the particular case where λ is deterministic,

mY
t = e−ΛTE((YT −K)+|Ft) = e−ΛTCYt

where CY is the price of a call in the Black Scholes model. This quantity is CYt = CY (t, Yt) and
satisfies dCYt = ∆tdYt where ∆tis the Delta-hedge (∆t = ∂yC

Y (t, Yt))

Ct = 11t<τe
Λte−ΛTCY (t, Yt) = Lte

−ΛTCY (t, Yt) = D(t, T )CY (t, Yt)

From
Ct = D(t, T )CY (t, Yt)

we deduce

dCt = e−ΛT (LtdC
Y + CY dLt) = e−ΛT (Lt∆tdYt − CY LtdMt)

= e−ΛT (Lt∆tdYt − CY LtdMt)

Therefore, using that dD(t, T ) = mtdMt = −e−ΛTLtdMt we get

dCt = e−ΛTLt∆tdYt − CY dD(t, T ) = e−ΛTLt∆tdYt +
Ct

D(t, T )
dD(t, T )
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hence, an hedging strategy consists of holding in particular Ct

D(t,T ) DZCs.

• In the general case, one obtains

dCt =
Ct−

D(t, T )
dD(t, T ) + Lt

mY
t

mt
dmt + Ltdm

Y
t =

Ct−
D(t, T )

dD(t, T ) + ϑtdYt

An hedging strategy consists of holding Ct−
D(t,T ) DZCs.

Credit Default Swap

Definition 2.3.14 A T -maturity credit default swap (CDS) with a constant rate κ and recovery
at default is a contract. The seller agrees to pay the recovery at default time, the buyer pays (in
continuous time) the premium κ till maturity or to default time, whichever occurs the first. The
F-predictable process δ : [0, T ] → R represents the default protection, and the constant κ is the fixed
CDS rate (also termed the spread or premium of the CDS).

Let Bt = exp
∫ t
0
rsds. The cumulative ex-dividend price of a CDS equals, for any t ∈ [0, T ], to

the expectation of the remaining discounted future payoffs

St = BtEQ((Bτ )
−1δτ11t<τ≤T −

∫ T∧τ

t

κB−1
s ds|Gt)

The cumulative price is

St = BtEQ((Bτ )
−1δτ11τ≤T −

∫ T∧τ

0

κB−1
s ds|Gt)

We denote by D the dividend process associated with the CDS:

Dt = Zt11τ≤t − κ(t ∧ τ)

An immediate application of the key lemma gives the following result

Proposition 2.3.15 The ex-dividend price of a CDS equals, for any t ∈ [0, T ],

St(κ) = 11{t<τ}
Bt
Gt

EQ

(∫ T

t

B−1
u Guδuλu du− κ

∫ T

t

B−1
u Gu du

∣∣∣Ft) , (2.3.3)

and thus the cumulative price of a CDS equals, for any t ∈ [0, T ],

Scum
t (κ) = 11{t<τ}

Bt
Gt

EQ

(∫ T

t

B−1
u Guδuλu du− κ

∫ T

t

B−1
u Gu du

∣∣∣Ft)+Bt

∫
]0,t]

B−1
u dDu. (2.3.4)

An easy computation yields to

Corollary 2.3.16 The dynamics of the ex-dividend price S(κ) on [0, T ] are

dSt(κ) = −St−(κ) dMt + (1−Ht)
(
rtSt + κ− λtδt

)
dt+ (1−Ht)G

−1
t Bt dnt,

where the F-martingale n is given by the formula

nt = EQ

(∫ T

0

B−1
u Guδuλu du− κ

∫ T

0

B−1
u Gu du

∣∣∣Ft) . (2.3.5)

The dynamics of the cumulative price Scum(κ) on [0, T ] are

dScum
t (κ) = rtS

cum
t (κ) dt+

(
δt − St−(κ)

)
dMt + (1−Ht)G

−1
t Bt dnt
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2.3.7 Generalisation

We start with the filtered space (Ω,G,F,P) and the random variable Θ, independent of F∞, with
an exponential law. We define the default time τ as the first time when the increasing process Γ is
above the random level Θ, i.e.,

τ = inf {t ≥ 0 : Γt ≥ Θ}.

We do not assume any more that Γ is absolutely continuous, and we are even interested with the
case where Γ fails to be continuous.

The same proof as before yields to

P(τ > t|Ft) = e−Γt

However, since Γ fails to be predictable, the compensator of H is no more Γ.

Let us study the following example. Let X be a compound Poisson process, with positive jumps,
i.e.,

Xt =

Nt∑
n=1

Yn

where N is a Poisson process and Yn positive random variable, i.i.d. and independent from N .

Let ψ(u) =
∫∞
0

(1 − euy)F (dy) where F is the cumulative distribution function of Y1. Then,
euXt+tλψ(u) is a martingale. Then, from Gt = e−Xt = e−Xt+tλψ(−1)e−tλψ(−1) = nte

−tλψ(−1) where
n is a martingale one deduce, by integration by parts the Doob-Meyer decomposition that

dGt = e−tλψ(−1)dNt − e−tλψ(−1)ntλψ(−1)dt

and it follows that
11τ≤t − (t ∧ τ)λψ(−1)

is a martingale.

One can also compute directly the Doob-Meyer decomposition of supermartingale G from Itô’s
formula. Let µ the jump measure of X

e−Xt = 1+

∫ t

0

∫
(e−(Xu−+y) − e−Xu−) (µ(du, ds)− duλF (dy))+

∫ t

0

∫
(e−(Xu+y) − e−Xu)duλF (dy)

where the quantity
∫ t
0

∫
(e−(Xu−+y)−e−Xu−) ((µ(du, ds)− duλF (dy))) represents a martingale. Hence

the form of the compensator.

2.3.8 Several defaults

We present here a toy model with two random times, to underline the rôle of the filtration

We consider the case where the sources of randomness are the occurrence of two random times
τ1 and τ2 (finite positive random variables).

We denote by H1 the filtration generated by the process (H1
t := 11τ1≤t), by H2 the filtration

generated by the process (H2
t := 11τ2≤t) and by G the filtration generated by both processes G =

H1 ∨H2.

We denote by G(t, s) = P(τ1 > t, τ2 > s) the survival probability of the pair (τ1, τ2) assumed to
be strictly positive and continuously differentiable in both variables. Note that G(t, 0) = P(τ1 > t)
is the survival probability of τ1.

We denote by G(t, s) = P(τ1 > t, τ2 > s) the survival probability of the pair (τ1, τ2) assumed to
be strictly positive and continuously differentiable in both variables. Note that G(t, 0) = P(τ1 > t)
is the survival probability of τ1. Here, we assume that G(t, 0) = e−λt, with λ > 0.
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Proposition 2.3.17 The compensator of τ1 can be computed in two filtrations:

M1
t := H1

t − λ(t ∧ τ1) = H1
t −

∫ t

0

(1−H1
s)λds, is a (H1,P)-martingale,

M2
t := H1

t −
∫ t

0

(1−H1
s)λ

2
sds, is a (G,P)-martingale

where
λ2t = 11{t≤τ2}

−∂1G(t, t)
G(t, t)

+ 11{τ2≤t}
∂12G(t, τ2)

−∂1G(t, τ2)
.

Proof: The fact that λ2(1−H1) is the G-intensity rate of τ1 is obtained computing the Doob-Meyer
decomposition of the supermartingale Z1

t := P(τ1 > t|H2
t ), obtained as follows.

Z1
t = H2

tP(τ1 > t|τ2) + (1−H2
t )
P(τ1 > t, τ2 > t)

P(τ2 > t)
= H2

th(t, τ2) + (1−H2
t )ψ(t)

where
h(t, v) =

∂2G(t, v)

∂2G(0, v)
; ψ(t) = G(t, t)/G(0, t).

Using the integration by parts formula, one gets

dZ1
t =

( ∂2G(t, t)
∂2G(0, t)

− G(t, t)

G(0, t)

)
dH2

t +
(
H2
t∂1h(t, τ2) + (1−H2

t )ψ
′(t)
)
dt

and the result follows. See Chapter 4 in [27] for details. �



Chapter 3

Generalities and Immersion Property

From the end of the seventies, Jacod, Jeulin and Yor started a systematic study of the problem of en-
largement of filtrations: namely, if F and G are two filtrations satisfying F ⊂ G, which F-martingales
M remain G-semi-martingales and if it is the case, what is the semi-martingale decomposition of M
in G?

In the literature, there are mainly two kinds of enlargement of filtration:
• Initial enlargement of filtrations: in that case, Gt = Ft ∨ σ(L) where L is a r.v. (or, more

generally Gt = Ft ∨ F̃ where F̃ is a σ-algebra, up to right-continuous regularization)
• Progressive enlargement of filtrations, where Gt = Ft ∨Ht with H the natural filtration of

Ht = 11{τ≤t} where τ is a random time (or, more generally Gt = Ft∨F̃t where F̃ is another filtration).
In fact, very few studies are done in the case Gt = Ft ∨ F̃t. One exception is for F̃t = σ(Jt) where
Jt = infs≥tXs when X is a three dimensional Bessel process (see [79]). See also the recent work of
Kchia et al. [88].

Up to now, three lecture notes volumes have been dedicated to this question: Jeulin [79], Jeulin
& Yor [83] and Mansuy & Yor [103]. There are also related chapters in the books of Protter [112]
Dellacherie, Maisonneuve & Meyer [41], Jacod [72], Jeanblanc et al. [78] and Yor [128].

Some first and important papers are Brémaud and Yor [30] (devoted to immersion case), Barlow
[18] (for a specific study of honest times), Jacod [72, 73] and Jeulin & Yor [80]. A non-exhaustive
list of references contains the papers of Ankirchner et al. [13], Nikeghbali [108] and Yoeurp [125].

Several thesis are devoted to this problem: Aksamit [2] Amendinger [9], Ankirchner [12], Bedini
[20], Kchia [89], Kreher [94], Li [98], Song [116] and Wu [123].

Enlargement of filtration results are extensively used in finance to study two specific problems
occurring in insider trading: existence of arbitrage using strategies adapted w.r.t. the large filtration,
and change of prices dynamics, when an F-martingale is no longer a G-martingale. They are also a
main stone for study of default risk.

An incomplete list of authors concerned with enlargement of filtration in finance for insider
trading is: Ankirchner [13, 12], Amendinger [9, 10], Amendinger et al. [11], Baudoin [19], Corcuera
et al. [37], Eyraud-Loisel [55], Florens & Fougère [59], Gasbarra et al. [65], Grorud & Pontier [66],
Hillairet [68], Imkeller [69], Karatzas & Pikovsky [87], Wu [123], Kohatsu-Higa & Øksendal [93],
Zwierb [129].

A general study of arbitrages which can occur in an enlarged filtration is presented in Aksamit
et al. [4, 5, 6], Acciao et al. [1], Fontana et al. [64]

Di Nunno et al. [46], Imkeller [70], Imkeller et al. [71], Kohatsu-Higa [91, 92] have introduced
Malliavin calculus to study the insider trading problem. We shall not discuss this approach here.

Enlargement theory is also used to study asymmetric information, see, e.g. Föllmer et al. [62] and
progressive enlargement is an important tool for the study of default in the reduced form approach

43
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by Bielecki et al. [24, 25, 26], Elliott et al.[53] and Kusuoka [96] among others.

Let F and G be two filtrations such that F ⊂ G. Our aim is to study some conditions which
ensure that F-martingales are G-semi-martingales, and one can ask in a first step whether all F-
martingales are G-martingales. This last property is equivalent to E(ζ|Ft) = E(ζ|Gt), for any t and
ζ ∈ L1(F∞).

Let us study the simple example where G = F ∨ σ(ζ) where ζ ∈ L1(F∞) and ζ is not F0-
measurable. Obviously,mt := E(ζ|Ft) is an F-martingale. Ifm would be a G-martingale, E(m∞|Gt) =
mt, hence ζ = mt and, in particular ζ = E(ζ|F0) which is not the case.

In this chapter, we start with the case where F-martingales remain G-martingales. In that
case, there is a complete characterization so that this property holds. Then, we study a particular
example: Brownian and Poisson bridges.

3.1 Immersion of Filtrations

3.1.1 Definition

The filtration F is said to be immersed in G if any F-martingale is a G-martingale (Tsirel’son [121],
Émery [54]). This is also referred to as the (H) hypothesis by Brémaud and Yor [30].

(H) Every F- martingale is a G-martingale.

Proposition 3.1.1 Hypothesis (H) is equivalent to any of the following properties:

(H1) ∀ t ≥ 0, the σ-fields F∞ and Gt are conditionally independent given Ft, i.e., ∀ t ≥ 0, ∀Gt ∈
L2(Gt),∀F ∈ L2(F∞),E(Gt F |Ft) = E(Gt|Ft)E(F |Ft).

(H2) ∀ t ≥ 0, ∀Gt ∈ L1(Gt), E(Gt|F∞) = E(Gt|Ft).

(H3) ∀ t ≥ 0, ∀F ∈ L1(F∞), E(F |Gt) = E(F |Ft).

In particular, (H) holds if and only if every F-local martingale is a G-local martingale. Furthermore,
if Hypothesis (H) holds, then Gt ∩ F∞ = Ft.

Proof:
• (H) ⇒ (H1). Let F ∈ L2(F∞) and assume that hypothesis (H) is satisfied. This implies that the
martingale Ft = E(F |Ft) is a G-martingale such that F∞ = F , hence Ft = E(F |Gt). It follows that
for any t and any Gt ∈ L2(Gt):

E(FGt|Ft) = E(GtE(F |Gt)|Ft) = E(GtE(F |Ft)|Ft) = E(Gt|Ft)E(F |Ft)

which is exactly (H1).
• (H1) ⇒ (H2). Let F ∈ L2(F∞) and Gt ∈ L2(Gt). Under (H1),

E(FE(Gt|Ft)) = E(E(F |Ft)E(Gt|Ft))
H1
= E(E(FGt|Ft)) = E(FGt)

which is (H2).
• (H2) ⇒ (H3). Let F ∈ L2(F∞) and Gt ∈ L2(Gt). If (H2) holds, then it is easy to prove that, for
F ∈ L2(F∞),

E(GtE(F |Ft)) = E(FE(Gt|Ft))
H2
= E(FE(Gt|F∞))E(FGt),

which implies (H3).
• Obviously (H3) implies (H).
The proof of Gt∩F∞ = Ft is now simple. We have only to check that Gt∩F∞ ⊂ Ft. Let A ∈ Gt∩F∞.
Then,

11A = E(11A|F∞) = E(11A|Ft)
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which implies that A ∈ Ft �

In particular,if F is immersed in G and if W is an F-Brownian motion, then it is a G-martingale
with bracket t, since such a bracket does not depend on the filtration. Hence, it is a G-Brownian
motion. It is important to note that

∫ t
0
ψsdWs is then a G-local martingale, for a G-adapted process

ψ, satisfying some integrability conditions (see [82]).

A trivial (but useful) example for which F is immersed in G is G = F∨ F̃ where F and F̃ are two
filtrations such that F∞ is independent of F̃∞.

Exercise 3.1.2 Assume that F is immersed in G and that W is an F-Brownian motion. Prove that
W is a G-Brownian motion without using the bracket. ▹

Exercise 3.1.3 Prove that, if F is immersed in G, then, for any t, Ft = Gt ∩ F∞. ▹

Exercise 3.1.4 Show that, if τ ∈ F∞, immersion holds between F and F∨H where H is generated
by Ht = 11τ≤t if and only if τ is an F-stopping time. ▹

3.1.2 Change of probability

Of course, the notion of immersion depends strongly on the probability measure, and in particular,
is not stable by change of probability. See Subsection 3.3.5 for a counter example. We now study in
which setup the immersion property is preserved under change of probability.

Proposition 3.1.5 changeimmerp Assume that the filtration F is immersed in G under P, and let
Q be equivalent to P, with Q|Gt = LtP|Gt where L is assumed to be F-adapted. Then, F is immersed
in G under Q and the F-intensities of τ under P and Q are the same.

Proof: Let N be a (F,Q)-martingale, then (NtLt, t ≥ 0) is a (F,P)-martingale, and since F is
immersed in G under P, (NtLt, t ≥ 0) is a (G,P)-martingale which implies that N is a (G,Q)-
martingale. We have for each t ≤ s

Q(τ ≤ t | Ft) =
EP(Lt11{τ≤t} | Ft)

EP(Lt | Ft)
= P(τ ≤ t | Ft) = P(τ ≤ t | Fs) = Q(τ ≤ t | Fs),

where the last equality follows by another application of the Bayes formula. The assertion follows.�

Note that, if one defines a change of probability on F with a Radon-Nikodým density which is
(as it must be) an F-martingale L, one can not extend this change of probability to G by setting
Q|Gt = LtP|Gt , since, in general, L fails to be a G-martingale.

We recall that, if X is a positive martingale, there exists N , a local martingale such that X =
E(N). This process N is denoted L(M) and called the stochastic logarithm of X.

Proposition 3.1.6 Assume that F is immersed in G under P, and let Q be equivalent to P with
Q|Gt

= LtP|Gt
where L is a G-martingale and define ℓt := E(Lt|Ft). Assume that all F-martingales

are continuous and that L is continuous. Then, F is immersed in G under Q if and only if the
(G,P)-local martingale ∫ t

0

dLs
Ls

−
∫ t

0

dℓs
ℓs

: = L(L)t − L(ℓ)t

is orthogonal to the set of all (F,P)-local martingales.

Proof: Every (F,Q)-martingale MQ may be written as

MQ
t =MP

t −
∫ t

0

d⟨MP, ℓ⟩s
ℓs
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where MP is an (F,P)-martingale. By immersion hypothesis, MP is a (G,P)-martingale and, from
Girsanov’s theorem, MP

t = NQ
t +

∫ t
0
d⟨MP,L⟩s

Ls
where NQ is an (G,Q)-martingale. It follows that

MQ
t = NQ

t +

∫ t

0

d⟨MP, L⟩s
Ls

−
∫ t

0

d⟨MP, ℓ⟩s
ℓs

= NQ
t +

∫ t

0

d⟨MP,L(L)− L(ℓ)⟩s .

Thus MQ is a (G,Q) martingale if and only if ⟨MP,L(L)− L(ℓ)⟩s = 0. �

Proposition 3.1.7 Let P be a probability measure, and

Q|Gt
= LtP|Gt

; Q|Ft
= ℓtP|Ft

.

Then, immersion holds under Q if and only if:

∀T, ∀X ≥ 0, X ∈ FT ,∀t < T,
EP(XLT |Gt)

Lt
=

EP(XℓT |Ft)
ℓt

(3.1.1)

Proof: Note that, for X ∈ FT ,

EQ(X|Gt) =
1

Lt
EP(XLT |Gt) , EQ(X|Ft) =

1

ℓt
EP(XℓT |Gt)

and that, from MCT, (H) holds under Q if and only if, ∀T, ∀X ∈ FT ,∀t ≤ T , one has

EQ(X|Gt) = EQ(X|Ft) .

�

Comment 3.1.8 The (H) hypothesis (immersion hypothesis) was studied by Brémaud and Yor
[30] and Mazziotto and Szpirglas [105], and in a financial setting by Kusuoka [96], Elliott et al. [53]
and Jeanblanc and Rutkowski [75, 76].

Exercise 3.1.9 Prove that, if F is immersed in G under P and if Q is a probability equivalent to
P, then, any (Q,F)-semi-martingale is a (Q,G)-semi-martingale. Let

Q|Gt = LtP|Gt ; Q|Ft = ℓtP|Ft .

and X be a (Q,F) martingale. Assuming that F is a Brownian filtration and that L is continuous,
prove that

Xt +

∫ t

0

(
1

ℓs
d⟨X, ℓ⟩s −

1

Ls
d⟨X,L⟩s

)
is a (G,Q) martingale.
In a general case, prove that

Xt +

∫ t

0

Ls−
Ls

(
1

ℓs−
d[X, ℓ]s −

1

Ls−
d[X,L]s

)
is a (G,Q) martingale. See Jeulin and Yor [81]. ▹

Exercise 3.1.10 Assume that any F martingale is a F̃ semi-martingale, with F ⊂ F̃, and τ an F̃
stopping time. Prove that any F martingale is a G semi-martingale, where Gt = σ(t∧τ) (regulariser)
▹
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Exercise 3.1.11 Assume that F is immersed in F̃ and τ is an F̃ stopping time. Prove that any F is
immersed in G (regulariser) ▹

Exercise 3.1.12 Assume that F (L)
t = Ft ∨ σ(L) where L is a random variable. Find under which

conditions on L, immersion property holds. ▹

Exercise 3.1.13 Construct an example where some F-martingales are G-martingales, but not all
F martingales are G-martingales. ▹

Exercise 3.1.14 Assume that F ⊂ G̃ where (H) holds for F and G̃.
a) Let τ be a G̃-stopping time. Prove that (H) holds for F and Fτ = F ∨H where Ht = σ(τ ∧ t).
b) Let G be such that F ⊂ G ⊂ G̃. Prove that F be immersed in G. ▹

Exercise 3.1.15 Assume that F (τ)
t = Ft ∨ σ(τ) where τ is a positive random variable, and Gt =

Ft ∨Ht where Ht = σ(τ ∧ t). Find under which conditions on τ the filtration G is immersed in F(τ).
▹

3.2 Immersion in a Progressive Enlargement of Filtration

We now consider the case where a random time τ is given and where G is the progressively enlarged
filtration. We introduce the F-supermartingale Zt = P(τ > t|Ft).

3.2.1 Characterization of Immersion

Lemma 3.2.1 In the progressive enlargement setting, (H) holds between F and G if and only if one
of the following equivalent conditions holds:

(i) ∀(t, s), s ≤ t, P(τ ≤ s|F∞) = P(τ ≤ s|Ft),
(ii) ∀t, P(τ ≤ t|F∞) = P(τ ≤ t|Ft).

(3.2.1)

Proof: If (ii) holds, then (i) holds too. If (i) holds, F∞ and σ(t∧ τ) are conditionally independent
given Ft. The property follows. This result can be found in Dellacherie and Meyer [43]. �

Note that, if (H) holds, then (ii) implies that the process P(τ ≤ t|Ft) is increasing (See Section
7.7 for a study of that property).

Exercise 3.2.2 Prove that in a Cox model (see Section 2.3), immersion holds. ▹

Exercise 3.2.3 Prove that if H and F are immersed in G, and if any F martingale is continuous,
then τ and F∞ are independent. ▹

Exercise 3.2.4 Assume that immersion property holds and let, for every u, yt(u) be an F-martingale.
Prove that, for t > s,

11τ≤sE(yt(τ)|Gs) = 11τ≤sys(τ)

▹

Exercise 3.2.5 Prove that G is immersed in F ∨ σ(τ) if and only if τ is constant. ▹
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3.2.2 Norros’s lemma

Proposition 3.2.6 Assume that Z is continuous and limt→∞ Zt = 0 and let Λ be the increasing
predictable process such that Mt = Ht − Λt∧τ is a martingale. If F is immersed in G, then, the r.v.
Λ∞ has unit exponential law and the variable Λτ is independent of F∞.

Proof:

Proof: Fix z > 0 and consider the process X = (Xt, t ≥ 0), defined by:

Xt = (1 + z)Ht e−zΛt∧τ

for all t ≥ 0. Then, applying the integration by parts formula, we get:

dXt = z e−zΛt∧τ dMt . (3.2.2)

Hence, by virtue of the assumption that z > 0, it follows from (3.2.2) that X is a G-martingale, so
that:

E
[
(1 + z)Ht e−zΛt∧τ

∣∣Gs] = (1 + z)Hs e−zΛs∧τ (3.2.3)
holds for all 0 ≤ s ≤ t. (Note that the martingale property of X follows also from Exercise ?? for
h ≡ 1.) In view of the implied by z > 0 uniform integrability of X, we may let t go to infinity in
(3.2.3). Setting s equal to zero in (3.2.3), we therefore obtain:

E
[
(1 + z) e−zΛτ

]
= 1 .

This means that the Laplace transform of Λτ is the same as one of a standard exponential variable and
thus proves the claim. Under immersion property, Z is decreasing and, under continuity assumption,
dΛ = dZ/Z. Applying the change-of-variable formula, we get, for continuous Z:

e−zΛt∧τ = 1 + z

∫ t

0

e−zΛs
11(τ>s)

Zs
dZs (3.2.4)

for all t ≥ 0 and any z > 0 fixed. Then, taking conditional expectations under Ft from both parts
of expression (3.2.4) and applying Fubini’s theorem, we obtain from the immersion of F in G that:

E
[
e−zΛt∧τ

∣∣Ft] = 1 + z

∫ t

0

E
[
e−zΛs

11(τ>s)

Zs

∣∣∣Ft] dZs (3.2.5)

= 1 + z

∫ t

0

e−zΛs
P(τ > s | Ft)

Zs
dZs

= 1 + z

∫ t

0

e−zΛs dZs

for all t ≥ 0. Hence, using the fact that Λt = − lnZt, we see from (3.2.5) that:

E
[
e−zΛt∧τ | Ft

]
= 1 +

z

1 + z

(
(Zt)

1+z − (Z0)
1+z
)

holds for all t ≥ 0. Letting t go to infinity and using the assumption Z0 = 1, as well as the fact that
Z∞ = 0 (P-a.s.), we therefore obtain:

E
[
e−zΛτ | F∞

]
=

1

1 + z

that signifies the desired assertion. �

Comment 3.2.7 This result does not extend to the discontinuous case! As a trivial counter exam-
ple, take F a Brownian filtration and τ be an F stopping time. Then, Λt = 11τ≤t.

Exercise 3.2.8 (A different proof of Norros’ result) Suppose that

P(τ ≤ t|F∞) = 1− e−Γt

where Γ is an arbitrary continuous strictly increasing F-adapted process. Prove, using the inverse
of Γ that the random variable Γτ is independent of F∞, with exponential law of parameter 1. ▹
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3.2.3 G-martingales versus F martingales

Proposition 3.2.9 Assume that F is immersed in G. Let Y G be a G-adapted, integrable process
given by the formula

Y G
t = yt11τ>t + yt(τ)11τ≤t, ∀ t ∈ R+, (3.2.6)

where:
(i) the projection of Y G onto F, which is defined by

Y F
t := E(Y G

t |Ft) = yt P(τ > t|Ft) + E(yt(τ)11τ≤t|Ft),

is a (P,F)-martingale,
(ii) for any fixed u ∈ R+, the process (yt(u), t ∈ [u,∞)) is a (P,F)-martingale.
Then the process Y G is a (P,G)-martingale.

Proof: Let us take s < t. Then

E(Y G
t |Gs) = E(yt11τ>t|Gs) + E(yt(τ)11s<τ≤t|Gs) + E(yt(τ)11τ≤s|Gs)

= 11s<τ
1

Zs
(E(ytZt|Fs) + E(yt(τ)11s<τ≤t|Fs)) + E(yt(τ)11τ≤s|Gs)

On the one hand,
E(yt(τ)11τ≤s|Gs) = 11τ≤sys(τ) (3.2.7)

Indeed, it suffices to prove the previous equality for yt(u) = h(u)Xt where X is an F-martingale. In
that case,

E(Xth(τ)11τ≤s|Gs) = 11τ≤sh(τ)EP(Xt|Gs) = 11τ≤sh(τ)E(Xt|Fs) = 11τ≤sh(τ)Xs = 11τ≤sys(τ)

In the other hand, from (i)

E(ytZt + yt(τ)11τ≤t|Fs) = ysZs + E(ys(τ)11τ≤s|Fs)

It follows that

E(Y G
t |Gs) = 11s<τ

1

Zs
(ysZs + E((ys(τ)− yt(τ))11τ≤s|Fs)) + 11τ≤sys(τ) .

It remains to check that
E((ys(τ)− yt(τ))11τ≤s|Fs) = 0

which follows from

E(yt(τ)11τ≤s|Fs) = E(yt(τ)11τ≤s|Gs|Fs) = E(ys(τ)11τ≤s|Fs)

where we have used (3.2.7). �

Exercise 3.2.10 In a Cox model, for a continuous Λ, prove that τ is independent of F∞ if and only
if λ is a deterministic function. ▹

Exercise 3.2.11 Prove that, if P(τ > t|Ft) is continuous and strictly decreasing, then there exists
Θ independent of F∞ such that τ = inf{t : Λt > Θ}. ▹

Exercise 3.2.12 In a Cox model, write the Doob-Meyer and the multiplicative decomposition of
Z. ▹

Exercise 3.2.13 Show how one can compute P(τ > t|Ft) when

τ = inf{t : Xt > Θ}

where X is an F-adapted process, not necessarily increasing, and Θ independent of F∞. Does
immersion property still holds? Same questions if Θ is not independent of F∞. ▹
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3.2.4 Martingale Representation Theorems

Theorem 3.2.14 Suppose that F is immersed in G and that any F-martingale is continuous. Then
the martingale Mh

t = E(hτ | Gt), where h is an F-predictable process such that E|hτ | < ∞, admits
the following decomposition in the sum of a continuous martingale and a discontinuous martingale

Mh
t := mh

0 +

∫ t∧τ

0

1

Zu
dmh

u +

∫
]0,t∧τ ]

(hu −Mh
u−) dMu, (3.2.8)

where mh is the continuous F-martingale given by

mh
t := −E

(∫ ∞

0

hu dZu

∣∣∣Ft)
and M is the discontinuous G-martingale defined as Mt = Ht − Γt∧τ , where Γ = − lnZ.

Proof: We start by noting that

Mh
t = E(hτ |Gt) = 11{t≥τ}hτ − 11{t<τ}e

Γt E
(∫ ∞

t

hu dZu

∣∣∣Ft)
= 11{t≥τ}hτ + 11{t<τ}e

Γt

(
mh
t +

∫ t

0

hu dZu

)
. (3.2.9)

We will sketch two slightly different derivations of (3.2.8).

First derivation. Let the process J be given by the formula, for t ∈ R+,

Jt = eΓt

(
mh
t +

∫ t

0

hu dZu

)
.

Noting that Γ is a continuous increasing process and mh is a continuous martingale, we deduce from
the Itô integration by parts formula that

dJt := eΓt dmh
t − eΓtht dFt +

(
mh
t +

∫ t

0

hu dZu

)
eΓt dΓt

:= eΓt dmh
t + eΓtht dZt + Jt dΓt.

Therefore, from dZt = −e−ΓtdΓt,

dJt = eΓt dmh
t + (Jt − ht) dΓt

or, in the integrated form,

Jt =Mh
0 +

∫ t

0

eΓu dmh
u +

∫ t

0

(Ju − hu) dΓu.

Note that Jt =Mh
t =Mh

t− on the event {t < τ}. Therefore, on the event {t < τ},

Mh
t =Mh

0 +

∫ t∧τ

0

eΓu dmh
u +

∫ t∧τ

0

(Mh
u− − hu) dΓu.

From (3.2.9), the jump of Mh at time τ equals

hτ − Jτ = hτ −Mh
τ− =Mh

τ −Mh
τ−.

Equality (3.2.8) now easily follows.

Second derivation. Equality (3.2.9) can be re-written as follows

Mh
t =

∫ t

0

hu dHu + (1−Ht)e
Γt

(
mh
t −

∫ t

0

hu dFu

)
.

Hence formula (3.2.8) can be obtained directly by the integration by parts formula. �
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Corollary 3.2.15 Suppose that F is immersed in G and that F is a Brownian filtration generated
by B. Then, any G martingale Y admits a representation as

Yt := Y0 +

∫ t∧τ

0

φudBu +

∫
]0,t∧τ ]

(Yu − Y F
u ) dMu, (3.2.10)

3.2.5 Stability under Change of Probability

In this section, we extend the results obtained in the Cox setting (see Section 2.3.4).

Case of the Brownian filtration

Let W be a Brownian motion under P and F its natural filtration. Since we work under immersion
hypothesis, W is a Brownian motion with respect to G under P. Our goal is to show that immersion
is still valid under Q ∈ Q for a large class Q of (locally) equivalent probability measures on (Ω,G).

Let Q be an arbitrary probability measure locally equivalent to P on (Ω,G). In our set-up,
Kusuoka’s representation theorem 3.2.15 implies that there exist G-predictable processes θ and
ζ > −1, such that the Radon-Nikodým density L of Q with respect to P satisfies the following SDE

dLt = Lt−
(
θt dWt + ζt dMt

)
(3.2.11)

with the initial value L0 = 1. More explicitly, the process η equals

Lt = Et
(∫ ·

0

θu dWu

)
Et
(∫ ·

0

ζu dMu

)
= L

(1)
t L

(2)
t , (3.2.12)

where we write

L
(1)
t = Et

(∫ ·

0

θu dWu

)
= exp

(∫ t

0

θu dWu −
1

2

∫ t

0

θ2u du

)
,

and

L
(2)
t = Et

(∫ ·

0

ζu dMu

)
= exp

(∫ t

0

ln(1 + ζu) dHu −
∫ t∧τ

0

ζuγu du

)
. (3.2.13)

Proposition 3.2.16 Assume that immersion holds under P. Let Q be a probability measure locally
equivalent to P with the associated Radon-Nikodým density process L given by formula (3.2.12) . If
the process θ is F-adapted then immersion is valid under Q and the F-intensity of τ under Q equals
γ̂t = (1+ ζ̃t)γt, where ζ̃ is the unique F-predictable process such that the equality ζ̃t11{t≤τ} = ζt11{t≤τ}
holds for every t ∈ R+.

Proof: Let P∗ be the probability measure locally equivalent to P on (Ω,G), given by

dP∗ | Gt
= Et

(∫ ·

0

ζu dMu

)
dP | Gt

= L
(2)
t dP | Gt

. (3.2.14)

We claim that immersion holds under P∗. From Girsanov’s theorem, the process W follows a Brow-
nian motion under P∗ with respect to both F and G. Moreover, from the predictable representation
property of W under P∗, we deduce that any F-local martingale L under P∗ can be written as a
stochastic integral with respect to W . Specifically, there exists an F-predictable process ξ such that

Lt = L0 +

∫ t

0

ξu dWu.

This shows that L is also a G-local martingale, and thus immersion holds under P∗. Since

dQ | Gt = Et
(∫ ·

0

θu dWu

)
dP∗ | Gt ,
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by virtue of Proposition ??, immersion is valid under Q as well. The last claim in the statement of
the lemma can be deduced from the fact that immersion holds under Q and, by Girsanov’s theorem,
the process

M̂t =Mt −
∫ t

0

11{u<τ}γuζu du = Ht −
∫ t

0

11{u<τ}(1 + ζ̃u)γu du

is a Q-martingale. �

We claim that the equality P∗ = P holds on the filtration F. Indeed, we have dP∗ |Ft = L̃t dP |Ft ,
where we write L̃t = EP(L

(2)
t | Ft), and

EP(L
(2)
t | Ft) = EP

(
Et
(∫ ·

0

ζu dMu

) ∣∣∣F∞

)
= 1, ∀ t ∈ R+, (3.2.15)

where the first equality follows immersion.

To establish the second equality in (3.2.15), we first note that since the process M is stopped at
τ , we may assume, without loss of generality, that ζ = ζ̃ where the process ζ̃ is F-predictable. More-
over,the conditional cumulative distribution function of τ given F∞ has the form 1− exp(−Γt(ω)).
Hence, for arbitrarily selected sample paths of processes ζ and Γ, the claimed equality can be seen
as a consequence of the martingale property of the Doléans exponential.

Formally, it can be proved by following elementary calculations, where the first equality is a
consequence of (3.2.13)),

EP

(
Et
(∫ ·

0

ζ̃u dMu

) ∣∣∣F∞

)
= EP

((
1 + 11{t≥τ}ζ̃τ

)
exp

(
−
∫ t∧τ

0

ζ̃uγu du
) ∣∣∣F∞

)
= EP

(∫ ∞

0

(
1 + 11{t≥u}ζ̃u

)
exp

(
−
∫ t∧u

0

ζ̃vγv dv
)
γue

−
∫ u
0
γv dvdu

∣∣∣F∞

)
= EP

(∫ t

0

(
1 + ζ̃u

)
γu exp

(
−
∫ u

0

(1 + ζ̃v)γv dv
)
du
∣∣∣F∞

)
+ exp

(
−
∫ t

0

ζ̃vγv dv
)
EP

(∫ ∞

t

γue
−

∫ u
0
γv dvdu

∣∣∣F∞

)
=

∫ t

0

(
1 + ζ̃u

)
γu exp

(
−
∫ u

0

(1 + ζ̃v)γv dv
)
du

+ exp
(
−
∫ t

0

ζ̃vγv dv
) ∫ ∞

t

γue
−

∫ u
0
γv dvdu

= 1− exp
(
−
∫ t

0

(1 + ζ̃v)γv dv
)
+ exp

(
−
∫ t

0

ζ̃vγv dv
)
exp

(
−
∫ t

0

γv dv
)
= 1,

where the second last equality follows by an application of the chain rule.

Extension to orthogonal martingales

Equality (3.2.15) suggests that Proposition 3.2.16 can be extended to the case of arbitrary orthogonal
local martingales. Such a generalization is convenient, if we wish to cover the situation considered
in Kusuoka’s counterexample.

LetN be a local martingale under P with respect to the filtration F. It is also a G-local martingale,
since we maintain the assumption that immersion holds under P. Let Q be an arbitrary probability
measure locally equivalent to P on (Ω,G). We assume that the Radon-Nikodým density process L
of Q with respect to P equals

dLt = Lt−
(
θt dNt + ζt dMt

)
(3.2.16)
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for some G-predictable processes θ and ζ > −1 (the properties of the process θ depend, of course,
on the choice of the local martingale N). The next result covers the case where N and M are
orthogonal G-local martingales under P, so that the product MN follows a G-local martingale.

Proposition 3.2.17 Assume that the following conditions hold:
(a) N and M are orthogonal G-local martingales under P,
(b) N has the predictable representation property under P with respect to F, in the sense that any
F-local martingale L under P can be written as

Lt = L0 +

∫ t

0

ξu dNu, ∀ t ∈ R+,

for some F-predictable process ξ,
(c) P∗ is a probability measure on (Ω,G) such that (3.2.14) holds.
Then we have:
(i) immersion is valid under P∗,
(ii) if the process θ is F-adapted then immersion is valid under Q.

The proof of the proposition hinges on the following simple lemma.

Lemma 3.2.18 Under the assumptions of Proposition 3.2.17, we have:
(i) N is a G-local martingale under P∗,
(ii) N has the predictable representation property for F-local martingales under P∗.

Proof: In view of (c), we have dP∗ | Gt = L
(2)
t dP | Gt , where the density process L(2) is given by

(3.2.13), so that dL(2)
t = L

(2)
t− ζt dMt. From the assumed orthogonality of N and M , it follows that N

and L(2) are orthogonal G-local martingales under P, and thus NL(2) is a G-local martingale under
P as well. This means that N is a G-local martingale under P∗, so that (i) holds.

To establish part (ii) in the lemma, we first define the auxiliary process L̃ by setting L̃t =

EP(L
(2)
t | Ft). Then manifestly dP∗ |Ft = L̃t dP |Ft , and thus in order to show that any F-local

martingale under P∗ follows an F-local martingale under P, it suffices to check that η̃t = 1 for every
t ∈ R+, so that P∗ = P on F. To this end, we note that

EP(L
(2)
t | Ft) = EP

(
Et
(∫ ·

0

ζu dMu

) ∣∣∣F∞

)
= 1, ∀ t ∈ R+,

where the first equality follows from immersion property, and the second one can established similarly
as the second equality in (3.2.15).

We are in a position to prove (ii). Let L be an F-local martingale under P∗. Then it follows also
an F-local martingale under P and thus, by virtue of (b), it admits an integral representation with
respect to N under P and P∗. This shows that N has the predictable representation property with
respect to F under P∗. �

We now proceed to the proof of Proposition 3.2.17.

Proof of Proposition 3.2.17. We shall argue along the similar lines as in the proof of Proposition
3.2.16. To prove (i), note that by part (ii) in Lemma 3.2.18 we know that any F-local martingale
under P∗ admits the integral representation with respect to N . But, by part (i) in Lemma 3.2.18,
N is a G-local martingale under P∗. We conclude that L is a G-local martingale under P∗, and thus
the immersion is valid under P∗. Assertion (ii) now follows from Proposition ??. �

Remark 3.2.19 It should be stressed that Proposition 3.2.17 is not directly employed in what
follows. We decided to present it here, since it sheds some light on specific technical problems arising
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in the context of modeling dependent default times through an equivalent change of a probability
measure (see Kusuoka [96]).

Example 3.2.20 Kusuoka [96] presents a counter-example based on the two independent random
times τ1 and τ2 given on some probability space (Ω,G,P). We write M i

t = Hi
t −

∫ t∧τi
0

γi(u) du,
where Hi

t = 11{t≥τi} and γi is the deterministic intensity function of τi under P. Let us set dQ | Gt
=

Lt dP | Gt
, where Lt = L

(1)
t L

(2)
t and, for i = 1, 2 and every t ∈ R+,

L
(i)
t = 1 +

∫ t

0

L
(i)
u−ζ

(i)
u dM i

u = Et
(∫ ·

0

ζ(i)u dM i
u

)
for some G-predictable processes ζ(i), i = 1, 2, where G = H1 ∨ H2. We set F = H1 and H = H2.
Manifestly, the immersion holds under P. Moreover, in view of Proposition 3.2.17, it is still valid
under the equivalent probability measure P∗ given by

dP∗ | Gt
= Et

(∫ ·

0

ζ(2)u dM2
u

)
dP | Gt

.

It is clear that P∗ = P on F, since

EP(L
(2)
t | Ft) = EP

(
Et
(∫ ·

0

ζ(2)u dM2
u

) ∣∣∣H1
t

)
= 1, ∀ t ∈ R+.

However, immersion is not necessarily valid under Q if the process ζ(1) fails to be F-adapted. In
Kusuoka’s counter-example, the process ζ(1) was chosen to be explicitly dependent on both random
times, and it was shown that immersion does not hold under Q. For an alternative approach to
Kusuoka’s example, through an absolutely continuous change of a probability measure, the interested
reader may consult Collin-Dufresne et al. [36].

3.3 Successive Enlargements

3.3.1 Immersion

Proposition 3.3.1 Let τ1 < τ2 a.s., Hi be the filtration generated by the default process Hi
t = 11τi≤t,

and G = F ∨H1 ∨H2. Then, the two following assertions are equivalent:
(i) F is immersed in G
(ii) F is immersed in F ∨H1 and F ∨H1 is immersed in G.

Proof: (this result was obtained by Ehlers and Schönbucher [47], we give here a slightly different
proof.) The only fact to check is that if F is immersed in G, then F ∨H1 is immersed in G, or that

P(τ2 > t|Ft ∨H1
t ) = P(τ2 > t|F∞ ∨H1

∞)

This is equivalent to, for any h, and any A∞ ∈ F∞

E(A∞h(τ1)11τ2>t) = E(A∞h(τ1)P(τ2 > t|Ft ∨H1
t ))

We split this equality in two parts. The first equality

E(A∞h(τ1)11τ1>t11τ2>t) = E(A∞h(τ1)11τ1>tP(τ2 > t|Ft ∨H1
t ))

is obvious since 11τ1>t11τ2>t = 11τ1>t and 11τ1>tP(τ2 > t|Ft ∨H1
t ) = 11τ1>t.

Since F is immersed in G, one has E(A∞|Gt) = E(A∞|Ft) and it follows (WHY?) that E(A∞|Gt) =
E(A∞|Ft ∨H1

t ), therefore

E(A∞h(τ1)11τ2>t≥τ1) = E(E(A∞|Gt)h(τ1)11τ2>t≥τ1)
= E(E(A∞|Ft ∨H1

t )h(τ1)11τ2>t≥τ1)

= E(E(A∞|Ft ∨H1
t )E(h(τ1)11τ2>t≥τ1 |Ft ∨H1

t ))

= E(A∞E(h(τ1)11τ2>t≥τ1 |Ft ∨H1
t ))
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Exercise 3.3.2 Prove that Hi, i = 1, 2 are immersed in H1 ∨ H2 if and only if τi, i = 1, 2 are
independent. ▹

3.3.2 Various immersion

Lemma 3.3.3 Let F be generated by a Brownian motion. Assume that F is immersed in G1 = F∨H1

and in G = F ∨ H1 ∨ H2 and that there exists an F predictable increasing process Λ1 such that
M1
t = H1

t − Λ1
t∧τ1 is a G martingale. Then G1 is immersed in G

Proof: Any G1 martingale admits a decomposition as Yt = y +
∫ t
0
ysdWs +

∫ t
0
ỹsdM

1
s . The result

follows since W and M1 are assumed to be G martingales �

This result extends to the case of an arbitrary filtration F. Indeed, for X ∈ bFT and h bounded
Borel function

E(Xh(τ1)|G1
t ) = h(τ1)11τ1≤tE(X|G1

t ) + 11t<τ1
1

Z1
t

E(X
∫ ∞

t

h(u)dFu|Ft)

can be written as a sum of stochastic integrals wrt M1 and to some F martingales (note that, from
immersion E(X|G1

t ) = E(X|Ft).

3.3.3 Norros’ lemma

Lemma 3.3.4 Norros Lemma.
Let τi, i = 1, · · · , n be n finite-valued random times and Gt = Ft ∨H1

t ∨ · · · ∨ Hn
t . Assume that

(i) P (τi = τj) = 0,∀i ̸= j

(ii) there exists continuous increasing processes Λi such that M i
t = Hi

t − Λit∧τi are G-martingales

then, the r.v’s Λiτi are independent with exponential law.

Proof: For any µi > −1, the processes Lit = (1 + µi)
Hi

te−µiΛ
i
t∧τi , solution of

dLit = Lit−µidM
i
t

are uniformly integrable martingales. Moreover, these martingales have no common jumps, and are
orthogonal. Hence E(

∏
i(1 + µi)e

−µiΛ
i
τi ) = 1, which implies

E(
∏
i

e−µiΛ
i
τi ) =

∏
i

(1 + µi)
−1

hence the independence property. �

Application: Let us study the particular case of Poisson process. Let τ1 and τ2 are the two first
jumps of a Poisson process, we have

G(t, s) =

{
e−λt for s < t
e−λs(1 + λ(s− t)) for s > t

with partial derivatives

∂1G(t, s) =

{
−λe−λt for t > s
−λe−λs for s > t

, ∂2G(t, s) =

{
0 for t > s
−λ2e−λs(s− t) for s > t
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and

h(t, s) =

{
1 for t > s
t
s for s > t

, ∂1h(t, s) =

{
0 for t > s
1
s for s > t

k(t, s) =

{
0 for t > s
1− e−λ(s−t) for s > t

, ∂2k(t, s) =

{
0 for t > s
λe−λ(s−t) for s > t

Then, one obtains Λτ1 = τ1 et Λτ2 = τ2 − τ1

3.3.4 Several Defaults in a Cox model

Proposition 3.3.5 Let τi := inf{t : Λit ≥ Θi}, where the Θi’s are independent from F and Λi’s
are F adapted increasing processes. Let Hi be the natural filtration of Hi, where Hi

t = 11τi≤t and
G = F ∨H1 ∨ · · · ∨Hn be the full observation filtration. Then F is immersed in G.

Proof: Observe that, G ⊂ F ∨ σ(Θ1) ∨ · · · ∨ σ(Θn) and that, from the independence hypothesis,
obviously F is immersed in F ∨ σ(Θ1) ∨ · · · ∨ σ(Θn). �

Corollary 3.3.6 In the case where Θi are independent, Gi := F ∨ H1 ∨ · · · ∨ Hi is immersed in G
and the Gi intensity of τi is the G intensity. The filtration Fi := F ∨ Hi is immersed in G and the
Fi intensity of τi is the (F,G) intensity.

Proof: F ∨H1 ∨ · · · ∨Hi is immersed in F ∨ σ(Θ1) ∨ · · · ∨ σ(Θn). �

It is important to note that in the case of Proposition 3.3.5, the (F,Gi) intensity of τi is not
equal to its (F,G) intensity. In other terms, Gi is not immersed in G in that general setting.

We can extend the characterization of Cox model with immersion property as follows. We keep
the notation of the previous Proposition.

Proposition 3.3.7 We assume that P(τi = τj) = 0 for i ̸= j. If, for any i = 0, . . . , n, Gi is
immersed in G and if there exists F-adapted processes Λi such that M i

t := Hi
t − Λit∧τi are Gi

martingales, then, there exist independent random variables Θi, independent from F such that τi =
inf{t : Λit ≥ Θi}.

Proof: The fact that Θi := Λτi are independent follows from Norros’lemma. The Θi are inde-
pendent from F from the single default case. Note that our hypothesis implies that M i are F ∨ Hi
martingales and G martingales and that, from Corollary 3.3.6, F ∨Hi is immersed in G. �

3.3.5 Kusuoka counter example

Kusuoka [96] presents a counter-example of the stability of H hypothesis under a change of proba-
bility, based on two independent random times τ1 and τ2 given on some probability space (Ω,G,P)
and admitting a density w.r.t. Lebesgue’s measure. The process M1

t = H1
t −

∫ t∧τ1
0

λ1(u) du, where
H1
t = 11{t≥τ1} and λi is the deterministic intensity function of τi under P, is a (P,Hi) and a (P,G)-

martingale, where G =

hh1∨H2. (Recall that λi(s)ds =
P(τi∈ds)
P(τi>s) ). Manifestly, immersion hypothesis holds under P between

H1 and G. Let us set dQ | Gt
= Lt dP | Gt

, where

Lt = 1 +

∫ t

0

Lu−κu dM
1
u
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for some G-predictable process κ satisfying κ > 1 (WHY?). We set F = H1 and H = H2. Let

M̂1
t = H1

t −
∫ t∧τ1

0

λ̂1(u) du

M̃1
t = H1

t −
∫ t∧τ1

0

λ1(u)(1 + κu) du

where λ̂(u)du = Q(τ1 ∈ du)/Q(τ1 > u) is deterministic. It is easy to see that, under Q, the
process M̂1 is a (Q,H1)-martingale and M̃1 is a (Q,G) martingale. The process M̂1 is not a (Q,G)-
martingale (WHY?), hence, immersion does not hold under Q.

Exercise 3.3.8 Compute Q(τ1 > t|H2
t ). ▹

3.3.6 Ordered times

Assume that τi, i = 1, . . . , n are n random times. Let σi, i = 1, . . . , n be the sequence of ordered
random times and G(k) = F∨H(1) · · ·∨H(k) where H(i) = (H(i)

t = σ(t∧σi), t ≥ 0). The G(k)-intensity
of σk is the positive G(k)-adapted process λk such that (M (k)

t := 11{σk≤t} −
∫ t
0
λksds, t ≥ 0) is a G(k)-

martingale. The G(k)-martingale M (k) is stopped at σk and the G(k)-intensity of σk satisfies λkt = 0
on {t ≥ σk}. The following lemma shows the G(k)-intensity of σk coincides with its G(n)-intensity.

Lemma 3.3.9 For any k, a G(k)-martingale stopped at σk is a G(n)-martingale.

Proof: We prove that any G(1)-martingale stopped at σ1 is a G(2)-martingale. The result will
follow. Let X be a G(1)-martingale stopped at σ1, i.e. Xt = Xt∧σ1

for any t. For s < t,

E[Xt∧σ1 |G(2)
s ] = 11{σ2≤s}Xσ1 + 11{s<σ2}

E[Xt∧σ1
11{s<σ2}|G

(1)
s ]

P(s < σ2|G(1)
s )

It remains to note that

E[Xt∧σ111{s<σ2}|G
(1)
s ] = 11{s<σ1}E[Xt∧σ1 |G(1)

s ] + 11{σ1≤s}E[Xσ111{s<σ2}|G
(1)
s ] .

Since σ2 > s on {σ1 > s}, we obtain 11{s<σ1}P(s < σ2|G(1)
s ) = 11{s<σ1}. The martingale property of

X yields to
11{s<σ1}E[Xt∧σ1

|G(1)
s ] = 11{s<σ1}Xs∧σ1

It is obvious that

11{σ1≤s}E[Xσ111{s<σ2}|G
(1)
s ] = 11{σ1≤s}Xσ1P(s < σ2|G(1)

s ).

The result follows. �

The following is a familiar result in the literature.

Proposition 3.3.10 Assume that the G(k)-intensity λk of σk exists for all k ∈ Θ. Then the intensity
of the loss process

∑n
k=1 11σk≤t is the sum of the intensities of σk, i.e.

λL =

n∑
k=1

λk, a.s.. (3.3.1)

Proof: Since (11{σk≤t} −
∫ t
0
λksds, t ≥ 0) is a G(k)-martingale stopped at σk, it is a G(n)-martingale.

We have by taking the sum that (Lt−
∫ t
0

∑n
k=1 λ

k
sds, t ≥ 0) is a G(n)-martingale. So λLt =

∑n
k=1 λ

k
t

for all t ≥ 0. �
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Chapter 4

Bridges and utility maximization

The first applications of enlargement of filtration in Finance

4.1 The Brownian Bridge

Rather than studying ab initio the general problem of initial enlargement, we discuss an interesting
example. Let us start with a BM (Bt, t ≥ 0) and its natural filtration FB . Define a new filtration
as F (B1)

t = FB
t ∨ σ(B1). In this filtration, the process (Bt, t ≥ 0) is no longer a martingale. It

is easy to be convinced of this by looking at the process (E(B1|F (B1)
t ), t ≤ 1): this process is

identically equal to B1, not to Bt, hence (Bt, t ≥ 0) is not a G-martingale. However, (Bt, t ≥ 0) is
a F(B1)-semi-martingale, as follows from the next proposition 4.1.2.

Before giving this proposition, we recall some facts on Brownian bridge.

The Brownian bridge (bt, 0 ≤ t ≤ 1) is defined as the conditioned process (Bt, t ≤ 1|B1 = 0).
Note that Bt = (Bt − tB1) + tB1 where, from the Gaussian property, the process (Bt − tB1, t ≤ 1)

and the random variable B1 are independent. Hence (bt, 0 ≤ t ≤ 1)
law
= (Bt − tB1, 0 ≤ t ≤ 1). The

Brownian bridge process is a Gaussian process, with zero mean and covariance function s(1−t), s ≤ t.
Moreover, it satisfies b0 = b1 = 0.

We can represent the Brownian bridge between 0 and y during the time interval [0, 1] as

(Bt − tB1 + ty; t ≤ 1) .

More generally, the Brownian bridge between x and y during the time interval [0, T ] may be expressed
as (

x+Bt −
t

T
BT +

t

T
(y − x); t ≤ T

)
,

where (Bt; t ≤ T ) is a standard BM starting from 0.

Exercise 4.1.1 a) Prove that the Riemann integral
∫ t∧1

0
B1−Bs

1−s ds is absolutely convergent.
b) Prove that, for 0 ≤ s < t ≤ 1, E(Bt −Bs|B1 −Bs) =

t−s
1−s (B1 −Bs) ▹

4.1.1 Decomposition of the BM in the enlarged filtration F(B1)

Proposition 4.1.2 Let F (B1)
t = ∩ϵ>0Ft+ϵ ∨ σ(B1). The process

βt := Bt −
∫ t∧1

0

B1 −Bs
1− s

ds

59



60 CHAPTER 4. BRIDGES AND UTILITY MAXIMIZATION

is an F(B1)-martingale, and an F(B1) Brownian motion. In other words,

Bt = βt −
∫ t∧1

0

B1 −Bs
1− s

ds

is the decomposition of B as an F(B1)-semi-martingale.

Proof: Note that the definition of F(B1) is done to satisfy the right-continuity assumption. We
shall note, as a short cut, F (B1)

t := Ft ∨ σ(B1) = Ft ∨ σ(B1 −Bt). Then, since Fs is independent of
(Bs+h −Bs, h ≥ 0), one has, for s < t:

E(Bt −Bs|F (B1)
s ) = E(Bt −Bs|B1 −Bs) =

t− s

1− s
(B1 −Bs) .

For s < t < 1,

E(
∫ t

s

B1 −Bu
1− u

du|F (B1)
s ) =

∫ t

s

1

1− u
E(B1 −Bu|B1 −Bs) du

=

∫ t

s

1

1− u
(B1 −Bs − E(Bu −Bs|B1 −Bs)) du

=

∫ t

s

1

1− u

(
B1 −Bs −

u− s

1− s
(B1 −Bs)

)
du

=
1

1− s
(B1 −Bs)

∫ t

s

du =
t− s

1− s
(B1 −Bs)

It follows that
E(βt − βs|F (B1)

s ) = 0

hence, β is an F(B1)-martingale (and an F(B1)-Brownian motion). �

It follows that if M is an F-local martingale such that
∫ 1

0
1√
1−sd|⟨M,B⟩|s is finite, then

M̂t =Mt −
∫ t∧1

0

B1 −Bs
1− s

d⟨M,B⟩s

is a F(B1)-local martingale.

Comment 4.1.3 The singularity of B1−Bt

1−t at t = 1, i.e., the fact that B1−Bt

1−t is not square integrable
between 0 and 1 prevents a Girsanov measure change transforming the (P,F(B1)) semi-martingale
B into a (Q,F(B1)) martingale.

Comment 4.1.4 We obtain that the standard Brownian bridge b is a solution of the following
stochastic equation (take care about the change of notation)

dbt = − bt
1− t

dt+ dWt ; 0 ≤ t < 1

b0 = 0 .

The solution of the above equation is bt = (1− t)
∫ t
0

1
1−sdWs which is a Gaussian process with zero

mean and covariance s(1− t), s ≤ t.

Exercise 4.1.5 Using the notation of Proposition 4.1.2, prove that B1 and β are independent.
Check that the projection of β on FB is equal to B.
Hint: The F(B1) BM β is independent of F (B1)

0 . ▹
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Exercise 4.1.6 Consider the SDE{
dXt = − Xt

1− t
dt+ dWt ; 0 ≤ t < 1

X0 = 0

1. Prove that

Xt = (1− t)

∫ t

0

dWs

1− s
; 0 ≤ t < 1 .

2. Prove that (Xt, t ≥ 0) is a Gaussian process. Compute its expectation and its covariance.

3. Prove that limt→1Xt = 0.

▹

Exercise 4.1.7 (See Jeulin and Yor [82]) Let Xt =
∫ t
0
φsdBs where φ is predictable such that∫ t

0
φ2
sds <∞. Prove that the following assertions are equivalent

1. X is an F(B1)-semimartingale with decomposition

Xt =

∫ t

0

φsdβs +

∫ t∧1

0

B1 −Bs
t− s

φsds

2.
∫ 1

0
|φs| |B1−Bs|

1−s ds <∞

3.
∫ 1

0
|φs|√
1−sds <∞

▹

4.2 Poisson Bridge

Let N be a Poisson process with constant intensity λ, FN
t = σ(Ns, s ≤ t) its natural filtration and

T > 0 a fixed time. The process Mt = Nt − λt is a martingale. Let G∗
t = σ(Ns, s ≤ t;NT ) be the

natural filtration of N enlarged with the terminal value NT of the process N .

Proposition 4.2.1 Assume that λ = 1. The process

ηt =Mt −
∫ t∧T

0

MT −Ms

T − s
ds,

is a G∗-martingale with predictable bracket, for t ≤ T ,

Λt =

∫ t

0

NT −Ns
T − s

ds .

Proof: For 0 < s < t < T ,

E(Nt −Ns|G∗
s ) = E(Nt −Ns|NT −Ns) =

t− s

T − s
(NT −Ns)

where the last equality follows from the fact that, if X and Y are independent with Poisson laws
with parameters µ and ν respectively, then

P(X = k|X + Y = n) =
n!

k!(n− k)!
αk(1− α)n−k
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where α =
µ

µ+ ν
. Hence,

E
(∫ t

s

du
NT −Nu
T − u

|G∗
s

)
=

∫ t

s

du

T − u
(NT −Ns − E(Nu −Ns|G∗

s ))

=

∫ t

s

du

T − u

(
NT −Ns −

u− s

T − s
(NT −Ns)

)
=

∫ t

s

du

T − s
(NT −Ns) =

t− s

T − s
(NT −Ns) .

Therefore,

E(Nt −Ns −
∫ t

s

NT −Nu
T − u

du|G∗
s ) =

t− s

T − s
(NT −Ns)−

t− s

T − s
(NT −Ns) = 0

and the result follows.

�

Comment 4.2.2 Poisson bridges are studied in Jeulin and Yor [82]. This kind of enlargement of
filtration is used for modelling insider trading in Elliott and Jeanblanc [52], Grorud and Pontier [66]
and Kohatsu-Higa and Øksendal [93].

Exercise 4.2.3 Prove that, for any enlargement of filtration the compensated martingaleM remains
a semi-martingale.
Hint: M has bounded variation. ▹

Exercise 4.2.4 Prove that any FN -martingale is a G∗-semimartingale. ▹

Exercise 4.2.5 Prove that

ηt = Nt −
∫ t∧T

0

NT −Ns
T − s

ds− (t− T )+,

Prove that

⟨η⟩t =
∫ t∧T

0

NT −Ns
T − s

ds+ (t− T )+ .

Therefore, (ηt, t ≤ T ) is a compensated G∗-Poisson process, time-changed by
∫ t
0
NT−Ns

T−s ds, i.e.,
ηt = M̃(

∫ t
0
NT−Ns

T−s ds) where (M̃(t), t ≥ 0) is a compensated Poisson process. ▹

Exercise 4.2.6 A process X fulfills the harness property if

E
(
Xt −Xs

t− s

∣∣∣Fs0], [T) =
XT −Xs0

T − s0

for s0 ≤ s < t ≤ T where Fs0], [T = σ(Xu, u ≤ s0, u ≥ T ). Prove that a process with the harness
property satisfies

E
(
Xt

∣∣∣Fs], [T) =
T − t

T − s
Xs +

t− s

T − s
XT ,

and conversely. Prove that, if X satisfies the harness property, then, for any fixed T ,

MT
t = Xt −

∫ t

0

du
XT −Xu

T − u
, t < T

is an Ft], [T -martingale and conversely. See [3M] for more comments. ▹
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4.3 Insider trading

In this section, we study a simple case of insider trading. We assume, that, in a BLack and Scholes
model, an insider knows, at time 0 the value of the price at time 1. If the maturity of the market
is 1, there are obviously arbitrage opportunity. We show how this insider can increase his wealth if
the market terminates before date 1. We then study the same problem in a Poisson case.

4.3.1 Brownian Bridge

Let
dSt = St(µdt+ σdBt)

where µ and σ are constants, be the price of a risky asset. Assume that the riskless asset has an
constant interest rate r.

The wealth of an agent holding ϑ0 shares of the savings account and ϑ shares of the underlying
risky process is Xt = ϑ0t e

rt + ϑtSt. The self financing condition is that

dXt = ϑ0tde
rt + ϑtdSt = rXtdt+ ϑt(dSt − rStdt)

With the change of notation πt = ϑtSt/Xt (so that the wealth remains non negative) one has

dXt = rXtdt+ πtσXt(dWt + θdt), X0 = x

Here ϑ is the number of shares of the risky asset, and π the proportion of wealth invested in the
risky asset. It follows that

ln(Xπ,x
T ) = lnx+

∫ T

0

(r − 1

2
π2
sσ

2 + θπsσ)ds+

∫ T

0

σπsdWs

Then, assuming that the local martingale represented by the stochastic integral is in fact a martin-
gale,

E(ln(Xπ,x
T )) = lnx+

∫ T

0

E
(
r − 1

2
π2
sσ

2 + θπsσ

)
ds

The portfolio which maximizes E(ln(Xπ,x
T )) is πs = θ

σ and

supE(ln(Xπ,x
T )) = lnx+ T

(
r +

1

2
θ2
)

Note that, if the coefficients r, µ and σ are F-adapted, the same computation leads to

supE(ln(Xπ,x
T )) = lnx+

∫ T

0

E
(
rt +

1

2
θ2t

)
dt

where θt = µt−rt
σt

.

We come back to the case of constant coefficients. We now enlarge the filtration with S1 (or
equivalently, with B1. In the enlarged filtration, setting, for t < 1, αt = B1−Bt

1−t , the dynamics of S
are

dSt = St((µ+ σαt)dt+ σdβt) ,

where β is defined in Proposition 4.1.2 and the dynamics of the wealth are

dXt = rXtdt+ πtσXt(dβt + θ̃tdt), X0 = x
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with θ̃t =
µ−r
σ + αt =

µ−r
σ + B1−Bs

1−s . Assuming again that the stochastic integral which appears is

a martingale, the portfolio which maximizes E(ln(Xπ,x
T )) is πs = θ̃s

σ .
Then, for T < 1,

ln(Xπ,x,∗
T ) = lnx+

∫ T

0

(r +
1

2
θ̃2s)ds+

∫ T

0

σπsdβs

E(ln(Xπ,x,∗
T )) = lnx+

∫ T

0

(r +
1

2
(θ2 + E(α2

s) + 2θE(αs))ds = lnx+ (r +
1

2
θ2)T +

1

2

∫ T

0

E(α2
s)ds

where we have used the fact that E(αt) = 0 (if the coefficients r, µ and σ are F adapted, α is
orthogonal to Ft, hence E(αtθt) = 0). Let

V F(x) = maxE(ln(Xπ,x
T )) ; π is F adapted

V G(x) = maxE(ln(Xπ,x
T )) ; π is G adapted

Then V G(x) = V F(x) + 1
2E
∫ T
0
α2
sds = V F(x)− 1

2 ln(1− T ).

If T = 1, the value function is infinite: there is an arbitrage opportunity and there does not exist
an e.m.m. such that the discounted price process (e−rtSt, t ≤ 1) is a G-martingale. However, for
any ϵ ∈ ]0, 1], there exists a uniformly integrable G-martingale L defined as

dLt =
µ− r + σζt

σ
Ltdβt, t ≤ 1− ϵ, L0 = 1 ,

such that, setting dQ|Gt
= LtdP|Gt

, the process (e−rtSt, t ≤ 1− ϵ) is a (Q,G)-martingale.

This is the main point in the theory of insider trading where the knowledge of the terminal value
of the underlying asset creates an arbitrage opportunity, which is effective at time 1.

It is important to mention, that in both cases, the wealth of the investor is Xte
−rt = x +∫ t

0
πsd(Sse

−rs). The insider has a larger class of portfolio, and in order to give a meaning to the
stochastic integral for processes π which are not adapted with respect to the semi-martingale S, one
has to give the decomposition of this semi-martingale in the larger filtration.

Exercise 4.3.1 Prove carefully that there does not exist any emm in the enlarged filtration. Make
precise the arbitrage opportunity. ▹

4.3.2 Poisson Bridge

We suppose that the interest rate is null and that the risky asset has dynamics

dSt = St− (µdt+ σdWt + ϕdMt)

where M is the compensated martingale of a standard Poisson process. Let (Xt, t ≥ 0) be the wealth
of an un-informed agent whose portfolio is described by (πt), the proportion of wealth invested in
the asset S at time t. Then

dXt = πtXt−(µdt+ σdWt + ϕdMt) (4.3.1)

Then,

Xt = x exp

(∫ t

0

πs(µ− ϕλ)ds+

∫ t

0

σπsdWs +
1

2

∫ t

0

σ2π2
sds+

∫ t

0

ln(1 + πsϕ)dNs

)
Assuming that the stochastic integrals with respect to W and M are martingales,

E[ln(XT )] = ln(x) +

∫ T

0

E(µπs −
1

2
σ2π2

s + λ(ln(1 + ϕπs)− ϕπs)ds .
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Our aim is to solve
V (x) = sup

π
E (ln(Xx,π

T ))

We can then maximize the quantity under the integral sign for each s and ω.
The maximum attainable wealth for the uninformed agent is obtained using the constant strategy
π̃ for which

π̃µ+ λ[ln(1 + π̃ϕ)− π̃ϕ]− 1

2
π̃2σ2 = sup

π
[πµ+ λ[ln(1 + πϕ)− πϕ]− 1

2
π2σ2] .

Hence
π̃ =

1

2σ2ϕ

(
µϕ− ϕ2λ− σ2 ±

√
(µϕ− ϕ2λ− σ2)2 + 4σ2ϕµ

)
.

The quantity under the square root is (µϕ− ϕ2λ+ σ2)2 + 4σ2ϕ2λ and is non-negative.
The sign to be used depends on the sign of quantities related to the parameters. The optimal π̃ is
the only one such that 1 + ϕπ̃ > 0. Solving the equation (4.3.1), it can be proved that the optimal

wealth is X̃t = x(L̃t)
−1 where dL̃t = L̃t−(−σπ̃dWt+(

1

1 + ϕπ̃
−1)dMt) is a Radon Nikodym density

of an equivalent martingale measure. In this incomplete market, we thus obtain the utility equivalent
martingale measure defined by Davis [38] and duality approach (See Kramkov and Schachermayer).

We assume now that the informed agent knows NT from time 0. Therefore, his wealth evolves
according to the dynamics

dX∗
t = πtX

∗
t−[(µ+ ϕ(Λt − λ)]dt+ σdWt + ϕdM∗

t ]

where Λ is given in Proposition 4.2.1. Exactly the same computations as above can be carried out.
In fact these only require changing µ to (µ+ϕ(Λt−λ)) and the intensity of the jumps from λ to Λt.

The optimal portfolio π∗ is now such that µ− λϕ+ ϕΛs[
1

1 + π∗ϕ
]− π∗σ2 = 0 and is given by

π∗
s =

1

2σ2ϕ

(
µϕ− ϕ2λ− σ2 ±

√
(µϕ− ϕ2λ+ σ2)2 + 4σ2ϕ2Λs

)
,

The optimal wealth is X∗
t = x(L∗

t )
−1 where

dL∗
t = L∗

t−(−σπ∗
sdWt + (

1

1 + ϕπ∗
s

− 1)dM∗
t ) .

Whereas the optimal portfolio of the uninformed agent is constant, the optimal portfolio of the
informed agent is time-varying and has a jump as soon as a jump occurs for the prices.
The informed agent must maximize at each (s, ω) the quantity

πµ+ Λs(ω) ln(1 + πϕ)− λπϕ− 1

2
π2σ2 .

Consequently,

sup
π
πµ+ Λs ln(1 + πϕ)− λπϕ− 1

2
π2σ2 ≥ π̃µ+ Λs ln(1 + π̃ϕ)− λπ̃ϕ− 1

2
π̃2σ2

Now, E[Λs] = λ, so

sup
π

E(lnX∗
T ) = lnx+ sup

π

∫ T

0

E(πµ+ Λs ln(1 + πϕ)− λπϕ− 1

2
π2σ2)ds

≥ lnx+

∫ T

0

π̃(µ+ λ ln(1 + π̃ϕ)− λπ̃ϕ− 1

2
π̃2σ2)ds = E(ln X̃T )

Therefore, the maximum expected wealth for the informed agent is greater than that of the un-
informed agent. This is obvious because the informed agent can use any strategy available to the
uninformed agent.

Exercise 4.3.2 Solve the same problem for power utility function. ▹
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4.4 Drift Information in a Progressive Enlargement in a Brow-
nian Setting

We assume in this part that W is a Brownian motion with natural filtration F and G is a filtration
larger than F and that there there exists an integrable G-adapted process µG such that dWt =
dWG

t +µG
t dt where WG is a G-BM. We study a financial market where a risky asset with price S (an

F-adapted positive process) and a riskless asset S0 ≡ 1 are traded is arbitrage free. More precisely,
we assume w.l.g. that S is a (P,F) (local) martingale, dSt = StσtdWt.

Let X be the wealth process associated with a G predictable strategy

dXt = ϑtdSt = ϑtStdWt = πtXtdWt = πtXt(dW
G
t + µG

t dt)

(where the change of parameter is due to the fact that we restrict our attention to positive wealth)
so that

Xt = x exp

(∫ t

0

πsdW
G
s − 1

2

∫ t

0

π2
sds+

∫ t

0

πsµ
G
s ds

)
Our goal is to solve sup(E(lnXT ), π ∈ F) and sup(E(lnXT ), π ∈ G). It is then easy to see that the
optimal π is π∗ = µG and that

lnX∗
t = lnx+

∫ t

0

π∗
sdW

G
s +

1

2

∫ t

0

(µG
s )

2ds

so that, assuming that E
(∫ t

0
(µG
s )

2ds
)
<∞, one finds

sup
π∈F

E(lnXT ) = lnx < sup
π∈G

E(lnXT ) = lnx+ E
(
1

2

∫ t

0

(µG
s )

2ds

)

Note that, if Lt := E(−µGWG)t is a martingale, NFLVR holds, and if L is a local martingales,
the No arbitrages of the first kind holds (see Section 1.5.1).



Chapter 5

Initial Enlargement

In this chapter, we study initial enlargement, where the enlarged filtration is F (L)
t = Ft ∨ σ(L)

for a random variable L. The goal is to give conditions such that F-martingales remain F(L)-semi-
martingales and, in that case, to give the F(L)-semi-martingale decomposition of the F-martingales.

More precisely, in order to satisfy the usual hypotheses, define

F (L)
t = ∩ϵ>0 {Ft+ϵ ∨ σ(L)} .

In this chapter, we study the (H′) hypothesis between F and F(L)

• We give Jacod’s criteria

• We present Yor’s methodology in a Brownian setting

• We give some examples

5.1 General Facts

We denote P(F) the predictable σ-algebra (see Subsection 1.1.3).

Proposition 5.1.1 One has
(i) Every F (L)

t -measurable r.v. Yt is of the form Yt(ω) = yt(ω,L(ω)) for some Ft⊗B(R)-measurable
random variable (yt(ω, u), t ≥ 0).
(ii) Every F(L)-predictable process Y is of the form Yt(ω) = yt(ω,L(ω)) where (t, ω, u) 7→ yt(ω, u) is
a P(F)⊗ B(R)-measurable function.

Proof: The proof of part (i) is based on the fact that F (L)
t -measurable random variables are

generated by random variables of the form Xt(ω) = xt(ω)f
(
L(ω)

)
, with xt ∈ Ft and f bounded

Borel function on R.

(ii) It suffices to notice that processes of the form Xt := xtf(L), t ≥ 0, where x is F-predictable
and f is a bounded Borel function on R, generate the F (L)-predictable σ-field. �

We shall now simply write yt(L) for yt(ω,L(ω)).

5.2 An absolute continuity result

We recall that there exists a family of regular conditional distributions Pt(ω, dx) such that Pt(·, A)
is a version of P(L ∈ A|Ft).

67
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5.2.1 Jacod’s criterion

In what follows, for y(u) a family of martingales and X a martingale, we shall write ⟨y(L), X⟩ for
⟨y(u), X⟩|u=L.

Proposition 5.2.1 (Jacod’s Criterion.) Suppose that, for each t ≥ 0, Pt(ω, dx) << ν(dx) where
ν is the law of L. Then, every F-semi-martingale (Xt, t < T ) is also an F(L)-semi-martingale.
If X is an F-martingale, the process

X̃t = Xt −
∫ t

0

d⟨p·(L), X⟩s
ps−(L)

, t < T

is an F(L)-martingale. In other words, the decomposition of the F(L)-semi-martingale X is

Xt = X̃t +

∫ t

0

d⟨p·(L), X⟩s
ps−(L)

.

Proof: In a first step, we show that, for any θ, the process p(θ) = (pt(θ), t ≥ 0) is an F-
martingale. One has to show that, for a bounded r.v. ζs ∈ Fs and s < t

E(pt(θ)ζs) = E(ps(θ)ζs)

This follows from
E(E(11τ>θ|Ft)ζs) = E(E(11τ>θ|Fs)ζs) .

In a second step, we assume that F-martingales are continuous (condition (C)), and that X and
p are square integrable. In that case, ⟨p·(L), X⟩ exists. Let Fs be a bounded Fs-measurable random
variable and h : R+ → R, be a bounded Borel function. Then the variable Fsh(L) is F (L)

s -measurable
and if a decomposition of the form Xt = X̃t+

∫ t
0
dKu(L) holds, the martingale property of X̃ should

imply that E
(
Fsh(L)

(
X̃t − X̃s

))
= 0, hence

E (Fsh(L) (Xt −Xs)) = E
(
Fsh(L)

∫ t

s

dKu(L)

)
.

We can write:

E (Fsh(L) (Xt −Xs)) = E
(
Fs (Xt −Xs)

∫ ∞

−∞
h(θ)pt(θ)ν(dθ)

)
=

∫
R
h(θ)E (Fs (Xtpt(θ)−Xsps(θ))) ν(dθ)

=

∫
R
h(θ)E

(
Fs

∫ t

s

d ⟨X, p(θ)⟩v

)
ν(dθ)

where the first equality comes from a conditioning w.r.t. Ft, the second from the martingale property
of p(θ), and the third from the fact that both X and p(θ) are square-integrable F-martingales.
Moreover:

E
(
Fsh(L)

∫ t

s

dKv(L)

)
= E

(
Fs

∫
R
h(θ)

∫ t

s

dKv(θ)pt(θ)ν(dθ)

)
=

∫
R
h(θ)E

(
Fs

∫ t

s

pv(θ)dKv(θ)

)
ν(dθ)

where the first equality comes from the definition of p, and the second from the martingale prop-
erty of p(θ). By equalization of these two quantities, we obtain that it is necessary to have
dKu(θ) = d ⟨X, p(θ)⟩u /pu(θ). �

For the general case, we refer the reader to Jacod. If Pt(ω, dx) = pt(ω, x)ν(dx), the process p(L)
does not vanish on [0, T [.



5.2. AN ABSOLUTE CONTINUITY RESULT 69

Remark 5.2.2 Of course, if for each t ≤ T , Pt(ω, dx) << ν(dx) where ν is the law of L, every
F-semi-martingale (Xt, t ≤ T ) is also an F(L)-semi-martingale. In many cases, the hypothesis is not
satisfied for T (see the Brownian bridge case).

Definition 5.2.3 We shall say that L satisfies absolutely continuity hypothesis if

P(L ∈ dx|Ft) = Pt(dx) = pt(x)ν(dx)

The stability of absolutely continuity hypothesis under a change of probability is rather obvious.

Corollary 5.2.4 Let Z be a random variable taking only a countable number of values. Then every
F semimartingale is a F(Z) semimartingale.

Proof: If we note

η (dx) =

∞∑
k=1

P (Z = xk) δxk
(dx) ,

where δxk
(dx) is the Dirac measure at xk, the law of Z, then Pt (ω, dx) is absolutely continuous

with respect to η with Radon-Nikodym density:
∞∑
k=1

P (Z = xk|Ft)
P (Z = xk)

11x=xk
.

Now the result follows from Jacod’s theorem.�

Exercise 5.2.5 Assume that F is a Brownian filtration. Then, check directly that E(
∫ t
0
d⟨p·(L),X⟩s
ps− (L) |Ft)

is an F-martingale. ▹

5.2.2 Regularity Conditions

One of the major difficulties is to prove the existence of a universal càdlàg martingale version of the
family of densities, which is important in order to avoid difficulties with negligible sets. Fortunately,
results of Jacod [72] or Stricker and Yor [119] help us to solve this technical problem. See also [9] for
a detailed discussion. We emphazise that these results are the most important part of enlargement
of filtration theory.

Jacod ([72], Lemme 1.8 and 1.10) establishes the existence of a universal càdlàg version of the
density process in the following sense: there exists a non negative function pt(ω, θ) càdlàg in t,
optional w.r.t. the filtration F̂ on Ω̂ = Ω× R+, generated by Ft ⊗ B(R+), such that

• for any θ, p.(θ) is an F-martingale; moreover, denoting ζθ = inf{t : pt−(θ) = 0} ∧ T , then
p.(θ) > 0, and p−(θ) > 0 on [0, ζθ), and p.(θ) = 0 on [ζθ, T ). Furthermore, ζL = T , P-a.s.

• For any bounded family (Yt(ω, θ), t ≥ 0) measurable w.r.t. P(F) ⊗ B(R+), the F-predictable
projection of the process Yt(ω,L(ω)) is the process Y (p)

t = pt−(θ)Yt(θ)ν(dθ).

• If (ω, t, θ) →)Yt(ω, θ) is non negative and O(F))⊗B measurable, the optional projection of the
process Y (L) is

∫
Yt(θ)pt(θ)ν(dθ).

• Let m be a local F-martingale. There exists a predictable increasing process A and a F̂-
predictable function k such that

⟨p(θ),m⟩t =
∫ t

0

ks(θ)ps−(θ)dAs .

If m is locally square integrable, one can chose A = ⟨m⟩.

Exercise 5.2.6 Prove that if there exists a probability Q∗ equivalent to P such that, under Q∗,
the r.v. L is independent of F∞, then every (P,F)-semi-martingale X is also an (P,F(L))-semi-
martingale. See Chapter 8 for a more exhaustive study. ▹
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5.3 Yor’s Method

We follow here Yor [128] (see also [127]). We assume that F is a Brownian filtration. For a bounded
Borel function f , let (λt(f), t ≥ 0) be the continuous version of the martingale (E(f(L)|Ft), t ≥ 0).
There exists a predictable kernel λt(dx) such that

λt(f) =

∫
R
λt(dx)f(x) .

From the predictable representation property applied to the martingale E(f(L)|Ft), there exists a
predictable process λ̂(f) such that

λt(f) = E(f(L)) +
∫ t

0

λ̂s(f)dBs .

Proposition 5.3.1 We assume that there exists a predictable kernel λ̂t(dx) such that

dt a.s., λ̂t(f) =

∫
R
λ̂t(dx)f(x) .

Assume furthermore that dt × dP a.s. the measure λ̂t(dx) is absolutely continuous with respect to
λt(dx):

λ̂t(dx) = ρ(t, x)λt(dx) .

Then, if X is an F-martingale, there exists a F(L)-martingale X̂ such that

Xt = X̂t +

∫ t

0

ρ(s, L)d⟨X,B⟩s .

Sketch of the proof: Let X be an F-martingale, f a given bounded Borel function and Ft =
E(f(L)|Ft). From the hypothesis

Ft = E(f(L)) +
∫ t

0

λ̂s(f)dBs .

Then, for As ∈ Fs, s < t:

E(11As
f(L)(Xt −Xs)) = E(11As

(FtXt − FsXs)) = E(11As
(⟨F,X⟩t − ⟨F,X⟩s))

= E
(
11As

∫ t

s

d⟨X,B⟩u λ̂u(f)
)

= E
(
11As

∫ t

s

d⟨X,B⟩u
∫
R
λu(dx)f(x)ρ(u, x)

)
.

Therefore, Vt =
∫ t
0
ρ(u, L) d⟨X,B⟩u satisfies

E(11Asf(L)(Xt −Xs)) = E(11Asf(L)(Vt − Vs)) .

It follows that, for any Gs ∈ F (L)
s ,

E(11Gs
(Xt −Xs)) = E(11Gs

(Vt − Vs)) ,

hence, (Xt − Vt, t ≥ 0) is an F(L)-martingale. �

Let us write the result of Proposition 5.3.1 in terms of Jacod’s criterion. If λt(dx) = pt(x)ν(dx),
then

λt(f) =

∫
pt(x)f(x)ν(dx) .
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Hence,

d⟨λ·(f), B⟩t = λ̂t(f)dt =

∫
dxf(x) dt⟨p·(x), B⟩t

and
λ̂t(dx) = dt⟨p·(x), B⟩t =

dt⟨p·(x), B⟩t
pt(x)

pt(x)dx

therefore,

λ̂t(dx)dt =
dt⟨p·(x), B⟩t

pt(x)
λt(dx) .

In the case where λt(dx) = Φ(t, x)dx, with Φ > 0, it is possible to find ψ such that

Φ(t, x) = Φ(0, x) exp

(∫ t

0

ψ(s, x)dBs −
1

2

∫ t

0

ψ2(s, x)ds

)
and it follows that λ̂t(dx) = ψ(t, x)λt(dx). Then, if X is an F-martingale of the form Xt = x +∫ t
0
xsdBs, the process (Xt −

∫ t
0
ds xs ψ(s, L), t ≥ 0) is an F(L)-martingale.

5.3.1 Faux amis

Theorem 5.3.2 Let X be an F-local martingale with representation Xt = X0 +
∫ t
0
φsdBs for an

F-predictable process φ satisfying
∫ 1

0
φ2
sds <∞ a.s. Then, the following conditions are equivalent:

a) the process X is an Fσ(B1)-semimartingale;
b)
∫ 1

0
|φs| |B1−Bs|

1−s ds <∞ P-a.s.;
c)
∫ 1

0
|φs|√
1−sds <∞ P-a.s.

If these conditions are satisfied, the Fσ(B1)-semimartingale decomposition of X is

Xt =X0 +

∫ t∧1

0

φsdβs +

∫ t∧1

0

φs
B1 −Bs
1− s

ds. (5.3.1)

This is an example where hypothesis (H′) fails: some F-martingales are Fσ(B1)-semimartingales, but
not all of them.

5.4 Examples

We now give some examples taken from Mansuy & Yor [103] in a Brownian set-up for which we use
the preceding. Here, B is a standard Brownian motion.
See Jeulin [79] and Mansuy & Yor [103] for more examples.

5.4.1 Enlargement with B1.

We compare the results obtained in Subsection 4.1 and the method presented in Subsection 5.3. Let
L = B1. Note that,we can not apply directly Jacod’s results, since, at time t = 1, the conditional
law of B1 given F1 is not absolutely continuous w.r.t. the law of B1. From the Markov property

E(g(B1)|Ft) = E(g(B1 −Bt +Bt)|Ft) = Fg(Bt, 1− t)

where Fg(y, 1 − t) =
∫
g(x)P (1 − t; y, x)dx and P (s; y, x) = 1√

2πs
exp

(
− (x−y)2

2s

)
. It follows that

λt(dx) =
1√

2π(1−t)
exp

(
− (x−Bt)

2

2(1−t)

)
dx. Then

λt(dx) = pt(x)P(B1 ∈ dx) = pt(x)
1√
2π
e−x

2/2dx
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with

pt(x) =
1√

(1− t)
exp

(
− (x−Bt)

2

2(1− t)
+
x2

2

)
.

From Itô’s formula,

dtpt(x) = pt(x)
x−Bt
1− t

dBt .

(This can be considered as a partial check of the martingale property of (pt(x), t ≥ 0).) It follows
that d⟨p(x), B⟩t = pt(x)

x−Bt

1−t dt, hence

Bt = B̃t +

∫ t

0

B1 −Bs
1− s

ds .

Note that, in the notation of Proposition 5.3.1, one has

λ̂t(dx) =
x−Bt
1− t

1√
2π(1− t)

exp

(
− (x−Bt)

2

2(1− t)

)
dx .

5.4.2 Enlargement with MB = sups≤1Bs.

From Exercise 1.7.1,
E(f(MB)|Ft) = F (1− t, Bt,M

B
t )

where MB
t = sups≤tBs with

F (s, a, b) =

√
2

πs

(
f(b)

∫ b−a

0

e−u
2/(2s)du+

∫ ∞

b

f(u)e−(u−a)2/(2s)du

)
and, denoting by δy the Dirac measure at y,

λt(dy) =

√
2

π(1− t)

{
δy(M

B
t )

∫ MB
t −Bt

0

exp

(
− u2

2(1− t)

)
du+ 11{y>MB

t } exp

(
− (y −Bt)

2

2(1− t)

)
dy

}
.

Hence, by applying Itô’s formula

λ̂t(dy) =

√
2

π(1− t)

{
δy(M

B
t ) exp

(
− (MB

t −Bt)
2

2(1− t)

)
+ 11{y>MB

t }
y −Bt
1− t

exp

(
− (y −Bt)

2

2(1− t)

)}
.

It follows that

ρ(t, x) = 11{x>MB
t }
x−Bt
1− t

+ 11{MB
t =x}

1√
1− t

Φ′

Φ

(
x−Bt√
1− t

)
with Φ(x) =

√
2
π

∫ x
0
e−

u2

2 du.

5.4.3 Enlargement with
∫∞
0

e2B
(−µ)
s ds

Consider A(µ)
t :=

∫ t
0
e2B

(µ)
s ds where B(µ)

t = Bt+µt, µ being a positive constant. Matsumoto and Yor
[104] have established that A(−µ)

∞ = A
(−µ)
t +e2B

(−µ)
t Ã

(−µ)
∞ where Ã(−µ)

∞ is independent of Ft, with the
same law as A(−µ)

∞ . The law of A(−µ)
∞ is proved to be the law of 1/(2γµ), γµ being a Gamma random

variable with parameter µ, i.e., admits the survival probability of Υ(x) = 1
Γ(µ)

∫ 1/(2x)

0
yµ−1e−ydy,

where Γ is the Gamma function. Then, one obtains

Gt(θ) = P (A(−µ)
∞ > θ|Ft) = Υ

(θ −A
(−µ)
t

e2B
(−µ)
t

)
11
θ>A

(−µ)
t

+ 11
θ≤A(−µ)

t
.
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This gives a family of martingale survival processes G with gamma structure. It follows that, on
{θ > A

(−µ)
t }

dGt(θ) =
1

2µ−1Γ(µ)
e−

1
2Zt(θ)(Zt(θ))

µdBt

where Zt(θ) = e2B
(−µ)
t

θ−A(−µ)
t

(to have light notation, we do not specify that this process Z depends on

µ). One can check that Gt(·) is differentiable w.r.t. θ, so that Gt(θ) =
∫∞
θ
gt(u)du, where

gt(u) = 11
u>A

(−µ)
t

1

2µΓ(µ)
(Zt(u))

µ+1e−
1
2Zt(u)−2B

(−µ)
t .

5.4.4 Enlargement with L :=
∫∞
0

f(s)dBs

Let B be a Brownian motion with natural filtration F and L =
∫∞
0
f(s)dBs where f is a deterministic

function such that
∫∞
0
f2(s)ds < ∞ and

∫∞
t
f2(s) ̸= 0. The above method applies step by step: it

is easy to compute λt (dx), since conditionally on Ft, L is Gaussian, with mean mt =
∫ t
0
f (s) dBs,

and variance σ2(t) =
∫∞
t
f2 (s) ds. Since P(L ≤ x|Ft) = Φ(

x−mt

σ(t)
), where Φ is the cumulative

distribution function of a standard gaussian law, the absolute continuity requirement is satisfied
with:

pt(x)ν(dx) =
1

σ(t)
φ(
x−mt

σ(t)
)dx,

where φ is the density of a standard Gaussian law, and ν the law of Z (a centered Gaussian law
with variance σ2(0)). Note that, from Itô’s calculus,

dpt(x) = pt(x)
x−mt

σ2(t)
dmt

But here, we have to impose an extra integrability condition. For example, if we assume that∫ t

0

|f (s) |
σ(s)

ds <∞,

then B is a F(L)-semimartingale with canonical decomposition:

Bt = B̃t +

∫ t

0

ds
f(s)

σ2(s)

(∫ ∞

s

f (u) dBu

)
,

As a particular case, taking care of the fact that σ vanishes after t0, we may take L = Bt0 , for some
fixed t0 and we recover the results for the Brownian bridge.

5.4.5 Enlargement with S∞ = suptNt

We start with a generalization of the result presented in Exercise 1.7.2.

Proposition 5.4.1 Azéma-Yor formula Let N be a local continuous martingale and St = sups≤tNs.
Let f be a locally bounded Borel function and define F (x) =

∫ x
0
dyf (y). Then, Xt := F (St) −

f (St) (St −Nt) is a local martingale and:

F (St)− f (St) (St −Nt) =

∫ t

0

f (Ss) dNs + F (S0) , (5.4.1)
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Proof: If F is C2,

F (St)− f (St) (St −Nt) = F (St)−
∫ t

0

f (Ss) dSs +

∫ t

0

f (Ss) dNs

+

∫ t

0

(Ss −Ns)f
′(Ss)dSs

The last integral is null, because dS is carried by {S −N = 0} and
∫ t
0
f (Ss) dSs = F (St)− F (S0).

For the general case, we refer the reader to [110]. �
The result can be extended to the case where N be a local martingale with a continuous running
maximum (see [110]).

Let N be a positive continuous local martingale such that Nt goes to 0 when t → ∞. Let us
introduce F (S∞)

t = Ft ∨ σ(S∞)) and set g = sup {t : Nt = S∞}. Obviously, the random variable g
is an F(S∞)-stopping time. Consequently Fg

t ⊂ F (S∞)
t .

Proposition 5.4.2 For any Borel bounded or positive function f , we have:

E (f (S∞) |Ft) = f (St)

(
1− Nt

St

)
+

∫ Nt/St

0

dxf

(
Nt
x

)
Proof: In the following, U is a random variable, which follows the standard uniform law and which
is independent of Ft, and St = sup s ≥ tNs. Then, from Lemma 1.1.13,

E (f (S∞) |Ft) = E
(
f
(
St ∨ St

)
|Ft
)

= E
(
f (St) 11{St≥St}|Ft

)
+ E

(
f
(
St
)
11{St<St}|Ft

)
= f (St)P

(
St ≥ St|Ft

)
+ E

(
f
(
St
)
11{St<St}|Ft

)
= f (St)P

(
U ≤ Nt

St
|Ft
)
+ E

(
f

(
Nt
U

)
11{U<Nt

St
}|Ft

)
= f (St)

(
1− Nt

St

)
+

∫ Nt/St

0

dxf

(
Nt
x

)
.

�
We now show that E (f (S∞) |Ft) is of the form (5.4.1). A straightforward change of variable in the
last integral also gives:

E (f (S∞) |Ft) = f (St)

(
1− Nt

St

)
+Nt

∫ ∞

St

dy
f (y)

y2

= St

∫ ∞

St

dy
f (y)

y2
− (St −Nt)

(∫ ∞

St

dy
f (y)

y2
− f (St)

St

)
.

Hence,
E (f (S∞) |Ft) = H (1) +H (St)− h (St) (St −Nt) ,

with
H (x) = x

∫ ∞

x

dy
f (y)

y2
,

and
h (x) = H ′ (x) ≡

∫ ∞

x

dy
f (y)

y2
− f (x)

x
=

∫ ∞

x

dy

y2
(f (y)− f (x)) .

Moreover, from the Azéma-Yor type formula (5.4.1), we have the following representation of E (f (S∞) |Ft)
as a stochastic integral:

E (f (S∞) |Ft) = E (f (S∞)) +

∫ t

0

h (Ss) dNs.
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Moreover, there exist two families of random measures (λt (dx))t≥0 and
(
λ̇t (dx)

)
t≥0

, with

λt (dx) =

(
1− Nt

St

)
δSt

(dx) +Nt11{x>St}
dx

x2

λ̇t (dx) = − 1

St
δSt

(dx) + 11{x>St}
dx

x2
,

such that

E (f (S∞) |Ft) = λt (f) =

∫
λt (dx) f (x)

λ̇t (f) =

∫
λ̇t (dx) f (x) .

Finally, we notice that there is an absolute continuity relationship between λt (dx) and λ̇t (dx); more
precisely,

λ̇t (dx) = λt (dx) ρ (x, t) ,

with
ρ (x, t) =

−1

St −Nt
11{St=x} +

1

Nt
11{St<x}.

Theorem 5.4.3 Let N be a positive continuous local martingale in the class C0 with N0 = 1. Then,
any F martingale X is an F(S∞)-emimartingale with canonical decomposition:

Xt = X̃t +

∫ t

0

11{g>s}
d⟨X,N⟩s
Ns−

−
∫ t

0

11{g≤s}
d⟨X,N⟩s
S∞ −Ns−

,

where X̃ is a F(S∞)-local martingale.

Proof: We can first assume that X is in H1; the general case follows by localization. Let Ks be
an Fs measurable set, and take t > s. Then, for any bounded test function f , λt (f) is a bounded
martingale, hence in BMO, and we have:

E (11Ks
f (S∞) (Xt −Xs)) = E (11Ks

(λt (f)Xt − λs (f)Xs))

= E (11Ks
(⟨λ (f) , X⟩t − ⟨λ (f) , X⟩s))

= E
(
11Ks

(∫ t

s

λ̇u (f) d⟨X,N⟩u
))

= E
(
11Ks

(∫ t

s

∫
λu (dx) ρ (x, u) f (x) d⟨X,N⟩u

))
= E

(
11Ks

(∫ t

s

d⟨X,N⟩uρ (S∞, u)

))
.

But we also have:
ρ (S∞, t) =

−1

St −Nt
11{St=S∞} +

1

Nt
11{St<S∞}.

It now suffices to use the fact that S is constant after g and g is the first time when S∞ = St, or in
other words:

11{S∞>St} = 11{g>t}, and 11{S∞=St} = 11{g≤t}.
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Chapter 6

Filtering

In this chapter, our goal is to show how one can apply the idea of change of probability framework to
a filtering problem (due to Kallianpur and Striebel [86]), to obtain the Kallianpur-Striebel formula
for the conditional density (see also Meyer [106]). Our results are established in a very simple way,
in a filtering model, when the signal is a random variable, and contain, in the simple case, the results
of Filipovic et al. [57]. We end the section with the examples of the traditional Gaussian filtering
problem and of disorder.

6.1 Change of probability measure

One starts with the elementary model where, on the filtered probability space (Ω,A,F,P), an A-
measurable random variable X is independent from the reference filtration F = (Ft)t≥0 and its law
admits a density probability g0, so that

P(X > θ|Ft) = P(X > θ) =

∫ ∞

θ

g0(u)du .

We denote by F(X) = F ∨ σ(X) the filtration generated by F and X.
Let (βt(u), t ∈ IR+) be a family of positive (P,F)-martingales such that β0(u) = 1 for all u ∈ IR.
Note that, due to the assumed independence of X and F, the process (βt(X), t ≥ 0) is an F(X)-
martingale and one can define a probability measure Q on (Ω,F (X)

t ), by dQ = βt(X)dP. Since F is
a subfiltration of F(X), the positive F-martingale

mβ
t := E(βt(X)|Ft) =

∫ ∞

−∞
βt(u)g0(u)du

is the Radon-Nikodým density of the measure Q, restricted to Ft with respect to P (note that
mβ

0 = 1). Moreover, the Q-conditional density of X with respect to Ft can be computed, from the
Bayes’ formula

Q(X ∈ B|Ft) =
1

E(βt(X)|Ft)
E(11B(X)βt(X)|Ft) =

1

mβ
t

∫
B

βt(u)g0(u)du

where we have used, in the last equality the independence between X and F, under P. Let us
summarize this simple but important result:

Proposition 6.1.1 If X is a r.v. with probability density g0, independent from F under P, and if
Q is a probability measure, equivalent to P on F ∨ σ(X) with Radon-Nikodým density βt(X), t ≥ 0,

77
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then the (Q,F) density process of X is

gQt (u)du := Q(X ∈ du|Ft) =
1

mβ
t

βt(u)g0(u)du (6.1.1)

where mβ is the normalizing factor mβ
t =

∫∞
−∞ βt(u)g0(u)du. In particular

Q(X ∈ du) = P(X ∈ du) = g0(u)du .

The right-hand side of (6.1.1) can be understood as the ratio of βt(u)g0(u) (the change of probability
times the P probability density ) and a normalizing coefficient mβ

t . One can say that (βt(u)g0(u), t ≥
0) is the un-normalized density, obtained by a linear transformation from the initial density. The
normalization factor mβ

t introduces a nonlinear dependence of gQt (u) with respect to the initial
density.

Remark 6.1.2 We present here some important remarks.
(1) If, for any t, mβ

t = 1, then the probability measures P and Q coincide on F.
(2) Let G = (Gt)t≥0 be the usual right-continuous and complete filtration in the default framework
(i.e. when X = τ is a non negative r.v.) generated by Ft∨σ(τ ∧ t). Similar calculation may be made
with respect to Gt. The only difference is that the conditional distribution of τ is a Dirac mass on
the set {t ≥ τ}. On the set {τ > t}, and under Q, the distribution of τ admits a density given by:

Q(τ ∈ du|Gt) = βt(u)g0(u)
1∫∞

0
βt(θ)g0(θ)dθ

du .

(3) This methodology can be easily extended to a multivariate setting: one starts with an elementary
model, where the τi, i = 1, . . . , d are independent from F, with joint density g(u1, . . . , ud). With a
family of non-negative martingales β(θ1, . . . , θd), the associated change of probability provides a
multidimensional density process.

6.2 Filtering theory

The change of probability approach presented in the previous Section 6.1 is based on the idea that,
in order to present modesl with a conditional density, one can restrict our attention to the simple
case where the random variable is independent from the filtration and use a change of probability.
The same idea is the building block of filtering theory as we present now.

Let W be a Brownian motion on the probability space (Ω,A,P), and X be a random variable
independent of W , with probability density g0. We denote by

dYt = a(t, Yt, X)dt+ b(t, Yt)dWt (6.2.1)

the observation process, where a and b are smooth enough to have a solution and where b does not
vanish. The goal is to compute the conditional density of X with respect to the filtration FY . The
way we shall solve the problem is to construct a probability Q, equivalent to P, such that, under
Q, the signal X and the observation FY are independent, and to compute the density of X under
P by means of the change of probability approach of the previous section. It is known in nonlinear
filtering theory as the Kallianpur-Striebel methodology [86], a way to linearize the problem.
Note that, from the independence assumption between X and W , we see that W is a F(X) =
FW ∨ σ(X)-martingale under P.

6.2.1 Simple case

We start with the simple case where the dynamics of the observation is

dYt = a(t,X)dt+ dWt .
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We assume that a is smooth enough so that the solution of

dβt(X) = −βt(X)a(t,X)dWt, β0(X) = 1

is a (P,F(X))-martingale, and we define a probability measure Q on F (X)
t by dQ = βt(X)dP. Then,

by Girsanov’s theorem, the process Y is a (Q,F(X))-Brownian motion, hence is independent from
F(X)
0 = σ(X), under Q. Then, we apply our change of probability methodology, writing

dP =
1

βt(X)
dQ =: ℓt(X)dQ

with
dℓt(X) = ℓt(X)a(t,X)dYt, ℓ0(X) = 1 ;

in other words, ℓt(u) = 1
βt(u)

= exp
(∫ t

0
a(s, u)dYs − 1

2

∫ t
0
a2(s, u)ds

)
. From Proposition 6.1.1, we

obtain that the density of X under P, with respect to FY , is gt(u), given by

P(X ∈ du|FY
t ) = gt(u)du =

1

mℓ
t

g0(u)ℓt(u)du

where mℓ
t = EQ(ℓt(X)|FY

t ) =
∫∞
−∞ ℓt(u)g0(u)du. Using the fact that

dmℓ
t =

(∫ ∞

−∞
ℓt(u)a(t, u)g0(u)du

)
dYt = mℓ

t

(∫ ∞

−∞
gt(u)a(t, u)du

)
dYt

and setting

ât := E(a(t,X)|FY
t ) =

∫ ∞

−∞
gt(u)a(t, u)du ,

Girsanov’s theorem implies that the process B given by

dBt = dYt − âtdt = dWt + (a(t,X)− ât) dt

is a (P,FY ) Brownian motion (called the innovation process). From Itô’s calculus, it is easy to show
that the density process satisfies the nonlinear filtering equation

dgt(u) = gt(u)

(
a(t, u)− 1

mℓ
t

∫ ∞

−∞
dy g0(y)a(t, y)ℓt(y)

)
dBt

= gt(u) (a(t, u)− ât) dBt . (6.2.2)

Remarks 6.2.1 (a) Observe that conversely, given a solution gt(u) of (6.2.2), and the process
µ solution of dµt = µtâtdYt, then ht(u) = µtgt(u) is solution of the linear equation dht(u) =
ht(u)a(t, u)dYt.
(b) It is interesting to compare this methodology of change of probability measure with the one used
in Chapter 8

6.2.2 Case with drift coefficient

Using the same ideas, we now solve the filtering problem in the case where the observation follows
(6.2.1). Let β(X) be the F(X) local martingale, solution of

dβt(X) = βt(X)σt(X)dWt, β0(X) = 1

with σt(X) = −a(t,Yt,X)
b(t,Yt)

. We assume that a and b are smooth enough so that β is a martingale. Let

Q be defined on F (X)
t by dQ = βt(X)dP.

From Girsanov’s theorem, the process Ŵ defined as

dŴt = dWt − σt(X)dt =
1

b(t, Yt)
dYt
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is a (Q,GX)-Brownian motion, hence Ŵ is independent from GX0 = σ(X). Being FY -adapted, the
process Ŵ is a (Q,FY )-Brownian motion, X is independent from FY under Q, and, as mentioned in
Proposition 6.1.1, admits, under Q, the probability density g0.
We now assume that the natural filtrations of Y and Ŵ are the same. To do so, note that it is
obvious that FŴ ⊆ FY . If the SDE dYt = b(t, Yt)dŴt has a strong solution (e.g., if b is Lipschitz,
with linear growth) then FY ⊆ FŴ and the equality between the two filtrations holds.
Then, we apply our change of probability methodology, with FY as the reference filtration, writing
dP = ℓt(X)dQ with dℓt(X) = −ℓt(X)σt(X)dŴt (which follows from ℓt(X) = 1

βt(X) ) and we get that
the density of X under P, with respect to FY is gt(u) given by

gt(u) =
1

mℓ
t

g0(u)ℓt(u)

with dynamics

dgt(u) = −gt(u)
(
σt(u)−

1

mℓ
t

∫ ∞

−∞
dy g0(y)σt(y)ℓt(y)

)
dBt

= gt(u)

(
a(t, Yt, u)

b(t, Yt)
− 1

b(t, Yt)

∫ ∞

−∞
dy gt(y)a(t, Yt, y)

)
dBt

= gt(u)

(
a(t, Yt, u)

b(t, Yt)
− ât
b(t, Yt)

)
dBt . (6.2.3)

Here B is a (P,FY ) Brownian motion (the innovation process) given by

dBt = dWt +

(
a(t, Yt, X)

b(t, Yt)
− ât
b(t, Yt)

)
dt ,

where ât = E(a(t, Yt, X)|FY
t ).

Proposition 6.2.2 If the signal X has probability density g0(u) and is independent from the Brow-
nian motion W , and if the observation process Y follows

dYt = a(t, Yt, X)dt+ b(t, Yt)dWt ,

then, the conditional density of X given FY
t is

P(X ∈ du|FY
t ) = gt(u)du =

1

mℓ
t

g0(u)ℓt(u)du (6.2.4)

where ℓt(u) = exp
(∫ t

0
a(s,Ys,u)
b2(s,Ys)

dYs − 1
2

∫ t
0
a2(s,Ys,u)
b2(s,Ys)

ds
)
, mℓ

t =
∫∞
−∞ ℓt(u)g0(u)du, and its dynamics

is given in (6.2.3).

6.2.3 Case where X has a Conditional Law

Assume now that X has a non trivial conditional law w.r.t. the Brownian motion driving the
observation process. We assume that

P(X > u|FW
t ) =

∫ ∞

u

pt(v)dv

and that the observation is
dYt = a(t, Yt, X)dt+ b(t, Yt)dWt

Then, the process
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Bt :=Wt +

∫ t

0

d⟨p·(θ),W ⟩s|θ=X
ps(X)

is a FW ∨ σ(X) Brownian motion, independent of X. It follows that

dYt =

(
a(t, Yt, X)dt− b(t, Yt)

d⟨p·(θ),W ⟩t|θ=X
pt(X)

)
+ b(t, Yt)dBt

and we can apply the previous results.

6.2.4 Gaussian filter

We apply our results to the well known case of Gaussian filter. Let W be a Brownian motion, X a
random variable (the signal) with density probability g0 a Gaussian law with mean m0 and variance
γ0, independent of the Brownian motion W and let Y (the observation) be the solution of

dYt = (a0(t, Yt) + a1(t, Yt)X)dt+ b(t, Yt)dWt,

Then, from the previous results, the density process gt(u) is of the form

1

mℓ
t

exp

(∫ t

0

a0(s, Ys) + a1(s, Ys)u

b2(s, Ys)
dYt −

1

2

∫ t

0

(
a0(s, Ys) + a1(s, Ys)u

b(s, Ys)

)2

ds

)
g0(u)

The logarithm of gt(u) is a quadratic form in u with stochastic coefficient, so that gt(u) is a Gaussian
density, with mean mt and variance γt (as proved already by Liptser and Shiryaev [100]). A tedious
computation, purely algebraic, shows that

γt =
γ0

1 + γ0
∫ t
0

a21(s,Ys)
b2(s,Ys)

ds
, mt = m0 +

∫ t

0

γs
a1(s, Ys)

b(s, Ys)
dBs

with dBt = dWt +
a1(t,Yt)
b(t,Yt)

(X − E(X|FY
t ))dt.

XTO BE MODIFIED

In the case where the coefficients of the process Y are deterministic functions of time, i.e.,

dYt = (a0(t) + a1(t)X)dt+ b(t)dWt

the variance γ(t) is deterministic and the mean m is an FY -Gaussian martingale

γ(t) =
γ0

1 + γ0
∫ t
0
α2(s)ds

, mt = m0 +

∫ t

0

γ(s)α(s)dBs

where α = a1/b. Furthermore, FY = FB .
Filtering versus enlargement: Choosing f(s) = γ(s)a1(s)

b(s) in the example of Section 5.4.4 leads
to the same conditional law (with m0 = 0); indeed, it is not difficult to check that this choice of
parameter leads to

∫∞
t
f2(s)ds = σ2(t) = γ(t) so that the two variances are equal.

The similarity between filtering and the example of Section 5.4.4 can be also explained as follows. Let
us start from the setting of Section 5.4.4 where X =

∫∞
0
f(s)dBs and introduce F(X) = FB ∨ σ(X),

where B is the given Brownian motion. We have seen that

Wt := Bt +

∫ t

0

X −ms

σ2(s)
f(s)ds

is an F(X)-BM, hence is a GW -BM independent of X. So, the example presented in Section 5.4.4
is equivalent to the following filtering problem: the signal X is a Gaussian variable, centered, with
variance γ(0) =

∫∞
0
f2(s)ds and the observation

dYt = f(t)Xdt+

(∫ ∞

t

f2(s)ds

)
dWt = f(t)Xdt+ σ2(t)dWt .
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6.2.5 Disorder

Classical case: the signal is independent of the driving Brownian motion

Let W = (Wt)t≥0 be a Brownian motion defined on the probability space (Ω,G,P), and τ be a
random time, independent of W and such that P(τ > t) = e−λt, for all t ≥ 0 and some λ > 0 fixed.
We define Y = (Yt)t≥0 as the solution of the stochastic differential equation

dYt =
(
a+ b 11{t>τ}

)
dt+ Yt σ dWt .

Let FY = (FY
t , t ≥ 0) be the natural filtration of the process Y (note that FY is smaller than

FW ∨ σ(τ)). From Yt = x+
∫ t
0
(a+ b 11{s>τ})ds+

∫ t
0
σ dWs, it follows that (from Exercise 1.7.4)

dYt =
(
a+ b (1−Gt)

)
dt+ dmart

Here, G = (Gt)t≥0 is the Azéma supermartingale given by Gt = P(τ > t | Ft). Identifying the
brackets, one has dmart = σdW̄t where W̄ is a martingale with bracket t, hence is a BM. It follows
that the process Y admits the following representation in its own filtration

dYt =
(
a+ b (1−Gt)

)
dt+ σ dW̄t .

Here W̄ = (W̄t)t≥0 is the innovation process defined by

W̄t =Wt +
b

σ

∫ t

0

(
11{s>τ} − (1−Gs)

)
ds =Wt −

b

σ

∫ t

0

(
11{τ>s} −Gs

)
ds

and is a standard F-Brownian motion. Using the previous results with a(t, Yt, τ) = a + b11t>τ , one
obtains easily

ℓt(u) = exp

(
a

σ2
Yt −

1

2

a2

σ2
t

)
=: Zt u > t

= exp

(
a+ b

σ2
Yt −

1

2

(a+ b)2

σ2
t− b

σ2
Yu +

1

2
(
b2

σ2
+

2ab

σ2
)u

)
=

Zt
Ut
Uu u ≤ t

where Uu = e−
b
σ2 Yu+

1
2 (

b2

σ2 + 2ab
σ2 )u and Gt = 1

mℓ
t
e−λtZt where

mℓ
t = λ e

a+b

σ2 Yt− 1
2

(a+b)2

σ2 t

∫ t

0

e−λue−
b
σ2 Yu+

1
2 (

b2

σ2 + 2ab
σ2 )udu+ e−λtZt

= λ
Zt
Ut

∫ t

0

e−λuUudu+ e−λtZt

Moreover

gt(u) =
Ut

e−λtUt + λ
∫ t
0
e−λuUudu

(
11u>te

−λuUt + 11t>uUu
)

Gt(u) =
Zt
mt

(
e−λt + 11t>u

1

Ut

∫ t

u

λe−λsUsds

)
After some computation, we recover that the process G solves the stochastic differential equation

dGt = −λGt dt+
b

σ
Gt(1−Gt) dW̄t . (6.2.5)



6.2. FILTERING THEORY 83

Observe that the process n = (nt)t≥0 with nt = eλtGt admits the representation

dnt = d(eλtGt) =
b

σ
eλtGt(1−Gt) dW̄t

and thus, n is an F-martingale (to establish the true martingale property, note that the process
(Gt(1−Gt))t≥0 is bounded). The equality (6.2.5) provides the (additive) Doob-Meyer decomposition
of the supermartingale G, while Gt = (Gt e

λt) e−λt gives its multiplicative decomposition. It follows
from these decompositions that the F-intensity rate of τ is λ, so that, the process M = (Mt)t≥0 with
Mt = 11τ≤t − λ(t ∧ τ) is a G-martingale.

It follows from the definition of the conditional survival probability process G and the fact that
(Gt e

λt)t≥0 is a martingale that the expression

P(τ > u | Ft) = E[P(τ > u | Fu) | Ft] = E[Gu eλu | Ft] e−λu = Gt e
λ(t−u)

holds for 0 ≤ t < u. One can easily extend the results to the case

dYt =
(
a(t, Yt) + b(t, Yt) 11t>τ

)
dt+ σ(t, Yt) dWt .

Using the previous results with a(t, Yt, τ) = a(t, Yt) + b(t, Yt)11t>τ := at + bt11t>τ , one obtains easily

ℓt(u) = exp

(∫ t

0

as
σ2
s

dYs −
1

2

a2s
σ2
s

ds

)
=: Zt u > t

= exp

(∫ u

0

as
σ2
s

dYs −
∫ u

0

1

2

a2s
σ2
s

ds+

∫ t

u

as + bs
σ2
s

dYs −
∫ t

u

1

2

(as + bs)
2

σ2
s

ds

)
u ≤ t

and Gt = 1
mℓ

t
e−λtZt where

mℓ
t = λ exp

(∫ t

0

as + bs
σ2
s

dYs −
∫ t

0

1

2

(as + bs)
2

σ2
s

ds

)∫ t

0

e−λuUudu+ e−λtZt

= λ
Zt
Ut

∫ t

0

e−λuUudu+ e−λtZt

with Uu = exp
(
−
∫ u
0

bs
σ2
s
dYs +

1
2

∫ u
0

bs
σ2
s
+ 2asbsσ2

s
ds
)
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Chapter 7

Progressive Enlargement

In this chapter, we study the case of progressive enlargements of the form Ft ∨ σ(τ ∧ t) for a non
negative random variable τ . More precisely, we assume that τ is a finite random time, i.e., a finite
non-negative random variable constructed on a filtered probability space (Ω,G,F,P), and we denote
by G the right-continuous filtration

Gt := ∩ϵ>0 {Ft+ϵ ∨ σ(τ ∧ (t+ ϵ))} .

We define, as before, the right-continuous process H, called the default indicator as

Ht = 11{τ≤t} .

We denote by H = (Ht, t ≥ 0) its natural filtration (after regularization). With the usual abuse
of notation, we write G = H ∨ F for the right-continuous progressively enlarged filtration. Note
that τ is an H-stopping time, hence a G-stopping time. (In fact, H is the smallest right-continuous
filtration making τ a stopping time, and G is the smallest right-continuous filtration containing F
and making τ a stopping time).

We recall the result obtained in Subsection 2.2.1: if Y is a G-adapted process, there exists an
F-adapted process Y F, called the predefault-value of Y , such that 11{t<τ}Yt = 11{t<τ}Y

F
t .

For a general random time τ , it is not true that F-martingales are G-semi-martingales. Here
is an example: due to the separability of the Brownian filtration, there exists a bounded random
variable τ such that F∞ = σ(τ). Hence, Fτ

τ+t = F∞,∀t so that the G-martingales are constant after
τ . Consequently, F-martingales are not G-semi-martingales.

In this chapter, we study

• the G semi-martingale decomposition of F martingales stopped at τ

• pseudo honest times

• Honest times and the G semi-martingale decomposition of F martingales

• Arbitrage opportunities

The study of initial and equivalent times is deferred to the following chapters. The study of the
particular and important case of last passage times is presented in Chapter 7.10.

We recall the two important conditions that we shall sometimes assume (see Lemma1.4.9)
(C) All F-martingales are continuous
(A) τ avoids F-stopping times, i.e., P(τ = ϑ) = 0 for any F-stopping time ϑ.

We recall our notation

F ⊂ G = F ∨H ⊂ F(τ) = F ∨ σ(τ)

85
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7.1 Two Important Supermartingales

We introduce the Azéma supermartingale Zt = P(τ > t|Ft) and call it sometimes the conditional
survival process. The process Z is a super-martingale of class (D). Therefore, it admits a Doob-
Meyer decomposition. We recall that the process Ap = Ap,F is the F-predictable compensator of H,
see Definition 1.4.6.

Lemma 7.1.1 Let τ be a positive random time and

Zt : = P(τ > t|Ft) = µt −Apt

the Doob-Meyer decomposition of the super-martingale Z. Then, for any F-predictable positive pro-
cess Y ,

E(Yτ ) = E
(∫ ∞

0

YudA
p
u

)
E(Yτ11t<τ≤T |Ft) = E

(∫ T

t

YudA
p
u|Ft

)
= −E

(∫ T

t

YudZu|Ft

)

Proof: The first equality is a consequence of the definition of dual projection (see Proposition
1.4.7).
For any càglàd process Y of the form Yu = ys11]s,t](u) with ys ∈ bFs, one has

E(Yτ ) = E(ys11]s,t](τ)) = E(ys(At −As)) .

The result follows from MCT. �

Another important F-supermartingale is

Z̃t := P
(
τ ≥ t

∣∣∣ Ft) . (7.1.1)

The supermartingale Z is right-continuous with left limits and coincides with the F-optional pro-
jection of 11]]0,τ [[, while Z̃ admits right limits and left limits only and is the F-optional projection of
11]]0,τ ]]. An optional decomposition of Z leads to an important F-martingale m, given by

m := Z +Ao,F (7.1.2)

where Ao,F is the F-dual optional projection ofH. The supermartingales Z and Z̃ are related through
Z̃ = Z +∆Ao,F and Z̃ = Z− +∆m.

The following results (see Lemma 1.4.9 and [108] ) will be important

• If assumption (C) or (A) is satisfied, then Z = Z̃.

• Under assumptions (C) and (A), the supermartingale Z = Z̃ is a continuous process.

• Under (C), Ap = Ao

Note thatmt = E(Ao,F∞ |Ft) and, for any F uniformly integrable martingale n, E(nτ ) = E(n∞m∞).
Indeed, one has

E(nτ ) = E
(∫ ∞

0

nsdA
o,F
s

)
= E(n∞(Ao,F∞ ) = E(n∞m∞)

where the second equality comes from Yoeurp’s lemma 1.2.11.

If R := inf{t : Zt = 0}, then R = inf{t : Z̃t = 0} = inf{t : Zt− = 0} and τ ≤ R.

Comment 7.1.2 The process µ is a square integrable martingale. Indeed, from Doob-Meyer de-
composition, since Z is bounded, µ is a square integrable martingale.
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7.2 General Facts

For what concerns the progressive enlargement setting, the following result is analogous to Proposi-
tion 5.1.1. This results can be found in Jeulin [79, Lemma 4.4].

Proposition 7.2.1 One has

(i) A random variable Yt is Gt-measurable if and only if it is of the form

Yt(ω) = ỹt(ω)11t<τ(ω) + ŷt(ω, τ(ω))11τ(ω)≤t

for some Ft-measurable random variable ỹt and some family of Ft⊗B(R+)-measurable random
variables ŷt(·, u), t ≥ u.

(ii) A process Y is G-predictable if and only if it is of the form

Yt(ω) = ỹt(ω)11t≤τ(ω) + ŷt(ω, τ(ω))11τ(ω)<t, t ≥ 0,

where ỹ is F-predictable and (t, ω, u) 7→ ŷt(ω, u) is a P(F)⊗ B(R+)-measurable function.

Proof: For part (i), it suffices to recall that Gt-measurable random variables are generated by
random variables of the form Xt(ω) = xt(ω)f

(
t ∧ τ(ω)

)
, with xt ∈ Ft and f a bounded Borel

function on R+.

(ii) It suffices to notice that G-predictable processes are generated by processes of the form
Xt = xt11t≤τ + x̂tf(τ)11τ<t, t ≥ 0, where x, x̂ are F-predictable and f is a bounded Borel function,
defined on R+. �

Such a characterization result does not hold for optional processes, in general. We refer to Barlow
[18, Remark on pages 318 and 319], for a counterexample (see also Example 7.8.10). See Song [118]
for a general study.

Proposition 7.2.2 For any G-predictable process Y , there exists an F-predictable process y such
that Yt11{t≤τ} = yt11{t≤τ}. Under the condition ∀t,P(τ ≤ t|Ft) < 1, the process (yt, t ≥ 0) is unique.

Proof: We refer to Dellacherie [45] and Dellacherie et al. [41, p.186]. The process y may be recov-
ered as the ratio of the F-predictable projections of Yt11{t≤τ} and 11{t≤τ}. �

Lemma 7.2.3 Key Lemma: Let X ∈ FT be an integrable r.v. Then, for any t ≤ T ,

E(X11{τ<T}|Gt) = 11{t<τ}
E(XZT |Ft)

Zt

Proof: On the set {t < τ}, any Gt measurable random variable is equal to an Ft-measurable random
variable, therefore

E(X11{τ<T}|Gt) = 11{t<τ}yt

where yt is Ft-measurable. Taking conditional expectation w.r.t. Ft, we get yt =
E(Yt11{t<τ}|Ft)
P(t < τ |Ft)

.

(it can be proved that P(t < τ |Ft) does not vanish on the set {t < τ}, see the following Exercise
7.2.5.) �

Exercise 7.2.4 Prove that, if τ is an F stopping time, G = F. ▹
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Exercise 7.2.5 Prove that
{τ > t} ⊂ {Zt > 0} (7.2.1)

(where the inclusion is up to a negligible set). ▹

Proposition 7.2.6 The G-adapted process Y

Yt = yt11t<τ + yt(τ)11τ≤t

is a martingale if for any u, (yt(u), t ≥ u) is a martingale and if E(yt|Ft) is a F-martingale.

See [8].

7.3 Before τ

It is proved in Yor [126] that, if X is an F-martingale, then the processes (Xt∧τ , t ≥ 0) and (Xt(1−
Ht), t ≥ 0) are G semi-martingales. Furthermore, the decompositions of the F-martingales in the
filtration G are known up to time τ (Jeulin and Yor [80]).

Proposition 7.3.1 Under (CA), every F-martingale X stopped at time τ is a G-semi-martingale
with canonical decomposition

Xτ
t = XG

t +
∫ t∧τ
0

d⟨X,µ⟩s
Zs

where XG is a G-local martingale.

Proof: Let Ys be an Gs-measurable random variable. There exists an Fs-measurable random
variable ys such that Ys11{s<τ} = ys11{s<τ}, hence, if X is an F-martingale, for s < t,

E(Ys(Xt∧τ −Xs∧τ )) = E(Ys11{s<τ}(Xt∧τ −Xs∧τ ))

= E(ys11{s<τ}(Xt∧τ −Xs∧τ ))

= E
(
ys(11{s<τ≤t}(Xτ −Xs) + 11{t<τ}(Xt −Xs))

)
From the definition of Z (see also Definition 1.4.6 and Lemma 7.1.1),

E
(
ys11{s<τ≤t}Xτ

)
= −E

(
ys

∫ t

s

XudZu

)
.

From integration by parts formula (taking into account the continuity of Z and X)∫ t

s

XudZu = −XsZs + ZtXt −
∫ t

s

ZudXu − ⟨X,Z⟩t + ⟨X,Z⟩s

We have also

E
(
ys11{s<τ≤t}Xs

)
= E (ysXs(Zs − Zt))

E
(
ys11{t<τ}(Xt −Xs)

)
= E (ysZt(Xt −Xs))

hence, from the martingale property of X

E(Ys(Xt∧τ −Xs∧τ )) = E(ys(⟨X,µ⟩t − ⟨X,µ⟩s))

= E
(
ys

∫ t

s

d⟨X,µ⟩u
Zu

Zu

)
= E

(
ys

∫ t

s

d⟨X,µ⟩u
Zu

E(11{u<τ}|Fu)
)

= E
(
ys

∫ t

s

d⟨X,µ⟩u
Zτu

11{u<τ}

)
= E

(
ys

∫ t∧τ

s∧τ

d⟨X,µ⟩u
Zu

)
.



7.4. BASIC RESULTS 89

The result follows. �

The general result is more delicate:

Proposition 7.3.2 Every F-local martingale X stopped at time τ is a G-semi-martingale with
canonical decomposition

Xτ
t = XG

t +
∫ t∧τ
0

d⟨X,m⟩s
Zs−

where XG is a G-local martingale.

In other terms,

Xt∧τ = XG
t +

∫ t∧τ

0

d⟨X,µ⟩s + dJs
Zs−

,

where J is the F-dual predictable projection of the process ∆Xτ11[[τ,∞[[. Another interesting decom-
position is (see Aksamit [2]). Let us introduce the F-stopping time R R := inf{t : Zt = 0} and
R̃ = R{Z̃R=0<ZR−}, where RA = R11A +∞11Ac . Then, if X is an F-local martingale, the process

Xτ
t −

∫ t∧τ

0

1

Z̃s
d[m,X]s + (∆XR̃ 11[[R̃,∞[[)

p,F
t∧τ , t ≥ 0

is a G-local martingale.

This result remains valid for any filtration G that coincide with F before τ .

7.4 Basic Results

We recall the results obtained in Proposition 2.2.7:

Proposition 7.4.1 a) The process

Mt = Ht −
∫ t∧τ

0

dApu
Zu−

, t ≥ 0

is a G-martingale.
b) For any bounded G-predictable process Y , the process

Yτ11τ≤t −
∫ t∧τ

0

Ys
Zs−

dAps , t ≥ 0

is a G-martingale.
c) The process Lt := (1−Ht)/Zt, t ≥ 0 is a G -martingale.

Definition 7.4.2 In the case where the process Ap is absolutely continuous w.r.t. Lebesgue’s mea-
sure, i.e., dApt = atdt, the process λt = at

Zt−
is called the F-intensity of τ , the process λGt = 11t<τλt

is the G-intensity, and the process

Ht −
∫ t∧τ

0

λsds = Ht −
∫ t

0

(1−Hs)λsds = Ht −
∫ t

0

λGs ds, t ≥ 0

is a G-martingale.
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We also recall

Lemma 7.4.3 The process λ satisfies

λt = lim
h→0

1

h

P(t < τ < t+ h|Ft)
P(t < τ |Ft)

.

The converse is known as Aven’s lemma [15].

Lemma 7.4.4 Let (Ω,G,P) be a filtered probability space and N be a counting process. Assume
that E(Nt) <∞ for any t. Let (hn, n ≥ 1) be a sequence of real numbers converging to 0, and

Y
(n)
t =

1

hn
E(Nt+hn −Nt|Gt)

Assume that there exists λ and y non-negative G-adapted processes such that

(i) For any t, limY
(n)
t = λt

(ii) For any t, there exists for almost all ω an n0 = n0(t, ω) such that

|Y (n)
s (ω)− λs(ω)| ≤ ys(ω) , s ≤ t, n ≥ n0(t, ω)

(iii)
∫ t
0
ysds <∞,∀t, a.s.

Then, Nt −
∫ t
0
λsds is a G-martingale.

Suppose from now on that a second filtration F̃ is given, with F̃t ⊂ Ft and define the associated
σ-algebra G̃t = F̃t ∨Ht and the F̃ Azéma super-martingale

Z̃t = P(t < τ |F̃t) = E(Zt|F̃t) .

Let Zt = µt − Apt be the F-Doob-Meyer decomposition of the F-supermartingale Z and assume
that Ap is absolutely continuous with respect to Lebesgue’s measure: Apt =

∫ t
0
asds. The process Ã

defined as Ãt := E(At|F̃t) is an F̃-submartingale and its F̃-Doob-Meyer decomposition is denoted

Ãt = ñt + α̃t .

where ñ is the F̃-martingale part and, from Exercise 1.7.4, α̃t =
∫ t
0
E(as|F̃s)ds. Hence, setting

µ̃t = E(µt|F̃t), the super-martingale Z̃ admits a F̃-Doob-Meyer decomposition as

Z̃t = µ̃t − ñt − α̃t

where µ̃− ñ is the F̃-martingale part. It follows that

Ht −
∫ t∧τ

0

dα̃s

Z̃s
ds = Ht −

∫ t∧τ

0

E(as|F̃s)
Z̃s

ds, t ≥ 0

is a G̃-martingale and that the F̃-intensity of τ is equal to E(as|F̃s)/Z̃s, and not "as one could think"
to E(as/Zs|F̃s).

This result can be proved directly thanks to Brémaud’s following result (a consequence of Exercise
1.7.4 ): if Ht −

∫ t
0
λ̃Gs ds is a G-martingale, then Ht −

∫ t
0
E(λ̃sG|G̃s)ds is a G̃-martingale. Since

E(λ̃Gs |Fs) = E(11{s≤τ}λFs |G̃s) =
11{s≤τ}

Z̃s
E(11{s≤τ}λFs |F̃s)

=
11{s≤τ}

Z̃s
E(ZsλFs |F̃s) =

11{s≤τ}

Z̃s
E(as|F̃s)

it follows that Ht −
∫ t∧τ
0

E(as|F̃s)/Z̃sds is a G̃-martingale, and we are done.
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Exercise 7.4.5 Prove that if X is a (square-integrable) F-martingale, XL is a G -martingale, where
L is defined in Proposition 7.4.1. ▹

Exercise 7.4.6 We consider, as in the paper of Biagini et al. [23] a mortality bond, a financial
instrument with payoff Y =

∫ τ∧T
0

Zsds, where Zs = P(τ > s|Fs) where F is a continuous filtration.
We assume that Z is continuous, admits a Doob-Meyer decomposition as Z = µ − A and does not
vanish.

1. Compute, in the case r = 0, the price Yt of the mortality bond. It will be convenient to
introduce Nt = E(

∫ T
0
Z2
sds|Ft). Is the process N a (P,F) martingale? a (P,G)-martingale?

2. Determine the processes α, β and γ so that

dYt = αtdMt + βt(dNt −
1

Zt
d⟨N,Z⟩t) + γt(dZt −

1

Zt
d⟨Z⟩t)

3. Determine the price D(t, T ) of a defaultable zero-coupon bond with maturity T , i.e., a financial
asset with terminal payoff 11T<τ . Give the dynamics of this price.

4. We now assume that F is a Brownian filtration, and that a risky asset with dynamics

dSt = St(bdt+ σdWt)

is traded. Explain how one can hedge the mortality bond.

▹

7.5 Multiplicative Decomposition of the Azéma supermartin-
gale

Lemma 7.5.1 Assume that (CA) holds and that the super-martingale Z does not vanish. Then, Z
admits a multiplicative decomposition as Zt = Nte

Γt where Γ is an increasing F-predictable process
and N a local F-martingale. Moreover (Ht − Γt∧τ , t ≥ 0) is a G-martingale.

Proof: The proof was done in Lemma 1.1.17 �

Lemma 7.5.2 Assume that the super-martingale Z does not vanish and let Zt = NtDt its multi-
plicative decomposition. Then, Ht − Λt∧τ is a G-martingale, where Λt =

∫ t
0

1
Dt−

dDt.

Proof: We start with the result in the proof of Lemma 1.1.17, and deduce from (1.1.3) that
dAp

t

Zt−
= 1

Dt−
dDt. Note that, if we write D = e−Γ, then

dDt = −Dt−
(
−dΓt + (e−∆Γt − 1−∆Γt)

)
.

�

See Kardaras for a useful optional decomposition of Z.
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7.6 Construction of Random Time with Given Intensity

In this section, we are interested with the following problem: let Λ be a given continuous increasing
process. The Cox process modeling provides a construction of τ such that Λ is the compensator
of H. Is it possible to have a different construction with the same property? We can do that, as
soon as one can construct a random time τ such that the multiplicative decomposition of the Azéma
supermartingale is Nte−Λt . We shall give some constructions and we refer the reader to [77] where
there are infinitely many possibilities enjoying the property that P(τ > t|Ft) = e−Λt . The same
problem is studied in Li and Rutkowski [99]. The case where Λ is not continuous is studied in Song
[117].

In a first step, using a change of probability measure framework, a local martingale N and an
absolutely continuous increasing process Λ being given (such that 0 < Nte

−Λt < 1 for t > 0 and
N0 = 1), and τ being constructed as in the Cox process model with intensity λ, we construct a
probability Q, equivalent to P such that Q|Ft

= P|Ft
and Q(τ > t|Ft) = Zt = Nte

−Λt . This will
imply that the Q intensity of τ remains λ, but immersion fails to hold under Q.

Proposition 7.6.1 Let (Ω,F,P) be a given filtered probability space, where F is a Brownian fil-
tration. Assume that N is a continuous (P,F)-local martingale and Λ an absolutely continuous
F-adapted increasing process such that 0 < Nte

−Λt < 1 for t > 0, N0 = 1. Let τ := inf{t : Λt > Θ}
where Θ is a unit exponential r.v. independent form F. Then, there exists a probability Q, equivalent
to P, which satisfies Q|Ft

= P|Ft
) and Q(τ > t|Ft) = Nte

−Λt .

Proof: Let Λt =
∫ t
0
λudu. We are looking for conditional probabilities with a particular form

(the idea is linked with the results obtained in Subsection 6.2.5). From the Cox construction,
P(τ > t|Ft) = e−Λt .
We shall prove that there exists a G-martingale L of the form

Lt = ℓt11t<τ + ℓt(τ)11τ≤t

and satisfying the condition of Proposition 7.2.6 such that, setting dQ = LdP
(i) Q|F∞ = P|F∞

(ii) Q(τ > t|Ft) = Nte
−Λt

It is not difficult to check that L is a G-martingale if mY
t := E(Lt|Ft) is an F martingale and,

for any u, ℓ(u) is a family of F martingales: indeed, in that case, for s < t

E(Lt|Gs) = E(ℓt11{τ>t}|Gs) + E(ℓt(τ)11{s<τ≤t}|Gs) + E(ℓt(τ)11τ≤s|Gs) = I1 + I2 + I3.

For I1 and I2, we apply the Key Lemma, and we set Zt = e−Λt

I1 + I2 = 11τ>s
1

Zs
E(ℓtZt|Fs) + 11τ>s

1

Zs
E(ℓt(τ)11s<τ≤t|Fs),

whereas for I3, we obtain

I3 = E(ℓt(τ)11τ≤s|Gs) = 11τ≤sE(ℓt(u)|Fs)u=τ = 11τ≤sE(ℓs(u)|Fs)u=τ = 11τ≤sℓs(τ),

where the first equality holds under the H-hypothesis and the second follows from the martingale
property of ℓ(u).
It remains to prove that I1 + I2 = ℓs11τ>s. Since

E(Lt|Ft) = E(ℓtZt + ℓt(τ)11τ≤t|Ft) = ℓtZt +

∫ t

0

ℓt(u)λue
−Λudu

is a martingale, we see that

E(ℓtZt|Fs) + E(ℓt(τ)11τ≤t|Fs)− E(ℓs(τ)11τ≤s|Fs) = ℓsZs.
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Therefore,

I1 + I2 = 11τ>s
1

Zs

(
ℓsZs + E(ℓs(τ)− ℓt(τ))11τ≤s|Fs)

)
= ℓs11τ>s,

where the last equality holds since

E((ℓs(τ)− ℓt(τ))11τ≤s|Fs) = 11τ≤sE((ℓs(u)− ℓt(u))|Fs)u=τ = 0.

For the last equality in the formula above, we have again used the martingale property of ℓ(u).

(This result is a particular case of Proposition 8.3.2)

The condition (i) is satisfied if 1 = E(Lt|Ft). Then

Q(τ > t|Ft) = E(11τ>tLt|Ft) = E(11τ>tℓt|Ft) = ℓtZt

is equal to NZ if (and only if) ℓ = N . We chose ℓt(t) = ℓt (this is a particular choice). We are now
reduced to find a family of martingales ℓt(u), t ≥ u such that

ℓu(u) = Nu, 1 = Nte
−Λt +

∫ t

0

ℓt(u)λue
−Λudu

We restrict our attention to families ℓ of the form

ℓt(u) = XtYu, t ≥ u

where X is an F martingale such that

XtYt = Nt, 1 = Nte
−Λt +Xt

∫ t

0

Yuλue
−Λudu .

It is easy to show that

Yt = Y0 +

∫ t

0

eΛud(
1

Xu
)

In a Brownian filtration case, there exists a process ν such that dNt = νtNtdWt and the positive
martingale X is of the form dXt = xtXtdWt. Then, using the fact that integration by parts implies

d(XtYt) = YtdXt − eΛt
1

Xt
dXt = xt(XtYt − eΛt)dWt = dNt ,

we are lead to choose
xt =

νtZt
Zt − 1

We now present a more general methodology presented in [77]. We construct a family of martin-
gales Gt(u), valued in ]0, 1[, such that Gt(t) = Zt = Nte

−Λt and Gt(·) is decreasing. Then, one can
construct a probability Q on a product space such that Q|Ft

= P|Ft
and Q(τ > u|Ft) = Gt(u). From

the conditional probability, one can deduce a density process, hence one can construct a random
time admitting Gt(u) as conditional probability. See also [99] for related results.

Proposition 7.6.2 Let 0 < θ <∞ be fixed and consider the process defined for θ ≤ t ≤ ∞

Gt(θ) := (1− Zt) exp

{
−
∫ t

θ

Zs
1− Zs

dΛs

}
Then, the process (Gt(θ), θ ≤ t ≤ ∞) is a (P,F) uniformly integrable martingale.

Proof: Applying the integration by parts formula on G(θ), for θ ≤ t <∞, one gets

dGt(θ) = − exp

{
−
∫ t

θ

Zs dΛs
1− Zs

}
e−ΛtdNt
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hence, G(θ) is a (P,F) local martingale on [θ,∞). Being clearly positive and bounded by 1, it is a
uniformly integrable martingale on [θ,∞]. �

It is then possible to construct a random time τ admitting Gt(u) as conditional probability.

We illustrate this construction in the Gaussian example presented in Section 5.4.4 where we
set Yt = mt−h(t)

σ(t) . The multiplicative decomposition of the supermartingale Zt = P (τ > t|FB
t ) is

Zt = Nt exp
(
−
∫ t
0
λsds

)
where

dNt = Nt
φ(Yt)

σ(t)Φ(Yt)
dmt, λt =

h′(t)φ(Yt)

σ(t)Φ(Yt)
.

Using the fact that Zt = Φ(Yt), one checks that the basic martingale survival process satisfies

dGt(θ) = (1−Gt(θ))
f(t)φ(Yt)

σ(t)Φ(−Yt)
dBt, t ≥ θ, Gθ(θ) = Φ(Yθ)

which provides a new example of martingale survival processes, with density process

gt(θ) = (1− Zt)e
−

∫ t
θ

Zs
1−Zs

λsds Zθλθ
1− Zθ

, θ ≤ t.

Other constructions of martingale survival processes having a given survival process can be found
in [77], as well as constructions of local-martingales N such that Ne−Λ is valued in [0, 1] for a given
increasing continuous process Λ.

7.7 Pseudo-stopping Times

As we have mentioned, if F is immersed in G, the process (Zt, t ≥ 0) is a decreasing process. The
converse is not true. The decreasing property of Z is closely related with the definition of pseudo-
stopping timnotion developed by Nikeghbali and Yor [109], from D. Williams example (see Example
7.7.3 below).

Definition 7.7.1 A random time τ is a pseudo-stopping time if, for any bounded F-martingale M ,
E(Mτ ) = E(M0) .

Proposition 7.7.2 The random time τ is a pseudo-stopping time if and only if one of the following
equivalent properties holds:
(i) For any local F-martingale M , the process (Mt∧τ , t ≥ 0) is a local G-martingale
(ii)Ap∞ = 1,
(iii) µt = 1, ∀t ≥ 0,
(iv) The process Z is a decreasing F-predictable process.

Proof: The implication (iv) ⇒ (i) is a consequence of Jeulin result established in Theorem 7.3.1.
The implication (i) ⇒ (ii) follows from the properties of the compensator Aτ : indeed

E(Mτ ) = E(
∫ ∞

0

MudA
p
u) = E(M∞A

p
∞) = m0

implies that Ap∞ = 1. We refer to Nikeghbali and Yor [109]. �

Example 7.7.3 The first example of a pseudo-stopping time was given by Williams [122]. Let B
be a Brownian motion and define the stopping time T1 = inf{t : Bt = 1} and the random time
ϑ = sup{t < T1 : Bt = 0}. Set

τ = sup{s < θ : Bs = B∗
s}
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where B∗ is the running maximum of the Brownian motion. Then, τ is a pseudo-stopping time. Note
that E(Bτ ) is not equal to 0; this illustrates the fact we cannot take any martingale in Definition
7.7.1. The martingale (Bt∧T1

, t ≥ 0) is neither bounded, nor uniformly integrable. In fact, since the
maximum B∗

θ (=Bτ ) is uniformly distributed on [0, 1], one has E(Bτ ) = 1/2.

Pseudo stopping times are not stable by change of probability. See Aksamit [2] and Kreher [94]
for a related study.

Example Let W be a Brownian motion and let τ = sup {t ≤ 1 : W1 − 2Wt = 0}, that is the
last time before 1 when the Brownian motion is equal to half of its terminal value at time 1. Then,

{τ ≤ t} =

{
inf

t≤s≤1
2Ws ≥W1 ≥ 0

}
∪
{

sup
t≤s≤1

2Ws ≤W1 ≤ 0

}
.

I The quantity

P(τ ≤ t,W1 ≥ 0|Ft) = P
(

inf
t≤s≤1

2Ws ≥W1 ≥ 0|Ft
)

can be evaluated using the equalities{
inf

t≤s≤1
Ws ≥

W1

2
≥ 0

}
=

{
inf

t≤s≤1
(Ws −Wt) ≥

W1

2
−Wt ≥ −Wt

}
=

{
inf

0≤u≤1−t
(W̃u) ≥

W̃1−t

2
− Wt

2
≥ −Wt

}
,

where (W̃u =Wt+u −Wt, u ≥ 0) is a Brownian motion independent of Ft. It follows that

P
(

inf
t≤s≤1

Ws ≥
W1

2
≥ 0|Ft

)
= Ψ(1− t,Wt) ,

where

Ψ(s, x) = P

(
inf

0≤u≤s
W̃u ≥ W̃s

2
− x

2
≥ −x

)
= P

(
2Ms −Ws ≤

x

2
, Ws ≤

x

2

)
= P

(
2M1 −W1 ≤ x

2
√
s
, W1 ≤ x

2
√
s

)
.

I The same kind of computation leads to

P
(

sup
t≤s≤1

2Ws ≤W1 ≤ 0|Ft
)

= Ψ(1− t,−Wt) .

I The quantity Ψ(s, x) can now be computed from the joint law of the maximum and of the process at
time 1; however, we prefer to use Pitman’s theorem (see [3M]): let Ũ be a r.v. uniformly distributed
on [−1,+1] independent of R1 := 2M1 −W1, then

P(2M1 −W1 ≤ y,W1 ≤ y) = P(R1 ≤ y, ŨR1 ≤ y)

=
1

2

∫ 1

−1

P(R1 ≤ y, uR1 ≤ y)du .

For y > 0,
1

2

∫ 1

−1

P(R1 ≤ y, uR1 ≤ y)du =
1

2

∫ 1

−1

P(R1 ≤ y)du = P(R1 ≤ y) .

For y < 0 ∫ 1

−1

P(R1 ≤ y, uR1 ≤ y)du = 0 .
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Therefore

P(τ ≤ t|Ft) = Ψ(1− t,Wt) + Ψ(1− t,−Wt) = ρ

(
|Wt|√
1− t

)
where

ρ(y) = P(R1 ≤ y) =

√
2

π

∫ y

0

x2e−x
2/2dx .

Then Zt = P(τ > t|Ft) = 1 − ρ( |Wt|√
1−t ). We can now apply Tanaka’s formula to the function ρ.

Noting that ρ′(0) = 0, the contribution to the Doob-Meyer decomposition of Z of the local time of
W at level 0 is 0. Furthermore, the increasing process A of the Doob-Meyer decomposition of Z is
given by

dAt =

(
1

2
ρ′′
(

|Wt|√
1− t

)
1

1− t
+

1

2
ρ′
(

|Wt|√
1− t

)
|Wt|√
(1− t)3

)
dt

=
1

1− t

|Wt|√
1− t

e−W
2
t /2(1−t)dt .

We note that A may be obtained as the dual predictable projection on the Brownian filtration of
the process A(W1)

s , s ≤ 1, where (A
(x)
s , s ≤ 1) is the compensator of τ under the law of the Brownian

bridge P(1)
0→x.

Comment 7.7.4 Note that the random time τ presented in this subsection is not the end of a
predictable set, hence, is not honest. However, F-martingales are semi-martingales in the progressive
enlarged filtration: it suffices to note that F-martingales are semi-martingales in the filtration initially
enlarged with W1.

We now follow the same idea and define another random time, more appropriate to Finance. Let
S be defined through dSt = σStdWt, where W is a Brownian motion and σ a constant.

Let τ = sup {t ≤ 1 : S1 − 2St = 0}, that is the last time before 1 when the price is equal to half
of its terminal value at time 1.

Proposition 7.7.5 In the above model NA holds before τ . There are classical arbitrages after τ .

Proof: Note that
{τ ≤ t} = { inf

t≤s≤1
2Ss ≥ S1} = { inf

t≤s≤1
2
Ss
St

≥ S1

St
}

Since Ss

St
, s ≥ t and S1

St
are independent from Ft, therefore

P( inf
t≤s≤1

2
Ss
St

≥ S1

St
|Ft) = P( inf

t≤s≤1
2Ss−t ≥ S1−t) = Φ(1− t)

where Φ(u) = P(infs≤u 2Ss ≥ Su). It follows that the Azéma super-martingale is a deterministic
decreasing function, hence, τ is a pseudo-stopping time and S is a G martingale up to time τ and
there are no arbitrages up to τ .

There are obviously arbitrages after τ , since, at time τ , one knows the value of S1 and S1 > Sτ . In
fact, for t > τ , one has St > Sτ , and the arbitrage occurs at any time before 1. �

Remark 7.7.6 It is not difficult to prove that (H′) hypothesis holds for that example, even if τ is
neither honest(see Section 7.8), does not admit a positive density (see Hypothesis ??) and immersion
is not satisfied.
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7.8 Honest Times

There exists an interesting class of random times τ such that F-martingales are G-semi-martingales,
called honest times, introduced by Meyer [107] and studied by Barlow [18] and Jeulin [79] among
others.

7.8.1 Definition

Definition 7.8.1 A random time τ is honest if for s ≤ t

{τ ≤ s} = Fs,t ∩ {τ ≤ t}, for some Fs,t ∈ Ft

or equivalently, if τ is equal to an Ft-measurable random variable on τ < t.

Examples 7.8.2 (i) Let B a Brownian motion and set τ = g1 where gt = sup{s < t : Bs = 0}.
Then, for t < 1, g1 = gt on {g1 < t}, and gt is Ft-measurable.
(ii) Let X be an adapted continuous process and X∗ = supXs, X

∗
t = sups≤tXs. The random time

τ = sup{s : Xs = X∗}

is honest. Indeed, on the set {τ < t}, one has τ = sup{s : Xs = X∗
s }.

(iii) An F-stopping time is honest: indeed τ = τ ∧ t on τ < t.

If τ is honest,

Gt = {A ∈ F∞, : A = (Ãt ∩ {τ ≤ t}) ∪ (Ât ∩ {τ > t}) for some Ât, Ãt ∈ Ft}

This filtration is continuous on right.

Exercise 7.8.3 Let τ be an honest time. Prove that

E(f(τ)|Ft) = f(τ)(1− Zt) + E(
∫ ∞

t

f(s)dAps |Ft)

▹

Exercise 7.8.4 Prove that G∗
t := {A ∈ F∞ : A = (Ãt∩{τ ≤ t}) ∪ (Ât∩{τ > t}) for some Ât, Ãt ∈

Ft} defines indeed a filtration (i.e., the increasing property holds). ▹

7.8.2 Martingales

Proposition 7.8.5 Let X be a càdlàg G-adapted integrable process. Then X is a G martingale if
and only if
(i) (E(Xt|Ft), t ≥ 0) is an F-martingale
(ii) For s < t, E(11τ≤sXt|Fs) = E(11τ≤sXs|Fs).

Proof: This easy proof is left to the reader. �

7.8.3 Stability

Let τ and τ∗ be two honest times. We show in the following lemma that τ ∨ τ∗ is an honest time.

Lemma 7.8.6 Let τ and τ∗ be two honest times, then τ∨τ∗ times. We show in the following lemma
that τ ∨ τ∗ is an honest time.
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Proof: The random time τ and τ∗ are honest, this implies that for every t ≥ 0 there exist Ft
measurable random variables τt and τ∗t such that

τ11τ<t = τt11τ<t and τ∗11τ∗<t = τ∗t 11τ∗<t

holds. Let us consider the random time τ ∨ τ∗.

τ ∨ τ∗11τ∨τ∗<t = τ ∨ τ∗11τ<t,τ∗<t = τt ∨ τ∗t 11τ<t,τ∗<t = τt ∨ τ∗t 11τ∨τ∗<t,

which proves that it is in fact honest time. �

7.8.4 Properties

Lemma 7.8.7 (Azéma) Let τ be an honest time which avoids F-stopping times. Then:
(i) Ap∞ has an exponential law with parameter 1.
(ii) The measure dApt is carried by {t : Zt = 1}
(iii) τ = sup{t : 1− Zt = 1}
(iv)Ap∞ = Apτ

In particular, under (CA), Λt =
∫ t
0
dAp

s

Zs
= Apt (we have used (ii) above) and Λτ has an exponential

law.

Proposition 7.8.8 ( Jeulin [79] ) A random time τ is honest if and only if one of the equivalent
assertions hold
(a) There exists an optional set Γ such that τ(ω) = sup{t : (t, ω) ∈ Γ} (it is the end of an optional
set) on {τ <∞}
(b) Z̃τ = 1 on {τ <∞}
(c) τ = sup{t : Z̃t = 1} on {τ <∞}
(d) Aot = Aot∧τ .

In particular, an honest time is F∞-measurable. If X is a transient diffusion, the last passage
time Λa (see Proposition 7.10.1) is honest.

Lemma 7.8.9 The process Y is G-predictable if and only if there exist two F predictable processes
y and ỹ such that

Yt = yt11t≤τ + ỹt11t>τ .

Let X ∈ L1. Then a càdlàg version of the martingale Xt = E [X|Gt] is given by:

Xt =
1

Zt
E [ξ1t<τ |Ft]1t<τ +

1

1− Zt
E [ξ1t≥τ |Ft]1t≥τ .

Every G optional process decomposes as

L11[0,τ [ + J11[τ ] +K11]τ,∞[,

where L and K are F-optional processes and where J is a F progressively measurable process.

See Jeulin [79] for a proof.

Example 7.8.10 We give Barlow’s counterexample to prove that an G optional process can not be
decomposed as

L11[0,τ [ +K11]τ,∞[,

where L and K are F-optional processes. Let B be a Brownian motion and ϑ = inf{t : |Bt| = 1}
and τ = sup{t : Bϑ = 0}. The process X defined as Xt = 11t≥τ sgn(Bτ ) is a G-martingale and is an
optional process. Obviously, if (H,K exist, then H = 0 and one can choose K predictable. Then
∆Xτ = Kτ would be Gτ− measurable, which contradicts the martingale property of X.
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7.8.5 Progressive versus initial enlargement

Proposition 7.8.11 If τ is honest, any F martingale is a F(τ) (and a G)-semi-martingale

7.8.6 Decomposition

Proposition 7.8.12 Let τ be honest. We assume (CA). Then, any F-local martingale M is a G
semi-martingale with decomposition

Mt = M̃t +

∫ t∧τ

0

d⟨M,µ⟩s
Zs

−
∫ τ∨t

τ

d⟨M,µ⟩s
1− Zs

,

where M̃ is a G-local martingale

Proof: Let M be an F-martingale which belongs to H1 and Gs ∈ Gs. We define a G-predictable
process Y as Yu = 11Gs

11]s,t](u). For s < t, one has, using the decomposition of G-predictable
processes:

E(11Gs(Mt −Ms)) = E
(∫ ∞

0

YudMu

)
= E

(∫ τ

0

yudMu

)
+ E

(∫ ∞

τ

ỹudMu

)
.

Noting that
∫ t
0
ỹudMu is a martingale yields E

(∫∞
0
ỹudMu

)
= 0,

E(11Gs(Mt −Ms)) = E
(∫ τ

0

(yu − ỹu)dMu

)
= E

(∫ ∞

0

dApv

∫ v

0

(yu − ỹu)dMu

)
.

By integration by parts, setting Nt =
∫ t
0
(yu − ỹu)dMu, we get

E(11Gs
(Mt −Ms)) = E(N∞A

p
∞) = E(N∞µ∞) = E

(∫ ∞

0

(yu − ỹu)d⟨M,µ⟩u
)
.

Now, it remains to note that

E
(∫ ∞

0

Yu

(
d⟨M,µ⟩u
Zu−

11{u≤τ} −
d⟨M,µ⟩u
1− Zu−

11{u>τ}

))
= E

(∫ ∞

0

(
yu
d⟨M,µ⟩u
Zu−

11{u≤τ} − ỹu
d⟨M,µ⟩u
1− Zu−

11{u>τ}

))
= E

(∫ ∞

0

(yud⟨M,µ⟩u − ỹud⟨M,µ⟩u)
)

= E
(∫ ∞

0

(yu − ỹu) d⟨M,µ⟩u
)

to conclude the result in the case M ∈ H1. The general result follows by localization. �
The general version is given in Jeulin [79, Chapitre 5]

Proposition 7.8.13 Let τ be honest. Then, any F-local martingale M is a G semi-martingale with
decomposition

Mt = M̃t +

∫ t∧τ

0

d⟨M,m⟩s
Zs−

−
∫ τ∨t

τ

d⟨M,m⟩s
1− Zs−

,

where M̃ is a G-local martingale
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Example 7.8.14 Let W be a Brownian motion, and τ = g1, the last time when the BM reaches 0
before time 1, i.e., τ = sup{t ≤ 1 : Wt = 0}. Using the computation of Zg1t = P(g1 > t|Ft) (see the
following Subsection 7.10.3) and applying Proposition 7.8.12, we obtain the decomposition of the
Brownian motion in the enlarged filtration

Wt = W̃t −
∫ t

0

11[0,τ ](s)
Φ′

1− Φ

(
|Ws|√
1− s

)
sgn(Ws)√

1− s
ds

+11{τ≤t} sgn(W1)

∫ t

τ

Φ′

Φ

(
|Ws|√
1− s

)
ds

where Φ(x) =
√

2
π

∫ x
0
exp(−u2/2)du.

Exercise 7.8.15 Prove that any F-stopping time is honest ▹

Exercise 7.8.16 Prove that, under (CA)

E(
∫ t∧τ

0

d⟨M,µ⟩s
Zs−

−
∫ τ∨t

τ

d⟨M,µ⟩s
1− Zs−

|Ft)

is an F-local martingale, without using the previous Proposition 7.8.12. ▹

7.8.7 Predictable Representation Theorem

Theorem 7.8.17 If there exists a family of continuous F martingales M i which enjoys the PRT in
F, then any continuous G-martingale is a sum of stochastic integrals w.r.t. M̃ i.

7.8.8 Multiplicative Decomposition

This section is a part of [110]. For N be a local martingale which belongs to the class (C0), with
N0 = x, we set St = sups≤tNs. We consider the last time where N reaches its maximum over [0,∞],
i.e., the last time where N equal S:

g = sup {t ≥ 0 : Nt = S∞} = sup {t ≥ 0 : St −Nt = 0} . (7.8.1)

Without loss of generality, we restrict our attention to the case x = 1.

Proposition 7.8.18 The supermartingale Zt = P (g > t | Ft) admits the multiplicative decomposi-
tion Zt =

Nt

St
, t ≥ 0.

Proof: We have the following equalities

{g > t} = {∃ u > t : Su = Nu} = {∃ u > t : St ≤ Nu}

=

{
sup
u≥t

Nu ≥ St

}
= {St ≥ St}.

Hence, from (1.1.2), we get: P (g > t | Ft) = Nt

St
. �

Lemma 7.8.19 Any F-local martingale X is a Fg semi martingale X with decomposition

Xt = X̃t +

∫ t

0

11{g>s}
d⟨X,N⟩s

Ns
−
∫ t

0

11{g≤s}
d⟨X,N⟩s
S∞ −Ns

,

where X̃ is an Fg-local martingale.
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Proof: Let X be an F-martingale which is in H1; the general case follows by localization. From
results given in Section 5.4.5

Xt = X̃t +

∫ t

0

11{g>s}
d⟨X,N⟩s

Ns
−
∫ t

0

11{g≤s}
d⟨X,N⟩s
S∞ −Ns

,

where X̃ denotes an F(S∞) martingale. Thus, X̃, which is equal to:

Xt −
(∫ t

0

11{g>s}
d⟨X,N⟩s

Ns
−
∫ t

0

11{g≤s}
d⟨X,N⟩s
S∞ −Ns

,

)
,

is Fg adapted (recall that Fg
t ⊂ F (S∞)

t ), and hence it is an Fg-martingale.

These results extend to honest times:

Theorem 7.8.20 Let τ be an honest time. Then, under the conditions (CA), the supermartingale
Zt = P (τ > t|Ft) admits the following additive and multiplicative representations: there exists a
continuous and nonnegative local martingale N , with N0 = 1 and limt→∞Nt = 0, such that:

Zt = P (τ > t|Ft) =
Nt
St

Zt = µt −Apt .

where these two representations are related as follows:

Nt = exp

(∫ t

0

dµs
Zs

− 1

2

∫ t

0

d⟨µ⟩s
Z2
s

)
, St = exp (Apt ) ;

µt = 1 +

∫ t

0

dNs
Ss

= E (logS∞ | Ft) , At = logSt.

7.9 Classical Arbitrages for Honest Times

Throughout this section, we consider a finite honest time (see Aksamit [2] for a generalization) and
we consider a financial market, with a savings account with null interest rate and a risky price
process S. We assume that (S,F) is a complete market.

The first papers dealing with arbitrages related to honest times are Imkeller [69] and Zwierz
[129]. They consider the case of arbitrages occurring after τ under (C). More recent papers are from
Fontana et al. [64] and Aksamit et al. [4] and Acciaio et al. [1].

Note that, in Dellacherie et al. [41], the authors had the intuition that there are arbitrages.
Studying a case similar to τ = inf{s : Ss = S∗} where S was a geometric Brownian motion, they
wrote: Tous les spéculateurs cherchent à connaitre τ sans jamais y parvenir, d’où son nom de v.a.
honnête 1

We make use of the standard definitions on classical arbitrages recalled in Section 1.5.1.

7.9.1 Existence of Classical Arbitrages

In a first step, we consider the case where conditions (CA) hold, and we assume that F is a Brownian
filtration, as in [64].

1We provide an English translation for the convenience of the reader: “ Every speculator strives to know when τ
will occur, without ever achieving this goal. Hence, the name of honest random variable”.
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Theorem 7.9.1 Assuming that F is a Brownian filtration, that (A) is satisfied, and that (S,F) is
a complete market, then there are classical arbitrages on the time interval [0, τ ] and on the time
interval ]τ,∞[

Proof: From the multiplicative decomposition of Z = N/S we see that Zτ = 1, so that Nτ ≥ 1. It
remains to use Proposition 1.5.1. �

The following theorem represents our principal result in the general framework.

Theorem 7.9.2 If τ is a finite honest time which is not an F stopping time there are classical
arbitrages before τ for (S,G) and classical arbitrages after τ for (S,G).

Proof: (a) From m = Z̃ + Ao− and Z̃τ = 1, we deduce that mτ ≥ 1. Since τ is not an F stopping
time, one has P(Aoτ− > 0) > 0. The result follows from Proposition 1.5.1.
(b) From m = Z + Ao and the fact that Ao does not increase after τ , one obtains that, for t > τ ,
mt − mτ = Zt − Zτ ≥ −2. On the other hand, using m = Z̃ + Ao−, one obtains that, for t > τ ,
mt −mτ = Z̃t − 1 + ∆Aoτ . Consider the following G-stopping time

ν := inf{t > τ : Z̃t ≤
1−∆Aoτ

2
}. (7.9.1)

Then,

mν −mτ = Z̃ν − 1 + ∆Aoτ ≤ ∆Aoτ − 1

2
≤ 0,

and, as τ is not an F-stopping time,

P(mν −mτ < 0) = P(∆Aoτ < 1) > 0.

Hence −
∫ t∧ν
τ

φsdSs = mτ∧t −mt∧ν is the value of an admissible self-financing strategy with initial
value 0 and terminal value mτ −mν ≥ 0 satisfying P(mτ −mν > 0) > 0. This ends the proof of the
theorem.

�

We now reproduce some examples, given in [3].

7.9.2 Classical arbitrage opportunities in a Brownian filtration

Throughout this subsection, we assume given a one-dimensional Brownian motion W and F is its
augmented natural filtration. The market model is represented by the savings account whose process
is the constant one and one stock whose price process is given by

St = exp(σWt −
1

2
σ2t), σ > 0 given.

It is worth mentioning that in this context of Brownian filtration, for any process V with locally
integrable variation, we have V o,F = V p,F.

For some honest times τ , we compute explicitly the arbitrage opportunities for both before and
after τ . For other examples of honest times, and associated classical arbitrages we refer the reader
to [64].

Last passage time at a given level

Proposition 7.9.3 Consider the following random times

τ := sup{t : St = a} and ν := inf{t > τ
∣∣ St ≤

a

2
},
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where 0 < a < 1. Then, the following assertions hold.
(a) The model (Sτ ,G) admits a classical arbitrage opportunity given by the G-predictable process

1

a
11{S<a}I]]0,τ ]].

(b) The model (S − Sτ ,G) admits a classical arbitrage opportunity given by

−1

a
11{S<a}I]]τ,ν]].

Proof: It is clear that τ is a finite honest time, is not a stopping time. Thus τ fulfills the
assumptions of assertions of Theorem 7.9.2. We now compute the predictable process φ such that
m = 1 + φ � S. Using [78, exercise 1.2.3.10], we obtain

1− Zt := P (τ ≤ t|Ft) = P
(
sup
t<u

Su ≤ a|Ft
)

= P
(
sup
u
S̃u ≤ a

St
|Ft
)

= Φ

(
a

St

)
where S̃u = exp(σW̃u − 1

2σ
2u), W̃ independent of Ft and Φ(x) = P

(
supu S̃u ≤ x

)
= P( 1

U ≤ x) =

P( 1x ≤ U) = (1 − 1
x )

+ (where U is a random variable with uniform law (See Proposition 1.1.13)).
Thus we get Zt = 1− (1− St

a )
+ (in particular Zτ = Z̃τ = 1), and

dZt = 11{St<a}
1

a
dSt −

1

2a
dℓat

where ℓa is the local time of the S at the level a. Therefore, we deduce that

m = 1 + φ�S.

This ends the proof of the proposition. �

Last passage time at a level before maturity

Our second example of random time, in this subsection, takes into into account when one is working
in finite horizon. In this example, we introduce the following notation

H(z, y, s) := e−zyN
(
zs− y√

s

)
+ ezyN

(
−zs− y√

s

)
and Vt := α+

σ

2
t−Wt = (a−Xt)/σ, (7.9.2)

where N (x) is the cumulative distribution function of the standard normal distribution.

Proposition 7.9.4 Consider the following random time (an honest time)

τ1 := sup{t ≤ 1 : St = b}

where b is a positive real number, 0 < b < 1 . Then the G-predictable process

φt :=
1

σSt
βtI]]0,τ1]],

is an arbitrage opportunity for the model (Sτ1 ,G), and −φI]]τ1,ν]] is an arbitrage opportunity for the
model (S − Sτ1 ,G). Here β is given by

βt := eγVt (γH(γ, |Vt|, 1− t)− sgn(Vt)H ′
x(γ, |Vt|, 1− t)) , γ = −σ

2
,

V and H are defined in (7.9.2), and ν is defined in (7.9.1).
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Proof: The proof of this proposition follows from Theorem 7.9.2 as long as we can write the
martingale m as an integral stochastic with respect to S. This is the main focus of this remaining
part of this proof. The time τ1 is honest and finite. Let Xt = lnS0 − 1

2σ
2t+ σWt and a = ln b. We

assume σ > 0. Then,

τ1 = sup {t ≤ 1 : Xt = a}
= sup {t ≤ 1 : γt+Wt = α}

where γ = − 1
2σ and α = (a− x)/σ with x = lnS0.

Setting T0(V ) = inf{t : Vt = 0} where V is given by (7.9.2), we obtain, using standard compu-
tations (see [3M])

1− Zt = P(τ1 ≤ t|Ft) = (1− eνVtH(γ, |Vt|, 1− t))11{T0(V )≤t},

where H is given in (7.9.2). In particular Zτ = Z̃τ = 1. Using Itô’s lemma, we obtain the decompo-
sition of 1− eγVtH(γ, |Vt|, 1− t) as a semi-martingale.

The martingale part of Z is given by dmt = βtdWt =
1
σSt

βtdSt where

βt = eγVt (νH(γ, |Vt|, 1− t)− sgn(Vt)H ′
x(γ, |Vt|, 1− t)) .

�

7.9.3 Arbitrage opportunities in a Poissonnian filtration

Throughout this subsection, we suppose given a Poisson process N , with intensity rate λ > 0, and
natural filtration F. The stock price process is given by

dSt = St−ψdMt, S0 = 1, Mt := Nt − λt, (7.9.3)

or equivalently St = exp(−λψt + ln(1 + ψ)Nt), where ψ > −1. In what follows, we introduce the
following notations

α := ln(1 + ψ) > 0, a := − 1

α
ln b, µ :=

λψ

ln(1 + ψ)
and Yt := µt−Nt, (7.9.4)

so that St = exp(− ln(1 + ψ)Yt). To the process Y , we associate its ruin probability, denoted by
Ψ(x) given by

Ψ(x) = P(T x <∞), with T x = inf{t : x+ Yt < 0} and x ≥ 0. (7.9.5)

We set θ =
µ

λ
− 1, and deduce that Ψ(0) = (1 + θ)−1 (see [14]).

Below, we describe our first example of honest time and the associated arbitrage opportunity.

Last passage time

Proposition 7.9.5 For 0 < b < 1, consider the following random time

τ := sup{t : St ≥ b} = sup{t : Yt ≤ a}. (7.9.6)

Suppose that ψ > 0, then the following assertions hold.
a) τ is a honest time.
b) The process

φ :=
1

ψS−

(
Ψ(Y− − a− 1)11{Y−≥a+1} −Ψ(Y− − a)11{Y−≥a} + 11{Y−<a+1} − 11{Y−<a}

)
,

is an arbitrage opportunity for the model (Sτ ,G), and −φI]]τ,ν]] is an arbitrage opportunity for the
model (S − Sτ ,G). Here Ψ is defined in (7.9.5) and ν is defined in the same manner as in (7.9.1).
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Proof: Since ψ > 0, one has µ > λ so that Y goes to +∞ as t goes to infinity, and τ is finite. The
Azéma supermartingale associated with the time τ is

Zt = P(τ > t|Ft) = Ψ(Yt − a)11{Yt≥a} + 11{Yt<a} = 1 + 11{Yt≥a} (Ψ(Yt − a)− 1) ,

where Ψ is defined in (7.9.5). We obtain Zτ = 1
1+θ < 1.

Define ϑ1 = inf{t > 0 : Yt = a} and then, for each n > 1, ϑn = inf{t > ϑn−1 : Yt = a}. It can
be proved that the times ϑn are predictable F-stopping times, and [[τ ]] ⊂ ∪n[[θn]]. For any optional
increasing process K, one has

E(Kτ ) = E(
∑

11τ=ϑn
Kϑn

) = E(
∑

E(11τ=ϑn
|Fϑn

)Kϑn
)

and E(11τ=ϑn
|Fϑn

) = P(T 0 = ∞) = 1−Ψ(0). It follows that the dual optional projection Ao of the
process 11[τ,∞) equals

Ao =
θ

1 + θ

∑
n

11[ϑn,∞).

Note that Z̃τ = Zτ +∆Aoτ = 1 + (Ψ(0)− 1) + θ
1+θ = 1, hence τ is honest.

As a result the process Ao is predictable, and hence we have Z = m − Ao is the Doob-Meyer
decomposition of Z. Thus we can get

∆m = Z − pZ

where pZ is the predictable projection of Z. To calculate pZ, we write the process Z in a more
adequate form. To this end, we first remark that

11{Y≥a} = 11{Y−≥a+1}∆N +(1−∆N)11{Y−≥a} and 11{Y <a} = 11{Y−<a+1}∆N +(1−∆N)11{Y−<a}.

Then, we obtain easily

∆m =
(
Ψ(Y− − a− 1)11{Y−≥a+1} −Ψ(Y− − a)11{Y−≥a} + 11{Y−<a+1} − 11{Y−<a}

)
∆N

= ψS−φ∆M = φ∆S.

Since the two martingales m and S are purely discontinuous, we deduce that m − m0 = φ � S.
Therefore, the proposition follows from Theorem 7.9.2. �

Time of supremum on fixed time horizon

The following example requires the following notations

S∗
t := sup

s≤t
Ss, Ψ(x, t) := P(S∗

t > x), Φ̂(t) := P(sup
s<t

Ss ≤ 1), Φ̃(x, t) := P(sup
s<t

Ss < x) (7.9.7)

Proposition 7.9.6 Consider the random time τ defined by

τ = sup{t ≤ 1 : St = S∗
t }, (7.9.8)

where S∗
t = sups≤t Ss. Then, the following assertions hold.

a) τ is a honest time.
b) For ψ > 0, the G-predictable process

φt := 11{t<1}

[
Ψ

(
max(

S∗
t−

St−(1 + ψ)
, 1), 1− t

)
−Ψ

(
S∗
t−
St−

, 1− t

)]
+ 11{S∗

t−<St−(1+ψ)} Φ̂(1− t)

+
[
11{max(S∗

1−,S1−(1+ψ))=S0} − 11{max(S∗
1−,S1−)=S0}

]
11{t=1}
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is an arbitrage opportunity for the model (Sτ ,G), and −φI]]τ,ν]] is an arbitrage opportunity for the
model (S − Sτ ,G). Here Ψ and Φ̂ are defined in (7.9.7), and ν is defined similarly as in (7.9.1).
c) For −1 < ψ < 0, the G-predictable process

φt :=
1

ψSt−

(
ψ11{S∗

t =St−}Φ̂(
1

1 + ψ
, 1− t) + Ψ(

S∗
t

St−(1 + ψ)
, 1− t)−Ψ(

S∗
t

St−
, 1− t)

)
,

is an arbitrage opportunity for the model (Sτ ,G), and −φI]]τ,ν]] is an arbitrage opportunity for the
model (S − Sτ ,G).

Proof: Note that, if −1 < ψ < 0 Sτ < S∗
τ = supt∈[0,1] St on the set (τ < 1) and Sτ− = S∗

τ− =
supt∈[0,1] St, and the process S∗ is continuous.
If ψ > 0, Sτ− < S∗

τ− < supt∈[0,1] St on the set (τ < 1).

Define the sets (En)
∞
n=0 with

E0 = {τ = 1} and En = {τ = Tn} with n ≥ 1.

This defines a partition of Ω. Then, τ = 11E0
+
∑∞
n=1 Tn11En

.
Note that τ is not an F stopping time since En /∈ FTn

for any n ≥ 1.

The Azéma supermartingale associated with the honest time τ is

Zt = P(τ > t|Ft) = P( sup
s∈(t,1]

Ss > sup
s∈[0,t]

Ss|Ft) = P( sup
s∈[0,1−t]

Ŝs >
S∗
t

St
|Ft) = 11(t<1)Ψ(

S∗
t

St
, 1− t),

with Ŝ an independent copy of S and Ψ(x, t) is given by (7.9.7).

As {τ = Tn} ⊂ {τ ≤ Tn} ⊂ {ZTn
< 1}, we have

Zτ = 11{τ=1}Z1 +

∞∑
n=1

11{τ=Tn}ZTn < 1, and {Z̃ = 0 < Z−} = ∅.

In the following we will prove assertion b). Thus, we suppose that ψ > 0, and we calculate

Aot = P(τ = 1|F1)11{t≥1} +
∑
n

P(τ = Tn|FTn)11{t≥Tn}

= 11{S∗
1=S0}11{t≥1} +

∑
n

11{Tn<1}11{S∗
Tn−<STn}P( sup

s∈[Tn,1[

Ss ≤ STn |FTn)11{t≥Tn}

= 11{S∗
1=S0}11{t≥1} +

∑
n

11{Tn<1}11{S∗
Tn−<STn−(1+ψ)} Φ̂(1− Tn)11{t≥Tn},

with Φ̂ is given by (7.9.7). As before, we write

Aot = 11{S∗
1=S0}11{t≥1} +

∑
s≤t

11{s<1}11{S∗
s−<Ss−(1+ψ)} Φ̂(1− s)∆Ns

= 11{S∗
1=S0}11{t≥1} +

∫ t∧1

0

11{S∗
s−<Ss−(1+ψ)} Φ̂(1− s) dMs + λ

∫ t∧1

0

11{S∗
s−<Ss−(1+ψ)} Φ̂(1− s)ds.

Remark that we have

11{S∗
1=S0} =

[
11{max(S∗

1−,S1−(1+ψ))=S0} − 11{max(S∗
1−,S1−)=S0}

]
∆M1 + 11{max(S∗

1−,S1−)=S0}.

and
∆m = ∆Z +∆Ao = Z − p(Z) + ∆Ao − p(∆Ao).
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Then we re-write the process Z as follows

Z = 11[[0,1[[Ψ

(
max(

S∗
−

S−(1 + ψ)
, 1), 1− t

)
∆M + (1−∆M)I[[0,1[[Ψ

(
S∗
−
S−

, 1− t

)
.

This implies that

Z − p(Z) = 11[[0,1[[

[
Ψ

(
max(

S∗
−

S−(1 + ψ)
, 1), 1− t

)
−Ψ

(
S∗
−
S−

, 1− t

)]
∆M.

Thus by combining all these remarks, we deduce that

∆m = Z − p(Z) + ∆Ao − p(∆Ao) = φ∆S.

Then, the assertion b) follows immediately from Theorem 7.9.2.
Next, we will prove assertion c). Suppose that −1 < ψ < 0, and we calculate

Aot = P(τ = 1|F1)11{t≥1} +
∑
n

P(τ = Tn|FTn)11{t≥Tn}

= 11{S∗
1=S1}11{t≥1} +

∑
n

11{Tn<1}11{S∗
Tn

=STn−}P( sup
s∈[Tn,1[

Ss < STn−|FTn
)11{t≥Tn}

= 11{S∗
1=S1}11t≥1} +

∑
n

11{Tn<1}11{S∗
Tn

=STn−}Φ̃(
STn−

STn

, 1− Tn)11{t≥Tn},

with Φ̃(x, t) is given by (7.9.7). In order to find the compensator of Ao, we write

Aot = 11{S∗
1=S1}11{t≥1} +

∑
s≤t

11{s<1}11{S∗
s=Ss−}Φ̃(

1

1 + ψ
, 1− s)∆Ns

= 11{S∗
1=S1}11{t≥1} +

∫ t∧1

0

11{S∗
s=Ss−}Φ̃(

1

1 + ψ
, 1− s) dMs + λ

∫ t∧1

0

11{S∗
s=Ss−}Φ̃(

1

1 + ψ
, 1− s) ds.

As a result, due to the continuity of the process S∗, we get

Aot − p(Ao)t = I{S∗
t =St−}Φ̃(

1

1 + ψ
, 1− t)∆Mt,

Zt − pZt =

[
Ψ(

S∗
t

St−(1 + ψ)
, 1− t)−Ψ(

S∗
t

St−
, 1− t)

]
∆Nt.

This implies that

∆mt = Zt − pZt +Aot − p(Ao)t

=

{
ψI{S∗

t =St−}Φ̃(
1

1 + ψ
, 1− t) + Ψ

(
S∗
t

St−(1 + ψ)
, 1− t

)
−Ψ

(
S∗
t

St−

)
, 1− t

}
∆Nt.

Since m and S are pure discontinuous local martingales, we conclude that m can be written in the
form of

m = m0 + φ · S,

and the proof of the assertion c) follows immediately from Theorem 7.9.2. This ends the proof of
the proposition. �

Remark 7.9.7 The fact that τ is an honest time can be also obtained by the equivalent character-
ization that is is the end of a predictable set, namely the end of Γ = [0, 1] ∩ (S− = S∗

−).
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Time of supremum

Below, we will present our last example of this subsection. The analysis of this example is based on
the following three functions.

Ψ(x) = P(S∗ > x) = P(sup
s
Ss > x), Φ̂ = P(sup

s
Ss ≤ 1), and Φ̃(x) = P(sup

s
Ss < x). (7.9.9)

Proposition 7.9.8 Consider the random time τ given by

τ = sup{t : St = S∗
t }. (7.9.10)

Then, the following assertions hold.
a) τ is a honest time.
b) For ψ > 0, the G-predictable process

φt :=
11{S∗

t−<St−(1+ψ)}Φ̂ + Ψ
(
max(

S∗
t−

St−(1+ψ) , 1
)
−Ψ(

S∗
t−

St− )

St−ψ

is an arbitrage opportunity for the model (Sτ ,G) and −φI]]τ,ν]] is an arbitrage opportunity for the
model (S − Sτ ,G). Here Ψ and Φ̂ are defined in (7.9.9), and ν is defined in similar way as in
(7.9.1).
c) For −1 < ψ < 0, the G-predictable process

φ :=
Ψ( S∗

S−(1+ψ) )−Ψ( S
∗

S−
) + 11{S∗=S−}Φ̃(

1
1+ψ )ψ

ψS−
,

is an arbitrage opportunity for the model (Sτ ,G) and −φI]]τ,ν]] is an arbitrage opportunity for the
model (S − Sτ ,G), where again ν is defined similarly as in (7.9.1).

Proof: It is clear that τ satisfies the definition of an F-honest time.
Let us note that τ is finite and, as before, if −1 < ψ < 0 Sτ < S∗

τ = supt St and S∗ is continuous
and if ψ > 0, Sτ = S∗

τ = supt St.
The Azéma supermartingale associated with the honest time τ is

Zt = P(τ > t|Ft) = P( sup
s∈(t,∞]

Ss > sup
s∈[0,t]

Ss|Ft) = P( sup
s∈[0,∞]

Ŝs >
S∗
t

St
|Ft) = Ψ(

S∗
t

St
),

with Ŝ an independent copy of S and Ψ is given by (7.9.9). As a result, we deduce that Zτ < 1.In
the following, we will prove assertion b). We suppose that ψ > 0, denoting by Tn the sequence of
jumps of the Poisson process N , we derive

Aot =
∑
n

P(τ = Tn|FTn
)11{t≥Tn} =

∑
n

11{S∗
Tn−<STn}P( sup

s≥Tn

Ss ≤ STn
|FTn

)11{t≥Tn}

=
∑
n

11{S∗
Tn−<STn−(1+ψ)}Φ̂11{t≥Tn},

with Φ̂ = P(sups Ss ≤ 1) given by (7.9.9).

We continue to find compensator of Ao

Aot =
∑
s≤t

11{S∗
s−<Ss−(1+ψ)}Φ̂∆Ns

=

∫ t

0

11{S∗
s−<Ss−(1+ψ)}Φ̂dMs + λ

∫ t

0

11{S∗
s−<Ss−(1+ψ)}Φ̂ds.
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Now as we did for the previous propositions, we calculate the jumps of m. To this end, we re-write
Z as follows

Z =

[
Ψ

(
max(

S∗
−

S−(1 + ψ)
, 1)

)
−Ψ(

S∗
−
S−

)

]
∆M +Ψ(

S∗
−
S−

).

This implies that

Z − pZ =

[
Ψ

(
max(

S∗
−

S−(1 + ψ)
, 1)

)
−Ψ(

S∗
−
S−

)

]
∆M.

Hence, we derive

∆m =

[
11{S∗

s−<Ss−(1+ψ)}Φ̂ + Ψ

(
max(

S∗
−

S−(1 + ψ)
, 1)

)
−Ψ(

S∗
−
S−

)

]
∆M.

Since both martingales m and M are purely discontinuous, we deduce that m = m0 + φ � S. Then,
the proposition follows immediately from Theorem 7.9.2.
In the following, we will prove assertion c). To this end, we suppose that ψ < 0, and we calculate

Aot =
∑
n

P(τ = Tn|FTn
)11{t≥Tn} =

∑
n

11{S∗
Tn

=STn−}P( sup
s≥Tn

Ss < STn−|FTn
)11{t≥Tn}

=
∑
n

11{S∗
Tn

=STn−}Φ̃(
STn−

STn

)11{t≥Tn},

with Φ̃(x) = P(sups Ss < x). Therefore,

Aot =
∑
s≤t

11{S∗
s=Ss−}Φ̃(

1

1 + ψ
)∆Ns

=

∫ t

0

11{S∗
s=Ss−}Φ̃(

1

1 + ψ
)dMs + λ

∫ t

0

11{S∗
s=Ss−}Φ̃(

1

1 + ψ
)ds.

Since in the case of ψ < 0, the process S∗ is continuous, we obtain

Z − pZ =

[
Ψ(

S∗

S−(1 + ψ)
)−Ψ(

S∗

S−
)

]
∆N, Ao − p(Ao) = 11{S∗=S−}Φ̃(

1

1 + ψ
)∆M.

Therefore, we conclude that

∆m = Z − pZ +Ao − p(Ao) =

{
Ψ(

S∗

S−(1 + ψ)
)−Ψ(

S∗

S−
) + 11{S∗=S−}Φ̃(

1

1 + ψ
)ψ

}
∆N.

This implies that the martingale m has the form of m = 1+φ·S, and assertion c) follows immediately
from Theorem 7.9.2, and the proof of the proposition is completed. �
.

=====================================================

7.10 Last Passage Times

We now present the study of the law (and the conditional law) of some last passage times for diffusion
processes. In this section, W is a standard Brownian motion and its natural filtration is F. These
random times have been studied in Jeanblanc and Rutkowski [75] as theoretical examples of default
times, in Imkeller [69] as examples of insider private information and, in a pure mathematical point
of view, in Pitman and Yor [111] and Salminen [114].

TY

We show that, in a diffusion setup, the Doob-Meyer decomposition of the Azéma supermartingale
may be computed explicitly for some random times τ .
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7.10.1 Last Passage Time of a Transient Diffusion

Proposition 7.10.1 Let X be a transient homogeneous diffusion such that Xt → +∞ when t→ ∞,
and s a scale function such that s(+∞) = 0 (hence, s(x) < 0 for x ∈ R) and Λy = sup{t : Xt = y}
the last time that X hits y. Then,

Px(Λy > t|Ft) =
s(Xt)

s(y)
∧ 1 .

Proof: We follow Pitman and Yor [111] and Yor [128, p.48], and use that under the hypotheses
of the proposition, one can choose a scale function such that s(x) < 0 and s(+∞) = 0 (see Sharpe
[115]).

Observe that

Px
(
Λy > t|Ft

)
= Px

(
inf
u≥t

Xu < y
∣∣∣Ft) = Px

(
sup
u≥t

(−s(Xu)) > −s(y)
∣∣∣Ft)

= PXt

(
sup
u≥0

(−s(Xu)) > −s(y)
)
=
s(Xt)

s(y)
∧ 1,

where we have used the Markov property of X, and the fact that if M is a continuous local martingale
with M0 = 1, Mt ≥ 0, and lim

t→∞
Mt = 0, then

sup
t≥0

Mt
law
=

1

U
,

where U has a uniform law on [0, 1] (see Lemma 1.1.13). �

The time Λy is honest: defining Λty = sup{s ≤ t : Xs = y}, one has Λy = Λty on the set {Λy ≤ t}.

Lemma 7.10.2 The FX-predictable compensator A associated with the random time Λy is the pro-

cess A defined as At = − 1

2s(y)
L
s(y)
t (Y ), where L(Y ) is the local time process of the continuous

martingale Y = s(X).

Proof: From x ∧ y = x− (x− y)+, Proposition 7.10.1 and Tanaka’s formula, it follows that

s(Xt)

s(y)
∧ 1 =Mt +

1

2s(y)
L
s(y)
t (Y ) =Mt +

1

s(y)
ℓyt (X)

where M is a martingale. The required result is then easily obtained. �

We deduce the law of the last passage time:

Px(Λy > t) =

(
s(x)

s(y)
∧ 1

)
+

1

s(y)
Ex(ℓyt (X))

=

(
s(x)

s(y)
∧ 1

)
+

1

s(y)

∫ t

0

du p(m)
u (x, y) .

Hence, for x < y

Px(Λy ∈ dt) = − dt

s(y)
p
(m)
t (x, y) = − dt

s(y)m(y)
pt(x, y)

= −σ
2(y)s′(y)

2s(y)
pt(x, y)dt . (7.10.1)
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For x > y, we have to add a mass at point 0 equal to

1−
(
s(x)

s(y)
∧ 1

)
= 1− s(x)

s(y)
= Px(Ty <∞) .

Example 7.10.3 Last Passage Time for a Transient Bessel Process: For a Bessel process of
dimension δ > 2 and index ν (see [3M] Chapter 6), starting from 0,

Pδ0(Λa < t) = Pδ0(inf
u≥t

Ru > a) = Pδ0(sup
u≥t

R−2ν
u < a−2ν)

= Pδ0
(
R−2ν
t

U
< a−2ν

)
= Pδ0(a2ν < UR2ν

t ) = Pδ0
(

a2

R2
1U

1/ν
< t

)
.

Thus, the r.v. Λa = a2

R2
1U

1/ν is distributed as a2

2γ(ν+1)βν,1

law
= a2

2γ(ν) where γ(ν) is a gamma variable
with parameter ν:

P(γ(ν) ∈ dt) = 11{t≥0}
tν−1e−t

Γ(ν)
dt .

Hence,

Pδ0(Λa ∈ dt) = 11{t≥0}
1

tΓ(ν)

(
a2

2t

)ν
e−a

2/(2t)dt . (7.10.2)

We might also find this result directly from the general formula (7.10.1).

Proposition 7.10.4 For H a positive predictable process

Ex(HΛy
|Λy = t) = Ex(Ht|Xt = y)

and, for y > x,

Ex(HΛy ) =

∫ ∞

0

Ex(Λy ∈ dt)Ex(Ht|Xt = y) .

In the case x > y,

Ex(HΛy
) = H0

(
1− s(x)

s(y)

)
+

∫ ∞

0

Ex(Λy ∈ dt)Ex(Ht|Xt = y) .

Proof: We have shown in the previous Proposition 7.10.1 that

Px(Λy > t|Ft) =
s(Xt)

s(y)
∧ 1 .

From Itô-Tanaka’s formula

s(Xt)

s(y)
∧ 1 =

s(x)

s(y)
∧ 1 +

∫ t

0

11{Xu>y} d
s(Xu)

s(y)
− 1

2
L
s(y)
t (s(X)) .

It follows, using Lemma 7.1.1 that

Ex(HΛx
) =

1

2
Ex
(∫ ∞

0

Hu duL
s(y)
u (s(X))

)
=

1

2
Ex
(∫ ∞

0

Ex(Hu|Xu = y) duL
s(y)
u (s(X))

)
.

Therefore, replacing Hu by Hug(u), we get

Ex (HΛxg(Λx)) =
1

2
Ex
(∫ ∞

0

g(u)Ex (Hu|Xu = y) duL
s(y)
u (s(X))

)
. (7.10.3)
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Consequently, from (7.10.3), we obtain

Px (Λy ∈ du) =
1

2
duEx

(
Ls(y)u (s(X))

)
Ex
(
HΛy

|Λy = t
)

= Ex(Ht|Xt = y) .

�

Exercise 7.10.5 Let X be a drifted Brownian motion with positive drift ν and Λνy its last passage
time at level y. Prove that

Px(Λ(ν)
y ∈ dt) =

ν√
2πt

exp

(
− 1

2t
(x− y + νt)2

)
dt ,

and

Px(Λ(ν)
y = 0) =

{
1− e−2ν(x−y), for x > y
0 for x < y .

Prove, using time inversion that, for x = 0,

Λ(ν)
y

law
=

1

T
(y)
ν

where
T (b)
a = inf{t : Bt + bt = a}

See Madan et al. [101]. ▹

7.10.2 Last Passage Time Before Hitting a Level

Let Xt = x+σWt where the initial value x is positive and σ is a positive constant. We consider, for
0 < a < x the last passage time at the level a before hitting the level 0, given as gaT0

(X) = sup {t ≤
T0 : Xt = a}, where

T0 = T0(X) = inf {t ≥ 0 : Xt = 0} .
(In a financial setting, T0 can be interpreted as the time of bankruptcy.) Then, setting α = (a−x)/σ,
T−x/σ(W ) = inf{t : Wt = −x/σ} and dαt (W ) = inf{s ≥ t : Ws = α}

Px
(
gaT0

(X) ≤ t|Ft
)
= P

(
dαt (W ) > T−x/σ(W )|Ft

)
on the set {t < T−x/σ(W )}. It is easy to prove that

P
(
dαt (W ) < T−x/σ(W )|Ft

)
= Ψ(Wt∧T−x/σ(W ), α,−x/σ),

where the function Ψ(·, a, b) : R → R equals, for a > b,

Ψ(y, a, b) = Py(Ta(W ) > Tb(W )) =

 (a− y)/(a− b) for b < y < a,
1 for a < y,
0 for y < b.

(See Proposition ?? for the computation of Ψ.) Consequently, on the set {T0(X) > t} we have

Px
(
gaT0

(X) ≤ t|Ft
)
=

(α−Wt∧T0
)+

a/σ
=

(α−Wt)
+

a/σ
=

(a−Xt)
+

a
. (7.10.4)

As a consequence, applying Tanaka’s formula, we obtain the following result.

Lemma 7.10.6 Let Xt = x + σWt, where σ > 0. The F-predictable compensator associated with

the random time gaT0(X) is the process A defined as At =
1

2α
Lαt∧T−x/σ(W )(W ), where Lα(W ) is the

local time of the Brownian Motion W at level α = (a− x)/σ.
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7.10.3 Last Passage Time Before Maturity

In this subsection, we study the last passage time at level a of a diffusion process X before the fixed
horizon (maturity) T . We start with the case where X = W is a Brownian motion starting from 0
and where the level a is null:

gT = sup{t ≤ T : Wt = 0} .

Lemma 7.10.7 The F-predictable compensator associated with the random time gT equals

At =

√
2

π

∫ t∧T

0

dLs√
T − s

,

where L is the local time at level 0 of the Brownian motion W.

Proof: It suffices to give the proof for T = 1, and we work with t < 1. Let G be a standard
Gaussian variable. Then

P
( a2
G2

> 1− t
)
= Φ

( |a|√
1− t

)
,

where Φ(x) =

√
2

π

∫ x
0
exp(−u2

2 )du. For t < 1, the set {g1 ≤ t} is equal to {dt > 1}. It follows (see

[3M]) that

P(g1 ≤ t|Ft) = Φ

(
|Wt|√
1− t

)
.

Then, the Itô-Tanaka formula combined with the identity

xΦ′(x) + Φ′′(x) = 0

leads to

P(g1 ≤ t|Ft) =

∫ t

0

Φ′
(

|Ws|√
1− s

)
d

(
|Ws|√
1− s

)
+

1

2

∫ t

0

ds

1− s
Φ′′
(

|Ws|√
1− s

)
=

∫ t

0

Φ′
(

|Ws|√
1− s

)
sgn(Ws)√

1− s
dWs +

∫ t

0

dLs√
1− s

Φ′
(

|Ws|√
1− s

)
=

∫ t

0

Φ′
(

|Ws|√
1− s

)
sgn(Ws)√

1− s
dWs +

√
2

π

∫ t

0

dLs√
1− s

.

It follows that the F-predictable compensator associated with g1 is

At =

√
2

π

∫ t

0

dLs√
1− s

, (t < 1) .

�

These results can be extended to the last time before T when the Brownian motion reaches the
level α, i.e., gαT = sup {t ≤ T : Wt = α}, where we set sup(∅) = T. The predictable compensator
associated with gαT is

At =

√
2

π

∫ t∧T

0

dLαs√
T − s

,

where Lα is the local time of W at level α.

We now study the case where Xt = x+ µ t+ σWt, with constant coefficients µ and σ > 0. Let

ga1 (X) = sup {t ≤ 1 : Xt = a}
= sup {t ≤ 1 : νt+Wt = α}
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where ν = µ/σ and α = (a− x)/σ. Setting

Vt = α− νt−Wt = (a−Xt)/σ ,

we obtain, using standard computations (see [3M])

P(ga1 (X) ≤ t|Ft) = (1− eνVtH(ν, |Vt|, 1− t))11{T0(V )≤t},

where

H(ν, y, s) = e−νyN
(
νs− y√

s

)
+ eνyN

(
−νs− y√

s

)
.

Using Itô’s lemma, we obtain the decomposition of 1 − eνVtH(ν, |Vt|, 1 − t) as a semi-martingale
Mt + Ct.

We note that C increases only on the set {t : Xt = a}. Indeed, setting ga1 (X) = g, for any
predictable process H, one has

E(Hg) = E
(∫ ∞

0

dCsHs

)
hence, since Xg = a,

0 = E(11Xg ̸=a) = E
(∫ ∞

0

dCs11Xs ̸=a

)
.

Therefore, dCt = κtdL
a
t (X) and, since L increases only at points such that Xt = a (i.e., Vt = 0),

one has
κt = H ′

x(ν, 0, 1− t) .

The martingale part is given by dMt = mtdWt where

mt = eνVt (νH(ν, |Vt|, 1− t)− sgn(Vt)H ′
x(ν, |Vt|, 1− t)) .

Therefore, the predictable compensator associated with ga1 (X) is∫ t

0

H ′
x(ν, 0, 1− s)

eνVsH(ν, 0, 1− s)
dLas .

Exercise 7.10.8 The aim of this exercise is to compute, for t < T < 1 , the quantity E(h(WT )11{T<g1}|Gt),
which is the price of the claim h(ST ) with barrier condition 11{T<g1}.

Prove that

E(h(WT )11{T<g1}|Ft) = E(h(WT )|Ft)− E
(
h(WT )Φ

( |WT |√
1− T

) ∣∣∣Ft) ,
where

Φ(x) =

√
2

π

∫ x

0

exp

(
−u

2

2

)
du .

Define k(w) = h(w)Φ(|w|/
√
1− T ). Prove that E

(
k(WT )

∣∣∣Ft) = k̃(t,Wt), where

k̃(t, a) = E
(
k(WT−t + a)

)
=

1√
2π(T − t)

∫
R
h(u)Φ

( |u|√
1− T

)
exp

(
− (u− a)2

2(T − t)

)
du.

▹
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7.10.4 Time When the Supremum is Reached

Let W be a Brownian motion, Mt = sups≤tWs and let τ be the time when the supremum on the
interval [0, 1] is reached, i.e.,

τ = inf{t ≤ 1 : Wt =M1} = sup{t ≤ 1 : Mt −Wt = 0} .

Let us denote by ζ the positive continuous semimartingale

ζt =
Mt −Wt√

1− t
, t < 1.

Let Ft = P(τ ≤ t|Ft). Since Ft = Φ(ζt), (where Φ(x) =
√

2
π

∫ x
0
exp(−u2

2 )du, (see Exercise in
Chapter 4 in [3M]) using Itô’s formula, we obtain the canonical decomposition of F as follows:

Ft =

∫ t

0

Φ′(ζu) dζu +
1

2

∫ t

0

Φ′′(ζu)
du

1− u

(i)
= −

∫ t

0

Φ′(ζu)
dWu√
1− u

+

√
2

π

∫ t

0

dMu√
1− u

(ii)
= Ut + F̃t,

where Ut = −
∫ t
0
Φ′(ζu)

dWu√
1− u

is a martingale and F̃ a predictable increasing process. To obtain

(i), we have used that xΦ′ + Φ′′ = 0; to obtain (ii), we have used that Φ′(0) =
√
2/π and also that

the process M increases only on the set

{u ∈ [0, t] :Mu =Wu} = {u ∈ [0, t] : ζu = 0}.

7.10.5 Last Passage Times for Particular Martingales

We now study the Azéma supermartingale associated with the random time L, a last passage time
or the end of a predictable set Γ, i.e.,

L(ω) = sup{t : (t, ω) ∈ Γ} .

Proposition 7.10.9 Let L be the end of a predictable set. Assume that all the F-martingales are
continuous and that L avoids the F-stopping times. Then, there exists a continuous and nonnegative
local martingale N , with N0 = 1 and limt→∞Nt = 0, such that:

Zt = P (L > t | Ft) =
Nt
Σt

where Σt = sups≤tNs. The Doob-Meyer decomposition of Z is

Zt = mt −At

and the following relations hold

Nt = exp

(∫ t

0

dms

Zs
− 1

2

∫ t

0

d⟨m⟩s
Z2
s

)
Σt = exp(At)

mt = 1 +

∫ t

0

dNs
Σs

= E(lnS∞|Ft)

Proof: As recalled previously, the Doob-Meyer decomposition of Z reads Zt = mt−At with m and
A continuous, and dAt is carried by {t : Zt = 1}. Then, for t < T0 := inf{t : Zt = 0}

− lnZt = −
(∫ t

0

dms

Zs
− 1

2

∫ t

0

d⟨m⟩s
Z2
s

)
+At
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From Skorokhod’s reflection lemma we deduce that

At = sup
u≤t

(∫ u

0

dms

Zs
− 1

2

∫ u

0

d⟨m⟩s
Z2
s

)
Introducing the local martingale N defined by

Nt = exp

(∫ t

0

dms

Zs
− 1

2

∫ t

0

d⟨m⟩s
Z2
s

)
,

it follows that
Zt =

Nt
Σt

and

Σt = sup
u≤t

Nu = exp

(
sup
u≤t

(∫ u

0

dms

Zs
− 1

2

∫ u

0

d⟨m⟩s
Z2
s

))
= eAt

�

The three following exercises are from the work of Bentata and Yor [22].

Exercise 7.10.10 Let M be a positive martingale, such that M0 = 1 and limt→∞Mt = 0. Let
a ∈ [0, 1[ and define Ga = sup{t : Mt = a}. Prove that

P(Ga ≤ t|Ft) =
(
1− Mt

a

)+

Assume that, for every t > 0, the law of the r.v. Mt admits a density (mt(x), x ≥ 0), and (t, x) →
mt(x) may be chosen continuous on (0,∞)2 and that d⟨M⟩t = σ2

t dt, and there exists a jointly
continuous function (t, x) → θt(x) = E(σ2

t |Mt = x) on (0,∞)2. Prove that

P(Ga ∈ dt) = (1− M0

a
)δ0(dt) + 11{t>0}

1

2a
θt(a)mt(a)dt

Hint: Use Tanaka’s formula to prove that the result is equivalent to dtE(Lat (M)) = dtθt(a)mt(a)
where L is the Tanaka-Meyer local time. ▹

Exercise 7.10.11 Let B be a Brownian motion and

T (ν)
a = inf{t : Bt + νt = a}
G(ν)
a = sup{t : Bt + νt = a}

Prove that
(T (ν)
a , G(ν)

a )
law
=

(
1

G
(a)
ν

,
1

T
(a)
ν

)
Give the law of the pair (T

(ν)
a , G

(ν)
a ). ▹

Exercise 7.10.12 Let X be a transient diffusion, such that

Px(T0 <∞) = 0, x > 0

Px( lim
t→∞

Xt = ∞) = 1, x > 0

and note s the scale function satisfying s(0+) = −∞, s(∞) = 0. Prove that for all x, t > 0,

Px(Gy ∈ dt) =
−1

2s(y)
p
(m)
t (x, y)dt

where p(m) is the density transition w.r.t. the speed measure m. ▹
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7.11 NUPBR

In this section, we study another kind of arbitrages in progressive enlargement. (See Section 1.6).
We do not present the full theory (for which we refer the reader to [7, 6, 4] and [1]).

7.11.1 Before τ

Let m̂ be the G-martingale stopped at time τ associated with m as in Theorem 7.3.1, on {t ≤ τ}

m̂t := mτ
t −

∫ t

0

d⟨m,m⟩Fs
Zs−

.

Case of Continuous Filtration

We start with the particular case of continuous martingales and prove that, for any random time τ ,
NUPBR holds before τ . As a consequence, in the case of honest times, all the deflators are strict
local martingales

We recall that the continuity assumption implies that the martingale part of Z is continuous and
that the optional and Doob-Meyer decompositions of Z are the same.

Proposition 7.11.1 Assume that all F martingales are continuous. Then, for any random time τ ,
NUPBR holds before τ . A deflator is given by L = E(− 1

Z � m̂).

Proof: Define the positive G local martingale L as dLt = −Lt

Zt
dm̂t. Then, if SL is a G-local

martingale, NUPBR holds. Recall that, using 7.3.1 again,

Ŝt := Sτt −
∫ t∧τ

0

d⟨S,m⟩Fs
Zs

is a G local martingale. From integration by parts, we obtain (using that the bracket of continuous
martingales is continuous and does not depend on the filtration)

d(LSτ )t = Lt−dS
τ
t + St−dLt + d⟨L, Sτ ⟩Gt

mart
= Lt

1

Zt
d⟨S,m⟩Ft +

1

Zt−
Lt−d⟨S, m̂⟩Gt

mart
= Lt

1

Zt
(d⟨S,m⟩t − d⟨S,m⟩t) = 0

where X mart
= Y is a notation for X − Y is a G local martingale. �

Exercise 7.11.2 Prove that, if Z = N/N∗ is the multiplicative decomposition of Z, then L = 1
N .▹

Case of a Poisson Filtration

We assume that S is an F martingale of the form dSt = St−ψtdMt, where ψ is a predictable process,
satisfying ψ > −1 and ψ ̸= 0, where M is the compensated martingale of a standard Poisson process.

In a Poisson setting, from PRP, dmt = νtdMt for some predictable process ν, so that, on t ≤ τ ,

dm̂t = dmt −
1

Zt−
d⟨m⟩t = dmt −

1

Zt−
λν2t dt
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Proposition 7.11.3 In a Poisson setting, for any random time τ , NUPBR holds before τ . Fur-
thermore,

L = E
(
− 1

Z− + ν
� m̂
)

= E
(
− ν

Z− + ν
� M̂
)
,

is a G-local martingale deflator for Sτ .

Proof: We are looking for a deflator of the form dLt = Lt−κtdm̂t (and νtκt > −1) so that L is
positive and SτL is a G local martingale. Integration by parts formula leads to (on t ≤ τ)

d(LS)t = Lt−dSt + St−dLt + d[L, S]t

mart
= Lt−St−ψt

1

Zt−
d⟨M,m⟩t + Lt−St−κtψtνtdNt

mart
= Lt−St−ψt

1

Zt−
νtλdt+ Lt−St−κtψtνtλ(1 +

1

Zt−
νt)dt

= Lt−St−ψtνtλ

(
1

Zt−
+ κt(1 +

1

Zt−
νt)

)
dt.

Therefore, for κt = − 1
Zt−+νt

, one obtains a deflator. Note that

dLt = Lt−κtdm̂t = −Lt−
1

Zt− + νt
νtdM̂t

is indeed a positive martingale, since 1
Zt−+νt

νt < 1. This last equality follows from the fact that

dNt = dMt + λdt = dM̂t + λ(1 +
νt
Zt

)dt

is the Doob-Meyer decomposition of the submartingale N , hence the predictable bounded variation
part (in G) part is increasing. It is also possible to note that

∆(
ν

Z− + ν
� M̂) = − ν∆M

Z− + ν∆M
=

∆m

Z̃−
= −1 +

Z−

Z̃
> −1

�
�

Lévy Processes

Assume that S = ψ ⋆ (µ− ν) where µ is the jump measure of a Lévy process and ν its compensator.
Here, ψ ⋆ (µ − ν) is the process

∫ ·
0

∫
ψ(x, s)(µ(dx, ds) − ν(dx, ds). The martingale m admits a

representation as m = ψm ⋆ (µ− ν). Then, the G compensator of µ is νG where

νG(dt, dx) =
1

Zt−
(Zt− + ψm(t, x)) ν(dt, dx)

i.e., S admits a G-semi-martingale decomposition of the form

S = ψ ⋆ (µ− νG)− ψ ⋆ (ν − νG)

Proposition 7.11.4 Consider the positive G-local martingale

L := E
(
− ψm

Z− + ψm
I]]0,τ ]] ⋆ (ν − νG)

)
.

Then L is a G-local martingale deflator for Sτ , and hence Sτ satisfies NUPBR.
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Proof: Our goal is to find a positive martingale L of the form

dLt = Lt−κtdm̂t

so that LS is a local martingale.

From integration by parts formula

d(SL)
mart
= −L−ψ ⋆ (ν − νG) + d[S,L] = −L−ψ ⋆ (ν − νG) + L−ψψ

mκ ⋆ µ
mart
= −L−ψ ⋆ (ν − νG) + L−ψψ

mκ ⋆ νG

= −L−ψ

(
1− (1 + ψmκ)

1

Z−
(Z− + ψm)

)
⋆ ν

Hence the possible choice κ = − 1
Z−+ψm . It can be checked that indeed, L is a positive martingale.

See [6] �

7.11.2 After τ

We now assume that τ is an honest time, which satisfies Zτ < 1. Note that, in the case of continuous
filtration, and Zτ = 1, NUPBR fails to hold after τ (see [64]).

For any F local martingale X (in particular for m and S)

X̂t := Xτ
t −

∫ t∧τ

0

d⟨X,m⟩Fs
Zs

+

∫ t

t∧τ

d⟨X,m⟩Fs
1− Zs

is a G local martingale.

We prove that, under the above conditions, NUPBR holds after τ . As a consequence, all the
deflators are strict local martingales

Case of Continuous Filtration

We start with the particular case of continuous martingales and prove that, for any honest time τ ,
NUPBR holds after τ .

Proposition 7.11.5 Assume that τ is an honest time, which satisfies Zτ < 1 and that all F mar-
tingales are continuous. Then, for any honest time τ , NUPBR holds after τ . A deflator is given by
dLt = − Lt

1−Zt
dm̂t.

Proof: The proof is based on Itô’s calculus. Looking for a deflator of the form dLt = Ltκtdm̂t, and
using integration by parts formula, we obtain that, for κ = −(1− Z)−1, the process L(S − Sτ ) is a
G-local martingale. �

Case of a Poisson Filtration

We assume that S is an F martingale of the form dSt = St−ψtdMt, with ψ is a predictable process,
satisfying ψ > −1.

The decomposition formula reads, after τ as

Ŝt = (11]τ,∞[ · S)t +
∫ t

t∨τ

1

1− Zs−
d⟨S,m⟩s = (11]τ,∞[ · S)t + λ

∫ t

t∨τ

1

1− Zs−
νsψsSs−ds
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Proposition 7.11.6 Let F be a Poisson filtration and τ be an honest time satisfying Zτ < 1. Then,
NUPBR holds after τ . Furthermore,

L = E
(

1

1− Z− − ν
� m̂
)

= E
(

ν

1− Z− − ν
11]τ,∞[ � M̂

)
,

is a G-martingale deflator for S − Sτ .

Proof: We are looking for a RN density of the form dLt = Lt−κtdm̂t (and ψtκt > −1) so that L
is positive G local martingale and (S − Sτ )L is a G local martingale. Integration by parts formula
leads to

d(L(S − Sτ ))t = Lt−d(S − Sτ )t + (St− − Sτt−)dLt + d[L, S − Sτ ]t

mart
= −λLt−St−νtψt

1

1− Zt−
11{t>τ}dt+ Lt−St−κtψtνt11{t>τ}dNt

mart
= −λLt−St−νtψt

1

1− Zt−
11{t>τ}dt+ λLt−St−κtψtνt11{t>τ}(1−

1

1− Zt−
νt)dt

= λLt−St−ψtνt11{t>τ}

(
− 1

1− Zt−
+ κt(1−

1

1− Zt−
νt)

)
dt.

Therefore, for κt = 1
1−Zt−−νt , one obtains a deflator. Note that

dLt = Lt−κtdm̂t = Lt−
1

1− Zt− − νt
νt11{t>τ}dM̂t

is indeed a positive martingale, since 1
1−Zt−−νt νt∆Nt > −1. This last fact can be proved using the

same argument as before.

Lévy Processes

Assume that S = ψ ⋆ (µ− ν) where µ is the jump measure of a Lévy process and ν its compensator.

Then, the G compensator of µ is νG where

νG(dt, dx) =

(
1 + 11{t≤τ}

1

Zt−
ψm(t, x)− 11{t>τ}

1

1− Zt−
ψm(t, x)

)
ν(dt, dx)

i.e., S admits a G-semi-martingale decomposition of the form

S = ψ ⋆ (µ− νG)− ψ ⋆ (ν − νG)

Proposition 7.11.7 Assume that τ be an honest time satisfying Zτ < 1 in a Lévy framework.
Then, the positive G-local martingale

L := E
(

ψm

1− Z− − ψm
I]]τ,∞[[ ⋆ (ν − νG)

)
,

is a G-martingale density for S − Sτ , and hence S − Sτ satisfies NUPBR.

Proof: Our goal is to find a positive martingale L of the form

dLt = Lt−κt11{t>τ}dm̂t

so that L(S − Sτ ) is a local martingale.

From integration by parts formula
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d(L(S − Sτ ))
mart
= −L−d(S − Sτ ) + d[S,L]

= −L−ψ
ψm

1− Z−
11]τ,∞[ ⋆ ν + L−κψψ

m11]τ,∞[ ⋆ µ

mart
= −L−ψ

ψm

1− Z−
11]τ,∞[ ⋆ ν + L−κψψ

m11]τ,∞[ ⋆ ν
G

= −L−ψψ
m11]τ,∞[

(
− 1

1− Z−
+ κ(1− ψm

1− Z−
)

)
⋆ ν

Hence the possible choice κ = 1
1−Z−−ψm . �

7.11.3 General Results

We give here some general results. We refer the reader [6, 7, 1] for the proof of the first result (before
τ) and to [4] for the second result. We recall that a set A ⊂ Ω × R+ is evanescent if the process
11A is indistinguishable from 0. A set A is thin if it is contained in the union of graphs of stopping
times.

The following are equivalent:
(a) The thin set

{
Z̃ = 0 & Z− > 0

}
is evanescent.

(b) For any (bounded) X satisfying NUPBR(F), Xτ satisfies NUPBR(G).

Suppose that τ is an honest time such that Zτ < 1. Then, the following assertions are equivalent.
(a) For any S satisfying NUPBR(F), the process S − Sτ satisfies NUPBR(G).
(b) The thin set {Z̃ = 1 & Z− < 1} is evanescent.
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Chapter 8

Initial and Progressive Enlargements
with (E)-times

We consider a probability space (Ω,A,P) equipped with a filtration F = (Ft)t≥0 satisfying the usual
hypotheses of right-continuity and completeness, and where F0 is the trivial σ-field. Let τ be a finite
random time (i.e., a finite non-negative random variable) with law ν, ν(du) = P(τ ∈ du).

We denote by P(F) (resp. O(F)) the predictable (resp. optional) σ-algebra corresponding to F
on R+ × Ω. We consider the three nested filtrations

F ⊂ G ⊂ F(τ)

where G and F(τ) stand, respectively, for the progressive and the initial enlargement of F with the
random time τ .

In this chapter, our standing assumption is the following:

Hypothesis 8.0.1 (E)-Hypothesis
The F-(regular) conditional law of τ is equivalent to the law of τ . Namely,

P(τ ∈ du|Ft) ∼ ν(du) for every t ≥ 0, P− a.s.

We assume that ν has no atoms and has R+ as support.

We shall call (E)-times random times which satisfy (E)-Hypothesis. This assumption, in the case
when t ∈ [0, T ], corresponds to the equivalence assumption in Föllmer and Imkeller [60] and in
Amendinger’s thesis [9, Assumption 0.2] and to hypothesis (HJ) in the papers by Grorud and Pontier
(see, e.g., [66]). Under the (E)-Hypothesis, we address the following problems:

• Characterization of G-martingales and F(τ)-martingales in terms of F-martingales;

• Canonical decomposition of an F-martingale, as a semimartingale, in G and F(τ);

• Predictable Representation Theorem in G and F(τ).

This chapter is based on [9] and [31].

8.1 Preliminaries

The exploited idea is the following: assuming that the F-conditional law of τ is equivalent to the
law of τ , after an ad hoc change of probability measure, the problem reduces to the case where τ

123
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and F are independent. Under this newly introduced probability measure, working in the initially
enlarged filtration is “easy”. Then, under the original probability measure, for the initially enlarged
filtration, the results are achieved by means of Girsanov’s theorem. Finally, by projection, one
obtains the results of interest in the progressively enlarged filtration (notice that, alternatively, they
can be obtained with another application of Girsanov’s theorem, starting from the newly introduced
probability measure, with respect to the progressively enlarged filtration).

The “change of probability measure” viewpoint for treating problems on enlargement of filtrations
was remarked in the early 80’s and developed by Song in [116] (see also Jacod [73, Section 5]).
This is also the point of view adopted by Gasbarra et al. in [65] while applying the Bayesian
approach to study the impact of the initial enlargement of filtration on the characteristic triplet of
a semimartingale. For what concerns the idea of recovering the results in the progressively enlarged
filtration starting from the ones in the initially enlarged one, we have to cite Yor [126].

Amongst the consequences of the (E)-Hypothesis, one has the existence and regularity of the
conditional density, for which we refer to Amendinger’s reformulation (see [9, Remarks, p. 17]) of
Jacod’s result [73, Lemma 1.8]: there exists a strictly positive O(F) ⊗ B(R+)-measurable function
(t, ω, u) → pt(ω, u), such that for every u ∈ R+, p(u) is a càdlàg (P,F)-martingale and

P(τ > θ|Ft) =
∫ ∞

θ

pt(u)ν(du) for every t ≥ 0, P− a.s.

In particular, p0(u) = 1 for every u ∈ R+ and
∫∞
0
pt(u)ν(du) = 1, ∀t. This family of processes

p is called the (P,F)-conditional density of τ with respect to ν, or the density of τ if there is no
ambiguity.

Furthermore, under the (E)-Hypothesis, the assumption that ν has no atoms implies that the
default time τ avoids the F-stopping times, i.e., P(τ = ξ) = 0 for every F-stopping time ξ (see, e.g.,
El Karoui et al. [49, Corollary 2.2]).

It was shown in [9, Proposition 1.10] that the strict positiveness of p implies the right-continuity
of the filtration F(τ).

In the sequel, we will consider the right-continuous version of all the martingales.

Now, we consider the change of probability measure introduced, independently, by Grorud and
Pontier in [66] and by Amendinger in [9] (for an initial enlargement with a random variable L instead
of with a random time τ).

Lemma 8.1.1 Let L be the (P,F(τ))-martingale defined as Lt = 1
pt(τ)

, t ≥ 0, and P∗ the probability
measure defined on F(τ) as

dP∗
|F(τ)

t
= Lt dP|F(τ)

t
=

1

pt(τ)
dP|F(τ)

t
.

Under P∗, the random time τ is independent of Ft for any t ≥ 0 and, moreover

P∗
|Ft

= P|Ft
for any t ≥ 0, P∗

|σ(τ) = P|σ(τ).

Proof: In a first step, we prove that L is an F(τ)-martingale. We shall denote by Lt(x) = 1
pt(x)

.

Indeed, E(Lt|F (τ)
s ) = Ls if (and only if) E(Lth(τ)As) = E(Lsh(τ)As) for any (bounded) Borel

function h and any Fs-measurable (bounded) random variable As. From definition of p, one has

E(Lth(τ)As) = E(
∫
R
Lt(x)h(x)pt(x)ν(dx)As) = E(

∫
R
h(x)ν(dx)As)

=

∫
R
h(x)ν(dx)E(As) = E(As)E(h(τ))

The particular case t = s leads to E(Lsh(τ)As) = E(h(τ))E(As), hence E(Lsh(τ)As) = E(Lth(τ)As).
Note that, since p0(x) = 1, one has E(1/pt(τ)|F (τ)

0 ) = 1/p0(τ) = 1.
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Now, we prove the required independence. From the above,

EQ(h(τ)As) = EP(Lsh(τ)As) = EP(h(τ))EP(As)

For h = 1 (resp. At = 1), one obtains EQ(As) = EP(As) (resp. EQ(h(τ)) = EP(h(τ))) and we are
done. �

Lemma 8.1.2 Let X be a (P,F) martingale. The process X̃(τ) defined by X̃t(τ) = Xt/pt(τ) is a
(P,F(τ))-martingale and satisfies E(X̃t(τ)|Ft) = Xt.

Proof: To establish the martingale property, it suffices to check that for s < t and A ∈ F (τ)
s ,

one has EP(X̃t(τ)11A) = EP(X̃s(τ)11A), which is equivalent to EQ(Xt11A) = EQ(Xs11A). The last
equality follows from the fact that the (F,P) martingale X is also a (F,Q) martingale (indeed P and
Q coincide on F), hence a (F(τ),Q) martingale (by independence of τ and F under Q. Bayes criteria
shows that mτ ) is a (P,F(τ))-martingale. Noting that E(1/pt(τ)|Ft) = 1 (take As = 1 and h = 1 in
the preceeding proof), the equality

EX̃t(τ)|Ft) = XtE(1/pt(τ)|Ft) = mt

ends the proof. �
Of course, the reverse holds true: if there exists a probability equivalent to P such that, under Q,
the r.v. τ is independent to F∞, then (P,F)-martingales are (P,F(τ))-semi martingales.

The above properties imply that P∗(τ ∈ du|Ft) = P∗(τ ∈ du), so that the (P∗,F)-density of τ ,
denoted by p∗(u), u ≥ 0, is a constant equal to one, P∗ ⊗ ν-a.s.

Remark 8.1.3 If one assumes only abssolute continuity Jacod’s hypothesis, the process 1/pt(τ) is
well defined, but is no more a martingale. See [8].

Remark 8.1.4 The probability measure P∗, being defined on Ft for t ≥ 0, is (uniquely) defined
on F∞ =

∨
t≥0Ft. Then, as τ is independent of F under P∗, it immediately follows that τ is also

independent of F∞, under P∗. However, one can not claim that: “P∗ is equivalent to P on F (τ)
∞ ”, since

we do not know a priori whether 1
p(τ) is a closed (P,F(τ))-martingale or not. A similar problem is

studied by Föllmer and Imkeller in [60] (it is therein called “paradox”) in the case where the reference
(canonical) filtration is enlarged by means of the information about the endpoint at time t = 1. In
our setting, it corresponds to the case where τ ∈ F∞ and τ /∈ Ft,∀ t. In the Brownian bridge case,
the conditional law of B1 w.r.t. Ft is the Dirac measure for t = 1.

Notation 8.1.5 In this chapter, as we mentioned, we deal with three different levels of information
and two equivalent probability measures. In order to distinguish objects defined under P and under
P∗, we will use, in this chapter, a superscript ∗ when working under P∗. For example, E and E∗

stand for the expectations under P and P∗, respectively. For what concerns the filtrations, when
necessary, we will use the following illustrating notation: x,X,X(τ) to denote processes adapted to
F,G and F(τ), respectively.

Let x = (xt, t ≥ 0) be a (P,F)-martingale. Since P and P∗ coincide on F, x is a (P∗,F)-martingale,
hence, using the fact that τ is independent of F under P∗, a (P∗,G)-martingale (and also a (P∗,F(τ))-
martingale). Because of these facts, the measure P∗ is called by Amendinger “martingale preserving
probability measure under initial enlargement of filtrations”.

Exercise 8.1.6 Prove that (Yt(τ), t ≥ 0) is a (P,F(τ))-martingale if and only if Yt(x)pt(x) is a
family of F-martingales. ▹
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Exercise 8.1.7 Let F be a Brownian filtration. Prove that, if X is a square integrable (P,F(τ))-
martingale, then, there exists a function h and a process ψ such that

Xt = h(τ) +

∫ t

0

ψs(τ)dBs

▹

8.2 Expectation and projection tools

8.2.1 Optional Projection, initial enlargement

Lemma 8.2.1 Let Y (τ)
t = yt(τ) be an F (τ)

t -measurable random variable.
(i) If yt(τ) is P-integrable and yt(τ) = 0 P-a.s. then, for ν-a.e. u ≥ 0, yt(u) = 0 P-a.s.
(ii) For s ≤ t one has, P-a.s. (or, equivalently, P∗-a.s.):
if yt(τ) is P∗-integrable and if yt(u) is P (or P∗)-integrable for any u ≥ 0,

E∗(yt(τ)|F (τ)
s

)
= E∗(yt(u)|Fs)∣∣u=τ = E

(
yt(u)|Fs

)∣∣u=τ ; (8.2.1)

if yt(τ) is P-integrable

E
(
yt(τ)|F (τ)

s

)
=

1

ps(τ)
E
(
yt(u)pt(u)|Fs

)∣∣
u=τ

. (8.2.2)

Proof: (i) We have, by applying Fubini-Tonelli’s Theorem,

0 = E
(
|yt(τ)|

)
= E

(
E
(
|yt(τ)|

∣∣Ft)) = E
(∫ ∞

0

|yt(u)|pt(u)ν(du)
)
.

Then
∫∞
0

|yt(u)|pt(u)ν(du) = 0 P-a.s. and, given that pt(u) is strictly positive for ν almost every u,
we have that, for ν-almost every u, yt(·, u) = 0 P-a.s.
(ii) The first equality in (8.2.1) is straightforward for elementary random variables of the form f(τ)xt,
given the independence between τ and Ft, for any t ≥ 0. It is extended to F (τ)

t -measurable r.vs via
the monotone class theorem. The second equality follows from the fact that P and P∗ coincide on
Ft, for any t ≥ 0.

The result (8.2.2) is an immediate consequence of (8.2.1), since it suffices, by means of (condi-
tional) Bayes’ formula, to pass under the measure P∗. More precisely, for s < t, we have

E
(
yt(τ)|F (τ)

s

)
=

E∗(yt(τ)pt(τ)|F (τ)
s

)
E∗
(
pt(τ)|F (τ)

s

) =
1

ps(τ)
E
(
yt(u)pt(u)|Fs

)
|u=τ

,

where in the last equality we have used the previous result (8.2.1) and the fact that p(τ) is a (P∗,F(τ))-
martingale. Note that if yt(τ) is P-integrable, then E(

∫∞
0

|yt(u)|pt(u)ν(du)) = E(|yt(τ)|) <∞, which
implies that E(|yt(u)|pt(u)) <∞. �

8.2.2 Optional Projection, progressive enlargement

The Azéma supermartingale associated with τ under the probability measure P (resp. P∗) is

Zt := P(τ > t|Ft) =
∫ ∞

t

pt(u)ν(du), (8.2.3)

Z∗(t) := P∗(τ > t|Ft) = P∗(τ > t) = P(τ > t) =

∫ ∞

t

ν(du) = G(t). (8.2.4)
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Note, in particular, that Z is a (P,F) super-martingale, whereas Z∗(·) is a (deterministic) continuous
and decreasing function. Furthermore, it is clear that, under the (E)-Hypothesis and the hypothesis
that the support of ν is R+, Z and Z∗ do not vanish.

Lemma 8.2.2 Let Y (τ)
t = yt(τ) be an F (τ)

t -measurable, P-integrable random variable. Then, for
s ≤ t,

E(Y (τ)
t |Gs) = E(yt(τ)|Gs) = ỹs11s<τ + ŷs(τ)11τ≤s,

with

ỹs =
1

Zs
E
(∫ +∞

s

yt(u)pt(u)ν(du)|Fs
)
,

ŷs(u) =
1

ps(u)
E
(
yt(u)pt(u)|Fs

)
.

Proof: From the above Proposition 7.2.1, it is clear that E(yt(τ)|Gs) can be written in the form
ỹs11s<τ + ŷs(τ)11τ≤s. On the set {s < τ}, we have, applying the key Lemma 7.2.3 and using the
(E)-Hypothesis,

11s<τE(yt(τ)|Gs) = 11s<τ
E [E(yt(τ)11s<τ |Ft)|Fs]

Zs

= 11s<τ
1

Zs
E
(∫ +∞

s

yt(u)pt(u)ν(du)|Fs
)

=: 11s<τ ỹs.

On the complementary set, we have, by applying Lemma 8.2.1,

11τ≤sE(yt(τ)|Gs) = 11τ≤sE [E(yt(τ)|Gτs )|Gs] = 11τ≤s
1

ps(τ)
E
(
yt(u)pt(u)|Fs

)∣∣
u=τ

=: 11τ≤sŷs(τ).

�

For s > t, we obtain E(Y (τ)
t |Gs) = 1

Zs

∫∞
s
yt(u)ps(u)ν(du)11s<τ + yt(τ)11τ≤s.

As an application, projecting the martingale L (defined earlier as Lt = 1
pt(τ)

, t ≥ 0) on G yields
to the corresponding Radon-Nikodým density on G:

dP∗
|Gt

= ℓt dP|Gt
,

with

ℓt := E(Lt|Gt) = 11t<τ
1

Zt

∫ ∞

t

ν(du) + 11τ≤t
1

pt(τ)

= 11t<τ
G(t)

Zt
+ 11τ≤t

1

pt(τ)
.

Proposition 8.2.3 The Azéma super-martingale Z, introduced in Equation (8.2.3), admits the
Doob-Meyer decomposition Zt = µt −

∫ t
0
pu(u)ν(du), t ≥ 0, where µ is the F-martingale defined

as

µt := 1−
∫ t

0

(pt(u)− pu(u)) ν(du)

The intensity of τ is λt =
pt(t)
Zt

.

Proof: From the definition of Z and using the fact that p(u) is martingale,

Zt +

∫ t

0

pu(u)ν(du) =

∫ ∞

t

pt(u)ν(du) +

∫ t

0

pu(u)ν(du) = E(
∫ ∞

0

pu(u)ν(du)|Ft)
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�
We now recall some useful facts concerning the compensated martingale of H. We know, from
the general theory (see Proposition 2.2.7), that denoting by H the default indicator process Ht =
11τ≤t, t ≥ 0, the process M defined as

Mt := Ht −
∫ t∧τ

0

λs ν(ds), t ≥ 0, (8.2.5)

with λt =
pt(t)
Zt

, is a (P,G)-martingale and that

M∗
t := Ht −

∫ t∧τ

0

λ∗(s) ν(ds), t ≥ 0, (8.2.6)

with λ∗(t) = 1
G(t) , is a (P∗,G)-martingale. Furthermore, since λ∗ is deterministic, M∗ (being H-

adapted) is a (P∗,H)-martingale, too.

8.2.3 Predictable projections

We conclude this subsection with the following two propositions, concerning the predictable projec-
tion, respectively on F and on G, of a F(τ)-predictable process. The first result is due to Jacod [73,
Lemme 1.10].

Proposition 8.2.4 Let Y (τ) = y(τ) be an F(τ)-predictable, positive or bounded, process. Then, the
P-predictable projection of Y (τ) on F is given by

(p,F)(Y (τ))t =

∫ ∞

0

yt(u)pt−(u)ν(du) .

Proof: It is obtained by a monotone class argument and by using the definition of density of τ ,
writing, for “elementary” processes, Y (τ)

t := ytf(τ), with y a bounded F-predictable process and f a
bounded Borel function. For this, we refer to the proof in Jacod [73, Lemme 1.10 ]. �

Proposition 8.2.5 Let Y (τ) = y(τ) be an F(τ)-predictable, positive or bounded, process. Then, the
P-predictable projection of Y (τ) on G is given by

(p,G)(Y (τ))t = 11t≤τ
1

Zt−

∫ ∞

t

yt(u)pt−(u)ν(du) + 11τ<tyt(τ) .

Proof: By the definition of predictable projection, we know (from Proposition 7.2.1 (ii)) that we
are looking for a (unique) process of the form

(p ,G)(Y (τ))t = ỹt11t≤τ + ŷt(τ)11τ<t, t ≥ 0,

where ỹ is F-predictable, positive or bounded, and (t, ω, u) 7→ ŷt(ω, u) is a P(F)⊗B(R+)-measurable
positive or bounded function, to be identified.

• On the predictable set {τ < t}, being Y (τ) an F(τ)-predictable, positive or bounded, process
(recall Proposition 5.1.1 (ii)), we immediately find ŷ(τ) = y(τ);

• On the complementary set {t ≤ τ}, introducing the G-predictable process

Y := (p ,G)(Y (τ))

it is possible to use Jeulin [79, Remark 4.5, page 64] (see also Dellacherie et al. [41, Ch. XX,
page 186]), to write

Y 11]]0,τ ]] =
1

Z−

(p ,F)(Y 11]]0,τ ]]
)
11]]0,τ ]] =

1

Z−

(p ,F)
(
(p ,G)(Y (τ))11]]0,τ ]]

)
11]]0,τ ]].



8.3. MARTINGALES’ CHARACTERIZATION 129

We then have, being 11]]0,τ ]], by definition, G-predictable (recall that τ is a G-stopping time),

Y 11]]0,τ ]] =
1

Z−

(p ,F)
(
Y (τ)11]]0,τ ]]

)
11]]0,τ ]],

where the last equality follows by the definition of predictable projection, being F ⊂ G. Finally,
given the result in Proposition 8.2.4, we have

(p ,F)
(
Y (τ)11]]0,τ ]]

)
t
=

∫ +∞

t

yt(u)pt−(u)ν(du)

and the proposition is proved.

�

8.3 Martingales’ characterization

The aim of this section is to characterize (P,F(τ)) and (P,G)-martingales in terms of (P,F)-martingales.

Proposition 8.3.1 Characterization of (P,F(τ))-martingales in terms of (P,F)-martingales
A process Y (τ) = y(τ) is a (P,F(τ))-martingale if and only if (yt(u)pt(u), t ≥ 0) is a (P,F)-
martingale, for ν-almost every u ≥ 0.

Proof: The sufficiency is a direct consequence of Proposition 5.1.1 and Lemma 8.2.1 (ii).
Conversely, assume that y(τ) is an F(τ)-martingale. Then, for s ≤ t, from Lemma 8.2.1 (ii),

ys(τ) = E
(
yt(τ)|F (τ)

s

)
=

1

ps(τ)
E
(
yt(u)pt(u)|Fs

)
|u=τ

and the result follows from Lemma 8.2.1 (i). �

Passing to the progressive enlargement setting, we state and prove a martingale characterization
result, established by El Karoui et al. in [49, Theorem 5.7].

Proposition 8.3.2 Characterization of (P,G) martingales in terms of (P,F)-martingales
A G-adapted process Yt := ỹt11t<τ + ŷt(τ)11τ≤t, t ≥ 0, is a (P,G)-martingale if and only if the
following two conditions are satisfied

(i) for ν-a.e u,
(
ŷt(u)pt(u), t ≥ u

)
is a (P,F)-martingale;

(ii) the process m = (mt, t ≥ 0), given by

mt := E(Yt|Ft) = ỹtZt +

∫ t

0

ŷt(u)pt(u)ν(du) , (8.3.1)

is a (P,F)-martingale.

Proof: For the necessity, in a first step, we show that we can reduce our attention to the case where
Y is u.i.: indeed, let Y be a (P,G)-martingale. For any T , let Y T = (Yt∧T , t ≥ 0) be the associated
stopped martingale, which is u.i. Assuming that the result is established for u.i. martingales will
prove that the processes in (i) and (ii) are martingales up to time T . Since T can be chosen as large
as possible, we shall have the result.
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Assume, then, that Y is a u.i. (P,G)-martingale. From Proposition 1.2.3, Yt = E(Y (τ)
t |Gt)

for some (P,F(τ))-martingale Y (τ). Proposition 8.3.1, then, implies that Y (τ)
t = yt(τ), where for

ν-almost every u ≥ 0 the process
(
yt(u)pt(u), t ≥ 0

)
is a (P,F)-martingale. One then has

11τ≤tŷt(τ) = 11τ≤tYt = 11τ≤tE(Y (τ)
t |Gt) = E(11τ≤tY (τ)

t |Gt) = 11τ≤tyt(τ) ,

which implies, in view of Lemma 8.2.1(i), that for ν-almost every u ≤ t, the identity yt(u) = ŷt(u)
holds P-almost surely. So, (i) is proved. Moreover, Y being a (P,G)-martingale, its projection on
the smaller filtration F, namely the process m in (8.3.1), is a (P,F)-martingale.

Conversely, assuming (i) and (ii), we verify that E(Yt|Gs) = Ys for s ≤ t. We start by noting
that

E(Yt|Gs) = 11s<τ
1

Zs
E(Yt11s<τ |Fs) + 11τ≤sE(Yt11τ≤s|Gs) . (8.3.2)

We then compute the two conditional expectations in (8.3.2):

E(Yt11s<τ |Fs) = E(Yt|Fs)− E(Yt11τ≤s|Fs)
= E(mt|Fs)− E

(
E(ŷt(τ)11τ≤s|Ft)|Fs

)
= ms − E

( ∫ s

0

ŷt(u)pt(u)ν(du)|Fs
)

= ỹsZs +

∫ s

0

ŷs(u)ps(u)ν(du)−
∫ s

0

ŷs(u)ps(u)ν(du) = ỹsZs ,

where we used Fubini’s theorem and the condition (i) to obtain the next-to-last identity.
Also, an application of Lemma 8.2.2 yields to

E(Yt11τ≤s|Gs) = E(ŷt(τ)11τ≤s|Gs) = 11τ≤s
1

ps(τ)
E
(
ŷt(u)pt(u)|Fs

)
|u=τ

= 11τ≤s
1

ps(τ)
ŷs(τ)ps(τ) = 11τ≤sŷs(τ)

where the next-to-last identity holds in view of the condition (ii). �

8.4 Canonical decomposition in the enlarged filtrations

In this section, we work under P and we show that any F-local martingale x is a semi-martingale in
both the initially enlarged filtration F(τ) and in the progressively enlarged filtration G, and that any
G-martingale is a F(τ)-semi-martingale. We also provide the canonical decomposition of any F-local
martingale as a semi-martingale in F(τ) and in G. Under the assumption that the F-conditional law
of τ is absolutely continuous w.r.t. the law of τ , these questions were answered in Chapter 5, in the
initial enlargement setting, and in [49] and [74], in the progressive enlargement case. Our aim here
is to retrieve their results in an alternative manner.

We will need the following technical result, concerning the existence of the predictable bracket
⟨x, p.(u)⟩. From [73, Theorem 2.5 a)], it follows immediately that, under the (E)-Hypothesis, for every
(P,F)-(local)martingale x, there exists a ν-negligible set B (depending on x), such that ⟨x, p.(u)⟩ is
well-defined for u /∈ B. Hereafter, by ⟨x, p.(τ)⟩s we mean ⟨x, p.(u)⟩s|u=τ .

Furthermore, according to [73, Theorem 2.5 b)], under the (E)-Hypothesis, there exists an F-
predictable increasing process A and a P(F)⊗ B(R+)-measurable function (t, ω, u) → kt(ω, u) such
that, for any u /∈ B and for all t ≥ 0,

⟨x, p.(u)⟩t =
∫ t

0

ks(u)ps−(u)dAs a.s. (8.4.1)
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(the two processes A and k depend on x, however, to keep simple notation, we do not write A(x),
nor k(x)).

Moreover, ∫ t

0

|ks(τ)|dAs < ∞ a.s., for any t > 0. (8.4.2)

The following two propositions provide, under the (E)-Hypothesis, the canonical decomposition
of any (P,F)- local martingale x in the enlarged filtrations F(τ) and G, respectively. The first result
is due to Jacod [73, Theorem 2.5 c)]). Our proof is easier (mainly because we do not prove the
difficult regularity results obtained by Jacod), but less general. The interest is that we show the
power of the change of probability methodology.

Proposition 8.4.1 Canonical Decomposition in F(τ)

Any (P,F)-local martingale x is a (P,F(τ))-semimartingale with canonical decomposition

xt = X
(τ)
t +

∫ t

0

d⟨x, p.(τ)⟩s
ps−(τ)

,

where X(τ) is a (P,F(τ))-local martingale.

Proof: If x is a (P,F)-martingale, it is a (P∗,F(τ))-martingale, too (Indeed, since P and P∗ are
equal on F, x is a (P∗,F) martingale, hence, using the fact that τ is P∗ independant of F, it is a
(P∗,G) martingale). Noting that dP = pt(τ)dP∗ on Gτt , Girsanov’s theorem tells us that the process
X(τ), defined by

X
(τ)
t = xt −

∫ t

0

d⟨x, p.(τ)⟩s
ps−(τ)

is a (P,F(τ))-martingale. �

Now, any (P,F)-local martingale is a G-adapted process and a (P,F(τ)) semi-martingale (from
the above Proposition 8.4.1), so in view of Stricker’s theorem in [120], it is also a G semi-martingale.
The following proposition aims to obtain the G-canonical decomposition of an F-local martingale.
We refer to [74] for an alternative proof.

The following lemma provides a formula for the predictable quadratic covariation process ⟨x,G⟩ =
⟨x, µ⟩ in terms of the density p.

Lemma 8.4.2 Let x be a (P,F)-local martingale and µ the F-martingale part in the Doob-Meyer
decomposition of G. If kp− is dA⊗ dν-integrable, where A is defined in (8.4.1), then

⟨x, µ⟩t =
∫ t

0

dAs

∫ ∞

s

ν(du)ks(u)ps−(u), (8.4.3)

where k was introduced in Equation (8.4.1).

Proof: First consider the right-hand-side of (8.4.3), that is, by definition, predictable, and apply
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Fubini’s Theorem

ξt :=

∫ t

0

dAs

∫ ∞

s

ks(u)ps−(u)ν(du)

=

∫ t

0

dAs

∫ t

s

ks(u)ps−(u)ν(du) +

∫ t

0

dAs

∫ ∞

t

ks(u)ps−(u)ν(du)

=

∫ t

0

ν(du)

∫ u

0

ks(u)ps−(u)dAs +

∫ ∞

t

ν(du)

∫ t

0

ks(u)ps−(u)dAs

=

∫ t

0

⟨x, p·(u)⟩u ν(du) +
∫ ∞

t

⟨x, p·(u)⟩t ν(du)

=

∫ ∞

0

⟨x, p·(u)⟩t ν(du) +
∫ t

0

(⟨x, p·(u)⟩u − ⟨x, p·(u)⟩t) ν(du) .

To verify (8.4.3), it suffices to show that the process xµ − ξ is an F-local martingale (since ξ is
a predictable, finite variation process). By definition, for ν-almost every u ∈ R+, the process
(mt(u) := xtpt(u)− ⟨x, p·(u)⟩t, t ≥ 0) is an F-local martingale. Then, given that 1 =

∫∞
0
pt(u)ν(du)

for every t ≥ 0, a.s., we have

xtµt − ξt = xt

∫ ∞

0

pt(u)ν(du)− xt

∫ t

0

(pt(u)− pu(u)) ν(du)

−
∫ ∞

0

⟨x, p·(u)⟩t ν(du) +
∫ t

0

(⟨x, p·(u)⟩t − ⟨x, p·(u)⟩u) ν(du)

=

∫ ∞

0

mt(u)ν(du)−
∫ t

0

(mt(u)−mu(u)) ν(du) + xt

∫ t

0

pu(u)ν(du)−
∫ t

0

pu(u)xuν(du) .

The first two terms are martingales (this follows easily from the martingale property of m(u)).
As for the last term, using the fact that ν has no atoms, we find

d

(
xt

∫ t

0

pu(u)ν(du)−
∫ t

0

pu(u)xuν(du)

)
=

(∫ t

0

pu(u)ν(du)

)
dxt + xtpt(t)ν(dt)− pt(t)xtν(dt) =

(∫ t

0

pu(u)ν(du)

)
dxt

and we have, indeed, proved that xµ− ξ is an F-local martingale. �

Proposition 8.4.3 Canonical Decomposition in G
Any (càdlàg) (P,F)-local martingale x is a (P,G) semi-martingale with canonical decomposition

xt = Xt +

∫ t∧τ

0

d⟨x,G⟩s
Gs−

+

∫ t

t∧τ

d⟨x, p.(τ)⟩s
ps−(τ)

, (8.4.4)

where X is a (P,G)-local martingale.

Proof: The proof follows from Theorem 7.3.1 and Proposition 8.4.1. See [8] or [31] for details. �

Exercise 8.4.4 Give a direct check of Proposition 8.4.3 in a Brownian filtration ▹

We end this section proving that any (P∗,G)-martingale remains a (P∗,F(τ))-semimartingale, but it
is not necessarily a (P∗,F(τ))-martingale. Indeed, we have the following result.

Lemma 8.4.5 Any (P∗,G)-martingale Y ∗ is a (P∗,F(τ)) semi-martingale which can have a non-null
bounded variation part.
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Proof: The result follows immediately from Proposition 8.3.2 (under P∗), noticing that the (P∗,G)
martingale Y ∗ can be written as Y ∗

t = ỹ∗t 11t<τ + ŷ
∗
t (τ)11τ≤t. Therefore, in the filtration F(τ), it is the

sum of two F(τ) semi-martingales: the processes 11t<τ and 11τ≤t are F(τ) semi-martingales, as well
as the processes ỹ, ŷ∗(τ). Indeed, from Proposition 8.3.2, recalling that the (P∗,F)-density of τ is a
constant equal to one, we know that, for every u > 0,

(
ŷ∗t (u), t ≥ u

)
is an F-martingale and that the

process
(
ỹ∗tG(t) +

∫ t
0
ŷ∗u(u)ν(du), t ≥ 0

)
is an F-martingale, hence ỹ∗ is a G-semi-martingale.

�

As in Lemma 8.4.5, we deduce that any (P,G)-martingale is a (P,F(τ))-semi-martingale. Note
that this result can also be proved using Lemma 8.4.5 and a change of probability argument: a
(P,G)-martingale is a (P∗,G)-semi-martingale (from Girsanov’s theorem), thus also a (P∗,F(τ))-
semi-martingale in view of Lemma 8.4.5. By another use of Girsanov’s theorem, it is thus a (P,F(τ))-
semi-martingale.

8.5 Predictable Representation Theorems

The aim of this section is to obtain Predictable Representation Property (PRP hereafter) in the
enlarged filtrations G and F(τ), both under P and P∗. We start by assuming that there exists a
(P,F)-local martingale y (possibly multidimensional), such that the PRP holds in (P,F). Notice
that y is not necessarily continuous.

Beforehand we introduce some notation: Mloc(P,F) denotes the set of (P,F)-local martingales,
and M2(P,F) denotes the set of (P,F)-martingales x, such that

E
(
x2t
)
<∞, ∀ t ≥ 0. (8.5.1)

Also, for a (P,F)-local martingale m, we denote by L(m,P,F) the set of F-predictable processes
which are integrable with respect to m (in the sense of local martingale), namely (see, e.g., Definition
9.1 and Theorem 9.2. in [67])

L(m,P,F) =

{
φ ∈ P(F) :

(∫ ·

0

φ2
sd[m]s

)1/2

is P− locally integrable

}
.

Hypothesis 8.5.1 PRP for (P,F)
There exists a process y ∈ Mloc(P,F) such that every x ∈ Mloc(P,F) can be represented as

xt = x0 +

∫ t

0

φsdys

for some φ ∈ L(y,P,F).

We start investigating what happens under the measure P∗, in the initially enlarged filtration
F(τ).

Recall that, assuming the immersion property, Kusuoka [96] has established a PRP for the
progressively enlarged filtration, in the case where F is a Brownian filtration.

Also, under the equivalence assumption in [0, T ] and assuming a PRP in the reference filtration
F, Amendinger (see [9, Th. 2.4]) proved a PRP in (P∗,F(τ) and extended the result to (P,F(τ)), in
the case where the underlying (local) martingale in the reference filtration is continuous.

Proposition 8.5.2 PRP for (P∗,F(τ))
Under Assumption 8.5.1, every X(τ) ∈ Mloc(P∗,F(τ)) admits a representation

X
(τ)
t = X

(τ)
0 +

∫ t

0

Φτsdys (8.5.2)
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where Φτ ∈ L(y,P∗,F(τ)). In the case where X(τ) ∈ M2(P∗,F(τ)), one has E∗( ∫ t
0
(Φτs )

2
d[y]s

)
<∞,

for all t ≥ 0 and the representation is unique.

Proof: From Theorem 13.4 in [67], it suffices to prove that any bounded martingale admits a
predictable representation in terms of y. Let X(τ) ∈ Mloc(P∗,F(τ)) be bounded by K. From
Proposition 8.3.1, X(τ)

t = xt(τ) where, for ν-almost every u ∈ R+, the process
(
xt(u), t ≥ 0

)
is

a (P∗,F)-martingale, hence a (P,F)-martingale. Thus Assumption 8.5.1 implies that (for ν-almost
every u ∈ R+),

xt(u) = x0(u) +

∫ t

0

φs(u)dys ,

where (φt(u), t ≥ 0) is an F-predictable process.

The process X(τ) being bounded by K, it follows by an application of Lemma 8.2.1(i) that for
ν-almost every u ≥ 0, the process (xt(u), t ≥ 0) is bounded by K. Then, using the Itô isometry,

E∗( ∫ t

0

φ2
s(u)d[y]s

)
= E∗( ∫ t

0

φs(u)dys
)2

= E∗((xt(u)− x0(u))
2
)
≤ E∗(x2t (u)) ≤ K2 .

Also, from [119, Lemma 2], one can consider a version of the process
∫ ·
0
φ2
s(u)d[y]s which is measur-

able with respect to u. Using this fact,

E∗
[( ∫ t

0

φ2
s(τ)d[y]s

)1/2]
=

∫ ∞

0

ν(du)
(
E∗( ∫ t

0

φ2
s(u)d[y]s

))1/2
≤
∫ ∞

0

ν(du)K = K .

The process Φ(τ) defined by Φ
(τ)
t = φt(τ) is F(τ)-predictable, according to Proposition 5.1.1, it

satisfies (8.5.2), with X(τ)
0 = x0(τ), and it belongs to L(y,P∗,F(τ)).

If X(τ) ∈ M2(P∗,F(τ)), from Itô’s isometry,

E∗
(∫ t

0

(Φ(τ)
s )2d[y]s

)
= E∗

(∫ t

0

Φ(τ)
s dys

)2

= E∗(X
(τ)
t −X

(τ)
0 )2 <∞ .

Also, from this last equation, if X(τ) ≡ 0 then Φ(τ) ≡ 0, from which the uniqueness of the represen-
tation follows. �

Passing to the progressively enlarged filtration G, which consists of two filtrations, G = F ∨ H,
intuitively one needs two martingales to establish a PRP. Apart from y, intuition tells us that a
candidate for the second martingale might be the compensated martingale ofH, that was introduced,
respectively under P (it was denoted by M) and under P∗ (denoted by M∗), in Equation (8.2.5) and
in Equation (8.2.6).

Proposition 8.5.3 PRP for (P∗,G)
Under Assumption 8.5.1, every X ∈ Mloc(P∗,G) admits a representation

Xt = X0 +

∫ t

0

Φsdys +

∫ t

0

ΨsdM
∗
s

for some processes Φ ∈ L(y,P∗,G) and Ψ ∈ L(M∗,P∗,G). Moreover, if X ∈ M2(P∗,G), one has,
for any te0,

E∗
(∫ t

0

Φ2
sd[y]s

)
<∞ , E∗

(∫ t

0

Ψ2
sλ

∗(s)ν(ds)

)
<∞ ,

and the representation is unique.
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Proof: It is known that any (P∗,H) local martingale ξ can be represented as ξt = ξ0 +
∫ t
0
ψsdM

∗
s

for some process ψ ∈ L(M∗,P∗,H) (see, e.g., the proof in [33]). Notice that ψ has a role only before
τ and, for this reason (recall that H = (Ht)t≥0 is the natural filtration of the indicator process H),
ψ can be chosen deterministic.

Under P∗, we then have

• the PRP holds in F with respect to y,

• the PRP holds in H with respect to M∗,

• the filtration F and H are independent.

From classical literature (see Lemma 9.5.4.1(ii) in [3M], for instance) the filtration G = F∨H enjoys
the PRP under P∗ with respect to the pair (y,M∗).

Now suppose that X ∈ M2(P∗,G). We find

∞ > E∗(Xt −X0)
2
= E∗

(∫ t

0

Φsdys +

∫ t

0

ΨsdM
∗
s

)2

= E∗
(∫ t

0

Φ2
sd[y]s

)
+ 2E∗

(∫ t

0

Φsdys

∫ t

0

ΨsdM
∗
s

)
+ E∗

(∫ t

0

Ψ2
sλ

∗(s)ν(ds)

)
,

where in the last equality we used the Itô isometry. The cross-product term in the last equality is
zero due to the orthogonality of y and M∗ (under P∗). From this inequality, the desired integrability
conditions hold and the uniqueness of the representation follows (as in the previous proposition). �

Remark 8.5.4 In order to establish a PRP for the initially enlarged filtration F(τ) and under P∗,
one could have proceeded as in the proof of Proposition 8.5.3, noting that any martingale ξ in the
“constant” filtration σ(τ) satisfies ξt = ξ0 + 0 and that under P∗ the two filtrations F and σ(τ) are
independent.

Proposition 8.5.5 PRP under P
Under Assumption 8.5.1, one has:

(i) Every X(τ) ∈ Mloc(P,F(τ)) can be represented as

X
(τ)
t = X

(τ)
0 +

∫ t

0

Φ(τ)
s dy(τ)s

where y(τ) is the martingale part in the F(τ)-canonical decomposition of y and Φ ∈ L(y(τ),P,F(τ)).

(ii) Every X ∈ Mloc(P,G) can be represented as

Xt = X0 +

∫ t

0

ΦsdYs +

∫ t

0

ΨsdMs,

where Y is the martingale part in the G-canonical decomposition of y, M is the (P,G)-
compensated martingale associated with H and Φ ∈ L(Y,P,G), Ψ ∈ L(M,P,G).

Proof: The assertion (i) (resp. (ii)) follows from Proposition 8.5.2 (resp. Proposition 8.5.3) and
the stability of PRP under an equivalent change of measure (see for example Theorem 13.12 in [67]).

For part (ii), it is important to note that, if y is a (P,F)-martingale, it is a (P∗,G)-martingale,
too. Hence, by a Girsanov type transformation, Y defined as dZYt := dyt − 1

ℓ∗t−
d⟨y, ℓ∗⟩t, Y0 = y0, is

a (P,G)-martingale, where ℓ∗ := 1/ℓ is a (P∗,G)-martingale (in fact dP|Gt
= ℓ∗t dP∗

|Gt
). From the
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uniqueness of the canonical decomposition of the (P,G)-semimartingale y (which is indeed special)
and from Proposition 8.4.3, it follows that the (P,G)-martingale Y is in particular given by

Yt = yt −
∫ t∧τ

0

d⟨y,G⟩s
Gs−

−
∫ t

t∧τ

d⟨y, p·(τ)⟩s
ps−(τ)

.

�
This result is extended under absolute continuity Jacod’s hypothesis in [63].

8.6 Change of probability

In this section, we show how the various quantities associated with a random time τ are transformed
under a change of probability. We recall that the intensity is the F adapted process λ such that
Ht −

∫ t∧τ
0

λsds is a martingale and that the Azéma supermartingale factorizes as Gt = Nte
−Λt .

Theorem 8.6.1 Let Y G
t = yt11{τ>t} + yt(τ)11{τ≤t} be a positive G-martingale with Y G

0 = 1 and let
Y F
t = ytGt +

∫ t
0
yt(u)pt(u)ν(du) be its F projection.

Let Q be the probability measure defined on Gt by dQ = Y G
t dP. Then,

(i) for t ≥ θ pQt (θ) = pt(θ)
yt(θ)

Y F
t
,

(ii) the Q-Azéma’s supermartingale is defined by GQ
t = Gt

yt
Y F
t

(iii) the (F,Q)-intensity process is λF,Qt = λFt
yt(t)

yt−
, dt- a.s.;

(iv) NF,Q is the (F,Q)-local martingale

NF,Q
t = NF

t

yt
Y F
t

exp

∫ t

0

(λF,Qs − λFs)ds

Proof: From change of probability

Q(τ > θ|Ft) =
1

E(Y G
t |Ft)

EP(Y
G
t 11τ>θ|Ft) =

1

Y F
t

EP(yt(τ)11τ>θ|Ft) =
1

Y F
t

∫ ∞

θ

yt(u)pt(u)ν(du)

The form of the survival process follows immediately by differentiation. The form of the intensity is
obvious. The form of N is obtained follows from the definition

GQ
t = NQ

t e
−ΛQ

t = Gt
yt
Y F
t

e−ΛP
t

�

Girsanov’s tranform with Doléans Dade exponential

We restrict our attention to the case where τ is constructed on a probability space (Ω,F,P) with
a given intensity λ as in the Cox process model, where F is a Brownian filtration generated by W .
Any strictly positive martingale can be written as

dLt = Lt−(ΨtdWt +ΦtdMt)

where Ψ and Ψ are G predictable processes, of the form

Ψt = ψt11t<τ + ψt(τ)11τ≤t

Φt = ϕt11t<τ + ϕt(τ)11τ≤t
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where ψ and ϕ are F-predictable. It follows that

Lt = exp

(∫ t

0

ψsdWs −
1

2

∫ t

0

ψ2
sds

)
exp

(
−
∫ t

0

λsγsds

)
:= L̃t, t < τ

= Lτ−(1 + γτ ) exp

(∫ t

τ

ψs(τ)dWs −
1

2

∫ t

τ

(ψs(τ))
2ds

)
= Lτ−(1 + γτ )Υt(τ), τ < t

where Υt(u) = exp
(∫ t

u
ψs(u)dWs − 1

2

∫ t
u
(ψs(u))

2ds
)

Let dQ = LtdP. Then, setting

ℓt = E(Lt|Ft) = L̃te
−Λt +

∫ t

0

L̃u(1 + γu)Υt(u)λue
−Λudu

Q(τ > θ|Ft) =
1

ℓt

(
L̃te

−Λt +

∫ t

θ

L̃u(1 + γu)Υt(u)λue
−Λudu

)
It remains to differentiate w.r.t. θ

αt(θ) =
1

ℓt
L̃θ(1 + γθ)Υt(θ)λθe

−Λθ

Exercise 8.6.2 Prove that the change of probability measure generated by the two processes

zt = (LF
t )

−1, zt(θ) =
pθ(θ)

pt(θ)

provides a model where the immersion property holds true, and where the intensity processes does
not change ▹

Exercise 8.6.3 Check that

E(
∫ t∧τ

0

d⟨X,G⟩s
Gs−

−
∫ t

t∧τ

d⟨X, p(θ)⟩s
ps−(θ)

∣∣∣∣
θ=τ

|Ft)

is an F-martingale.
Check that that

E(
∫ t

0

d⟨X, p(θ)⟩s
ps−(θ)

∣∣∣∣
θ=τ

|Gt)

is a G martingale. ▹

Exercise 8.6.4 Let λ be a positive F-adapted process and Λt =
∫ t
0
λsds and Θ be a strictly positive

random variable such that there exists a family γt(u) which satisfies P(Θ > θ|Ft) =
∫∞
θ
γt(u)du.

Let τ = inf{t > 0 : Λt ≥ Θ}.Prove that the density of τ is given by

pt(θ) = λθγt(Λθ) if t ≥ θ and pt(θ) = E[λθγθ(Λθ)|Ft] if t < θ.

Conversely, if we are given a density p, prove that it is possible to construct a threshold Θ such that
τ has p as density. ▹

8.7 Applications to Finance

8.7.1 Defaultable Zero-Coupon Bonds

A defaultable zero-coupon with maturity T associated with the default time τ is an asset which pays
one monetary unit at time T if (and only if) the default has not occurred before T . We assume that
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P is the pricing measure and that the interest rate is null. By definition, the risk-neutral price under
P of the T -maturity defaultable zero-coupon bond with zero recovery equals, for every t ∈ [0, T ],

D(t, T ) := P(τ > T | Gt) = 11{τ>t}
P(τ > T | Ft)

Gt
= 11{τ>t}

EP
(
NT e

−ΛT | Ft
)

Gt
(8.7.1)

where N is the martingale part in the multiplicative decomposition of G (see Proposition ). Using
(8.7.1), we obtain

D(t, T ) := P(τ > T | Gt) = 11{τ>t}
1

Nte−Λt
EP(NT e

−ΛT | Ft)

However, using a change of probability, one can get rid of the martingale part N , assuming that
there exists p such that

P(τ > θ|Ft) =
∫ ∞

θ

pt(u)du

Let P∗ be defined as
dP∗|Gt

= Z∗
t dP|Gt

where Z∗ is the (P,G)-martingale defined as

Z∗
t = 11{t<τ} + 11{t≥τ}λτe

−Λτ
Nt
pt(τ)

Note that
dP∗|Ft

= NtdP|Ft
= NtdP|Ft

and that P∗ and P coincide on Gτ .
Indeed,

EP(Z
∗
t |Ft) = Gt +

∫ t

0

λue
−Λu

Nt
pt(u)

pt(u)η(du)

= Nte
−Λt +Nt

∫ t

0

λue
−Λuη(du) = Nte

−Λt +Nt(1− e−Λt)

Then, for t > θ,

P∗(θ < τ |Ft) =
1

Nt
EP(Z

∗
t 11θ<τ |Ft) =

1

Nt
EP(11t<τ + 11{t≥τ>θ}λτe

−Λτ
Nt
pt(τ)

|Ft)

=
1

Nt

(
Nte

−Λt +

∫ t

θ

λue
−Λu

Nt
pt(u)

pt(u)du

)
=

1

Nt

(
Nte

−Λt +Nt(e
−Λθ − e−Λt)

)
= e−Λθ

which proves that immersion holds true under P∗, and the intensity of τ is the same under P and
P∗. It follows that

EP(X11{T<τ}|Gt) = E∗(X11{T<τ}|Gt) = 11{t<τ}
1

e−Λt
E∗(e−ΛTX|Ft)

Note that, if the intensity is the same under P and P∗, its dynamics under P∗ will involve a change
of driving process, since P and P∗ do not coincide on F∞.
Let us now study the pricing of a recovery. Let Z be an F-predictable bounded process.

EP(Zτ11{t<τ≤T }|Gt) = 11{t<τ}
1

Gt
EP(−

∫ T

t

ZudGu|Ft)

= 11{t<τ}
1

Gt
EP(

∫ T

t

ZuNuλue
−Λudu|Ft)

= E∗(Zτ11{t<τ≤T}|Gt)

= 11{t<τ}
1

e−Λt
E∗(

∫ T

t

Zuλue
−Λudu|Ft)
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The problem is more difficult for pricing a recovery paid at maturity, i.e. for X ∈ FT

EP(X11τ<T |Gt) = EP(X|Gt)− EP(X11τ>T |Gt) = EP(X|Gt)− 11{τ>t}
1

Nte−Λt
EP
(
XNT e

−ΛT | Ft
)

= EP(X|Gt)− 11{τ>t}
1

e−Λt
E∗(Xe−ΛT | Ft

)
Since immersion holds true under P∗

E∗(X11τ<T |Gt) = E∗(X|Gt)− 11{τ>t}
1

e−Λt
E∗(XNT e−ΛT | Ft

)
= E∗(X|Ft)− 11{τ>t}

1

e−Λt
E∗(XNT e−ΛT | Ft

)
If both quantities EP(X11τ<T |Gt) and E∗(X11τ<T |Gt) are the same, this would imply that EP(X|Gt) =
E∗(X|Ft) which is impossible: this would lead to EP(X|Gt) = EP(X|Ft), i.e. immersion holds under
P . Hence, non-immersion property is important while evaluating recovery paid at maturity ( P∗ and
P do not coincide on F∞).

8.7.2 Forward intensity

By using the density approach, we adopt an additive point of view to represent the conditional
probability of τ : the conditional survival function Gt(θ) = P(τ > θ | Ft) is written in the form
Gt(θ) =

∫∞
θ
pt(u)ν(du). In the default framework, the “intensity” point of view is often preferred,

and one uses the multiplicative representation Gt(θ) = exp(−
∫ θ
0
λt(u)ν(du)). In the particular case

where ν denotes the Lebesgue measure (in that case, the law of τ is p0(u), and we shall ), the family
of Ft-measurable random variables λt(θ) = −∂θ lnGt(θ) is called the “forward intensity". We shall
discuss and compare these two points of view further on.

We now consider (Gt(θ), t ≥ 0) as in the classical HJM models where its dynamics is given in
multiplicative form. By using the forward intensity λt(θ) of τ , the density can then be calculated
as pt(θ) = λt(θ)Gt(θ). It follows that the forward intensity is non-negative. As noted before, λ(θ)
plays the same role as the spot forward rate in the interest rate models.

Proposition 8.7.1 Let dGt(θ) = Zt(θ)dWt be the martingale representation of (Gt(θ), t ≥ 0) and
assume that the processes (Zt(θ); t ≥ 0) are differentiable in the following sense: there exists a
family of processes (zt(θ), t ≥ 0) such that Zt(θ) =

∫ θ
0
zt(u)ν(du), Zt(0) = 0. Then, under regularity

conditions,

1) the density processes have the following dynamics dpt(θ) = −zt(θ)dWt where z(θ) is subjected
to the constraint

∫∞
0
zt(θ)ν(dθ) = 0 for any t ≥ 0.

2) The survival process G evolves as dGt = −αt(t)ν(dt) + Zt(t)dWt.

3) With more regularity assumptions, if (∂θpt(θ))θ=t is simply denoted by ∂θpt(t), then the process
pt(t) follows :

dpt(t) = ∂θpt(t)ν(dt)− zt(t)dWt.

Proof: 1) Observe that Z(0) = 0 since G(0) = 1, hence the existence of z is related with some
smoothness conditions. Then using the stochastic Fubini theorem , one has

Gt(θ) = G0(θ) +

∫ t

0

Zu(θ)dWu = G0(θ) +

∫ θ

0

ν(dv)

∫ t

0

zu(v)dWu.

So 1) follows. Using the fact that for any t ≥ 0,

1 =

∫ ∞

0

pt(u)ν(du) =

∫ ∞

0

ν(du)
(
P0(u)−

∫ t

0

zs(u)dWs

)
= 1−

∫ t

0

dWs

∫ ∞

0

zs(u)ν(du),
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one gets
∫∞
0
zt(u)ν(du) = 0.

2) By using Proposition ?? and integration by parts,

MF
t = −

∫ t

0

(pt(u)− pu(u))ν(du) =

∫ t

0

ν(du)

∫ t

u

zs(u)dWs =

∫ t

0

dWs

(∫ s

0

zs(u)ν(du)
)
,

which implies 2).
3) We follow the same way as for the decomposition of G, by studying the process

pt(t)−
∫ t

0

(∂θps)(s)ν(ds) = pt(0) +

∫ t

0

(∂θpt)(s)ν(ds)−
∫ t

0

(∂θps)(s)ν(ds)

where the notation ∂θpt(t) is defined in 3). Using the martingale representation of pt(θ) and inte-
gration by parts (assuming that smoothness hypothesis allows these operations), the integral in the
RHS is a stochastic integral,∫ t

0

(
(∂θpt)(s)− (∂θps)(s)

)
ν(ds) = −

∫ t

0

ν(ds)∂θ(

∫ t

s

zu(θ)dWu)

= −
∫ t

0

ν(ds)

∫ t

s

∂θzu(s)dWu = −
∫ t

0

dWu

∫ u

0

ν(ds)∂θzu(s) = −
∫ t

0

dWu(zu(u)− zu(0))

The stochastic integral
∫ t
0
zu(0)dWu is the stochastic part of the martingale pt(0), and so the property

3) holds true. �
Classically, HJM framework is studied for time smaller than maturity, i.e. t ≤ T . Here we consider
all positive pairs (t, θ).

Proposition 8.7.2 We keep the notation and the assumptions in Proposition 8.7.1. For any t, θ ≥
0, let Ψt(θ) = Zt(θ)

Gt(θ)
. We assume that there exists a family of processes ψ such that Ψt(θ) =∫ θ

0
ψt(u)ν(du). Then

1) Gt(θ) = G0(θ) exp
(∫ t

0
Ψs(θ)dWs − 1

2

∫ t
0
|Ψs(θ)|2ds

)
;

2) the forward intensity λ(θ) has the following dynamics:

λt(θ) = λ0(θ)−
∫ t

0

ψs(θ)dWs +

∫ t

0

ψs(θ)Ψs(θ)ds; (8.7.2)

3) St = exp
(
−
∫ t
0
λFsν(ds) +

∫ t
0
Ψs(s)dWs − 1

2

∫ t
0
|Ψs(s)|2ds

)
;

Proof: By choice of notation, 1) holds since the process Gt(θ) is the solution of the equation

dGt(θ)

Gt(θ)
= Ψt(θ)dWt, ∀ t, θ ≥ 0. (8.7.3)

2) is the consequence of 1) and the definition of λ(θ).
3) This representation is the multiplicative version of the additive decomposition of G in Proposition
8.7.1. We recall that λFt = pt(t)G

−1
t . There are no technical difficulties because G is continuous. �

8.7.3 Multidefault

Lemma 8.7.3 Assume that P(τi > ti, i = 1, . . . , n|Ft) =
∫∞
t1

· · ·
∫∞
tn
gt(u1, . . . , un)du1 . . . dun. Prove

that F is immersed in G if and only if gt(t1, . . . , tn) = gu(t1, . . . , tn) for u > t > max(ti)
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In the multi-dimensional case, that is when τ = (τ1, . . . , τd) is a vector of finite random times,
the same machinery can be applied. More precisely, under the assumption

P(τ1 ∈ dθ1, . . . , τd ∈ dθd|Ft) ∼ P(τ1 ∈ dθ1, . . . , τd ∈ dθd)

one defines the probability P∗ equivalent to P on F (τ)
t = Ft ∨ σ(τ1) ∨ · · · ∨ σ(τd) by

dP∗

dP |F(τ)
t

=
1

pt(τ1, . . . , τd)
,

where pt(τ1, . . . , τd) is the (multidimensional) analog to pt(τ), and the results for the initially enlarged
filtration are obtained in the same way as for the one-dimensional case.

As for the progressively enlarged filtration Gt = Ft∨σ(τ1∧t)∨· · ·∨σ(τd∧t), one has to note that,
in this case, a measurable process is decomposed into 2d terms, corresponding to the measurability
of the process on the various sets {τi ≤ t < τj , i ∈ I, j ∈ Ic} for all the subsets I of {1, ..., d}.

See many applications in El Karoui et al [50, 48], Jiao and Li [84, 85].

8.7.4 Concluding Remarks

• In this study, honest times are automatically excluded, as we explain now. Under the probabil-
ity P∗, the Azéma supermartingale associated with τ being a continuous decreasing function,
it has a trivial Doob-Meyer decomposition G∗ = 1−A∗ with A∗

t =
∫ t
0
ν(du). So, A∗

∞ = 1 and,
in particular, τ can not be an honest time: recall that in our setting, τ avoids the F-stopping
times and therefore, from a result due to Azéma [16], if τ is an honest time, the random vari-
able A∗

∞ should have exponential law with parameter 1, which is not the case (note that the
notion of honest time does not depend on the probability measure).

• Under immersion property and under the (E)-Hypothesis, pt(u) = pu(u), t ≥ u. In particular,
as expected, the canonical decomposition’s formulae presented in Section 8.4 are trivial, i.e.,
the "drift" terms vanish.

• Predictable representation theorems can be obtained in the more general case, where any
(P,F)-martingale x admits a representation as

xt = x0 +

∫ t

0

∫
E

φ(s, θ)µ̃(ds, dθ),

for a compensated martingale associated with a point process.

8.8 Conditional Laws of Random Times

In this section, we are interested in models for the conditional law of a random time τ : more precisely,
our goal is to give examples of processes g(u) so that one can construct a random time τ satisfying
Gt(θ) = P(τ > θ|Ft) =

∫∞
θ
gt(u)du. The process g(u) is called the (un-normalized) density. ( the

density being p(u) such that P(τ > θ|Ft) =
∫∞
θ
pt(u)ν(du), where ν is the law of τ , i.e., pt(u) =

gt(u)
g0

where g0 =
∫∞
0
G0(u)du). We recall the classical construction of default times as first hitting time of

a barrier, independent of the reference filtration, and we extend this construction to the case where
the barrier is no more independent of the reference filtration. It is then natural to characterize the
dependence of this barrier and the filtration by means of its conditional law.
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8.8.1 General thresholds

In the classical model, the barrier Θ as an A-measurable random variable independent of F, and to
consider

τ := inf{t : Γt ≥ Θ} . (8.8.1)

The F-conditional law of τ is
P (τ > θ|Ft) = GΘ(Γθ), θ ≤ t

where GΘ is the survival probability of Θ given by GΘ(t) = P (Θ > t). We recall that in this
particular case, P (τ > θ|Ft) = P (τ > θ|F∞) for any θ ≤ t, which means that the H-hypothesis
is satisfied and that the martingale survival processes remain constant after θ (i.e., Gt(θ) = Gθ(θ)
for t ≥ θ). This result is stable by increasing transformation of the barrier, so that we can assume
without loss of generality that the barrier is the standard exponential random variable − log(GΘ(Θ))
.

If the increasing process Γ is assumed to be absolutely continuous w.r.t. the Lebesgue measure
with Radon-Nikodým density γ and if GΘ is differentiable, then the random time τ admits a density
process given by

gt(θ) = −(GΘ)′(Γθ)γθ = gθ(θ), θ ≤ t (8.8.2)
= E(gθ(θ)|Ft), θ > t.

In the widely used Cox process model, the independent barrier Θ follows the exponential law
and Γt =

∫ t
0
γsds represents the default compensator process. As a direct consequence of (8.8.2),

gt(θ) = γθe
−Γθ , θ ≤ t.

We now relax the assumption that the threshold Θ is independent of F∞. We assume that the
barrier Θ is a strictly positive random variable whose conditional distribution w.r.t. F admits a
density process, i.e., there exists a family of Ft ⊗ B(R+)-measurable functions pt(u) such that

GΘ
t (θ) := P (Θ > θ|Ft) =

∫ ∞

θ

pt(u)du . (8.8.3)

We assume in addition that the process Γ is absolutely continuous w.r.t. the Lebesgue measure, i.e.,
Γt =

∫ t
0
γsds. We still consider τ defined as in (8.8.1) and we say that a random time constructed

in such a setting is given by a generalized threshold.

Proposition 8.8.1 Let τ be given by a generalized threshold. Then τ admits the density process
g(θ) where

gt(θ) = γθpt(Γθ), θ ≤ t. (8.8.4)

Proof: By definition and by the fact that Γ is strictly increasing and absolutely continuous, we
have for t ≥ θ,

Gt(θ) := P (τ > θ|Ft) = P (Θ > Γθ|Ft) = GΘ
t (Γθ) =

∫ ∞

Γθ

pt(u)du =

∫ ∞

θ

pt(Γu)γudu,

which implies gt(θ) = γθpt(Γθ) for t ≥ θ.

Obviously, in the particular case where the threshold Θ is independent of F∞, we recover the
classical results (8.8.2) recalled above.

Conversely, if we are given a density process g, then it is possible to construct a random time τ
by a generalized threshold, that is, to find Θ such that the associated τ has g as density, as we show
now. It suffices to define τ = inf{t : t ≥ Θ} where Θ is a random variable with conditional density
pt = gt. Of course, for any increasing process Γ, τ = inf{t : Γt ≥ ∆} where ∆ := ΓΘ is a different
way to obtain a solution!
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8.8.2 Dynamic Gaussian Copula

This example, despite its simplicity, will allow us to construct a dynamic copula, in a Gaussian
framework; more precisely, we construct, for any t, the (conditional) copula of a family of random
times P (τi > ti, i = 1, . . . , n|Ft) and we can chose the parameters so that P (τi > ti, i = 1, . . . , n)
equals a given (static) Gaussian copula. To the best of our knowledge, there are very few explicit
constructions of such a model.
In Fermanian and Vigneron [56], the authors apply a copula methodology, using a factor Y . However,
the processes they use to fit the conditional probabilities P (τi > ti, i = 1, . . . , n|Ft ∨ σ(Y )) are not
martingales. They show that, using some adequate parametrization, they can produce a model so
that P (τi > ti, i = 1, . . . , n|Ft) are martingales. Our model will satisfy both martingale conditions.
In [32], Carmona is interested in the dynamics of prices of assets corresponding to a payoff which
is a Bernoulli random variable (taking values 0 or 1), in other words, he is looking for examples of
dynamics of martingales valued in [0, 1], with a given terminal condition. Surprisingly, the example he
provides corresponds to the one we gave in Section 5.4.4, up to a particular choice of the parameters
to satisfy the terminal constraint.

Let φ be the standard Gaussian probability density, and Φ the Gaussian cumulative function.
We recall the results obtained in Section 5.4.4.

Let B be a Brownian motion and consider the random variable X :=
∫∞
0
f(s)dBs where f is a

deterministic, square-integrable function. For any real number θ and any positive t, one has

P (X > θ|FB
t ) = P

(
mt > θ −

∫ ∞

t

f(s)dBs|FB
t

)
where mt =

∫ t
0
f(s)dBs is FB

t -measurable. The random variable
∫∞
t
f(s)dBs follows a centered

Gaussian law with variance σ2(t) =
∫∞
t
f2(s)ds and is independent of FB

t . Assuming that σ(t) does
not vanish, one has

P (X > θ|FB
t ) = Φ

(mt − θ

σ(t)

)
. (8.8.5)

In other words, the conditional law of X given FB
t is a Gaussian law with mean mt and variance

σ2(t). We summarize the result in the following proposition, and we give the dynamics of the
martingale survival process, obtained with a standard use of Itô’s rule.

Proposition 8.8.2 Let B be a Brownian motion, f an L2 deterministic function, mt =
∫ t
0
f(s)dBs

and σ2(t) =
∫∞
t
f2(s)ds. The family

GXt (θ) = Φ
(mt − θ

σ(t)

)
is a family of FB-martingales, valued in [0, 1], which is decreasing w.r.t. θ. Moreover

dGXt (θ) = φ
(mt − θ

σ(t)

)f(t)
σ(t)

dBt .

We obtain the associated density family by differentiating GXt (θ) w.r.t. θ,

gXt (θ) =
1√

2π σ(t)
exp

(
− (mt − θ)2

2σ2(t)

)
and its dynamics

dgXt (θ) = −gXt (θ)
mt − θ

σ2(t)
f(t)dBt. (8.8.6)
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In order to provide conditional survival probabilities for positive random variables, we consider
τ = ψ(X) where ψ is a differentiable, positive and strictly increasing function and let h = ψ−1. The
conditional law of τ is

Gt(θ) = Φ
(mt − h(θ)

σ(t)

)
.

We obtain

gt(θ) =
1√

2πσ(t)
h′(θ) exp

(
− (mt − h(θ))2

2σ2(t)

)
and

dGt(θ) = φ
(mt − h(θ)

σ(t)

)f(t)
σ(t)

dBt ,

dgt(θ) = −gt(θ)
mt − h(θ)

σ(t)

f(t)

σ(t)
dBt.

Introducing an n-dimensional standard Brownian motion B = (Bi, i = 1, . . . , n) and a factor
Y , independent of FB , gives a dynamic copula approach, as we present now. For hi an increasing
function, mapping IR+ into IR, and setting τi = (hi)

−1(
√
1− ρ2i

∫∞
0
fi(s)dB

i
s+ρiY ), for ρi ∈ (−1, 1),

an immediate extension of the Gaussian model leads to

P (τi > ti,∀i = 1, . . . , n|FB
t ∨ σ(Y )) =

n∏
i=1

Φ

(
1

σi(t)

(
mi
t −

hi(ti)− ρiY√
1− ρ2i

))

where mi
t =

∫ t
0
fi(s)dB

i
s and σ2

i (t) =
∫∞
t
f2i (s)ds. It follows that

P (τi > ti,∀i = 1, . . . , n|FB
t ) =

∫ ∞

−∞

n∏
i=1

Φ

(
1

σi(t)

(
mi
t −

hi(ti)− ρiy√
1− ρ2i

))
fY (y)dy .

Note that, in that setting, the random times (τi, i = 1, . . . , n) are conditionally independent given
FB ∨ σ(Y ), a useful property which is not satisfied in Fermanian and Vigneron model. For t = 0,
choosing fi so that σi(0) = 1, and Y with a standard Gaussian law, we obtain

P (τi > ti,∀i = 1, . . . , n) =

∫ ∞

−∞

n∏
i=1

Φ

(
−hi(ti)− ρiy√

1− ρ2i

)
φ(y)dy

which corresponds, by construction, to the standard Gaussian copula (hi(τi) =
√

1− ρ2iXi + ρiY ,
where Xi, Y are independent standard Gaussian variables).

Relaxing the independence condition on the components of the process B leads to more sophis-
ticated examples.

8.8.3 Markov processes

Let X be a real-valued Markov process with transition probability pT (t, x, y)dy = P (XT ∈ dy|Xt =
x), and Ψ a family of functions IR× IR→ [0, 1], decreasing w.r.t. the second variable, such that

Ψ(x,−∞) = 1,Ψ(x,∞) = 0 .

Then, for any T ,

Gt(θ) := E(Ψ(XT , θ)|FX
t ) =

∫ ∞

−∞
pT (t,Xt, y)Ψ(y, θ)dy

is a family of martingale survival processes on IR. While modeling (T ;x)-bond prices, Filipovic et
al. [58] have used this approach in an affine process framework. See also Keller-Ressel et al. [90].
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Example 8.8.3 Let X be a Brownian motion, and Ψ(x, θ) = e−θx
2

1θ≥0 + 1θ≤0. We obtain a
martingale survival process on R+, defined for θ ≥ 0 and t < T as,

Gt(θ) = E
[
exp(−θX2

T )|FX
t

]
=

1√
1 + 2(T − t)θ

exp
(
− θX2

t

1 + 2(T − t)θ

)
The construction given above provides a martingale survival process G(θ) on the time interval

[0, T ]. Using a (deterministic) change of time, one can easily deduce a martingale survival process
on the whole interval [0,∞[: setting

Ĝt(θ) = Gh(t)(θ)

for a differentiable increasing function h from [0,∞] to [0, T ], and assuming that dGt(θ) = Gt(θ)Kt(θ)dBt, t <
T , one obtains

dĜt(θ) = Ĝt(θ)Kh(t)(θ)
√
h′(t)dWt

where W is a Brownian motion.
One can also randomize the terminal date and consider T as an exponential random variable inde-
pendent of F. Noting that the previous Gt(θ)’s depend on T , one can write them as Gpt(θ, T ) and
consider

G̃t(θ) =

∫ ∞

0

Gt(θ, z)e
−zdz

which is a martingale survival process. The same construction can be done with a random time T
with any given density, independent of F.

8.8.4 Diffusion-based model with initial value

Lemma 8.8.4 Let Ψ be a cumulative distribution function of class C2, and Y the solution of

dYt = a(Yt)dt+ ν(Yt)dBt, Y0 = y0

where a and ν are deterministic functions smooth enough to ensure that the solution of the above
SDE is unique. Then, the process (Ψ(Yt), t ≥ 0) is a martingale, valued in [0, 1], if and only if

a(y)Ψ′(y) +
1

2
ν2(y)Ψ′′(y) = 0 . (8.8.7)

Proof: The result follows by applying Itô’s formula and noting that Ψ(Yt) being a (bounded) local
martingale is a martingale.

We denote by Yt(y) the solution of the above SDE with initial condition Y0 = y. Note that, from
the uniqueness of the solution, y → Yt(y) is increasing (i.e., y1 > y2 implies Yt(y1) ≥ Yt(y2)). It
follows that

Gt(θ) := 1−Ψ(Yt(θ))

is a family of martingale survival processes.

Example 8.8.5 Let us reduce our attention to the case where Ψ is the cumulative distribution
function of a standard Gaussian variable. Using the fact that Φ′′(y) = −yΦ′(y), Equation (8.8.7)
reduces to

a(t, y)− 1

2
yν2(t, y) = 0

In the particular the case where ν(t, y) = ν(t), straightforward computation leads to

Yt(y) = e
1
2

∫ t
0
ν2(s)ds(y +

∫ t

0

e−
1
2

∫ s
0
ν2(u)duν(s)dBs) .

Setting f(s) = −ν(s) exp(− 1
2

∫ s
0
ν2(u)du), one deduces that Yt(y) = y−mt

σ(t) , where σ2(t) =
∫∞
t
f2(s)ds

and mt =:
∫ t
0
f(s)dBs, and we recover the Gaussian example of Subsection 5.4.4.
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