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Abstract

In planar random geometry, a plethora of conformally invariant objects has emerged
in the recent decades. Among these, particularly fruitful have been random fractal curves
derived from one-dimensional Brownian motion: Schramm-Loewner Evolutions (SLE), Con-
formal Loop Ensembles (CLE), and their variants. Originally, they were introduced in the
context of critical models in statistical physics to understand conformal invariance and crit-
ical phenomena upon taking the scaling limit. Indeed, not only do these objects describe
critical interfaces in such models, but they also carry a deep connection to conformal field
theory (CFT) — quantum field theory with conformal symmetry, conjecturally describing
the full scaling limit of critical models. In these lectures, I will introduce models for confor-
mally invariant random SLE paths, discuss their relation to critical models, CFT, and its
algebraic content. (Note that these lectures reflect my personal perspective on this topic.)

A configuration of the critical Ising model.

∗Aalto University, Department of Mathematics and Systems Analysis. eveliina.peltola@aalto.fi
University of Bonn, Institute for Applied Mathematics. eveliina.peltola@hcm.uni-bonn.de

These rough lecture notes describe the content of the minicourse “Interplay of Schramm-Loewner evolu-
tion curves with conformal field theory ” at Peking University given in fall 2023. Please let me know if you
find mistakes or misprints!

1



Contents

1 First Lecture: SLE and critical 2D interfaces 3
1.1 Interfaces in critical lattice models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Schramm-Loewner evolution, SLE(κ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Interface convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Second Lecture: CFT à la BPZ, and Virasoro algebra 9
2.1 Correlation functions in CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Conformal symmetry and Virasoro algebra . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Primary fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Descendant fields and BPZ PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Structure of Verma modules and singular vectors for Vir . . . . . . . . . . . . . . . 13
2.6 Examples of BPZ PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Third Lecture: Interacting SLEs 16
3.1 Martingales and Itô calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Girsanov’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Interacting SLEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Martingale observables and CFT boundary condition changing operators . . . . . 20
3.5 BPZ PDEs from martingale observables . . . . . . . . . . . . . . . . . . . . . . . . . 21

2



1 First Lecture: SLE and critical 2D interfaces

In this lecture, we introduce Schramm-Loewner evolutions (SLE) and describe how they are
connected to planar lattice models in statistical physics and to conformal invariance. We fo-
cus on the case of planar domains with boundary and consider chordal interfaces, neglecting
many (also interesting) phenomena in the bulk (e.g. radial and whole-plane variants of SLE).
One of the first celebrated applications of SLE was the rigorous calculation of critical expo-
nents [LSW01a, LSW01b, SW01, LSW02], in agreement with the earlier predictions in the
physics literature [dN83, BPZ84a, BPZ84b, Car84, DF84, DS87, Nie87].

Let us here focus rather on the geometry of planar lattice models, of which critical exponents
can also be viewed as a special case — SLEs describe interfaces, or domain walls, of critical
planar lattice models in the scaling limit (i.e, as the lattice mesh tends to zero). In general,
these models are believed to be described by conformally invariant quantum field theories —
conformal field theory (CFT) — in the continuum. However, mathematical understanding of
such a statement still remains to a large extent unclear, and is one of the major challenges in
modern mathematical physics. On the other hand, martingale observables for SLE curves are
closely related to certain (quite special) correlation functions in CFT.

1.1 Interfaces in critical lattice models

For concreteness let us consider the spin Ising model, which describes a magnet with a param-
agnetic (disordered) and a ferromagnetic (ordered) phase. See, e.g., the lecture notes [DCS12]
by Duminil-Copin & Smirnov for a detailed account.

On a finite graph G = (V,E) with vertices V and edges E, a configuration in the Ising model
consists of an assignment σ ∶ V → {±1} of spins σx ∈ {±1} to each vertex x ∈ V . The probability
of a configuration σ is given by the Boltzmann distribution (the canonical ensemble)

P[σ] = e
−βH(σ)

Z
, H(σ) = − ∑

(x,y)∈E

σxσy, Z =∑
σ

e−βH(σ),

where β = 1
T > 0 is the inverse-temperature and H(σ) is the Hamiltonian. The Boltzmann

distribution favors configurations where the neighboring spins are aligned. The behavior of the
system is also highly dependent on the temperature: there is an order-disorder phase transition
at a unique critical temperature βc = 1

Tc
∈ (0,∞). At the critical temperature, the scaling limit

of the Ising model is believed (and in may ways proved) to become conformally invariant in the
scaling limit (e.g., its interfaces and correlation functions converge to conformally invariant or
covariant quantities [HS13, CHI15, CDCH+14, Izy17, BPW21]).

To study the geometry of the critical Ising model, one can study interfaces between “+” spins
and “−” spins. Some of these interfaces are macroscopic, so they survive in the scaling limit.
For example, one can force the system to have a macroscopic interface via imposing boundary
conditions: take G = Dδ = D ∩ δZ2 for some bounded simply connected domain D ⊊ C, split
the boundary ∂D = ∂+ ⊔ ∂− into two segments ∂+ and ∂−, and consider the Ising model with
the constraint that the vertices in ∂+ all equal +1 and the vertices in ∂− all equal −1. (See
Figure 1.1(left).) This setup is called Dobrushin boundary conditions.

Then for topological reasons, there must exist a macroscopic path traversing between “+” and
“−” spins and connecting the two boundary points where the segments ∂+ and ∂− touch. (More
generally, one could consider alternating boundary conditions with more “+” and “−” segments
on the boundary. In that case, there are several macroscopic boundary-to-boundary interfaces
as in Figure 1.1(right).) At the critical temperature T = Tc, the interfaces have interesting
self-similar behavior. Indeed, in the scaling limit δ → 0, such interfaces have been proven to
converge to random conformally invariant curves, called Schramm-Loewner evolution (SLE(3))
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Figure 1.1: Critical Ising model configurations on a square lattice with alternating boundary
conditions (that is, some boundary segments have spins equal to +1 and the other segments have
spins equal to −1). Interfaces connecting boundary points are highlighted. (Figure from [Pel19].)

curves [CDCH+14, Izy17, BPW21]. Also, loops (domain walls) in the interior of the domain
separating “+” spins and “−” spins have been shown to converge to the so-called conformal loop
ensemble (CLE(3)) [BH19].

To motivate how one could describe scaling limits of critical Ising interfaces, there are a few
natural properties that the limit should satisfy. In addition to conformal invariance, one would
expect a Markovian property (which holds for many lattice models with local interactions) in
the following sense.

Consider the Ising model on G as above, with its boundary divided into the two segments
∂+ and ∂−. An exploration process on G, started from one of the boundary points where the
segments ∂+ and ∂− touch and ending at the other such boundary point, is defined by following
the interface between the opposite spins step by step1. Let γ(k), for k = 0,1, . . . , n, denote this
exploration process (in discrete time). Explore it up to some time k0. Consider the exploration
process γ̃ for the model on the smaller grid G̃ = G ∖ γ[0, k0], started from the tip γ(k0), where
the boundary conditions are taken as before on ∂G and naturally continued to both sides of the
segment γ[0, k0] of ∂G̃. Then, the distribution of the exploration process γ̃ associated to the
model on the grid G̃ equals the conditional law of the original process γ on the original graph
G given the initial segment γ[0, k0]. This is called the (domain) Markov property.

1.2 Schramm-Loewner evolution, SLE(κ)
The Schramm-Loewner evolutions, originally called “stochastic” Loewner evolutions, were in-
troduced at the turn of the millennium by O. Schramm [Sch00], who argued that they are
the only possible random curves that could describe scaling limits of critical lattice inter-
faces in two-dimensional systems. Schramm’s definition was inspired by the classical theory
of C. Loewner [Loe23] for dynamical description of the growth of hulls, encoded in conformal
maps. Schramm’s revolutionary input was that such maps could also be random. Aiming at
the construction of scaling limits of critical lattice interfaces, the law of the SLE curve should
be manifestly conformally invariant. Schramm observed in [Sch00] that when requiring in ad-
dition the domain Markov property for the growth of the curve (analogously to the discrete
interfaces), there is, in fact, only a one-parameter family of such random curves, that he labeled
by κ ≥ 0 and called the SLE(κ). Physically, κ describes the universality class of the corre-
sponding critical model, or equivalently, the central charge of the corresponding conformal field

1A careful reader may notice a caveat (that becomes clear by drawing a small figure on the square grid):
on the square grid, one might encounter an indetermination for the exploration step, which can be resolved by
picking a preferred choice for the direction of each exploration step.
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theory [Car96, Car05]. Mathematically, κ is the “speed” of the Brownian motion associated to
the growth of the SLE(κ) curve. Also, for example the Hausdorff dimension of the SLE(κ)
curves is a function of κ.

Definition 1.1 (SLE(κ) random curve). For κ ≥ 0, the (chordal) Schramm-Loewner evolution
SLE(κ) is a family of probability measures PD;x,y on curves, indexed by simply connected
domains D ⊊ C with two distinct boundary points x, y ∈ ∂D. Each measure PD;x,y is supported
on continuous unparameterized curves in D from x to y. This family is uniquely determined by
the following two properties:

▷ Conformal invariance : Fix two simply connected domains D,D′ ⊊ C and boundary
points x, y ∈ ∂D and x′, y′ ∈ ∂D′, with x ≠ y and x′ ≠ y′. According to the Riemann
mapping theorem2, there exists a conformal bijection f ∶ D → D′ such that f(x) = x′ and
f(y) = y′. With any choice of such a map, we have f(η) ∼ PD′;x′,y′ if η ∼ PD;x,y.

▷ Domain Markov property : Given an initial segment η[0, τ] of the SLE(κ) curve η ∼
PD;x,y up to a stopping time τ (parameterizing η by [0,∞), say), the conditional law of the
remaining piece η[τ,∞) is the law PDτ ;η(τ),y of the SLE(κ) from the tip η(τ) to y in the
component Dτ of the complement D ∖ η[0, τ] of the initial segment containing the target
point y on its boundary.

The existence and uniqueness of SLE(κ) was proved by Schramm [Sch00] — see also the
relatively recent book by Kemppainen [Kem17] for basics on SLE, Loewner theory, and the
necessary background in stochastic analysis and complex analysis.

Remark 1.2. Using properties of Bessel processes, one can show [RS05] that

▷ when 0 ≤ κ ≤ 4, the SLE(κ) curve is simple;

▷ when 4 < κ < 8, the SLE(κ) curve is not simple, nor space-filling;

▷ when κ ≥ 8, the SLE(κ) curve is space-filling.

Definition 1.3 (Curve space). For convergence of curves, an appropriate topological space is
the (Polish: complete separable metric) space X (D;x, y) of all unparameterized curves in D
from x to y with metric

dX (η, η̃) ∶= inf
ψ,ψ̃

sup
t∈[0,1]

∣η(ψ(t)) − η̃(ψ̃(t))∣,

where η, η̃ ∶ [0,1]→D are representatives of curves, and the infimum is taken over all reparam-
eterizations, that is, increasing bijections ψ, ψ̃ ∶ [0,1]→ [0,1].

Explicitly, SLE(κ) curves can be generated using random Loewner evolutions. Thanks to
its conformal invariance, it suffices to construct the SLE(κ) curve η ∼ PH;0,∞ in the upper half-
plane H ∶= {z ∈ C ∣ Im(z) > 0} from 0 to ∞. In its construction as a growth process, the time
evolution of η is encoded in a solution of the Loewner differential equation: a collection (gt)t≥0
of conformal maps z ↦ gt(z). Such maps were first considered by C. Loewner in the 1920s while
studying the Bieberbach conjecture [Loe23]. He managed to describe certain growth processes
by a single ordinary differential equation, now known as the Loewner equation. In the upper
half-plane H ∋ z, it has the form

∂tgt(z) =
2

gt(z) −Wt
, g0(z) = z (LE)

2This is a basic result in complex analysis (a special case of uniformization), see for example [Ahl79].
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Figure 1.2: Illustration of the Loewner maps gt ∶ Ht → H for the SLE(κ) curve η, where Ht is
the unbounded component of the curve’s complement H∖η[0, t] at time t. The image of the tip
η(t) of the SLE(κ) curve is the driving process Wt =

√
κBt. (Figure from [Pel19].)

where t ↦ Wt is a real-valued continuous function, called the driving function. Note that, for
each z ∈ H, this equation is only well-defined up to a blow-up time, called the swallowing time
of z,

Tz ∶= sup{t > 0 ∣ inf
s∈[0,t]

∣gs(z) −Ws∣ > 0}.

The hulls Kt ∶= {z ∈ H ∣ Tz ≤ t}, for t ≥ 0, define a growth process, called a Loewner chain. For
each t ∈ [0, Tz), the map z ↦ gt(z) is the unique conformal bijection from Ht ∶= H ∖Kt onto
H with normalization chosen as lim

z→∞
∣gt(z) − z∣ = 0. Figure 1.2 illustrates the Loewner chain

associated to the SLE(κ) process.
Note that the growing hulls (Kt)t≥0 do not necessarily form a continuous curve. It is in fact

highly non-trivial to show this property for the SLE(κ) process, see [RS05].

Definition 1.4. We say that growing sets (Kt)t≥0 in H are generated by a curve if there exists a
(continuous) curve γ ∶ [0,∞)→ H such that for each time t ≥ 0, the set H∖Kt is the unbounded
connected component of H ∖ γ[0, t].

To guarantee the two properties in Definition 1.1, the driving process W has to be a multiple
of Brownian motion (plus possibly a drift). Indeed, we expect that the following properties hold:

1. t↦Wt is continuous (which we obviously expect),

2. the increments Wt+s−Wt are independent (by the domain Markov property) and stationary
(only depend on s),

3. and there is an additional symmetry in law W ↔ −W .

A result in stochastic analysis shows that a process with properties 1 & 2 must have the
form [Kem17, Theorem 2.1]

Wt =
√
κBt + αt,

where B is a one-dimensional Brownian motion (see Definition 1.5), κ ≥ 0, and α ∈ R. Property 3
then implies that α = 0. For more general variants of SLE(κ), the drift α can be a (nice enough)
function.

Definition 1.5 (Brownian motion). Recall (e.g. from [MP10]) that one-dimensional Brownian
motion started at a point B0 = x ∈ R is a continuous-time real-valued stochastic process B =
(Bt)t≥0 satisfying the following properties (that determine it uniquely):

▷ (Independent increments): For any partition 0 ≤ t0 < t1 < t2 < ⋯ < tn, the increments
{Btj+1 −Btj ∣ j = 0,1, . . . , n − 1} are independent random variables.
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▷ (Stationary, Gaussian increments): For each 0 ≤ s < t, the increment Bt − Bs has the
Gaussian distribution: Bt −Bs ∼ N(0, t − s), that only depends on the time difference.

▷ (Continuous sample paths): The map t↦ Bt is continuous almost surely.

Theorem 1.6 (Brownian motion generates SLE curve). The growing sets (Kt)t≥0 obtained from
solving the Loewner equation (LE) with Wt =

√
κBt are almost surely generated by a curve.

Proof idea. For κ ≠ 8, this was proven by Rohde & Schramm [RS05] by an elaborate argument
relying on estimates for the derivative of the inverse conformal map g−1t near the driving function
Wt. This estimate breaks down when κ = 8, but the result still holds (this is just a limitation of
the proof). Lawler, Schramm & Werner proved that the case κ = 8 gives the scaling limit of the
Peano curve for the uniform spanning tree, and the proof in particular implies that the limiting
object is a curve. To date, there is no direct analytical proof3 for the case of κ = 8.

For more background on SLEs and related topics, see, e.g., the books [Law05, Kem17] and
the original papers [Sch00, RS05].

1.3 Interface convergence

Theorem 1.7 (Scaling limit of Ising interface is SLE(3)). Let D be a simply connected domain.
Consider the critical Ising interface γδ in Dδ =D ∩ δZ2 started from xδ and ending at yδ ∈ ∂Dδ,
where xδ → x ∈D and yδ → y ∈ ∂D as δ → 0. Then, γδ → γ in distribution (weakly as probability
measures on the curve space X (D;x, y)), where γ has the law of the chordal SLE(3) in D from
x to y.

Proof idea. The proof (summarized in [CDCH+14]) has two main steps:

1. First, one proves that the sequence (γδ)δ>0 of lattice interfaces on Dδ is relatively compact in
the space X (D;x, y) of curves. Thus, one deduces that there exist convergent subsequences
as δ → 0. For the Ising model, the relative compactness is established using topological
crossing estimates (a priori estimates ruling out pathological behavior of the curves), see in
particular [KS17].

2. Second, one has to prove that all of the subsequences in fact converge to a unique limit,
identified as the chordal SLE(κ) with κ = 3. For the identification of the limit, Smirnov used4

a discrete holomorphic martingale observable [Smi06, Smi10], that is, a solution to a discrete
boundary value problem on Dδ, converging as δ → 0 to the solution of the corresponding
boundary value problem on D. Using the martingale observable, he identified the Loewner
driving function of the scaling limit curve as

√
3Bt.

(For the critical Ising model, a similar result holds for a quite general collection of graphs by
techniques developed in particular by D. Chelkak, see [CS11, Che20].)

For multiple curves, the relative compactness follows from the one-curve case [Kar19, Wu20].
For the identification, one can use either a multipoint discrete holomorphic observable cf. [Izy15,
Izy17], or the classification of multiple SLE probability measures, cf. [BPW21].

3There is a recent proof relying on the Gaussian free field [KMS21].
4Such an idea was also implemented by others (especially Schramm, Kenyon, and Chelkak).
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Remark 1.8. A similar strategy to address scaling limits of interfaces in other critical planar
lattice models has been carried out in some cases, but both Steps 1 and 2 in this strategy require
some model-specific tools. For example, the precompactness is known for a wide class of bond-
percolation models (known as random-cluster models) [DCST17, Theorem 6] and [DCMT21,
Section 1.4], while the identification step only for a special case of these models (also called
FK-Ising model [CDCH+14]).

Interestingly, for one of the very first examples, critical Bernoulli site-percolation5, a version
of Theorem 1.7 only has been proven rigorously for the case of the triangular lattice in Smirnov’s
first celebrated work in this area [Smi01]. All other reasonable setups are believed to have the
same limit, but the identification step 2 is still missing:

Conjecture 1.9 (Scaling limit of percolation interface is SLE(6)). Consider critical Bernoulli
site- or bond-percolation with Dobrushin boundary conditions on a discrete approximation of a
simply connected domain D. The interface γδ between the two boundary points from xδ to yδ

where the boundary conditions change converges in distribution: γδ → γ (weakly as probability
measures on the curve space X (D;x, y)), where where γ has the law of the chordal SLE(6) in D
from x to y.

5That is, color vertices of a graph black (with probability pc) or white (with probability 1−pc) all independently,
where pc ∈ (0,1) is a well-chosen “critical” probability.
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2 Second Lecture: CFT à la BPZ, and Virasoro algebra

Next, we briefly describe some aspects of 2D conformal field theory (CFT). There are many
textbooks on CFT from different viewpoints, see, e.g, [DFMS97, Sch08, Mus10]. Here, we aim
to only give some rough ideas, in order to motivate the connection of SLEs with CFT and to
illustrate how it could be understood. The philosophy is that from the CFT heuristics, we can
predict some aspects that one could expect the scaling limit objects to have, which we can then
use as a guiding principle for mathematically rigorous investigations. (Already for the definition
of SLE, the conformal invariance property was really just a guess based on physics heuristics.)

Let us emphasize that in CFT, the fields themselves might not be analytically well-defined
objects, but nevertheless, their correlation functions are well-defined functions of several com-
plex variables. As a concrete example, the so-called “Liouville CFT” was recently constructed
completely rigorously [DKRV16, KRV20], while for some objects in the critical Ising model (that
we discussed above), the CFT description is not completely clear. For the Ising spin (magneti-
zation) field σδ ∶ V δ → {±1}, that is a random variable on the vertices, it is known that when
suitably renormalized (by a power of δ), in the scaling limit δ → 0 the function σδ does converge
— but not as a random function, rather, as a random distribution [CGN15]. However, no such
convergence is expected for the the energy field, defined via the interaction of spins across each
edge: εδ(x, y) ∶= σδ(x)σδ(y), for (x, y) ∈ Eδ. Note that a scaling limit of εδ ∶ Eδ → {±1} should
morally be a product of two random distributions — but how does one multiply distributions?
The situation is even more unclear for the CFT corresponding to SLE curves.

2.1 Correlation functions in CFT

Thus, we will be mainly interested in correlation functions in CFT, which describe — in some
sense — the physical observables in the models of interest. Correlation functions are analytic
(multi-valued) functions F ∶ Wn → C (also called n-point functions) defined on the configuration
space

Wn ∶= {(z1, . . . , zn) ∈ Cn ∣ zi ≠ zj if i ≠ j}. (2.1)

Physicists speak of correlation functions as “vacuum expectation values” of fields Φιi(zi) and
denote them by

Fι1,...,ιn(z1, . . . , zn) = ⟨Φι1(z1)⋯Φιn(zn)⟩. (2.2)

Because of the conformal symmetry, the correlation functions are assumed to be covariant under
(global) conformal transformations. In a CFT on the full Riemann sphere Ĉ = C ∪ {∞}, this
means that under all Möbius transformations6 f ∈ PSL(2,C), we have

Fι1,...,ιn(z1, . . . , zn) =
n

∏
i=1

∣f ′(zi)∣∆ιi × Fι1,...,ιn(f(z1), . . . , f(zn)), (2.3)

with some conformal weights ∆ιi ∈ R associated to the fields Φιi . In these notes, we are mainly
concerned with so-called “primary fields”, to which we return later — they can be thought of as
building blocks for all other fields in the CFT.

Upshot 2.1. As input, we consider a formal collection of objects, “fields” Φι(z) for z ∈ Ĉ and
indexed by some collection I ∋ ι of indices. Each field comes with a number ∆ι ∈ R postulated
to give its scaling behavior:

⟨Φι(z)⟩ = λ∆ι⟨Φι(λz)⟩, λ > 0,

upgraded to the above type of conformal covariance (2.3) assuming the postulates in physics.
6Of specific interest to us will be CFT in the domain H with boundary ∂H = R, where the global conformal

transformations are also Möbius maps, f ∈ PSL(2,R).
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Notably, global conformal invariance only results in finitely many (three) constraints for the
physical system. However, A. Belavin, A. Polyakov, and A. Zamolodchikov (BPZ) observed in
the 1980s that, in two dimensions, imposing local conformal invariance yields infinitely many
independent symmetries [BPZ84a, BPZ84b]. This was originally argued in the physics level of
rigor, but it has now been completely rigorously verified for the Liouville CFT [KRV19]. On
Ĉ, the local conformal transformations are just the locally invertible holomorphic and anti-
holomorphic maps — see, e.g., [Sch08, Chapters 1,2,5] for details.

2.2 Conformal symmetry and Virasoro algebra

Roughly speaking, in CFT à la BPZ, one regards the local conformal invariance as invariance un-
der infinitesimal transformations (or vector fields which generate the local conformal mappings):
for instance, the infinitesimal holomorphic7 transformations are written as Laurent series,

z ↦ z +∑
n∈Z

anz
n,

which can be seen to be generated by the vector fields

ℓn ∶= −zn+1
∂

∂z
, n ∈ Z,

constituting a Lie algebra isomorphic to the Witt algebra Witt with commutation relations

[ℓn, ℓm] = (n −m)ℓn+m.

In quantized systems, the symmetry groups and algebras often are central extensions of their
classical counterparts. In particular, in conformally invariant quantum field theory (i.e., CFT),
the conformal symmetry algebra is the unique central extension8 of the Witt algebra by the
one-dimensional abelian Lie algebra C, namely the Virasoro algebra Vir.

Definition 2.2 (Virasoro algebra). Vir is the infinite-dimensional Lie algebra generated by Ln,
for n ∈ Z, together with a central element C, with commutation relations

⎧⎪⎪⎨⎪⎪⎩

[Ln,Lm] = (n −m)Ln+m + 1
12n(n

2 − 1)δn,−mC, for n,m ∈ Z,
[Ln,C] = 0.

(2.4)

We will use the same notation9 Vir also for the universal enveloping algebra of the Virasoro
algebra, i.e., the associative algebra obtained by taking the quotient of polynomials in the
generators of Vir modulo the relation [X,Y ] =XY − Y X.

Algebraically, the basic objects in a CFT, the conformal fields, can be regarded as elements
in representations of the symmetry algebra Vir, where the central element acts as a constant
multiple of the identity, C = c id. The number c ∈ C is called the central charge of the CFT. For
relation to SLEs and statistical physics that we will be discussing in these notes, real central
charges c ≤ 1 are relevant: we use the parameterization

c(κ) = (3κ − 8)(6 − κ)
2κ

≤ 1, κ > 0.
7We will ignore the anti-holomorphic sector for this discussion.
8The central part of Vir represents a conformal anomaly, giving rise to a projective representation of Witt —

see, e.g. [Sch08, Sections 3-4] for details.
9Because there is a one-to-one correspondence between the representations of a Lie algebra and its universal

enveloping algebra, we do not have to distinguish between them here.
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Definition 2.3 (Representation, module, action). Let g be a Lie algebra and V a vector space.
A pair (ρ, V ) is called a representation of g if

ρ ∶ gÐ→ gl(V )

is a Lie algebra homomorphism from g to the space gl(V ) of all linear operators on V .

▷ The vector space V is called a g-module.

▷ The g-module V is called simple, or irreducible if it has no non-trivial submodules: that is,
if W ⊂ V is a g-submodule, then either W = V or W = {0}.

The assignment ρ(a) ∶ V → V for each a ∈ g is also called a g-action on V .

2.3 Primary fields

Primary fields are fields whose correlation functions also have a covariance property also under
local conformal transformations, in an “infinitesimal” sense, see [Sch08, Chapter 9]. Other fields10

are called descendant fields, obtained from the primary fields by action of the Virasoro algebra.

The rough idea is the following. A primary field Φι(z) of conformal weight ∆ι generates a
highest-weight module Vc,∆ι of the Virasoro algebra of weight ∆ι and central charge c. In physics,
it is called the conformal family of Φι(z), consisting of linear combinations of the descendant
fields of Φι(z). The latter are obtained from Φι(z) via action of the Virasoro algebra. Here
the space-time point z ∈ Ĉ plays no role yet. Algebraically, we could identify Φι(z) with a
highest-weight vector as in the following Definition 2.4:

Φι(z) with weight ∆ι ⇐⇒ vc,h with weight h =∆ι.

We use the algebraic notation from the right-hand side when discussing representations of Vir,
and the analytical notation from the left-hand side when discussing fields in a CFT. (Recall that
these “fields” might not themselves be well-defined objects, but their correlation functions are.)

Definition 2.4 (Highest-weight module). A Vir-module V is a highest-weight module if

V =Vir vc,h,

where vc,h ∈ V is a highest-weight vector of weight h ∈ C and central charge c ∈ C, that is, a
vector satisfying

L0vc,h = hvc,h, Lnvc,h = 0, for n ≥ 1, and Cvc,h = cvc,h.

Definition 2.5 (Verma module). In particular, for any pair (c, h), there exists a unique (up to
isomorphism) Verma module

Mc,h =Vir/Ic,h

where Ic,h is the left ideal generated by the elements L0 − h1, C − c1, and Ln, for n ≥ 1.

The Verma module Mc,h is a highest-weight module generated by a highest-weight vector
vc,h of weight h and central charge c (given by the equivalence class of the unit 1). It has a
Poincaré-Birkhoff-Witt type basis

{L−n1⋯L−nk
vc,h ∣ n1 ≥ ⋯ ≥ nk > 0, k ∈ Z≥0}

given by the action of the Virasoro generators with negative index, ordered by applying the
commutation relations (2.4). This is very analogous to the theory of classical Lie algebras, but
note that Vir is infinite-dimensional.

10There is also the special field called stress-energy tensor, that we won’t discuss here.
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Lemma 2.6. The Verma modules Mc,h are universal in the sense that if V is any Vir-module
containing a highest-weight vector v of weight h and central charge c, then there exists a canonical
homomorphism φ ∶ Mc,h → V such that φ(vc,h) = v. In other words, any highest-weight Vir-
module is isomorphic to a quotient of some Verma module.

See, e.g., the book [IK11] for more background.

2.4 Descendant fields and BPZ PDEs

Suppose that the primry field Φι(z) is given. In general, its descendants have the form

L−n1⋯L−nk
Φι(z), where n1 ≥ ⋯ ≥ nk > 0 and k ≥ 1.

Their correlation functions are formally determined from the correlation functions of Φι(z) using
linear differential operators which arise from the generators of the Virasoro algebra (this is quite
complicated — see, e.g., [Mus10, Chapter 10]): for any primary fields {Φιi(zi) ∣ 1 ≤ i ≤ n},

⟨Φι1(z1)⋯Φιn(zn) L−kΦι(z)⟩
(⋆)= L(z)

−k ⟨Φι1(z1)⋯Φιn(zn)Φι(z)⟩,

where

L(z)
−k ∶=

n

∑
i=1

((k − 1)∆ιi

(zi − z)k
− 1

(zi − z)k−1
∂

∂zi
) , for k ∈ Z>0. (2.5)

Here, the identity (⋆) should be thought of as a “black box”, that is heuristically argued in
the physics literature [Mus10, Chapter 10] via the “infinitesimal conformal symmetry” of the
space-time, and can be a posteriori rigorously verified in some cases [KRV19].

Upshot 2.7. The conclusion from here is that the linear differential operators (2.5) relate the
purely algebraic content in CFT, encoded in representations of the Virasoro algebra Vir, to its
analytical content that includes the dependence of the space-time variables z1, . . . , zn, z ∈Wn+1.

Now, let’s consider the Vir-module Vc,∆ι generated by the primary field Φι(z) with weight
∆ι. By Lemma 2.6, we know that it is some quotient of a Verma module by some submodule Jι:

Vc,∆ι ≅Mc,∆ι/Jι. (2.6)

Of course, the quotient structure needs to be determined from some information about Φι(z).
We could have Jι = {0} or Jι = Mc,∆ι , in which case there’s nothing to quotient by. However,
in certain special cases we have a non-trivial quotient, which results in interesting information
about correlations of Φι(z) with other fields. (See Section 2.5 for classification of those cases.)

Suppose that the conformal weight ∆ι = hr,s belongs to the special class (2.11) discussed
below, and denote Φι ∶= Φr,s accordingly. Then, by Theorem 2.10 (stated in the next Section 2.5),
the Verma module Mc,hr,s contains a so-called singular vector (see Definition 2.9 below)

v = P (L−1,L−2, . . .)vc,hr,s ∈ Mc,hr,s

at level rs, where P is a polynomial in the generators of the Virasoro algebra. Suppose further-
more that this vector is contained in Jr,s (which is the case, e.g., when Vc,hr,s is irreducible):

v = P (L−1,L−2, . . .)vc,hr,s ∈ Jr,s. (2.7)

Then its equivalence class in the quotient module (2.6) is zero:

[v] = 0 ∈ Mc,hr,s/Jr,s ≅ Vc,hr,s . (2.8)

12



In other words, the descendant field

P (L−1,L−2, . . .)Φr,s(z) = 0

corresponding to the singular vector v is zero, a “null-field”. In this case, we say that Φr,s(z) has
a degeneracy at level rs. In particular, correlation functions containing the field Φr,s(z) then
satisfy partial differential equations (known as “null-field equations”) given by the polynomial

P (L(z)−1 ,L
(z)
−2 , . . .)

and the differential operators (2.5):

0 = ⟨Φι1(z1)⋯Φιn(zn)P (L−1,L−2, . . .)Φr,s(z)⟩ [by (2.8, 2.7)]
(⋆)= P (L(z)−1 ,L

(z)
−2 , . . .) ⟨Φι1(z1)⋯Φιn(zn)Φr,s(z)⟩ [by “black box” (⋆)]

Upshot 2.8. For the correlation function (2.2) with Φι(z) = Φr,s(z), we see that from certain
linear relations on the Virasoro module side, we obtain the following (perfectly well-defined)
partial differential equation (called BPZ PDE) on the correlation function side:

Fι1,...,ιn,ι ∶ Wn+1 → C, P (L(z)−1 ,L
(z)
−2 , . . .) Fι1,...,ιn,ι(z1, . . . , zn, z) = 0. (2.9)

We will see some concrete examples very soon (see Examples 2.11 and 2.12 and PDEs (2.14)
and (2.15) in Section 2.6). Let us first summarize what is known about the structure of the
universal Verma modules, which gives us the linear relations and the BPZ PDEs (Section 2.5).

2.5 Structure of Verma modules and singular vectors for Vir

Each Verma module Mc,h has a unique maximal proper submodule, and the quotient of Mc,h

by this submodule is the unique irreducible highest-weight Vir-module of weight h and central
charge c. In general, submodules of Verma modules were classified by B. Fĕıgin and D. Fuchs
[FF82, FF84, FF90], who showed that every non-trivial submodule of a Verma module Mc,h

is generated by some singular vectors. We can use this information to learn properties of the
correlation functions of interest.

Definition 2.9. A vector v ∈Mc,h ∖ {0} is said to be singular at level ℓ ∈ Z>0 if it satisfies

L0v = (h + ℓ)v and Lnv = 0, for n ≥ 1. (2.10)

Note that the L0-eigenvalue of a basis vector v = L−n1⋯L−nk
vc,h ∈ Mc,h can be calculated

using the commutation relations (2.4): we have

L0v = (h +
k

∑
i=1

ni)v = (h + ℓ)v.

The number ℓ ∶= ∑ki=1 ni is called the level of the vector v.

In particular, Fĕıgin and Fuchs found a characterization for the existence of singular vectors
and thus for the irreducibility of Mc,h. Indeed, the Verma module Mc,h is irreducible if and only
if it contains no singular vectors. On the other hand, Mc,h contains singular vectors precisely
when the numbers (c, h) belong to a special class:

13



Theorem 2.10. [FF84, Proposition 1.1 & Theorem 1.2] The following are equivalent:

1. The Verma module Mc,h contains a singular vector.

2. There exist r, s ∈ Z>0, and θ ∈ C ∖ {0} such that
⎧⎪⎪⎨⎪⎪⎩

h = hr,s(θ) ∶= (r
2−1)
4 θ + (s

2−1)
4 θ−1 + (1−rs)2 ,

c = c(t) = 13 − 6(θ + θ−1).
(2.11)

In this case, the smallest such ℓ = rs is the lowest level at which a singular vector occurs in Mc,h.

The special conformal weights hr,s are the roots of the Kac determinant [Kac79, Kac80],
often called Kac conformal weights. The notation hr,s for them is very common historically.

Example 2.11 (Level 1). L−1vc,h is a singular vector at level one if and only if h = h1,1 = 0.

Example 2.12 (Level 2). As a more involved example, let us make an ansatz

v = (L−2 + aL2
−1)vc,h (2.12)

for a singular vector at level two, with some a ∈ C. Definition (2.10) implies that, in order for v
to be singular, we must have

a = − 3

2(2h + 1)
, h = 1

16
(5 − c ±

√
(c − 1)(c − 25)),

which equals h1,2 or h2,1 depending on the choice of sign.

In general, explicit expressions for singular vectors are hard to find — one has to construct
a suitable (complicated) polynomial P so that the vector v = P (L−1,L−2, . . .)vc,h is singular.
Remarkably, in the case when either r = 1 or s = 1, L. Benoit and Y. Saint-Aubin found a family
of such vectors [BSA88]: for r = 1 and s ∈ Z>0, the singular vector at level ℓ = s has the formula

s

∑
k=1

∑
n1,...,nk≥1
n1+⋯+nk=s

(−θ)k−s (s − 1)!2

∏k−1j=1 (∑
j
i=1 ni)(∑

k
i=j+1 ni)

× L−n1⋯L−nk
vc,h1,s . (2.13)

The case s = 1 and r ∈ Z>0 is obtained by taking θ ↦ θ−1. Later, M. Bauer, P. Di Francesco,
C. Itzykson, and J.-B. Zuber found the general singular vectors via a fusion procedure [BFIZ91].
The formulas for these expressions, however, are not explicit.

2.6 Examples of BPZ PDEs

As we noticed in Upshot 2.8, singular vectors give rise to kind of degeneracies in CFT — null-
fields whose correlation functions solve BPZ PDEs (2.9) obtained from the Virasoro generators.
Let us collect some concrete examples, that will appear in the theory of SLE curves.

Example 2.13 (Level 1). From the singular vector at level one (Example 2.11), one obtains the
null-field L−1Φ1,1(z), whose correlation functions Fι1,...,ιn,ι(z1, . . . , zn, z) ∶= ⟨Φι1(z1)⋯Φιn(zn)Φ1,1(z)⟩
satisfy the PDE

0 = L(z)−1 Fι1,...,ιn,ι(z1, . . . , zn, z) = −
n

∑
i=1

∂

∂zi
Fι1,...,ιn,ι(z1, . . . , zn, z).

Assuming that the correlation function F is translation-invariant, we can replace ∑ni=1 ∂
∂zi

by the
single derivative ∂

∂z , so

∂

∂z
Fι1,...,ιn,ι(z1, . . . , zn, z) = 0, (2.14)

i.e., the correlation function is constant in the variable z corresponding to Φ1,1(z).
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Example 2.14 (Level 2). More interestingly, for the level two singular vectors (2.12) (Exam-
ple 2.12), the corresponding null-fields are

(L−2 −
3

2(2h1,2 + 1)
L2
−1)Φ1,2(z)

and

(L−2 −
3

2(2h2,1 + 1)
L2
−1)Φ2,1(z).

In the former case, the correlation functions Fι1,...,ιn,ι(z1, . . . , zn, z) ∶= ⟨Φι1(z1)⋯Φιn(zn)Φ1,2(z)⟩
satisfy the second order PDE

⎡⎢⎢⎢⎢⎣
− 3

2(2h1,2 + 1)
(
n

∑
i=1

∂

∂zi
)
2

−
n

∑
i=1

( 1

zi − z
∂

∂zi
− ∆ιi

(zi − z)2
)
⎤⎥⎥⎥⎥⎦
Fι1,...,ιn,ι(z1, . . . , zn, z) = 0, (2.15)

where ∆ιi are the conformal weights of the fields Φιi , for 1 ≤ i ≤ n. Assuming again translation
invariance, this PDE simplifies to

[− 3

2(2h1,2 + 1)
∂2

∂z2
−

n

∑
i=1

( 1

zi − z
∂

∂zi
− ∆ιi

(zi − z)2
)]Fι1,...,ιn,ι(z1, . . . , zn, z) = 0. (2.16)

Remark 2.15. Using the parameterization θ = κ/4, we have c = (3κ−8)(6−κ)2κ and h1,2 = 6−κ
2κ . Then

the PDE (2.16) is the same as we will see in the next section — see Equations (3.7) and (3.10).
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3 Third Lecture: Interacting SLEs

Natural variants of SLE(κ) curves can be obtained via change of measure (Girsanov transform).
Indeed, one would expect that such variants are absolutely continuous with respect to the usual
chordal SLE(κ) curve — at least at small times. We will see how such changes of measure can be
related to CFT quantities, thereby bridging a relationship between interacting SLEs and CFT.

Let us summarize some preliminaries on stochastic analysis and Itô calculus — for back-
ground, there are many textbooks, e.g., [Dur96, RW00a, RW00b, Law05, RY05, Dur10]. Readers
familiar with basic stochastic analysis can skip Sections 3.1–3.2. Section 3.3 discusses an exam-
ple of interacting SLEs, and Section 3.4 concerns SLE martingale observables and interacting
SLEs, and points out the relation to CFT via BPZ PDEs.

3.1 Martingales and Itô calculus

Martingales are processes (Mt)t≥0 such that, given the history up to time t, the conditional
expectation of M observed at time s ≥ t equals the present value Mt.

Definition 3.1 (Martingale). Given a filtered probability space (Ω,F , (Ft)t≥0,P), a stochastic
process (Mt)t≥0 is a martingale if

(i) it is integrable: E∣Mt∣ <∞ for all t ≥ 0,

(ii) it is adapted: Mt is Ft-measurable for all t ≥ 0,

(iii) and it satisfies the martingale property E [Ms ∣Ft] =Mt for all s ≥ t.

One often wants to relax the condition (i) to hold only for up to some time, say. This can
be done by localization. Local martingales are defined as processes (Mt)t≥0 for which there is
an increasing sequence of stopping times τn such that τn ↗∞ as n↗∞ almost surely, and the
stopped processes

M τn
t ∶=

⎧⎪⎪⎨⎪⎪⎩

Mmin(t,τn), τn > 0,
0, τn = 0,

t ≥ 0,

are martingales, i.e., they satisfy (i)–(iii). Often the stopping times are chosen, e.g., so that

τn ∶= inf {t ≥ 0 ∣ ∣Mt∣ ≥ n}, n ∈ N.

The Optional Stopping Theorem [Dur10, Theorem 4.7.4] is a common tool in SLE proofs.
It states that, under certain conditions, the martingale property (iii) holds for stopping times
as well. Optional stopping can be applied for instance when (Mt)t≥0 is uniformly bounded, as
then it clearly is uniformly integrable.

Theorem 3.2 (Optional stopping). Let (Mt)t≥0 be a continuous martingale and τ, σ two stop-
ping times with respect to the filtration (Ft)t≥0. Suppose σ ≤ τ . If the martingale (Mt)t≥0 is
uniformly integrable11, that is,

lim
n→∞

sup
t≥0

E[∣Mt∣1|{∣Mt∣ ≥ n}] = 0,

then we have E [Mτ ∣Fσ] =Mσ. In particular, taking σ = 0, we have E [Mτ ] =M0.
11We also should assume certain “usual” conditions for the filtered probability space.
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For a continuous function F ∶ [0,∞) × R → R which is continuously differentiable at least
once in the time variable t ∈ [0,∞) and twice in the space variable x ∈ R, we have the following
Itô differential (see Theorem 3.4):

dF (t,Bt) = ∂tF (t,Bt) dt + ∂xF (t,Bt) dBt +
1

2
∂2xF (t,Bt) dt.

The intuition behind this type of a truncating Taylor expansion is that one can think the differ-
entials dt and dBt of as satisfying the multiplication rules given by their quadratic variations:

dt dt = 0, dt dBt = 0, dBt dBt = d⟨B,B⟩t = dt.

We will apply Itô differential to functions of several space-variables, and to more general
stochastic processes than the Brownian motion. Let thus (B(1)t , . . . ,B

(n)
t ) be a standard n-

dimensional Brownian motion (i.e., a process whose components are 1-dimensional Brownian
motions), and let (Ft)t≥0 be its natural completed filtration. Consider a stochastic processes Yt
(often called semimartingale) satisfying an stochastic differential equation (SDE) of the form12

dYt = F (t) dt +
n

∑
k=1

Gk(t) dB
(k)
t . (3.1)

Amongst such processes, one can easily characterize the ones which are local martingales:

Lemma 3.3. (Yt)t≥0 is a local martingale if and only if its drift term vanishes, i.e., F ≡ 0.

For two semimartingales Y (1)t , Y
(2)
t , satisfying SDEs of the form (3.1), their covariation is

defined as

⟨Y (1), Y (2)⟩t ∶= ∑
k,l

G
(1)
k (t)G

(2)
l (t) ⟨B

(k)
t B

(l)
t ⟩t = ∑

k

G
(1)
k (t)G

(2)
k (t) t.

Itô’s formula for semimartingales can now be written as follows, see e.g. [RW00b, Theorem (32.8)].

Theorem 3.4 (Itô’s formula). Let Y (1)t , . . . , Y
(N)
t be semimartingales, and let ψ ∶ RN → R be a

continuous function whose all partial derivatives up to second order exist and are continuous.
Then, also ψ(Y (1)t , . . . , Y

(N)
t ) is a semimartingale, and we almost surely have

dψ(Y (1)t , . . . , Y
(N)
t ) =

N

∑
j=1

∂jψ(Y (1)t , . . . , Y
(N)
t ) dY (j)t

+ 1

2

N

∑
i,j=1

∂i∂jψ(Y (1)t , . . . , Y
(N)
t ) d⟨Y (i), Y (j)⟩t.

Moreover, ψ(Y (1)t , . . . , Y
(N)
t ) is a local martingale if and only if the drift vanishes:

N

∑
j=1

F (j)(t) ∂jψ(y1, . . . , yN) +
1

2

N

∑
i,j=1

n

∑
k=1

G
(i)
k (t)G

(j)
k (t) ∂i∂jψ(y1, . . . , yN) ≡ 0, (y1, . . . , yN) ∈ RN .

We will need the following example later in the context of changes of probability measures.

Example 3.5 (Exponential martingale). Consider a continuous local martingale Mt. The pro-
cess

Et ∶= exp (Mt −
1

2
⟨M,M⟩t) (3.2)

is also a local martingale. This can be proven using Itô’s formula: compute the Itô differential
dEt and show that its drift vanishes: dEt = Et dMt.

Lemma 3.6. Any strictly positive local martingale has the exponential form (3.2).
12Here, we assume that G1, . . . ,Gn are locally square-integrable functions adapted to (Ft)t≥0, and F is a

Lebesgue-measurable function adapted to (Ft)t≥0 such that almost surely, we have ∫
t

0 ∣F (s)∣ds <∞ for all t ≥ 0.

17



3.2 Girsanov’s theorem

Girsanov’s theorem (see, e.g. [RY05, Chapter 8]) provides a way of changing the measure of
Brownian motion B in an absolutely continuous manner. Let (Ft)t≥0 be the natural completed
filtration for B and denote by P its probability measure. To change the probability measure P
to another one, Q, which is absolutely continuous in the sense that all restrictions with respect
to the filtration satisfy Qt ≤ Pt, can be obtained using the Radon-Nikodym derivative

dQt
dPt
= exp (Mt −

1

2
⟨M,M⟩t), t < τ, (3.3)

where Mt is a continuous local P-martingale adapted to the filtration (Ft)t≥0, and ⟨M,M⟩t is
its quadratic variation process, and τ is some stopping time (upon which the stopped process
M is a martingale). Girsanov’s theorem (see, e.g. [RY05, Chapter 8, Theorem 1.4]) shows that
under this change of measure, the following process is a Q-Brownian motion:

B̃t ∶= Bt − ⟨B,M⟩t. (3.4)

Conversely, if we are given a (nice enough) local P-martingale M , we can define a new
measure Q via (3.3) using the exponential martingale (3.2) associated to M ,

Et ∶= exp (Mt −
1

2
⟨M,M⟩t).

In particular, if Et is uniformly integrable, then we can normalize Q to a probability measure Q♯,

Q♯[A] ∶= Q[A]
∣Q∣

= Q[A]
E0

, A ∈ F ,

where (by (3.3) and the Optional Stopping Theorem 3.2)

∣Q∣ ∶= Q[Ω] = E[Eτ ] = E0

is the total mass of Q on the probability space Ω, and F denotes Q-measurable sets.

3.3 Interacting SLEs

Let D ⊊ C be a simply connected Jordan domain with 2N distinct points x1, x2, . . . , x2N ∈ ∂D
appearing in counterclockwise order along the boundary (called topological polygon). We consider
curves γ = (γ1, γ2, . . . , γN) in D each of which connects two points among {x1, x2, . . . , x2N}.
These curves can have various planar (non-crossing) connectivities, described in terms of planar
pair partitions (planar link patterns), that we write in the form

α = {{a1, b1}, . . . ,{aN , bN}} ∈ LPN ,

where {a1, b1, . . . , aN , bN} = {1,2, . . . ,2N}, and where LPN denotes the set of all such planar
link patterns. Note that for each fixed N ∈ N, the total number of planar link patterns is the
Catalan number

CN =
1

N + 1
(2N
N
) =#LPN .

An example of (discrete) curves γ is obtained from interfaces in the critical Ising model with
alternating boundary conditions at the points x1, x2, . . . , x2N , see Figure 1.1. We wish to describe
the scaling limits of these interfaces using SLE type curves.

From Girsanov’s theorem, we expect that the curves in a multiple SLE(κ) can be described
via a Loewner chain similar to the usual chordal case (LE), but where the Loewner driving
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function Wt has a drift given by the interaction with the other curves. The drift arises from a
change of measure of the form (3.3):

dQ♯t
dPt
= Et
E0
,

where Et is a local martingale that encodes the interaction (see [Dub07] for the derivation):

Et = ∏
i≠j

∣g′t(xi)∣h1,2(κ) ×Z(gt(x1), . . . , gt(xj−1),
√
κBt + xj , gt(xj+1), . . . , gt(x2N)), (3.5)

where h1,2(κ) = 6−κ
2κ , and gt is the solution to the Loewner equation (LE) with driving function√

κBt + xj . The drift for the Loewner driving function then can be obtained from (3.4).
It turns out that one can also write the drift in a quite convenient form [Dub07]. On the

upper half-plane H with marked points x1 < ⋯ < x2N , for the marginal law of the curve starting
from xj , with j ∈ {1, . . . ,2N}, we have the SDEs13

⎧⎪⎪⎨⎪⎪⎩

dWt =
√
κ dBt + κ∂j logZ(gt(x1), . . . , gt(xj−1),Wt, gt(xj+1), . . . , gt(x2N)) dt,

dgt(xi) = 2 dt
gt(xi)−Wt

, for i ≠ j,
(3.6)

where Z is a so-called SLE(κ) partition function, and with initial conditions

⎧⎪⎪⎨⎪⎪⎩

W0 = xj ,
g0(xi) = xi, for i ≠ j.

Now, it is straightforward to formally calculate14 the Itô differential of the local martin-
gale (3.9) using Itô’s formula (Theorem 3.4), the observation g′t(z) > 0, and the relations

dgt(z) =
2

gt(z) −Wt
dt and dg′t(z) = −

2g′t(z)
(gt(z) −Wt)2

dt,

which follow from the Loewner equation (LE). By the martingale property, the drift term in
the result should equal zero (cf. Lemma 3.3), which gives the following second order PDE:

⎡⎢⎢⎢⎢⎣

κ

2

∂2

∂x2j
+∑
i≠j

( 2

xi − xj
∂

∂xi
−

2h1,2(κ)
(xi − xj)2

)
⎤⎥⎥⎥⎥⎦
Z(x1, . . . , x2N) = 0. (3.7)

Such an equation holds symmetrically for all j ∈ {1, . . . ,2N} [Dub07].

Remark 3.7. This PDE (3.10) coincides with the second order BPZ PDE in CFT that is
postulated to hold for correlation functions of the CFT field Φ1,2(x) whose conformal weight
hr,s belongs to the special class (2.11) with r = 1 and s = 2 and θ = κ/4 (recall Remark 2.15).

This in part motivates the prediction that the growth of SLE curves from the boundary
should be associated to the special CFT fields Φ1,2. Unfortunately, the mathematical meaning
of the “fields” Φ1,2 is not really understood.

The PDEs (3.7) set the starting point for investigations of the interaction of SLE(κ) curves.
Similar ideas can be used to study other SLE problems, where one wants to find out, e.g., some
probabilities related to SLE via tautological martingales of type (3.9) appearing in the next
Section 3.4.

13The system (3.6) of SDEs only makes sense locally, i.e., up to a certain stopping time.
14We cautiously note that it is not clear that M is smooth enough to apply Itô’s formula — this has to be

argued a posteriori.
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3.4 Martingale observables and CFT boundary condition changing operators

Let us for a moment return to the critical Ising model onDδ with Dobrushin boundary conditions
⊕ on the boundary arc ∂+ = (xδ yδ) and ⊖ on the complementary arc ∂− = (yδ xδ). (See
Figure 1.1(left).) Let (F δ

t )t≥0 be the natural filtration for the exploration process γδ(t), for
t = 0,1, . . . (in discrete time, that we still denote t to make the connection to SLE curves
obvious), started at γδ(0) = xδ. Let PDob

Dδ denote the law of γδ (depending on the points xδ, yδ)).

The conditional expectation of an observable Oδ (that is, a random variable) given the
information F δ

t is trivially a local martingale, and thanks to the domain Markov property, we
can rewrite such a conditional expectation as the usual expectation on the slitted15 graph:

EDob
Dδ [Oδ ∣F δ

t ] = EDob
Dδ∖γδ[0,t][O

δ].

Conjecturally, the expectation of the discrete observable Oδ should converge in the scaling limit
to a correlation function of some “continuum observable” (or quantum field) O = Φ. Thus, we
expect that its conditional expectation converges in the scaling limit to a ratio of CFT correlation
functions (where the denominator comes from normalizing the physics bracket operation ⟨⋅⟩Dob

Dt

to be a probability measure, if possible): with some renormalization exponent ∆,

δ−∆EDob
Dδ [Oδ ∣F δ

t ] = δ−∆EDob
Dδ∖γδ[0,t][O

δ] δ→0Ð→
⟨Φ⟩Dob

Dt

⟨1|⟩Dob
Dt

(3.8)

where the random domain Dt ⊂ C is approximated by Dδ ∖ γδ[0, t] as δ ↘ 0. Of course, the
domain Dt = D ∖ γ[0, t] should be given by the complement of the scaling limit curve γ of the
discrete exploration interface γδ, namely, the chordal SLE(3) curve [CDCH+14]. In particular:

Upshot 3.8. The limiting expression on the right side of (3.8) should be a local martingale for
the chordal SLE(κ) curve γ. (Here, κ = 3 is the choice that works for the Ising model.)

Note that the domain D endowed with Dobrushin boundary conditions (induced from the
discrete model) has two special boundary points16: the starting point x ∈ ∂D and the end point
y ∈ ∂D of the curve γ. It is natural to think of these points carrying some “boundary condition
changing operators”, as argued by J. Cardy in the physics literature [Car03, Car05]. The idea
is that to get from the measure with no boundary condition to a measure with given boundary
condition (like Dobrushin), one makes a change of measure

⟨ ⋅ ⟩
D

z→ ⟨ ⋅ ⟩Dob
D
= ⟨ ⋅ΨDob⟩

D

implemented by some special CFT field ΨDob called “boundary condition changing operator”.
For the Dobrushin boundary conditions, it should depend on the two points x, y ∈ ∂D, so we
would like to write

ΨDob(x, y) = Φ1,2(x)Φ1,2(y),

where on the right side we use a suggestive notation that will gain better meaning later. This
gives rise to a prediction that certain conformal fields, denoted “Φ1,2”, should be associated to
the growth of SLE curves from the boundary.

15We assume here for simplicity that γδ is an injective path.
16Similarly, Dt has the two special boundary points γ(t) ∈ Dt and y ∈ ∂D (which are the starting and end

points of the exploration γ̃ in Dt). This is also built into the definition of the chordal SLE(κ) curve.
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To see what the martingale property gives us, suppose that:

▷ Our observable depends on some variables z1, . . . , zn ∈ D and its limit17 (if exists) O = Φ
has the form of a product of some CFT (primary) fields,

Φ(z1, . . . , zn) = Φι1(z1)⋯Φιn(zn),

with conformal weights ∆ι1 , . . . ,∆ιn ∈ R.

▷ With the analogy from the Ising model in mind, let us write also the boundary condition
changing operator in the form

ΨDob(x, y) = Φ⊖⊕(x)Φ⊕⊖(y),

that is a product of some (primary) fields of some conformal weights ∆⊖⊕ and ∆⊕⊖.

Then, using conformal covariance postulate (2.3) for CFT correlation functions, we can write
the local martingale (3.8) in the following form. After exploring up to time t, the martingale
depends on the random slit domain Dt =D ∖ γ[0, t], and

MDt(γ(t), y; z1, . . . , zn)

∶=
⟨Φι1(z1)⋯Φιn(zn) Φ⊖⊕(γ(t))Φ⊕⊖(y)⟩Dt

⟨Φ⊖⊕(γ(t))Φ⊕⊖(y)⟩
Dt

= ∣f ′(γ(t))∣∆⊖⊕ ∣f ′(y)∣∆⊕⊖ ∏ni=1 ∣f ′(zi)∣∆ιi

∣f ′(γ(t))∣∆⊖⊕ ∣f ′(y)∣∆⊕⊖
×
⟨Φι1(f(z1))⋯Φιn(f(zn)) Φ⊖⊕(f(γ(t)))Φ⊕⊖(f(y))⟩D

⟨Φ⊖⊕(f(γ(t)))Φ⊕⊖(f(y))⟩
D

=
n

∏
i=1

∣f ′(zi)∣∆ιi ×MD(f(γ(t)), f(y); f(z1), . . . , f(zn)),

where f ∶ Dt →D is a conformal map (and we assume that it extends to the boundary of Dt).
In particular, taking D = H to be the upper half-plane, x = 0, y =∞, and f = gt ∶ Ht → H the

solution to the Loewner equation (LE) for the SLE(κ) curve γ with driving function Wt =
√
κBt,

and dropping gt(y) = y =∞, we have

MHt(γ(t); z1, . . . , zn) =
n

∏
i=1

∣g′t(zi)∣∆ιi ×MH(Wt; gt(z1), . . . , gt(zn)), (3.9)

where Wt = gt(γ(t)). Note that this has a similar form as the local martingale (3.5).

3.5 BPZ PDEs from martingale observables

Now, it is straightforward to formally calculate18 the Itô differential of the local martingale (3.9)
using Itô’s formula (Theorem 3.4), the observation g′t(z) > 0, and the relations

dgt(z) =
2

gt(z) −Wt
dt and dg′t(z) = −

2g′t(z)
(gt(z) −Wt)2

dt,

which follow from the Loewner equation (LE). By the martingale property, the drift term in
the result should equal zero, which gives the following second order PDE:

[κ
2

∂2

∂x2
+

n

∑
i=1

( 2

zi − x
∂

∂zi
− 2∆ιi

(zi − x)2
)]MH(x; z1, . . . , zn) = 0. (3.10)

17For example, in the case of the CFT describing critical Ising model, Φ could be a product of spins (with
Φιi(zi) = σzi and ∆ιi = 1/16, for all i).

18We cautiously note that it is not clear that M is smooth enough to apply Itô’s formula — this has to be
argued a posteriori.
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This PDE (3.10) coincides with the second order BPZ PDE in CFT that is postulated to
hold for correlation functions of the boundary condition changing operator Φ⊖⊕(x) = Φ1,2(x).
In CFT parlance, this operator has a degeneracy at level two, with conformal weight of special
type19: ∆⊖⊕ = h1,2. This motivates the prediction that the growth of SLE curves from the
boundary should be associated to the special CFT fields Φ1,2. Unfortunately, the mathematical
meaning of the “fields” Φ1,2 is not really understood even for the Ising model.

19Similarly, we have Φ⊕⊖(y) = Φ1,2(y) and ∆⊕⊖ = h1,2.
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