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Part 1: quantum field theories (QFT); some examples

Part 2: Stochastic quantization of Yang–Mills
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Example 1: Yang–Mills theory (and ‘fundamental forces’)

⟨Q(A)⟩ =
ˆ

Q(A)e−S(A)DA

where A are connections on a G-bundle, and

S(A) =
ˆ

∥FA∥2dvM F ij
A = ∂iAj − ∂jAi + [Ai , Aj ]

Finite dimensional integrals
´∞

−∞ Q(x)e−S(x)dx

▶ Q(A) can be product of Wilson loops Wℓ(A) = Tr holℓ(A).

Mass gap:
⟨Wℓ1(A)Wℓ2(A)⟩−⟨Wℓ1(A)⟩⟨Wℓ2(A)⟩ ∼ exp

(
− c ·dist(ℓ1, ℓ2)

)
▶ Gravity, electro-magnetism, weak, strong.
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Example 2: Chern–Simons theory (and topology)

⟨Q(A)⟩ =
ˆ

Q(A)e−S(A)DA

on G-bundle over 3D manifold M, and

S(A) = k
4π

ˆ
M

Tr(A ∧ dA + 2
3A ∧ A ∧ A)

⟨Wℓ(A)⟩:
▶ G = U(2): Jones polynomial
▶ G = U(N): HOMFLY
▶ G = SO(N): Kauffman polynomial.
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Example 3: 1D sigma model (and index formula)

Tre−H =
ˆ

ΠTL(M)
e−S(γ,θ)DγDθ

where L(M) = {γ : S1 → M} is loop space, (M, g) Riem.manifold

S(γ, θ) =
ˆ 1

0
∥γ̇∥2

g + ⟨θ(t), ∇γ̇θ(t)⟩gdt

▶ Tre−H analytical index (e.g. McKean–Singer)
▶ RHS: topological index (localization)

Alvarez-Gaume, Atiyah, Bismut, Witten (80s); Hanisch, Ludewig (2022)....
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Example 4: Liouville conformal field theory

Surface (M, g), g = eγX ĝ where X : M → R

⟨Q(X )⟩ =
ˆ

Q(X )e−S(X)DX

S(X ) =
ˆ

M
(|∂ĝX |2 + QRĝX + 4πµeγX )dvĝ

where γ ∈ R, µ ∈ R+, Q = 2
γ + γ

2
▶ arises from 2D quantum gravity
▶ can be rigorously defined with many interesting properties:

Guillarmou,Kupiainen,Rhodes,Vargas..... “Polyakov’s formulation of 2d string” (IHES), “Integrability”

(Annals), “Conformal bootstrap” (Acta), many recent works by X.Sun et al...
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▶ Yang–Mills
´

Q(A)e−
´

∥FA∥2dvM DA
▶ Topological field theories

´
Q(A)e− k

4π

´
M Tr(A∧dA+ 2

3 A∧A∧A)DA
▶ σ-models

´
ΠTL(M) e−

´ 1
0 ∥γ̇∥2

g +⟨θ(t),∇γ̇θ(t)⟩g dtDγDθ

(or 2D versions)
▶ Conformal field theories´

Q(X )e−
´

M(|∂ĝ X |2+QRĝ X+4πµeγX )dvĝ DX

Mathematical foundation?
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“easier” cases:

(1) sample paths continuous,
e.g. e−

´ 1
0 ∥γ̇∥2

g Dγ is (manifold-valued) Brownian motion.

(2) Gaussian measures,
e.g. Gaussian free fields e−

´
Ω |∇Φ|2dxDΦ for Ω ⊂ Rd , Φ : Ω → R

(factors into independent Gaussians e−k2Φ2
k dΦk for each Fourier mode Φk)

“harder” cases: e.g. Ω ⊂ Rd≥2

e−
´

Ω(|∇Φ|2+Φ4)dxDΦ

Φ singular, not continuous (in fact, Φ4 needs renormalization)

“even harder” when: infinite dimensional (e.g. gauge) symmetry,
target space nonlinear etc.
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“Constructive field theorists”

Wightman axioms (’60-’70): Hilbert space, representation of the
Poincare group, fields operators (to construct local observables).

Osterwalder–Schrader axioms (’70s): gives precise condition to
perform the passage to/from Euclidean space.
(An Euclidean quantum field theory is a measure on S ′(Rd) satisfying some
axiomatic properties: regularity, Euclidean covariance, reflection positivity.)

[B.Simon, A.Jaffe, Glimm, T.Spencer, D.Brydges......]

Difficulties in constructing such measures:
▶ small scale (‘ultraviolet’) problems;
▶ large field problems;
▶ large scale i.e. long distance problems;
▶ infinite dimensional symmetries
▶ .....
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Quantum field theory: functional integral w.r.t. measure

exp(−S(ϕ))Dϕ

Stochastic quantization: stochastic dynamic

∂tϕ = −∇S(ϕ) + ξ

where ξ is space-time white noise.

The measure is (formally) invariant under the dynamic.

Advantages of stochastic quantization approach:
1) more tools e.g. PDE, stochastic analysis;
2) separate difficulties (to some extent)
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Example: Stochastic heat equation (SHE)

Gaussian free field (GFF)

e− 1
2
´

(∇Φ)2dxDΦ

Stochastic heat equation (SHE)

∂tΦ = ∆Φ + ξ x ∈ Rd

Solution to SHE is Gaussian process.
Regularity of SHE:

C
1
2 − (d = 1); C0− (d = 2); C− 1

2 − (d = 3).
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Stochastic quantization approach has been successful for Φ4 model

e−
´

Ω( 1
2 |∇Φ|2+ 1

4 Φ4)dxDΦ

∂tΦ = ∆Φ − Φ3 + ξ

Short time: Da Prato-Debussche (2d), Hairer (3d), etc.

Long time: Weber-Mourrat, Gubinelli-Hofmanova (2,3d), etc.

Φ = SHE + v

▶ SHE is Gaussian and singular;

▶ v has unknown probability law but is a bit more regular.
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stochastic quantization of Yang–Mills in 2D and 3D
1. Hao Shen, Stochastic quantization of an abelian gauge theory, (2018).
CMP.

2. Ajay Chandra, Ilya Chevyrev, Martin Hairer, Hao Shen, Langevin dynamic
for the 2D Yang–Mills measure, (2020). P.IHES.

3. Ajay Chandra, Ilya Chevyrev, Martin Hairer, Hao Shen, Stochastic
quantisation of Yang–Mills–Higgs in 3D, (2022).

4. Ilya Chevyrev, Hao Shen, Invariant measure and universality of the 2D
Yang–Mills Langevin dynamic, (2023).

Page 13/28



Stochastic Yang–Mills

Let G be a Lie group and g be its Lie algebra, Ai ∈ g.

∂tAi = ∆Ai +
[
Aj , 2∂jAi − ∂iAj + [Aj , Ai ]

]
+ ξi on T2 or T3

S(A) =
´

∥FA∥2dx , with F ij
A = ∂iAj − ∂jAi + [Ai , Aj ]

Gauge symmetry: g ∈ G
def= C∞(Td , G), A 7→ gAg−1 − (dg)g−1

Wilson loops: γ : [0, 1] → Td , γ(0) = γ(1).

Solve dh(s) = h(s)⟨A(γ(s)), dγ(s)⟩, h(0) = id ∈ G .

Wγ(A) def= Tr(h(1))
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Stochastic Yang–Mills

Orbit space: “ {A}/G ” where G is gauge group

Observable: Wilson loops Wγ(A) (same value along each orbit)

Dynamic: Nonlinear SPDE - and project to orbit space.
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Construction of state space in 2D

• Support YM dynamics • Wilson loops (≈ integrate along curve)

C0 ⊂ Ω ⊂ C0−

1. Functionals A : {Line segments} → R (This includes C0)
2. Norm: |A(ℓ)|

|ℓ| ≲ |ℓ|α−1, |A(∂P)| ≤ |P|α/2, α < 1

3. Completion. (Ω can be embedded in Cα−1)
4. Kolmogorov1 theorem in Ω ⇒ SHE (Gaussian) ∈ Ω.
5. We can extend gauge transformations to Ω.

Quotient space is Polish.

1Kolmogorov: E[|Xt − Xs |α] ≤ C |t − s|1+β implies X is Hölder β
α

− continuous
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State space in 3D

C− 1
2 − field (even Gaussian part) can’t be integrated along curves

Q: regularized version of Wilson loops which is still gauge invariant?
Regularize C− 1

2 − ∋ A → Aδ ∈ C∞. Define Wilson loop Wγ(Aδ).

▶ YM flow: FδA ∈ C∞ and Ā = g ◦ A ⇒ Wγ(FδA) = Wγ(FδĀ)
where Fδ is YM heat flow ∂δAi = ∆Ai + 2[Aj , ∂jAi ] + · · ·

State space: S = {X ∈ C− 1
2 − : ∥(es∆X )(∂es∆X )∥

C− 1
3 − ≲ s− 5

6 }

(We can solve stochastic YM equation in S.)
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Solve the stochastic PDE in 2D

∂tAi = ∆Ai +
[
Aj , 2∂jAi − ∂iAj + [Aj , Ai ]

]
+ ξi

Toy model: ∂tu = ∆u + u3 + ξ

SHE ∂tΨ = ∆Ψ + ξ has regularity Ψ ∈ C0−.

{u : u = Ψ + v , v ∈ C1} ⊂ C0−

u3 = Ψ3 + 3Ψ2 · v + 3Ψ · v2 + v3

Renormalization: Ψ2
ε − Cε and Ψ3

ε − 3CεΨε with Cε = E[Ψ2
ε]

converge in C0− in probability.

Renormalized equation: ∂tuε = ∆uε + u3
ε − 3Cεuε + ξε
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∂tAi = ∆Ai +
[
Aj , 2∂jAi − ∂iAj + [Aj , Ai ]

]
+ ξi

Toy model: ∂tu = ∆u + u∂u + ξ
{u : u = Ψ + v , v ∈ C1} is not good: Ψ ∈ C0−, ∂v ∈ C0

Regularity structures (started by Hairer’14): Let P be heat kernel

v(y) = v(x) + (P ∗ ∂Ψ(y) − P ∗ ∂Ψ(x)) v(x)
+ (P ∗ Ψ(y) − P ∗ Ψ(x)) w(x)
+ (P ∗ (Ψ∂Ψ)(y) − P ∗ (Ψ∂Ψ)(x))
+ (y − x)w(x) + o(|y − x |) for y ≈ x

▶ “Generalized Taylor” approximations by stochastic basis;
▶ The stochastic basis have explicit probability laws;
▶ Products of them require renormalization.
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∂tu = ∆u + F (u) + ξ

Theory of regularity structures

{F} × {ξε} −→ {u}
not continuous

{F} × M −→{“Taylor” expansions}
continuous

y Reconstruct
continuously

x
G

G

M: space of maps realizing formal Taylor basis as functions
The terms in the “Taylor basis” form a Hopf algebra H
The “renormalization group G” is the group of characters of H.
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Solve the SPDE in 3D

• 100+ terms need renormalisation.

[Bruned,Chandra,Chevyrev,Hairer,Zambotti,2014-2019] Systematic treatment of
renormalisation, on the levels of algebra, diagrams, and equations.

In our work, using some category theory, we extend these results to SPDEs taking
values in certain algebraic structures e.g. Lie algebra in the case of YM

• But it turns out that all these terms lead to −CAi in the
renormalized equation.

We developed general results: renormalization should respect to symmetries such as
spatial reflection
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Gauge-covariant process and project to the orbit space

∂tAi = ∆Ai +
[
Aj , 2∂jAi − ∂iAj + [Aj , Ai ]

]
−CAi + ξi

g−1∂tg = ∂j(g−1∂jg) + [Aj , g−1∂jg ]

Then B := g ◦ A satisfies

∂tBi = ∆Bi+
[
Bj , 2∂jBi−∂iBj+[Bj , Bi ]

]
−C(Bi − g∂ig−1) + gξig−1

• finite shift of C such that the limit is gauge covariant.
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Lattice Yang–Mills

Wilson, Villain, Manton etc.

x

y
Qxy

[S.–Zhu–Zhu’22] “strong coupling regime”, positive curvature group:

▶ The invariant measure for the dynamic is unique on entire Zd .
▶ Dynamic is exponentially ergodic.

▶ Log-Sobolev inequality ⇒ correlations decay exponentially
(mass gap).

(Our “strong coupling” condition is better than [Osterwalder-Seiler’78])
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“Universality” in 2D (i.e. lattice → continuum)
[Chevyrev–S. 2023]

For a wide class of lattice YM models,

• Their dynamics converge to the same limiting dynamic.

∂tAi = ∆Ai +
[
Aj , 2∂jAi − ∂iAj + [Aj , Ai ]

]
−CAi + ξi

• Their invariant measures converge to the same limiting measure.

An important step: unique C, such that A is gauge covariant.
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Uniqueness of C (Abelian case G = U(1): topological argument)

∂tAi = ∆Ai + CAi + ξi (i = 1, 2) on R+ × T2

Gauge transformation: g ◦ A = A − dg g−1 where g is U(1) valued.
Wilson loop observable: exp(

´
ℓ A) for a loop ℓ.

It’s gauge invariant, because
´

ℓ dg g−1 ∈ 2πiZ

Claim: Solution is gauge covariant if and only if C = 0.

Proof: C ̸= 0 case: Consider A(0) = 2πi dx1 and Ā(0) = 0
They are gauge equivalent A(0) = Ā(0) − de−2πix1 e2πix1

A(t) = Ā(t) + etCA(0)

Take ℓ(s) = (s, 0) ⊂ T2. We have E exp(
´

ℓ Ā(t)) ̸= E exp(
´

ℓ A(t)).

Page 25/28



Uniqueness in the case of non-abelian Lie groups

“Euler estimates”: for small t, nonlinear effect is of next order
comparing to the discrepancy created in the previous page

Need a curve ζ : [0, 1] → g with ζ(0) = 0 ̸= ζ(1) such that its lift
L : [0, 1] → G is given by

dL L−1 = dζ L(0) = L(1) = id

This is done using sub-Riemannian geometry (Chow-Rashevsky).

Page 26/28



Global solution in 2D via Bourgain’s argument
[Chevyrev–S. 2023]
This requires moments bound for invariant measure, which is achieved by
gauge fixing and “rough Uhlenbeck estimates”

K.Uhlenbeck’82: “Connections with Lp bounds on curvature”
▶ Assuming A is small, one can bound A by curvature FA in Coulomb gauge
▶ Piece together local bounds by “continuity argument”.

1. Large scales: we fix axial gauge
2. At intermediate scales where A becomes reasonably small, we
fix Coulomb gauge (all the way down to the smallest scales).
Axial gauge: good probability properties; Coulomb gauge: good regularity properties.
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Yang–Mills:
▶ Manifolds and bundles (in progress)
▶ 3 space dimension: we haven’t obtained long time solution.
▶ 4 space dimension: not even local solution

Other models:
▶ Conformal field theories

[Dubedat,S.’18] Liouville CFT ⇒ Stochastic Ricci flow
(motivated by [Osgood–Phillips–Sarnak’88])

▶ Progress in fermionic fields; supersymmetries;
▶ elliptic and hyperbolic stochastic PDEs
▶ ........

Thank you!
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