The next-to-top term in knot Floer homology

Yi Ni yini@caltech.edu

Department of Mathematics California Institute of Technology

PKU Mathematics Forum BICMR August 2–5, 2023

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2-5,

A (10) × A (10) × A (10)

- An overview of knot Floer homology
- Is the second term nontrivial?
- A bound on the number of fixed points
- Characterizing right-veering homeomorphisms

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5

- An overview of knot Floer homology
- Is the second term nontrivial?
- A bound on the number of fixed points
- Characterizing right-veering homeomorphisms

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5

A knot is an embedded S^1 in a 3–manifold,

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2-5,

イロト イヨト イヨト イヨト

э

< 回 > < 回 > < 回 >

The following pictures are the 4 simplest knots in S^3 (or \mathbb{R}^3).

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2-5,

< 回 > < 回 > < 回 >

The following pictures are the 4 simplest knots in S^3 (or \mathbb{R}^3).

unknot

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2-5,

The following pictures are the 4 simplest knots in S^3 (or \mathbb{R}^3).

unknot left-hand trefoil

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

→ ∃ →

The following pictures are the 4 simplest knots in S^3 (or \mathbb{R}^3).

unknot left-hand trefoil right-hand trefoil

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

The following pictures are the 4 simplest knots in S^3 (or \mathbb{R}^3).

unknot left-hand trefoil right-hand trefoil figure-8 knot

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

Any knot is the boundary of an embedded **oriented** surface $F \subset S^3$. Such a surface is called a Seifert surface for *K*.

< 回 > < 三 > < 三 >

Any knot is the boundary of an embedded **oriented** surface $F \subset S^3$. Such a surface is called a Seifert surface for *K*.

4 E 5

Any knot is the boundary of an embedded **oriented** surface $F \subset S^3$. Such a surface is called a Seifert surface for *K*.

The (Seifert) genus of *K* is defined to be

 $g(K) = \min\{g(F) | F \text{ is a Seifert surface for } K\}.$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5

In other words, there exists a surface-with-boundary *F* and an orientation-preserving homeomorphism $h: F \to F$, such that

$$S^3 \setminus \operatorname{int}(\operatorname{Nd}(K)) \cong F \times [0,1]/\sim,$$

where

$$(x, 1) \sim (h(x), 0)$$
, for any $x \in F$.

The homeomorphism *h* is called the monodromy.

伺 ト イ ヨ ト イ ヨ ト

In other words, there exists a surface-with-boundary *F* and an orientation-preserving homeomorphism $h: F \to F$, such that

$$S^3 \setminus \operatorname{int}(\operatorname{Nd}(K)) \cong F \times [0,1]/\sim,$$

where

$$(x, 1) \sim (h(x), 0)$$
, for any $x \in F$.

The homeomorphism h is called the monodromy. Moreover, we may always assume

$$h|_{\partial F} = \mathrm{id}_{\partial F}.$$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

A (10) A (10)

In other words, there exists a surface-with-boundary *F* and an orientation-preserving homeomorphism $h: F \to F$, such that

$$S^3 \setminus \operatorname{int}(\operatorname{Nd}(K)) \cong F \times [0,1]/\sim,$$

where

$$(x, 1) \sim (h(x), 0)$$
, for any $x \in F$.

The homeomorphism h is called the monodromy. Moreover, we may always assume

$$h|_{\partial F} = \mathrm{id}_{\partial F}.$$

We necessarily have g(F) = g(K).

4 D N 4 B N 4 B N 4 B N

The powerful knot invariant Alexander polynomial (Alexander 1928) can be defined and computed as follows.

$$\Delta_{\mathrm{unknot}}(t) = 1,$$

 $\Delta_{L_{+}} - \Delta_{L_{-}} = (t^{\frac{1}{2}} - t^{-\frac{1}{2}})\Delta_{L_{0}}.$

< 回 ト < 三 ト < 三

The powerful knot invariant Alexander polynomial (Alexander 1928) can be defined and computed as follows.

$$\Delta_{\mathrm{unknot}}(t) = 1,$$

 $\Delta_{L_{+}} - \Delta_{L_{-}} = (t^{\frac{1}{2}} - t^{-\frac{1}{2}})\Delta_{L_{0}}.$

The second formula is the "skein relation" (Alexander 1928, Conway 1969), where L_{\pm} , L_0 denote the three oriented links that differ at exactly one crossing.

Examples

When K is a knot,

$$\Delta_{\mathcal{K}}(t) \in \mathbb{Z}[t, t^{-1}].$$

In general, for a link L,

$$\Delta_L(t)\in\mathbb{Z}[t^{\frac{1}{2}},t^{-\frac{1}{2}}].$$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2-5,

イロト イヨト イヨト イヨト

Examples

When K is a knot,

$$\Delta_{\mathcal{K}}(t) \in \mathbb{Z}[t, t^{-1}].$$

In general, for a link L,

$$\Delta_L(t)\in\mathbb{Z}[t^{\frac{1}{2}},t^{-\frac{1}{2}}].$$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

< ロ > < 同 > < 回 > < 回 >

Examples

When K is a knot,

$$\Delta_{\mathcal{K}}(t) \in \mathbb{Z}[t, t^{-1}].$$

In general, for a link L,

$$\Delta_L(t)\in\mathbb{Z}[t^{\frac{1}{2}},t^{-\frac{1}{2}}].$$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

The Alexander polynomial of a fibered knot

Suppose that *K* is a fibered knot with monodromy $h : F \to F$. Then $\Delta_{K}(t)$ is, up to a factor $\pm t^{-g}$, the characteristic polynomial of

$$h_*: H_1(F) \rightarrow H_1(F).$$

Namely,

$$\Delta_{\mathcal{K}}(t) = \pm t^{-g} \det(tI_{2g} - h_*).$$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2-5,

伺 ト イ ヨ ト イ ヨ ト

The Alexander polynomial of a fibered knot

Suppose that *K* is a fibered knot with monodromy $h : F \to F$. Then $\Delta_K(t)$ is, up to a factor $\pm t^{-g}$, the characteristic polynomial of

$$h_*: H_1(F) \rightarrow H_1(F).$$

Namely,

$$\Delta_{\mathcal{K}}(t) = \pm t^{-g} \det(tI_{2g} - h_*).$$

Let

$$\Delta_{\mathcal{K}}(t) = \sum_{i=-g}^{g} a_i t^i,$$

then

$$a_g = \pm 1$$
, $a_{g-1} = -a_g \operatorname{tr}(h_*)$.

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2-5,

A B A B A B A

There is a similar interpretation of Δ_K even when *K* is non-fibered. From this interpretation, one can deduce that the degree of Δ_K is bounded by the genus:

$$rac{1}{2}\deg \Delta_{\mathcal{K}}\leq g(\mathcal{K}).$$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2-5,

< 回 > < 三 > < 三 >

There is a similar interpretation of Δ_K even when *K* is non-fibered. From this interpretation, one can deduce that the degree of Δ_K is bounded by the genus:

$$rac{1}{2}\deg\Delta_{\mathcal{K}}\leq g(\mathcal{K}).$$

The above inequality is not sharp. In fact, there are infinitely many knots with $\Delta_{\mathcal{K}} = 1$.

< 回 > < 回 > < 回 >

Knot Floer homology

Knot Floer homology is a categorification of the Alexander polynomial. When K is a knot in S^3 , the knot Floer homology is a finitely generated bigraded abelian group

$$\widehat{HFK}(S^3,K) = \bigoplus_{a,m\in\mathbb{Z}}\widehat{HFK}_m(S^3,K,a).$$

Here *a* is called the "Alexander grading", and *m* is the "Maslov grading".

< 回 > < 三 > < 三 >

Knot Floer homology

Knot Floer homology is a categorification of the Alexander polynomial. When K is a knot in S^3 , the knot Floer homology is a finitely generated bigraded abelian group

$$\widehat{HFK}(S^3,K) = \bigoplus_{a,m\in\mathbb{Z}}\widehat{HFK}_m(S^3,K,a).$$

Here *a* is called the "Alexander grading", and *m* is the "Maslov grading".

The Euler characteristic of $\widehat{HFK}(S^3, K)$ gives rise to the Alexander polynomial, namely

$$\sum_{a} \chi(\widehat{HFK}_*(S^3, K, a)) \cdot t^a = \Delta_K(t).$$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

不同 トイモト イモト

 $\Delta_{\mathcal{K}}$ is symmetric, in the sense that

$$\Delta_{\mathcal{K}}(t) = \Delta_{\mathcal{K}}(t^{-1}).$$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2-5,

< 同 ト < 三 ト < 三 ト

 $\Delta_{\mathcal{K}}$ is symmetric, in the sense that

$$\Delta_{\mathcal{K}}(t) = \Delta_{\mathcal{K}}(t^{-1}).$$

This fact can be generalized to a symmetry in \widehat{HFK} :

$$\widehat{\mathit{HFK}}_*(S^3, K, a; \mathbb{Q}) \cong \widehat{\mathit{HFK}}_{*-2a}(S^3, K, -a; \mathbb{Q}).$$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

伺下 イヨト イヨ

The knot Floer homologies of the first 4 knots

Here a black dot stands for a copy of \mathbb{Z} .

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

• • • • • • • • • • • • •

The summand $\widehat{HFK}(S^3, K, g(K))$ is often called the topmost term in knot Floer homology for the following reason.

The summand $\widehat{HFK}(S^3, K, g(K))$ is often called the topmost term in knot Floer homology for the following reason.

Theorem (Ozsváth–Szabó)

Suppose K is a knot in S^3 , g(K) is its genus. Then

$$g(K) = \max\{a | \widehat{HFK}(S^3, K, a) \neq 0\}.$$

In fact, the rank of $\widehat{HFK}(S^3, K, g(K))$ is positive.

The summand $\widehat{HFK}(S^3, K, g(K))$ is often called the topmost term in knot Floer homology for the following reason.

Theorem (Ozsváth–Szabó)

Suppose K is a knot in S^3 , g(K) is its genus. Then

$$g(K) = \max\{a | \ \widehat{HFK}(S^3, K, a) \neq 0\}.$$

In fact, the rank of $\widehat{HFK}(S^3, K, g(K))$ is positive.

This term contains a lot of information about the topology of the knot.

The summand $\widehat{HFK}(S^3, K, g(K))$ is often called the topmost term in knot Floer homology for the following reason.

Theorem (Ozsváth–Szabó)

Suppose K is a knot in S^3 , g(K) is its genus. Then

$$g(K) = \max\{ a | \ \widehat{\mathit{HFK}}(S^3,K,a)
eq 0 \}.$$

In fact, the rank of $\widehat{HFK}(S^3, K, g(K))$ is positive.

This term contains a lot of information about the topology of the knot.

Theorem (Ozsváth–Szabó, Ghiggini+Ni)

Suppose K is a knot in S^3 with genus g. Then

 $\widehat{\mathit{HFK}}(\mathit{S}^3, \mathit{K}, g) \cong \mathbb{Z}$

if and only if K is fibered.

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

Let *Y* be a closed, oriented, connected 3-manifold, $K \subset Y$ be a null-homologous knot. One can define knot Floer homology for the pair (Y, K):

$$\widehat{HFK}(Y,K) = \bigoplus_{a \in \mathbb{Z}} \widehat{HFK}(Y,K,a).$$

The previous two theorems still hold true in the general case.

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

< 回 > < 回 > < 回 >
- An overview of knot Floer homology
- Towards the nontriviality of the second term
- A bound on the number of fixed points
- Characterizing right-veering homeomorphisms

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

One can ask the following questions for other terms in $\widehat{HFK}(S^3, K)$:

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

One can ask the following questions for other terms in $\widehat{HFK}(S^3, K)$:

Is it nontrivial?

One can ask the following questions for other terms in $\widehat{HFK}(S^3, K)$:

- Is it nontrivial?
- What topological/geometric information is contained in it?

One can ask the following questions for other terms in $\widehat{HFK}(S^3, K)$:

- Is it nontrivial?
- What topological/geometric information is contained in it?

In this talk, we will focus on the next-to-top term, or the second term,

$$\widehat{HFK}(S^3, K, g(K) - 1).$$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

Conjecture (Baldwin–Vela-Vick)

For any nontrivial knot $K \subset S^3$, one has

$$\widehat{HFK}(S^3, K, g(K) - 1) \neq 0.$$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

< 回 ト < 三 ト < 三

Conjecture (Baldwin–Vela-Vick)

For any nontrivial knot $K \subset S^3$, one has

$$\widehat{HFK}(S^3, K, g(K) - 1) \neq 0.$$

A stronger conjecture is:

Conjecture (Sivek)

For any nontrivial knot $K \subset S^3$, one has

$$\mathrm{rank}\widehat{HFK}(S^3,K,g(K)-1)\geq\mathrm{rank}\widehat{HFK}(S^3,K,g(K)).$$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5

< 回 ト < 三 ト < 三

knots whose knot Floer homology is supported in one line
 m = a + C, including all alternating knots (Ozsváth–Szabó)

< 回 > < 三 > < 三 >

- knots whose knot Floer homology is supported in one line
 m = a + C, including all alternating knots (Ozsváth–Szabó)
- L-space knots (Hedden–Watson)

A (10) A (10) A (10)

- knots whose knot Floer homology is supported in one line
 m = a + C, including all alternating knots (Ozsváth–Szabó)
- L-space knots (Hedden–Watson)
- fibered knots, including all L-space knots (Baldwin–Vela-Vick)

< 回 ト < 三 ト < 三

- knots whose knot Floer homology is supported in one line
 m = a + C, including all alternating knots (Ozsváth–Szabó)
- L-space knots (Hedden–Watson)
- fibered knots, including all L-space knots (Baldwin–Vela-Vick)

Theorem (Ni)

Let $K \subset S^3$ be a knot with genus g > 0. Suppose that $\widehat{HFK}(S^3, K, g)$ is supported in a single $\mathbb{Z}/2\mathbb{Z}$ –grading. Then for any $m \in \mathbb{Z}$, we have

$$\operatorname{rank}\widehat{HFK}_{m-1}(S^3,K,g-1)\geq\operatorname{rank}\widehat{HFK}_m(S^3,K,g).$$

This result contains all known cases of the conjecture.

< ロ > < 同 > < 回 > < 回 >

- An overview of knot Floer homology
- Towards the nontriviality of the second term
- A bound on the number of fixed points
- Characterizing right-veering homeomorphisms

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5

The Lefschetz–Hopf index formula

Let $K \subset S^3$ be a fibered knot, $h : F \to F$ be the monodromy, $h_* : H_1(F) \to H_1(F)$ be the induced map.

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

< 回 > < 回 > < 回 >

The Lefschetz–Hopf index formula

Let $K \subset S^3$ be a fibered knot, $h : F \to F$ be the monodromy, $h_* : H_1(F) \to H_1(F)$ be the induced map.

We can isotope h so that all fixed points of h are isolated, then the Lefschetz–Hopf index formula says

$$\sum_{x \in \operatorname{Fix}(h)} \operatorname{index}(h, x) = 1 - \operatorname{tr}(h_*)$$
$$= 1 + a_g a_{g-1}$$
$$= 1 + a_g \chi(\widehat{HFK}(S^3, K, g-1)),$$

where

$$\Delta_{\mathcal{K}} = \sum_{i=-g}^{g} a_i t^i.$$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

A > + > + > + >

The Lefschetz–Hopf index formula

Let $K \subset S^3$ be a fibered knot, $h : F \to F$ be the monodromy, $h_* : H_1(F) \to H_1(F)$ be the induced map.

We can isotope h so that all fixed points of h are isolated, then the Lefschetz–Hopf index formula says

$$\sum_{x \in \operatorname{Fix}(h)} \operatorname{index}(h, x) = 1 - \operatorname{tr}(h_*)$$
$$= 1 + a_g a_{g-1}$$
$$= 1 + a_g \chi(\widehat{HFK}(S^3, K, g-1)),$$

where

$$\Delta_{\mathcal{K}} = \sum_{i=-g}^{g} a_i t^i.$$

In particular, if $a_g a_{g-1} \neq -1$, then any map isotopic to *h* has at least a fixed point.

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

Theorem (Ni)

Let $K \subset Y$ be a fibered knot with fiber F and monodromy h. If

$$\operatorname{rank}\widehat{HFK}(Y,K,g-1)=r,$$

then h is freely isotopic to a diffeomorphism with at most r - 1 fixed points.

In particular, when r = 1, h is freely isotopic to a diffeomorphism with no fixed points. L-space knots are examples of such knots. Baldwin–Hu–Sivek proved this result for knots with the same knot Floer homology as the torus knot T(5, 2).

Theorem (Ni)

Let $K \subset Y$ be a fibered knot with fiber F and monodromy h. If

$$\operatorname{rank}\widehat{HFK}(Y,K,g-1)=r,$$

then h is freely isotopic to a diffeomorphism with at most r - 1 fixed points.

In particular, when r = 1, h is freely isotopic to a diffeomorphism with no fixed points. L-space knots are examples of such knots. Baldwin–Hu–Sivek proved this result for knots with the same knot Floer homology as the torus knot T(5, 2).

A similar result was also proved by Ghiggini–Spano using a completely different framework.

イロト イポト イヨト イヨト

Let Σ be a closed oriented surface with an area form $\omega, \varphi : \Sigma \to \Sigma$ be an area-preserving map. Then φ is a symplectomorphism of the symplectic 2–manifold (Σ, ω) .

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

< 回 > < 回 > < 回 >

Let Σ be a closed oriented surface with an area form $\omega, \varphi : \Sigma \to \Sigma$ be an area-preserving map. Then φ is a symplectomorphism of the symplectic 2–manifold (Σ, ω) .

One can define a symplectic Floer homology $HF^{\text{symp}}(\varphi)$. The chain complex is freely generated by the fixed points of φ if all fixed points are non-degenerate. Moreover, the isomorphism class of $HF^{\text{symp}}(\varphi)$ only depends on the mapping class of φ (Seidel).

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

Let Σ be a closed oriented surface with an area form $\omega, \varphi : \Sigma \to \Sigma$ be an area-preserving map. Then φ is a symplectomorphism of the symplectic 2–manifold (Σ, ω) .

One can define a symplectic Floer homology $HF^{\text{symp}}(\varphi)$. The chain complex is freely generated by the fixed points of φ if all fixed points are non-degenerate. Moreover, the isomorphism class of $HF^{\text{symp}}(\varphi)$ only depends on the mapping class of φ (Seidel).

It has been conjectured that the second term of $\widehat{HFK}(Y, K)$ should be related to a suitable version of the above symplectic Floer homology. Our proof affirms this conjecture.

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

Using an argument of Baldwin–Hu–Sivek and a trick in Heegaard Floer homology, we can relate the following Floer homologies:

 $\widehat{HFK}(Y, K, g(K) - 1)$

- pprox Heegaard Floer homology of a closed fibered 3-manifold Z
- \cong Monopole Floer homology of Z (Kutluhan–Lee–Taubes)
- \cong Periodic Floer homology of Z (Lee–Taubes, Kronheimer–Mrowka)
- \cong *HF*^{symp}(φ).

A (10) A (10) A (10) A

Using an argument of Baldwin–Hu–Sivek and a trick in Heegaard Floer homology, we can relate the following Floer homologies:

 $\widehat{HFK}(Y, K, g(K) - 1)$

- pprox Heegaard Floer homology of a closed fibered 3-manifold Z
- \cong Monopole Floer homology of Z (Kutluhan–Lee–Taubes)
- \cong Periodic Floer homology of Z (Lee–Taubes, Kronheimer–Mrowka)
- \cong *HF*^{symp}(φ).

A complete computation of $HF^{\text{symp}}(\varphi)$ was given by Cotton-Clay. We then use Jiang–Guo's work on the Nielsen fixed point theory of surfaces to get our bound.

イロト イポト イヨト イヨト

э

- An overview of knot Floer homology
- Towards the nontriviality of the second term
- A bound on the number of fixed points
- Characterizing right-veering homeomorphisms

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5

To the right

Let *F* be an oriented surface with boundary, $a, b \subset F$ be two properly embedded arcs with a common endpoint *x*.

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2-5,

- 3 →

To the right

Let *F* be an oriented surface with boundary, $a, b \subset F$ be two properly embedded arcs with a common endpoint *x*. We say *a* is to the right of *b* at *x*, if

• either *a* is isotopic to *b* rel ∂ ,

To the right

Let *F* be an oriented surface with boundary, $a, b \subset F$ be two properly embedded arcs with a common endpoint *x*. We say *a* is to the right of *b* at *x*, if

- either *a* is isotopic to *b* rel ∂ ,
- or after an isotopy rel ∂ to minimize |a ∩ b|, (a ∩ U) ∩ {x} lies in the right component of U \ b for a small neighborhood U of x.

Honda–Kazez–Matić introduced the following concept, which enables them to characterize tight contact structures in terms of mapping classes.

Definition

Let *F* be a compact oriented surface with boundary, $h: F \to F$ be a diffeomorphism that restricts to the identity map on ∂F . Then *h* is right-veering if for every $x \in \partial F$ and every properly embedded arc $a \subset F$ with $x \in a$, the image h(a) is to the right of *a* at *x*. Similarly, we can define left-veering diffeomorphisms.

Honda–Kazez–Matić introduced the following concept, which enables them to characterize tight contact structures in terms of mapping classes.

Definition

Let *F* be a compact oriented surface with boundary, $h: F \to F$ be a diffeomorphism that restricts to the identity map on ∂F . Then *h* is right-veering if for every $x \in \partial F$ and every properly embedded arc $a \subset F$ with $x \in a$, the image h(a) is to the right of *a* at *x*. Similarly, we can define left-veering diffeomorphisms.

The identity map is the only map which is both right-veering and left-veering.

Let $K \subset Y$ be a null-homologous knot. There is a homomorphism

$$(\partial_z)_*:\widehat{HFK}(Y,K,a)\to \widehat{HFK}(Y,K,a-1), \quad a\in\mathbb{Z}.$$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2-5,

A (10) A (10) A (10)

Let $K \subset Y$ be a null-homologous knot. There is a homomorphism

$$(\partial_z)_*:\widehat{HFK}(Y,K,a) o \widehat{HFK}(Y,K,a-1),\quad a\in\mathbb{Z}.$$

We will consider two summands of $(\partial_z)_*$:

$$\partial^{\text{top}} : \widehat{HFK}(Y, K, g) \to \widehat{HFK}(Y, K, g-1),$$

 $\partial^{\text{bot}} : \widehat{HFK}(Y, K, 1-g) \to \widehat{HFK}(Y, K, -g).$

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

< 回 > < 回 > < 回 >

A characterization of right-veering diffeomorphisms

Theorem (Baldwin–Vela-Vick)

Let $K \subset Y$ be a fibered knot with fiber F, and let $h : F \to F$ be the monodromy. If $\partial^{top} = 0$, then h is right-veering.

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

< 同 ト < 三 ト < 三 ト

Theorem (Baldwin–Vela-Vick)

Let $K \subset Y$ be a fibered knot with fiber F, and let $h : F \to F$ be the monodromy. If $\partial^{top} = 0$, then h is right-veering.

The converse is also true.

Theorem (Baldwin–Ni–Sivek)

Let $K \subset Y$ be a fibered knot with fiber F, and let $h : F \to F$ be the monodromy. If h is right-veering, then $\partial^{top} = 0$.

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5

< ロ > < 同 > < 回 > < 回 >

A characterization of right-veering diffeomorphisms, continued

Any map $h: F \to F$ with $h|_{\partial F} = id_{\partial F}$ falls into one of four classes:

id, RV not id, LV not id, neither RV nor LV.

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2-5,

< 回 > < 回 > < 回 >

A characterization of right-veering diffeomorphisms, continued

Any map $h: F \to F$ with $h|_{\partial F} = id_{\partial F}$ falls into one of four classes:

id, RV not id, LV not id, neither RV nor LV.

Using the previous theorem and the symmetry in \widehat{HFK} , the above four classes can be distinguished by the information from \widehat{HFK} :

h	∂^{top}	∂^{bot}
id	= 0	= 0
$RV, \neq id$	= 0	\neq 0
LV, \neq id	\neq 0	= 0
neither RV nor LV	\neq 0	\neq 0

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2–5,

4 AR & 4 B & 4 B &

Thank you!

Yi Ni (Department of Mathematics California The next-to-top term in knot Floer homology PKU Mathematics Forum BICMR August 2-5,

ヘロト 人間 とくほとくほう