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1. Introduction
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Minimal surfaces

Minimal surfaces are surfaces in an equilibrium position and they are
defined as critical points for the area functional.

Figure: www.virtualmathmuseum.org
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Minimal surfaces
Minimal surfaces are physical objects and appear naturally in applied
science as soap films, outermost horizons in Relativity, and architecture
structures.
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Minimal surfaces

Minimal surfaces have been used to solve several open problems in
geometry.

• Schoen-Yau: Positive Mass Theorem in General Relativity.
• Siu-Yau: Frankel conjecture in Algebraic Geometry.
• Micallef-Moore: Sphere Theorem in Riemannian Geometry.
• Marques-Neves: Willmore conjecture in surface theory.

Introduction Volume Spectrum and Multiplicity One Minimal Spheres 6/39



Minimal surfaces Xin Zhou

First variation

Let (Mn+1, g) be a closed Rimannian manifold of dimension (n+ 1).
Denote by Σn ⊂M an embedded hypersurface.

Σ is a minimal hypesurface if Σ locally minimizes area.

The first variation of Area of Σ along any vector field X ∈ X(M) is given by

δAreaΣ(X) = d

dt

∣∣∣
t=0

Area(Σt) =
∫

Σ
H〈n, X〉,

where n is a unit normal of Σ, and H is the mean curvature of Σ.
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First variation

Σ is minimal ⇐⇒ δAreaΣ = 0
⇐⇒ H (mean curvature) ≡ 0.

Examples
Let M = S3 = {(x, y, z, w) : x2 + y2 + z2 + w2 = 1} ⊂ R4.

• Equator: S2 = {(x, y, z, 0) : x2 + y2 + z2 = 1} ⊂ S3;
• Clifford torus: T 2

c = {(x, y, z, w) : x2 + y2 = z2 + w2 = 1
2} ⊂ S3;

• Lawson surfaces: genus-g embedded minimal surfaces in S3.
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Plateau’s problem

According to Wiki:

"In mathematics, Plateau’s problem is to show the existence of a minimal
surface with a given boundary, a problem raised by Joseph-Louis Lagrange
in 1760. However, it is named after Joseph Plateau who experimented with
soap films."

It was solved in 1930 independently by Jesse Douglas and Tibor Radó, and
this initiated systematically investigations on the existence theory of
minimal surfaces.
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Two conjectures of Yau

In his 1982 problem list, S. T. Yau posed the following two problems:

Problem 88
Prove that any 3-dimensional (closed) manifold must contain an infinite
number of immersed (closed) minimal surfaces.

Problem 89
Prove that there are four distinct embedded minimal spheres in any
manifold diffeomorphic to S3.

In this talk, we will survey recent progress of these two conjectures.

Introduction Volume Spectrum and Multiplicity One Minimal Spheres 10/39



Minimal surfaces Xin Zhou

Major results

Theorem (Marques-Neves 13, A. Song 18)
Any closed manifold (Mn+1, g) with 3 ≤ n+ 1 ≤ 7 admits infinitely many
closed embedded minimal hypersurfaces.

Theorem (Z. Wang - Z., 23)
Assume that g is a bumpy metric or a metric with positive Ricci curvature
on S3. Then there exist at least four distinct embedded minimal two-spheres
in (S3, g).

A metric g is bumpy on Mn+1 if every closed minimal hypersurface is
non-degenerate as a critical point of the area functional. White proved that
the set of of bumpy metrics is generic in the Baire sense in 1991.
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History on Yau’s 1st conjecture

Theorem (Almgren 65, Pitts 81, Schoen-Simon 81)
Every closed Riemannian manifold (Mn+1, g) contains one closed minimal
hypersurface Σn, which is smoothly embedded away from a singular set of
co-dimension 7.

• Yau’s 1st conjecture was motivated by this result and the existence
results of infinitely many closed geodesics on surfaces.

• If (Mn+1, g) has nontrivial n-dim homology under Z or Z2, the
existence of Σ follows from a minimization procedure using standard
tools in Geometric Measure Theory (GMT).

• When the n-dim homology vanishes, this follows from a min-max
procedure based on GMT (to be introduced later).
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Now let us assume 3 ≤ n+ 1 ≤ 7, so the min-max hypersurface Σ is
everywhere smoothly embedded.

• Marques-Neves, 13 confirmed Yau’s 1st conjecture under Ricg > 0
condition.

• Ire-Marques-Neves, 17 confirmed Yau’s 1st conjecture for a generic set
of smooth metrics.

• A. Song, 18 fully confirmed Yau’s 1st conjecture based on
Marques-Neves’ work and an ingenious contradiction argument.

• Z. 19 provided a direct proof of Yau’s 1st conjecture for all bumpy
metrics by solving the Multiplicity One Conjecture.
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History on Yau’s 2nd conjecture

The use of GMT and homological relations makes it hard to prescribe the
topology of Σ, even when in dimension n+ 1 = 3.

Theorem (Simon-Smith, 82)
Every Riemannian 3-sphere (S3, g) contains at least one embedded minimal
2-sphere.

• This combined Almgren-Pitts with the works of Almgren-Simon 79
and Meeks-Simon-Yau 82 on isotopy minimizing problems.

• Yau’s 2nd conjecture was motivated by the fact (by Hatcher’s proof of
Smale Conjecture) that the space of embedded S2 ↪→ S3 deformation
retracts to the space of great spheres in S3, which is homeomorphic to
RP3, with cup-length equal to 4.
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• White, 91 proved that, using a degree theory argument, every (S3, g)
with Ricg > 0 contains at least Two embedded minimal 2-spheres.

• In the same paper, White also proved that if the metric g is
sufficiently close to the round metric, then (S3, g) contains at least
Four embedded minimal 2-spheres.

• Halshofer-Ketover, 17 proved that (S3, g), with g a bumpy metric,
contains at least Two embedded minimal 2-spheres.

• Sacks-Uhlenbeck, 81 proved the existence of a branched immersed
minimal 2-sphere in any (Mn, g) when πk(M) is nontrivial for some
k ≥ 2.
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A common major challenge

The major challenge of using the GMT version of min-max theory to prove
the existence of multiple solutions is the Existence of Integer Multiplicity
(to be specified later).

We will discuss two general Multiplicity One Theorems in this talk.
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2. Volume Spectrum and
Multiplicity One Conjecture
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Spectrum – a toy model

Example: critical points for quadratic forms
Let A be an n× n symmetric matrix. Its k-th eigenvalue is given by

λk = min
P⊂Rn

max
x∈P,x 6=0

QA(x), where QA(x) = 〈Ax, x〉〈x, x〉 ,

where P is a k-dimensional linear subspace.

Since QA(x) is invariant under R∗-action, we can take the quotient of P,Rn
under this action:

P \ {0} → RPk−1, Rn \ {0} → RPn−1.

Then λk = min
RPk−1⊂RPn−1

max
x∈RPk−1

QA(x).
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Volume Spectrum – space of cycles

Theorem (Almgren 1961)
The space of all closed separating hypersurfaces Σn ⊂Mn+1, modulo the
Z2-action on identifying the two orientations, satisfies:

Zn(M,Z2) = {Σ = ∂Ω ∼ ∂(M \ Ω)} ' RP∞.

Therefore, the Z2-cohomological ring is:

H∗(Zn(M,Z2),Z2) = Z2[λ].
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Volume Spectrum – k-sweepouts

Definition: k-sweepout
A k-sweepout (k ∈ N) is a continue map: Φ : X → Zn(M,Z2), such that

Φ∗(λk) 6= 0 ∈ Hk(X,Z2).

X is an arbitrary finite dimensional parameter space.

Roughly speaking, Φ is a k-sweepout, if given any k points {p1, · · · , pk} in
M , there exists a parameter x ∈ X, such that

the hypersurface Φ(x) contains all p1, · · · , pk.
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Volume Spectrum – Definition

Volume spectrum: Gromov 88, Guth 10, Marques-Neves 13
The k-th volume spectrum is

ωk(M, g) = inf
Φ:k−sweepout

max
x∈X=dom(Φ)

Area
(
Φ(x)

)
.

Weyl Law: Liokumovich-Marques-Neves 16
ωk(M, g) ∼ an Vol(M)

n
n+1 k

1
n+1 .
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Min-max Theorem

Theorem (Almgren-Pitts, Schoen-Simon, Marques-Neves)
{ωk(M, g)} are achieved by areas of closed minimal hypersurfaces (smoothly
embedded when 2 ≤ n ≤ 6) counted with multiplicity, i.e.

ωk =
lk∑
i=1

mk,i Area(Σk,i), mk,i ∈ N>0.
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Min-max method – a toy model

Multivariable Calculus: h is the height function on S, and p is a saddle
point.

b

h
S

p

γ0

γ

b

maximum of h on γ

h(p) = max
t∈[0,1]

h
(
γ0(t)

)
= min
γ∈[γ0]

max
t∈[0,1]

h
(
γ(t)
)
.
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Min-max theorem – 1-sweepouts

0 1

ϕ

x1

xi

xN

ϕ(14)
ϕ(12)

ϕ(34)
b

b ϕ(1)

ϕ(0)

Mn+1

• ϕ : [0, 1]→ space of hypercycles, – “1-sweepout”;
• Min-max value —“width”:

L = inf
{

max
t∈[0,1]

Area(φ(t)) : φ is a 1-sweepout
}
.
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0 1

ϕ0

x1

xi

xN

ϕ0(
1
4)

ϕ0(
1
2)

ϕ0(
3
4) = Σ0

b

b ϕ0(1)

ϕ0(0)

Mn+1Mn+1Mn+1

Σ0–minimal

ϕ0 optimal sweepout

Theorem (Almgren 1961, Pitts 1981, Schoen-Simon 1981)
The width L is achieved by the area of some closed minimal hypersurface Σ0
counted with integer multiplicity (with a codim-7 singular set).

Integer multiplicity/density may appear as compactness/convergence of
minimal hypersurfaces were essentially used.
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Yau’s 1st conjecture

Conjecture (Yau 1982)
Prove that any 3-dimensional (closed) manifold must contain an infinite
number of immersed (closed) minimal surfaces.

In 2013, Marques and Neves initiated a program toward this conjecture
using volume spectrum and the min-max theorem. This conjecture was
finally proved by Song in 2018 via this program.

The key challenge was that existence of multiplicities may cause
re-occurrence of minimal hypersurfaces when applying the min-max
theorem to higher ωk, so one may not produce genuine new solutions!

Marques and Neves in 2014 raised the Multiplicity One Conjecture, which
asserted that for a bumpy metric (which is a generic notion), the
multiplicities are always one.
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Multiplicity One Conjecture

Theorem (Z. 19)
Let Mn+1 be a closed manifold with 3 ≤ n+ 1 ≤ 7. For a bumpy metric g,
for each k ∈ N, we have

ωk =
lk∑
i=1

Area(Σk,i).

That is, all multiplicities are exactly 1.

Theorem (Z. 19)
Let (Mn+1, g) be a closed Riemannian manifold with 3 ≤ n+ 1 ≤ 7. For
each k ∈ N, if the multiplicity mk,i > 1, then
• either Σk,i is weakly stable,
• or Σk,i is 1-sided, and its 2-sided double cover is weakly stable.
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Some remarks

The second variation of Area of Σ along any vector field X = fn with
f ∈ C1

c (Σ) is given by

δ2 AreaΣ(f, f) = d2

dt2

∣∣∣
t=0

Area(Σt) =
∫

Σ
fLΣfdHn,

where the Jacobi operator LΣf = −∆Σf +Qf is linear and elliptic.

• Σ is said to be stable if the first eigenvalue λ1(LΣ) ≥ 0.
• Σ is said to be weakly stable if λ1(LΣ) = 0, that is, there exists some
ϕ ≥ 0 s.t.

LΣϕ = 0.
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Proof: PMC approximations

• Perturb Area to Aεh(Ω) = Area(∂Ω)− ε
∫

Ω h dVol, with ε→ 0.
Here h ∈ C∞(M).

• Since Ah is only defined on C(M), consider the double cover

π : C(M)→ Zn(M,Z2),

and interpret ωk, a min-max value on Zn(M,Z2), as a relative
min-max value of on C(M).

• When h is chosen in a generic manner, the min-max value ωk,ε of Aεh
is achieved by some Ωk,ε ⊂M with smooth, multiplicity one boundary
by the PMC min-max theory of Z. - Zhu 18.

• If h is carefully chosen, and if ∂Ωk,ε converges to a smooth limit Σk
with higher multiplicity, then Σk has to be a degenerate minimal
hypersurface, contradicting with bumpyness of the metric.
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3. Minimal Spheres
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Yau’s 2nd conjecture

Conjecture (Yau 1982)
Prove that there are four distinct embedded minimal spheres in any
manifold diffeomorphic to S3.

Introduction Volume Spectrum and Multiplicity One Minimal Spheres 31/39



Minimal surfaces Xin Zhou

Topology of the space of 2-spheres
By Smale Conjecture, the closure of the space X of smoothly embedded S2

in S3 (including degenerate embeddings) is homotopic to RP4 minus a ball.
Therefore

H∗(X , ∂X ,Z2) = Z2[α]/[α5].

Let [−1, 1]×∼ RP3 to denote the twisted [−1, 1]-bundle over RP3, and
[a0, a1, a2, a3, a4] to denote a point in [−1, 1]×∼ RP3. When a0 6= ±1, let

G([a0, a1, a2, a3, a4]) := {a1x1 + a2x2 + a3x3 + a4x4 = a0} ∩ S3;

when a0 = ±1, G(a0, a1, a2, a3, a4) = ±(a1, a2, a3, a4) ∈ S3.

Consider the four maps:

Ψ1 : [−1, 1]×∼ RP0 → X , a0 7−→ G(a0, 1, 0, 0, 0);

Ψ2 : [−1, 1]×∼ RP1 → X , [a0, a1, a2] 7−→ G(a0, a1, a2, 0, 0);

Ψ3 : [−1, 1]×∼ RP2 → X , [a0, a1, a2, a3] 7−→ G(a0, a1, a2, a3, 0);

Ψ4 : [−1, 1]×∼ RP3 → X , [a0, a1, a2, a3, a4] 7−→ G(a0, a1, a2, a3, a4).
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We can consider min-max values associated with Ψi:

Li = inf
Φ∼Ψi

sup
x∈dom(Φ)

H2(Φ(x)
)
.

By the Lusternik-Schnirelmann theory, we have that if (S3, g) contains only
finitely many embedded minimal 2-spheres, then

0 < L1 < L2 < L3 < L4.
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Multiplicity One Theorem

• Let Φ0 : X → X be a fixed continuous map.
• Let Π be the homotopy class of Φ0 relative to Φ0 : Z → X , Z ⊂ X.

Define
L(Π) = inf

Φ∈Π
sup
x∈X
H2(Φ(x)).

Theorem (Wang- Z. 23)
If L(Π) > supx∈Z0 H

2(Φ0(x)) > 0, then

L(Π) = m1H2(Γ1) + · · ·mlH2(Γl),

where {Γj} is a disjoint collection of embedded minimal 2-spheres, so that
• if mj > 1, then Γj is stable.
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Proof of generic four spheres theorem

Theorem (Z. Wang - Z., 23)
Assume that g is a bumpy metric or Ricg > 0. Then there exist at least four
distinct embedded minimal two-spheres in (S3, g).

• If there is no stable minimal surfaces in (S3, g), e.g. Ricg > 0, this
follows directly the previous Multiplicity One Theorem.

• If g is bumpy and there exits one strictly stable minimal S2 ↪→ S3, we
used a cutting argument as follows:
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Proof of Multiplicity One Theorem

Idea: approximate Area by Aεh(Ω) = H2(∂Ω)− ε
∫

Ω hdVol, where ∂Ω is an
embedded 2-sphere.

• Develop a PMC min-max theory for the Aεh functional in the space of
embedded 2-spheres.

• Choose suitable h ∈ C∞(S3) such that min-max solutions Σε of Aεh
has “multiplicity one” when ε� 1.

• Show the the limit of Σε when ε→ 0 has to be a stable minimal
2-sphere if the multiplicity is greater than 1.
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PMC min-max theory: why C1,1?

Theorem (Wang - Z. 23)
The min-max solution of Ah is C1,1 closed, almost embedded, strongly
Ah-stationary surface Σ.

• C1,1 regularity is natural for the isotopy problem:
• We introduced a new scheme of proving min-max regularity as C1,1

solutions may not satisfy Unique Continuation property.
• We may assume the min-max solutions Σεk associated with Aεkh

converges to a smoothly embedded minimal 2-sphere Σ∞.
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C1,1 is good enough
Choose h to change sign along the limit minimal surface Σ∞:

• The strong Ah-property implies that Σ has to be an “almost”
multiplicity one surface:

• The height differences will converge to a super solution Φ with
LΣ∞Φ ≥ 0, when appropriately normalized:
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Thank you for your attention!
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