Fourier restriction type problems:
 New developments in the last 15 years

Ruixiang Zhang

August 4, 2023

Contents

Some questions I find interesting

Fourier restriction type problems

Important developments in recent 15 years

Interesting future directions

Local smoothing for the wave equation

Problem
Suppose $u\left(x_{1}, x_{2}, t\right)$ solves

$$
\left\{\begin{array}{l}
u_{t t}=\Delta_{x}(u) \tag{1}\\
\left.u\right|_{t=0}=g,\left.u_{t}\right|_{t=0}=0
\end{array}\right.
$$

How large can $p>2$ be s.t.:
$\|u\|_{L^{p}\left(\mathbb{R}^{2} \times[0,1]\right)}$ is "almost bounded" by $\|g\|_{L^{p}\left(\mathbb{R}^{2}\right)}$?
Conjecture (Sogge, 1991)
p can go all the way up to 4 .

The Lindelöf hypothesis

Problem
How small can you make $\varepsilon>0$ s.t.

$$
\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right| \lesssim \varepsilon t^{\varepsilon}, t>1 .
$$

Conjecture (Lindelöf hypothesis, 1908)
Every $\varepsilon>0$ works.

Falconer's distance conjecture

Problem

$E \subset \mathbb{R}^{2}$ compact. How small can you make α s.t.

$$
\operatorname{dim} E=\alpha \Rightarrow|\Delta(E)|=|\{|x-y|, x, y \in E\}|>0 ?
$$

Conjecture (Falconer, 1985)
$\alpha>1$ suffices.

A connection

- Recent progress on all three.
- They all have to do with Fourier restriction type problems!

Fourier transform

- Fourier transform: $\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi \mathrm{i} x \cdot \xi} \mathrm{~d} x$.
- Fourier inversion: $f(x)=\int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{2 \pi \mathrm{i} x \cdot \xi} \mathrm{~d} \xi$.
- FT is an L^{2}-isometry (Plancherel, known as orthogonality).

Fourier restriction type problems

- A Fourier restriction type problem asks: If $\operatorname{supp} \hat{f} \subset M$ (submanifold), then, for some $X \subset \mathbb{R}^{n}$, can you predict and prove a good estimate of $\|f\|_{L^{p}(X)}$?
- $p \geq 2$ in this talk.
- Harmless assumption: X in a large ball $B_{R}, R \rightarrow \infty$.
- Also harmless: Allowing an R^{ε}-loss.

More concretely:

In local smoothing,

- $M=\left\{\left|x_{3}\right|=\left|\left(x_{1}, x_{2}\right)\right|,\left|\left(x_{1}, x_{2}\right)\right| \leq 1\right\}$, truncated unit cone.
- $X=B_{R}^{3} . R>1$.
- Want:

$$
\frac{1}{R}\|f\|_{L^{4}\left(B_{R}^{3}\right)}^{4} \lesssim \varepsilon R^{\varepsilon}\|f\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4}
$$

M can be other curved manifolds in other applications.

- E.g. $M=S^{1}$ (unit circle) $\subset \mathbb{R}^{2}$ in Falconer.

What's special about Fourier restriction type problems?

- If $\operatorname{supp} \hat{f} \subset S^{n-1} \subset \mathbb{R}^{n}$, then in B_{R},

$$
f=\sum_{T} f_{T}
$$

- Each f_{T} morally supported inside a tube T of thickness $R^{\frac{1}{2}}$ and length R.
- Each $\left|f_{T}\right|$ morally a constant on T.
- Different T have different positions (due to curvature of M).
- Similar but different decomposition for the cone.

What's special about Fourier restriction type problems?

- If $\operatorname{supp} \hat{f} \subset S^{n-1} \subset \mathbb{R}^{n}$, then in B_{R},

$$
f=\sum_{T} f_{T}
$$

- Each f_{T} morally supported inside a tube T of thickness $R^{\frac{1}{2}}$ and length R.
- Each $\left|f_{T}\right|$ morally a constant on T.
- Different T have different positions (due to curvature of M).
- Similar but different decomposition for the cone.
- Wave packet decomposition.
$f=$ sum of wave packets

Combinatorics of tubes

- Wave packets are L^{2} orthogonal where they meet.
- Many wave packets squeezed together can increase the L^{p} norm ($p>2$).
- Fourier restriction type problems are closely related to incidence problems.
- Incidence problems are about e.g. how tubes can (not) overlap (too much).

Incidence problems of tubes, etc.

- Incidence problems are about e.g. how tubes can (not) overlap (too much).
- Combinatorial.
- Source of many recent developments.
- Example of application: Local smoothing conjecture in dim $2+1$ is true (Guth-Wang-Z., 2020).

Central open problems in the field

Conjecture (Fourier Restriction)
If $1<q<\frac{2 n}{n+1}$, then for every $f \in L^{q}\left(\mathbb{R}^{n}\right), \hat{f}$ can be meaningfully restricted to S^{n-1} as an integrable function.

Conjecture (Kakeya)
If a compact set in \mathbb{R}^{n} contains a unit line segment in every direction, then it has dimension n.

New developments in recent 15 years

- Many new developments made, including ones on all three problems in the beginning.
- New ideas and tools behind them.
- We will take a look at three: two related to tube geometry and another exploiting different scales of the problem.

1. The polynomial method

- Influenced by computer science/combinatorics. Also: roots in number theory.
- Idea: Using zero sets of a polynomial to cut up the space to partition the function f evenly.
- Advantage: Because of algebra, tubes don't like to enter many pieces.
- Major applications: Finite field Kakeya (Dvir, 2009), new proof of multilinear Kakeya (Guth, 2010), new framework and progress for Restriction Conjecture (Guth, 2016 and 2018), ...

Multilinear Kakeya via polynomials

- Multilinear Kakeya (MK): n transverse families of tubes in \mathbb{R}^{n} cannot overlap much. Sharp.
- Guth (2010) proved a slightly stronger version of MK by the polynomial method.
- Both Multilinear Kakeya and the polynomial method became very useful in the area.

Multilinear Kakeya

Theorem (Multilinear Kakeya, Bennett-Carbery-Tao, 2006) $\mathbb{T}_{1}, \ldots, \mathbb{T}_{n}$: families of $1 \times \cdots \times 1 \times N$ - cylinders in \mathbb{R}^{n}. Direction of $T \in \mathbb{T}_{j}$ is sufficiently close to x_{j}-axis. Then

$$
\left\|\left(\prod_{j=1}^{n}\left(\sum_{T \in \mathbb{T}_{j}} 1_{T}\right)\right)^{\frac{1}{n}}\right\|_{L^{\frac{n}{n-1}}\left(\mathbb{R}^{n}\right)} \lesssim_{\varepsilon} N^{\varepsilon} \prod_{j=1}^{n}\left|\mathbb{T}_{j}\right|^{\frac{1}{n-1}}, \forall \varepsilon>0 .
$$

2. The high/low method

- Influenced by incidence theorems over finite fields and geometric measure theory.
- Idea: Decompose 1_{T} by Fourier analysis. Low frequency part is spread out and high frequency part has orthogonality.
- Advantage: Being spread out and being orthogonal are both good for provable L^{p} bounds ($p>1$).
- Major applications: Local smoothing in $2+1$ dimensions (Guth-Wang-Z., 2020), ...

The high/low decomposition

Decomposing the characteristic function of a rectangle into oscillating parts + spread out parts.

3. New ways to induct on scales

- A key tool known to people around 2000. E.g. in Wolff's work.
- Idea: By (parabolic) rescaling, a small piece of a positively curved hypersurface looks like the standard paraboloid. Analyzing the contribution of that small piece often looks like the same problem in a smaller scale.
- Advantage: Finding the "important scale" for a function f in B_{R}. Gives us more assumptions for free.
- Major applications: Decoupling (Bourgain-Demeter, 2015), ...

Decoupling for the sphere

Theorem (Bourgain-Demeter, 2015)
$R>1$. Write the $\frac{1}{R^{2}}$-neighborhood Ω of $S^{n-1} \subset \mathbb{R}^{n}$ as union of (approx.) boxes θ of dimensions $\frac{1}{R} \times \cdots \times \frac{1}{R} \times \frac{1}{R^{2}}$.
Suppose: $\hat{f} \subset \Omega$. Contributions of θ to f is f_{θ}.
Then

$$
\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim \varepsilon R^{\varepsilon}\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{2}\right)^{\frac{1}{2}}, \forall 2 \leq p \leq \frac{2(n+1)}{n-1} .
$$

Decoupling leads to...

- Proof of main conjecture in Vinogradov' s Mean Value Theorem (Bourgain-Demeter-Guth, 2016).
- World record on Lindelöf (Bourgain, 2017).
- Affirmative answer to Carleson's problem for free Schrödinger solutions (Du-Guth-Li, 2017; Du-Z., 2019)
- World record on 2D Falconer (Guth-losevich-Ou-Wang, 2020).

Looking forward...

- The landscape of the subject has been rapidly evolving. Many cutting-edge discoveries. Some even sharp.
- We are still far from solving Restriction and Kakeya.
- More to be discovered in the future!

Possible direction 1: New methods for incidence estimates

- Geometry of tubes has been important to the subject, especially since Bourgain's work in 1991.
- Some very recent work on Restriction Conjecture (Wang, 2022; Wang-Wu, 2022) exploit tube geometry in new ways.
- A lot of new developments in geometric measure theory + discretized sum-product (dates back to Bourgain, 2003). Going from ε-improvement to quantitative gain.
- Exciting recent results (..., Orponen-Shmerkin-Wang, 2022; Wang-Zahl, 2022, ...). Great potential.

Possible direction 2: Connections to real algebraic geometry and o-minimal geometry

- Real algebraic geometry shows up naturally in the polynomial method and the restriction theory of algebraic varieties.
- Examples of applications: High dimensional Polynomial Wolff Axiom (Katz-Rogers, 2018). A stationary set method (Basu-Guo-Z.-Zorin-Kranich, 2023).
- Useful ideas from logic.

Possible direction 3: More algebra; unconventional thoughts and tools?

- Proof of p-adic Kakeya (Arsovski, 2023). "More advanced" algebra involved.
- New proof of finite field Kakeya (Dhar-Dvir, 2021).
- Current polynomial method is powerful but not good in many problems. Next level tools from algebra, differential geometry, etc. to boost its strength?
- Converse direction: Subs of alg. topology for finite fields?

An interesting question inspired by Dhar-Dvir's work

- $N>1$. Cut S^{2} into N^{2} approx. sq. pieces (caps) $\theta_{j}, 1 \leq j \leq N^{2}$. Each has diameter $\sim \frac{1}{N}$.
- Define

$$
\left|\theta_{i} \wedge \theta_{j} \wedge \theta_{k}\right|=\sup _{v_{i} \in \theta_{i}, v_{j} \in \theta_{j}, v_{k} \in \theta_{k}}\left|v_{i} \wedge v_{j} \wedge v_{k}\right|
$$

Caps on S^{2}

For example, $\left|\theta_{j} \wedge \theta_{j} \wedge \theta_{j}\right| \sim \frac{1}{N^{2}}$ by definition.

An open problem

Problem
If $a_{i, j k} \in \mathbb{R}^{+}$s.t. each

$$
a_{i, j k} \sim \frac{1}{\left|\theta_{i} \wedge \theta_{j} \wedge \theta_{k}\right|},
$$

is it true that the rank of $\left(a_{i, j k}\right)_{N^{2} \times N^{4}}$ is $\gtrsim N^{2}$?

Thank you!

